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Abstract—Distance-bounding protocols are cryptographic
protocols that securely establish an upper bound on the
physical distance between the participants. Existing symbolic
verification frameworks for distance-bounding protocols con-
sider timestamps and the location of agents. In this work we
introduce a causality-based characterization of secure distance-
bounding that discards the notions of time and location.
This allows us to verify the correctness of distance-bounding
protocols with standard protocol verification tools. That is to
say, we provide the first fully automated verification framework
for distance-bounding protocols. By using our framework, we
confirmed known vulnerabilities in a number of protocols and
discovered unreported attacks against two recently published
protocols.

Keywords-distance-bounding; security protocols; causality;
formal verification; automatic verification

I. INTRODUCTION

Contactless systems are gaining more and more popularity

nowadays. An increasing number of applications, including

ticketing, access control, e-passports, tracking services, and

mobile payments, make use of contactless communication

technologies such as RFID and NFC. However, contact-

less communication is known to be vulnerable to relay
attacks [1]: a man-in-the-middle attack where an adversary

relays the verbatim messages that are being exchanged

through the network.

Relay attacks are mostly used to break communication

protocols with a bounded read range, such as smartcards

(2-10 cm) or car keys (10-100 m). By simply relaying, an

adversary is able to establish a long-range communication

between two contactless tokens, which otherwise wouldn’t

be possible. This has been used, for example, by Francillon

et al. [2] to break the passive keyless entry system of various

modern cars.

To face relay attacks, Desmedt et al. [3], [4] introduced

the notion of distance-bounding protocols, and the first such

protocol was designed by Brands and Chaum [5]. Distance-

bounding protocols use the round-trip time (RTT) of one or

more challenge/response rounds to provide an upper bound

on the prover-to-verifier distance (see Figure 1a). Through

this scheme, security verification translates into the validity

of the actual prover-to-verifier distance in comparison with

the RTTs. More precisely, in a secure distance-bounding

protocol, if the prover-to-verifier distance is d and the RTT

is Δt, then it must hold that d ≤ 1
2Δt · c, where c denotes

the maximum network transmission speed (for radio-waves,

this is the speed of light). This intuition is supported by the

physical fact that no message can be transmitted at a speed

higher than c.

In the context of distance-bounding protocols, their se-

curity has traditionally been verified over the years, by

accounting for their resistance to three types of attack:

mafia fraud [1], distance fraud [6], and terrorist fraud [6].

Resistance is measured in terms of probability of success of

the adversary in a given adversary model [7]–[9]. However,

this probabilistic analysis based on attack-resistance does not

seem to be a promising verification scheme, as new attacks

might be discovered in the future.

A clear and convincing proof of the flaws of the attack-

based security analysis is the work by Cremers et al. [10].

In this work, the authors prove several protocols to be

vulnerable to distance-hijacking attacks while they were

previously considered secure as they resisted the then-

existing attack types (mafia, distance and terrorist frauds).

An important observation is that, like previous authors on

distance bounding, Cremers et al. assumed a Dolev-Yao [11]

adversary, so they did not introduce stronger adversary

models to define their new type of attack.

Unfortunately, although the desired properties of a

distance-bounding protocol can be precisely defined in cur-

rent security models, it is not so straightforward to verify that

a given protocol satisfies these properties. On the one hand,

computational models [8], [12] typically lead to manual and

complex security proofs. On the other hand, symbolic mod-

els [10], [13] rely on using adapted versions of higher-order

theorem-proving tools such as Isabelle/HOL [14], which

require a high degree of user intervention. This means that

verifying the security of a distance-bounding protocol in the

existing symbolic models requires not only a considerable

amount of expertise, but also a significant time investment.

By comparison, well-established automated verification

tools (such as Tamarin [15], ProVerif [16] and Scyther [17])

are able to verify traditional authentication properties in a

straightforward and rapid way. These tools handle time as

a discrete ordering of events, therefore verifying protocols
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Figure 1. Three timing scenarios of a challenge/response round.

with the notion of continuous time becomes difficult.

In this paper we argue that the notions of time and location

are indeed not needed to specify and verify the security

of distance-bounding protocols. Surprisingly enough, such

protocols can be verified by considering the causal order of

events in protocol traces, similarly to authentication prop-

erties like aliveness and synchronization [18]. The intuition

behind this observation is illustrated in Figure 1.

Figure 1a shows a regular challenge/response round, in

which prover P can only respond to verifier V ’s challenge

after having received the challenge. Therefore, 1
2c · Δt

determines an upper bound on the distance d between V
and P . Now, suppose that, due to a vulnerability of the

protocol, P is able to predict the appropriate response before

having received the challenge (Figure 1b). This means that

he will be able to send his response “too early”, leading to

a shorter round-trip time Δt′ < Δt and thus to a smaller

and incorrect distance calculated by V . Thus, if the protocol

is insecure because P can preempt the response, P has

sufficient knowledge to create the response before reception

of the challenge. Now our main observation is that (assuming

that there is no other causal relation between sending the

challenge and P ’s knowledge), P could even have sent the

response before V sent the challenge (Figure 1c). From a

causal point of view, this means that if there is a trace in

which P sends its response before P receives the challenge,

there must also be a trace in which P sends the response

before V sends the challenge. Hence, a flaw in the protocol

translates into such a wrongly ordered trace, which can be

discovered through an analysis that does not consider time.

In the remainder of this paper, we will make this high-

level intuition precise in the following way:

• First we introduce a security model, based on Basin et

al. [13], [19] and formally define the notion of secure
distance-bounding using time and location (Section III).

• Then, in Section IV, we analyse the semantic domain

and formulate a number of basic properties that provide

a sufficient characterization of the semantics to prove

our main result. The purpose of this step is to make

our result independent of the particular time/location

semantics used.

• Next, we formulate our notion of causality-based se-

cure distance-bounding, which does not refer to time

and location, and we prove it equivalent to the pre-

viously defined notion of secure distance-bounding
(Section V).

• In order to validate our results, we demonstrate an

implementation of causality-based secure distance-

bounding in Tamarin [15] and use it to perform a large-

scale analysis of published protocols (Section VI). Our

analysis results coincide with previous formal analyses,

such as the report by Cremers et al. [10]. In addition,

we uncover previously unreported vulnerabilities on

recently published protocols.

II. BACKGROUND

Distance-Bounding Protocols: The first distance-

bounding protocol was designed by Brands and Chaum [5]

and it is composed of three phases. The slow phase (a.k.a.

initial phase, setup phase) is where the parties agree on

the parameters of the session, such as nonces. Then the

fast phase (a.k.a. critical phase, distance-bounding phase,

timed phase) is executed, consisting of a number of chal-

lenge/responses rounds, where the verifier measures the

round-trip times. Finally, a verification phase (a.k.a. final

phase, authentication phase) takes place, in which the verifier

makes a decision on whether the prover successfully passed

the protocol. This is done by checking the correctness of all

round-trip times and the prover’s proof of knowledge of a

valid signature.

Another well-known distance-bounding protocol was pro-

posed by Hancke and Kuhn in [20]. An abstraction of

this protocol is shown in Figure 2. The first two messages

compose the initial phase of the protocol, where the verifier

V sends his nonce NV to the prover P who replies back with

his nonce NP . Then the fast phase starts (represented by

dashed arrows) with V sending his challenge C to P whose

response is h(k,NV , NP , C), where k is the shared secret

key between V and P and h is an irreversible cryptographic

function. The verification phase is represented by V ’s claim

that “P is close”. The protocol seems to be secure, as for

an attacker (who could be an untrusted prover) to pass the

protocol, he must know either the verifier’s challenge in

advance or the shared secret key between the verifier and
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Figure 2. A representation of Hancke and Kuhn’s protocol.

the intended prover. However, due to the particular choice

of h, a mafia-fraud attacker successfully passes the protocol

with a non-negligible probability of (3/4)|C| (see [20] for

further details).

One of the main differences between Brands and Chaum’s

protocol and Hancke and Kuhn’s protocol is the following. In

the former, the fast phase messages do not rely on long-term

secret keys whereas in the latter protocol, such a reliance

does exist. Various protocols have been proposed follow-

ing this characteristic of Brands and Chaum’s approach,

e.g. [21]–[25] whilst others employ Hancke and Kuhn’s

design, such as [26]–[30].

Attacks on Distance-Bounding Protocols: Although

distance-bounding protocols solved the problem of relay

attacks to some extent, more sophisticated attacks have

emerged, such as mafia fraud, distance fraud, terrorist fraud
and distance hijacking.

Mafia-fraud attacks were introduced in [1], in which a

dishonest agent I uses an honest prover P to provide a

verifier V with a false upper bound on the distance between

V and P . Some authors consider mafia-fraud attacks to be

the same as relay attacks. Others, however, classify mafia-

fraud attackers stronger than relay attackers by assuming

that the former can manipulate/modify the messages, rather

than simply relaying them.

A distance-fraud attacker [6] is a dishonest prover I whose

goal is to provide a verifier V with a false upper bound on

V ’s distance to I . In particular, for this type of attack, I
does not use any other prover to perform his attack.

More sophisticated attacks are terrorist fraud and distance
hijacking. Terrorist-fraud attacks were first discussed in [6]

in which the attacker prover I cheats on the upper bound on

the distance between a verifier V and a dishonest prover P ,

without learning P ’s secret key material. Distance hijacking

was introduced by Cremers at al. in [10], in which a

dishonest prover I makes use of honest provers in order to

provide a verifier V with a false upper bound on the distance

between V and I .

Probabilistic Security Analysis: The work by Avoine et

al. [7] introduces a framework that explores the adversary’s

capabilities and strategies and the influence of provers’

abilities to tamper with their devices. New concepts in the

distance-bounding field are introduced such as black-box and

white-box models.

The concepts sketched in [7] were soon formulated in

computational models. For example, Dürholz et al. formal-

ized the classical frauds (except for distance hijacking) by

using an adversary model that does not allow for corrupted

verifiers [8]. Boureanu, Mitrokotsa, and Vaudenay intro-

duced a more general model [12] by allowing adversaries to

interact with multiple provers and verifiers, hence capturing

distance hijacking [10].

Mauw, Toro-Pozo, and Trujillo-Rasua [28], [31] devel-

oped a probabilistic analysis of the security of a class of

distance-bounding protocols in terms of mafia fraud. This

class includes distance-bounding protocols that do not have

a final verification phase and are based on precomputation

(e.g. [20], [26]–[28], [30], [32]–[34]). They proposed a

set-of-automata representation of protocols that allows the

analyst to generically compute the success probability of

mafia-fraud attacks.

Symbolic Security Analysis: Meadows et al. [23] pro-

posed a formal framework to verify distance-bounding pro-

tocols. Their approach does not particularly deal with multi-

prover scenarios, therefore neither distance-hijacking nor

terrorist-fraud attacks would be detected.

The first formal framework for distance-bounding proto-

cols with multi-prover scenarios was proposed by Malladi

et al. [35], along with a software tool. They analyse the

signature-based Brands and Chaum’s protocol and find an

attack in which an adversary who is not in the vicinity of

the verifier still passes the protocol. They call this attack the

farther adversary scenario. Moreover, to solve the security

issue they found, they observed that including the prover’s

identity in the signature would make the protocol no longer

vulnerable to farther adversary attacks.

Basin et al. [13], [19] introduced a simple yet powerful

formal approach for distance-bounding verification. Their

model captures dishonest prover behaviors and, by exten-

sion, distance-fraud and distance-hijacking attacks, of which

the latter was referred to as impersonation attacks. Their

implementation of the formalization is written in the higher-

order logic theorem prover Isabelle/HOL [14]. Similarly

to Malladi et al. [35], they prove that the signature-based

Brands and Chaum’s protocol can be fixed by explicitly

adding the prover’s identity to the responses in the fast

phase.

In [10], Cremers et al. extended Basin et al’s model to cap-

ture bit-level message manipulation on wireless networks,

introduced as overshadowing in [36]. Supported by this,

they proved that including the prover’s identity (neither by

XOR-ing it with the challenge responses nor by using secure

channels) in Brands and Chaum’s protocol does not solve its

vulnerability to distance hijacking.
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It is still an open problem how to model terrorist fraud

in a symbolic security model. Originally, a terrorist-fraud

attack consisted in a far-away dishonest prover passing the

distance-bounding protocol with the help of the adversary,

but without leaking the prover’s long-term key [6]. Many

attempts to formalize this intuition have been made in

computational models [8], [24], [37], [38]. Yet, there seems

to be no agreement on the appropriate definition.

III. A SECURITY MODEL BASED ON TIME AND

LOCATION

In this section we describe the formalism of Basin et

al. [13], [19] which is the basis for our work. The formalism

employs logic theories to handle inductively-defined sets of

traces that represent the protocol’s executions. It considers

execution traces that consist of a sequence of timed-events,

e.g. denoting the sending and reception of messages, where

the timestamps represent the point in time at which the

events occurred.

Agents and Messages: Participants in a protocol exe-

cution are called agents. The set of agents is denoted by

Agent, and {Honest,Dishonest} is a partition of the set of

agents into honest and dishonest agents.

During a protocol execution, agents exchange messages

through the network. Basic messages are agent names

(Agent), nonces (Nonce), and constants (Const). More com-

plex messages can be defined by using atomic messages as

the arguments of a function, by pairing them together into a

single message or by denoting an encrypted message. For-

mally, the set of messages Msg is defined by the following

grammar, where atom ∈ Const∪Agent∪Nonce and f ∈ F
are terminal symbols and F is a countably infinite set of

function symbols.

Msg ::= atom | (Msg,Msg) | {Msg}Msg | f (Msg) .

The term (m1,m2) denotes the pairing of messages m1

and m2. Further, {m1}m2
stands for the encryption of m1

with the key m2. An agent’s signature on a message is

represented by the encryption of the message with the secret

key of the agent. Finally, f(m1) indicates the output of

the function f on the input m1. Functions with multiple

arguments can be represented through pairing of arguments.

Agents’ cryptographic keys are denoted by the functions

pk : Agent → Msg, sk : Agent → Msg and sh : Agent ×
Agent → Msg that indicate the asymmetric public key

of an agent, asymmetric secret key of an agent and the

symmetric shared key of two agents, respectively. Lastly, the

function −1 : Msg→ Msg maps an encryption key onto the

corresponding decryption key, and vice-versa.

The set B = {sk, pk, sh, −1} ⊆ F is the set of

basic functions and its functions are assumed to satisfy that

sh(A,B) = sh(B,A), pk(A)−1 = sk(A) and sk(A)−1 =
pk(A); for all A,B ∈ Agent. In addition, we assume that

k /∈ {pk(A), sk(A)} implies k−1 = k; for all k ∈ Msg and

A ∈ Agent. These assumptions represent the properties for

symmetric and asymmetric encryption/decryption.

Events and Traces: An event denotes an agent’s action,

such as sending or receiving a message, or an agent’s

security claim. We define the set of events Ev via the

following grammar, for A,B ∈ Agent.

Ev ::= sendA (Msg) [Msg] | recvA (Msg) |
claimA (B,Ev,Ev) .

Given messages m1 and m2, and agents A and B,

sendA (m1) [m2] indicates that A has sent the message m1

and updated the agent’s local state with the message m2, and

recvA (m1) means that A has received m1. In the original

model, claiming events have the form claimA (B, d), where

d ∈ R is a distance value. This allows an agent A to claim

that another agent B is within a radius of length d, which

is computed based on the round-trip time of a message

exchange. We will make the message exchange explicit, and

use claimA (B, e1, e2) where e1 and e2 are the events used to

compute the round-trip time and, by extension, the distance

bound d.

We define the sets Send,Recv ⊆ Ev of all send and re-

ceive events, respectively. The function actor : Ev→ Agent
maps events onto their corresponding actor agent (i.e., the

instance of A from the syntax). We extend this notation

by using actor (α), for a given trace α, to refer to the

set {actor (e) | (t, e) ∈ α}. We require for an event

claimA (B, e1, e2) that actor (e1) = actor (e2) = A.

A trace α is a finite sequence of timed-events α ∈
(R× Ev)∗, representing the execution of a protocol.

Agents’ Knowledge: As the trace evolves, agents may

gain knowledge by receiving messages from other agents.

At the beginning of a protocol execution, every agent is

provided with an initial knowledge consisting of all agents’

names and constants, his own nonces and secret keys, and

all public keys. We use the function init : Agent→ P (Msg)
to represent the initial knowledge of an agent:

init (A) = Agent ∪ Const ∪ NonceA ∪ {sk(A)} ∪
{pk(B) | B ∈ Agent} ∪ {sh(A,B) | B ∈ Agent},

where NonceA denotes the set of nonces for a given agent

A ∈ Agent. We assume that {NonceA|A ∈ Agent} forms a

partition of the set Nonce.

Given an agent A and a trace α, dmA(α) denotes the

set of all deducible messages from a trace α. This set is

inductively defined by the rules in Figure 3.

Network and Intruder: For a given protocol P , the

set of possible traces Tr (P) is inductively defined by the

Start rule (Start), the Intruder rule (Int), the Network

rule (Net) and the rules specifying the protocol. The Start,

Intruder and Network rules are depicted in Figure 4.

The rules make use of the function maxt : (R×Ev)∗ → R,

defined as maxt(α) = max(t,e)∈α{t}, yields the latest time
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m ∈ init (A)

m ∈ dmA (α)

(t, recvA (m)) ∈ α
m ∈ dmA (α)

m1 ∈ dmA (α)
m2 ∈ dmA (α)

(m1,m2) ∈ dmA (α)

m ∈ dmA (α)
f ∈ F \ B

f(m) ∈ dmA (α)

(m1,m2) ∈ dmA (α)
i ∈ {1, 2}

mi ∈ dmA (α)

m ∈ dmA (α)
k ∈ dmA (α)

{m}k ∈ dmA (α)

{m}k ∈ dmA (α) k−1 ∈ dmA (α)

m ∈ dmA (α)

Figure 3. Rules for message deduction.

ε ∈ Tr (P) Start

α ∈ Tr (P) I ∈ Dishonest
t ≥ maxt(α) m ∈ dmI (α)

α · (t, sendI (m) []) ∈ Tr (P) Int

α ∈ Tr (P) t ≥ maxt(α)
(t′, sendA (m) [s]) ∈ α
t ≥ t′ + d (A,B) /c

α · (t, recvB (m)) ∈ Tr (P) Net

Figure 4. Start, Intruder and Network rules.

at which an event of α occurred. The expression d(A,B)
gives the distance between two agents A and B based on

an uninterpreted function l : Agent→ R
3, which associates

each agent to a location in the real coordinate space R
3. It is

worth remarking that this interpretation of location assumes

that agents are static, including dishonest agents.

The Start rule states that the empty trace ε is always part of

the set of traces. The Intruder rule enables a dishonest agent,

typically known as the intruder or the adversary, to inject

(by sending) on the network any of his deducible messages.

Finally, the Network rule establishes that a message m sent

by and agent A can be received by an agent B without

violating a time/location constraint that we describe in the

next paragraph. This constraint is actually what makes this

model particularly different from standard security models.

The Network rule also enforces that a message sent by

an agent A and received by an agent B at times t′ and t,
respectively, must satisfy d(A,B) ≤ (t− t′) · c. In this way

the physical law that messages cannot travel faster than the

speed of light is made explicit. Observe that message loss

is captured by not applying the network rule for a given

sending event.

Protocol Specification: A protocol is specified by a

set of rules similar to the rules in Figure 4. Two syntactic

restrictions (whose semantic interpretations will be given in

Section IV-A) are applied:

• Neither the premises nor the conclusion of a protocol

rule contain references to dishonest agents. This means

that the behavior of dishonest agents is fully specified

by the intruder rule.

• The premise of a protocol rule cannot contain events

whose actors are not the same as the actor of the event

in the premise of the rule. That is to say, agents are

unaware of what other agents do. They can interact

exclusively through the network rule.

Example 1 (Hancke and Kuhn’s protocol). Figure 5 shows
the formalization of Hancke and Kuhn’s protocol [20] (see
the representation in Figure 2). The first four rules in
Figure 5 correspond to the four transmissions that take place
in the protocol. The receiving events are derived from the
network rule. The last rule from Figure 5 refers to the claim
event for the property secure distance-bounding represented
as “P is close” in Figure 2.

The function used : (R × Ev)∗ → P (Msg) defined as
used(α) =

⋃
(t,e)∈α subt(cont (e)), is utilized to make sure

that newly generated nonces are fresh, where subt : Msg→
P (Msg) indicates the set of atomic messages that are sub-
terms of a given message and cont : Ev→ Msg gives us the
content of a given event. The function subt is recursively
defined as follows.

subt(m) =

⎧⎪⎪⎨
⎪⎪⎩

subt(m1) ∪ subt(m2) if m = (m1,m2)
subt(m1) ∪ subt(m2) if m = {m1}m2

subt(m1) if m = f(m1)
{m} otherwise .

Example 1 also illustrates the purpose of the information

in square brackets at the end of the send actions. In this

case, it is implicitly used to define the notion of a session,

by extending the send actions with the random nonces from

that session. Further, it is used to specify in which order the

events of a session will have to be executed.

Security Properties: The model uses claim events as

placeholders to indicate where a security property needs

to be satisfied. In this paper we focus on the property of

secure distance-bounding, which is syntactically represented

by claims of the form claimV (P, u, v), where V, P ∈ Agent
and u, v ∈ Ev. A claim event claimV (P, u, v) intuitively

means that the agent V believes that the events u and v can

be used to correctly compute an upper bound on his distance

to P .

As the Intruder rule suggests, dishonest agents might

disclose their secret key material by sending them out. This

means that two dishonest provers might be indistinguishable

to a legitimate verifier. In other words, a verifier V cannot

securely decide whether a particular dishonest prover P is

close, as another dishonest prover P ′ could have obtained

all P ’s secrets and therefore P ′ can impersonate P . This

leads to the following statement: V cannot claim that “P

553



α ∈ Tr (P) V ∈ Honest t ≥ maxt(α)
NV ∈ NonceV \ used(α)

α · (t, sendV (NV ) []) ∈ Tr (P)
α ∈ Tr (P) P ∈ Honest t ≥ maxt(α)

(t′, recvP (NV )) ∈ α NP ∈ NonceP \ used(α)
α · (t, sendP (NP ) [NV ]) ∈ Tr (P)

α ∈ Tr (P) V ∈ Honest t ≥ maxt(α)
(t′, sendV (NV ) []) ∈ α

(t′′, recvV (NP )) ∈ α C ∈ NonceV \ used(α)
α · (t, sendV (C) [NV , NP ]) ∈ Tr (P)

α ∈ Tr (P) P ∈ Honest t ≥ maxt(α)
(t′, sendP (NP ) [NV ]) ∈ α (t′′, recvP (C)) ∈ α
α · (t, sendP (h (sh(V, P ), NV , NP , C)) []) ∈ Tr (P)

α ∈ Tr (P) V ∈ Honest tw ≥ maxt(α)
u = sendV (C) [NV , NP ]

v = recvV (h (sh(V, P ), NV , NP , C))
(tu, u) ∈ α (tv, v) ∈ α

α · (tw, claimV (P, u, v)) ∈ Tr (P)

Figure 5. Formalization of Hancke and Kuhn’s protocol.

is close” but V can claim that “someone who knows P ’s

secrets is close”, at most. To capture this notion, we define

the relation ≈ ⊆ Agent× Agent as:

≈ = {(A,A) | A ∈ Honest} ∪ Dishonest× Dishonest.

We use A 	≈ B to indicate that (A,B) /∈ ≈. By considering

the relation ≈, we provide next a formal definition of secure
distance-bounding.

Definition 1 (Secure distance-bounding). A protocol P
satisfies secure distance-bounding if and only if:

∀α ∈ Tr (P) , V, P ∈ Agent, u, v, w ∈ Ev, tw ∈ R :

(tw,w) ∈ α ∧ w = claimV (P, u, v) =⇒
∃tu, tv ∈ R, P ′ ∈ actor (α) :

(tu, u) ∈ α ∧ (tv, v) ∈ α ∧ P ≈ P ′ ∧
d(V, P ′) ≤ c

2
(tv − tu) . (1)

A distance-bounding protocol is secure if the occurrence

of a claim event claimV (P, u, v) in a protocol execution

implies that V has correctly computed an upper bound on

his distance to either P (if P is honest) or some dishonest

agent P ′ (if P is dishonest).

Our definition of secure distance-bounding slightly dif-

fers from the original one provided by Basin et al., but

the difference is merely notational, allowing us to cleanly

formulate our main result in Section V. Note that claim

events are formulated in such a way that they relate to

a single challenge/response pair. Thus, similar to Basin

α ∈ Tr (P) A ∈ Honest
Hello,Hi ∈ Const (t, recvA (Hello)) ∈ α

α · (t− 1, sendA (Hi) []) ∈ Tr (P)

Figure 6. A protocol rule that leads to incorrect traces.

et al’s approach, we will need to include several claim

events if the fast phase cannot be abstracted to a single

challenge/response pair.

IV. THE SEMANTIC DOMAIN

An important characteristic of Basin et al’s approach, as

presented in the previous section, is that security protocols

are specified using the same type of derivation rules as used

for the definition of the general semantics of the system.

Consequently, protocol specifications are much more liberal

than in comparable formal approaches that define a domain

specific language for the definition of protocols. Alternative

approaches, like the one by Cremers and Mauw [18] provide

a dedicated protocol specification language and impose

syntactical or semantical constraints to prevent users from

specifying meaningless or simply undesired protocols.

An example of a protocol rule that may be considered

undesirable is the one in Figure 6. It specifies that after

reception of the message Hello at time t, agent A sends a

message Hi back at time t−1. This is clearly an infringement

of a time consistency property, because it leads to the trace

(1, recvA (Hello)) · (0, sendA (Hi) []).
The solution proposed by Basin et al. is to consider

only those traces that have non-decreasing timestamps for

subsequent events. In our approach we will take this line of

reasoning one step further, in that we will define a number of

assumptions that a proper semantics should satisfy and that

are sufficient to derive our main result. We will argue that

these properties are valid for the semantics from the previous

section, under the assumption of a class of “reasonable”

protocol specifications.

A. Basic Properties of the Semantics

In line with the previous example, the first property that

we formulate is time consistency. It states that events of a

trace are timestamped in non-decreasing order.

Property 1 (Time consistency). A protocol P satisfies time

consistency if for every trace α = (t1, e1) · · · (tn, en) ∈
Tr (P), it holds that t1 ≤ · · · ≤ tn.

The second property that we consider is speed-of-light
consistency. It states that all traces satisfy the restrictions of

the speed of light. In particular, this means that the time

between the sending of a message by agent A and the

reception of this message by agent B must be equal to or

larger than the distance between the two agents divided by

the speed of light.
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Because this definition requires the correspondence be-

tween a send event and its related receive event, we define

the relation � ⊆ Send× Recv as follows:

� = {(e, e′) ∈ Send× Recv | cont (e) = cont (e′)} .

The relation � defines whether an event e′ is a receive

event that could have occurred as consequence of the send

event e. As followed from its formulation, � is not a one-

to-one relation. This lines up with the fact that it does not

need to be the case that there is a unique send event that

triggers a given receive event. In the semantics above, the

relation � can be easily derived from the application of the

Network rule in Figure 4.

Property 2 (Speed-of-light consistency). A protocol P
satisfies speed-of-light consistency if for every trace α =
(t1, e1) · · · (tn, en) ∈ Tr (P) the following holds: for all j ∈
{2, . . . , n}, if ej ∈ Recv, then there exists i ∈ {1, . . . , j−1}
such that ei � ej and tj − ti ≥ d (ei, ej) /c.

Even though we define Properties 1 and 2 for protocols,

we will also use them in relation to traces. Thus we will talk

about time consistency and speed-of-light consistency of a

given trace, with the obvious interpretation.

The formulation of the remaining properties requires

the notion of untimed traces, or simply a sequence of

(untimed) events. The projection π(α) of a trace α =
(t1, e1) · · · (tn, en) ∈ (R × Ev)∗ is the untimed trace

e1 · · · en ∈ Ev∗. Likewise, the projection of the set of traces

is defined as π(Tr (P)) = {π(α) | α ∈ Tr (P)}. We say that

two traces α and β are content-wise equal, denoted α ∼ α′,
if π(α) = π(β).

The third property states that traces are built inductively

by appending events.

Property 3 (Prefix-closure). A protocol P is prefix-closed if
for every γ = σ ·e ∈ π(Tr (P)), it holds that σ ∈ π(Tr (P)).

The fourth property expresses that the notion of time

is only used for the verifier’s decision-making process on

whether the prover passed the protocol or not. Time will

not be used to make any other decision during the execution

of the protocol (e.g., to take a different branch depending

on the time). This means that any trace can be retimed, as

long as it still satisfies time consistency and speed-of-light

consistency.

Property 4 (Time-unawareness). A protocol P is time-

unaware if for every trace α ∈ Tr (P) the following holds:
for all time consistent and speed-of-light consistent traces
β ∈ (R× Ev)∗, α ∼ β implies β ∈ Tr (P).

As mentioned in Section III, different agents only interact

through the network via sending and receiving events. As a

consequence, a non-receive action can only be triggered by

the actor agent’s own preceding actions and another agent’s

actions in between can be disregarded or delayed. This leads

to the fifth property, locally-enabled events. We use untimed

events in order to easily express that the resulting trace σ ·e′
might require a re-timing of event e′.

Property 5 (Locally-enabled events). A protocol P satisfies
locally-enabled events if for every γ = σ · e · e′ ∈ π(Tr (P))
such that e′ /∈ Recv and actor (e) 	= actor (e′), it holds that
σ · e′ ∈ π(Tr (P)).

The locally-enabled events property allows non-receive

events to move left in a trace under specific conditions.

The next property expresses when a receive event can be

appended to a trace.

Property 6 (Transmission-enabled events). A protocol P
satisfies transmission-enabled events if for every γ = σ · e ∈
π(Tr (P)) and every e′ ∈ Recv such that e � e′, it holds
that γ · e′ ∈ π(Tr (P)).

Agents in the model are universally quantified. Therefore,

in a given trace we can replace an agent by another and still

obtain a valid trace, as long as both agents are either honest

or dishonest. An agent substitution is denoted by A �→ B
where A and B are agents. Given a message m ∈ Msg,

m[A �→ B] represents the substitution of all occurrences in

m of A by B. We extend substitutions onto events and traces

in the obvious way.

Property 7 (Substitution-closure). A protocol P is
substitution-closed if for every σ ∈ π(Tr (P)) and every
A,B ∈ Agent such that {A,B} ⊆ Honest or {A,B} ⊆
Dishonest, it holds that σ[A �→ B] ∈ π(Tr (P)).

Observe that e � e′ implies e[A �→ B] � e′[A �→ B].
We say that a protocol is well-formed if it satisfies the seven

properties mentioned above.

B. Validity of the Properties

As stated in the beginning of the current section, the

mechanism for specifying protocols is too liberal to en-

sure the well-formedness properties. Therefore, we use a

restricted format for protocol rules inspired by the example

specification of Hancke and Kuhn’s protocol from Figure 5.

The restricted format is specified by the rule prototype in

Figure 7. We additionally require that p + q > 0, A =
actor (e) = actor (e1) = actor (e2) = · · · = actor (eq),
e /∈ Recv and none of the premises premi involve any of

the timestamps tj or t. Even though the protocol format

is restricted with respect to the liberal format specified by

Basin et al., we conjecture that it is sufficiently expressive

to specify all relevant protocols from literature. We validate

this by specifying a number of protocols in this format and

analysing them with our implementation (see Section V).

Together with the Start, Intruder and Network rules from

Figure 4, the restricted format implies well-formedness of

the specified protocol. We will briefly argue the validity of

the properties under this restricted format. Time consistency
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α ∈ Tr (P) A ∈ Honest t ≥ maxt(α)
prem1 prem2 · · · premp

(t1, e1) ∈ α (t2, e2) ∈ α · · · (tq, eq) ∈ α
α · (t, e) ∈ Tr (P)

Figure 7. Prototype of rules that lead to well-formed protocols.

follows from the precondition t ≥ maxt(α) in the Intruder

and Network rules and in the restricted protocol rule. Speed-

of-light consistency follows from the precondition t ≥ t′ +
d (A,B) /c in the Network rule and the requirement that e /∈
Recv in the restricted protocol rule. Prefix-closure follows

from the precondition α ∈ Tr (P) in all rules, together with

the fact that the conclusion extends this trace with a single

event. Time-unawareness follows from the fact that in the

construction of the traces any time t ≥ maxt(α) is allowed

for the next event, as long as speed-of-light consistency is

satisfied. The property locally-enabled events follows from

the requirement that a rule only concerns a single actor.

The transmission-enabled events property follows directly

from the Network rule. Substitution-closure expresses the

(implicit) universal quantification over agents’ names in all

rules.

V. CAUSALITY-BASED VERIFICATION

Given the definitions and properties from the previous

sections, we can now formulate the notion of causality-based
secure distance-bounding and prove that it is equivalent

to the original definition of secure distance-bounding from

Definition 1. The main feature of this new formulation is

that it is causality-based, i.e., it only takes into account

the relative occurrence of events, while ignoring the actual

timestamps of the events and agents’ locations.

This new formulation strongly relates to authentication

properties, such as aliveness (see [18]). It states that for

every claim that prover P is in the vicinity of verifier V , due

to a challenge event u and the reception of its corresponding

response event v in the fast phase, agent P (or a conspiring

agent, if P is dishonest) must have been active in between

these two events. The main difference with Definition 1 is

that we require the prover to be active, instead of measuring

the time between u and v.

Definition 2 (Causality-based secure distance-bounding).
A well-formed protocol P satisfies causality-based secure

distance-bounding if and only if:

∀σ ∈ π(Tr (P)), V, P ∈ Agent, u, v ∈ Ev :

claimV (P, u, v) ∈ σ =⇒ ∃i, j, k ∈ {1, . . . , |σ|} :
i < j < k ∧ u = σi ∧ v = σk ∧ P ≈ actor (σj) . (2)

In Definition 2 we formalize our causality-based notion

of secure distance-bounding. This formulation impacts only

the security analysis in the design stage. It does not affect

the runtime behavior of the agents executing the protocol.

In particular, the verifying agent still has to measure the

round-trip time of the message exchanges in the fast phase.

In the remainder of this section, we develop the proof

that the causality-based definition is equivalent to the secure

distance-bounding property from Definition 1. To do so,

we first present a few lemmas that follow from the basic

properties of the semantic domain described in Section IV-A.

They will prove useful when deriving our main result.

Given two events e, e′ ∈ Ev, we use d (e, e′) /c as a

shorthand notation for d (actor (e) , actor (e′)) /c. Also, we

say that two timed-events (t, e), (t′, e′) ∈ R×Ev satisfy the

time/location constraint if |t′−t| ≥ d (e, e′) /c. For example,

all pairs of events used in the network rule satisfy this

constraint. In addition, we define the predicate ψ (α), where

α is a trace, that holds if all pairs of consecutive timed-

events on α satisfy the time/location constraint. Likewise,

we say that timed-trace β is a subsequence of a timed-trace

α = (t1, e1) · · · (tn, en), denoted by β � α, if there exist

m ∈ {0, . . . , n} and {w1, . . . , wm} ⊆ {1, . . . , n} such that

w1 < · · · < wm and β = (tw1
, ew1

) · · · (twm
, ewm

).
In Lemma 1 below, we demonstrate that for any well-

formed protocol P , any valid timed-trace α · (t, e) ∈ Tr (P)
must contain a subsequence β that is also a valid trace in

P , and contains (t, e) and ψ (β). We use |.| to denote the

length of a (timed or not) trace, in terms of the number of

events.

Lemma 1. Let P be a well-formed protocol. Then the
following holds:

∀α ∈ Tr (P) , (t, e) ∈ R× Ev : α · (t, e) ∈ Tr (P) =⇒
∃β ∈ Tr (P) : (t, e) ∈ β ∧ β � α · (t, e) ∧ ψ (β) .

Proof: We will proceed by induction over |α|. The base

case |α| = 0 trivially holds by setting β = (t, e). So, let

n ∈ N \ {0} and assume by the induction hypothesis that

the lemma holds for all α ∈ Tr (P) with |α| < n. Now, let

α = (t1, e1) · · · (tn, en) ∈ Tr (P) and (t, e) ∈ R × Ev such

that γ = α · (t, e) ∈ Tr (P). Let us analyse the two cases:

Case 1 (e ∈ Recv): From Property 2 we have that

there exists i ∈ {1, . . . , n} such that ei � e and t − ti ≥
d (ei, e) /c. Consider α′ = (t1, e1) · · · (ti−1, ei−1). Then,

from the induction hypothesis (given that |α′| = i − 1 < n
and α′ ∈ Tr (P) due to Properties 3 and 4) it follows that

there exists β′ ∈ Tr (P) with (ti, ei) ∈ β′ such that β′ � α′

and ψ (β′). Thus, ψ (β′) along with t− ti ≥ d (ei, e) /c give

us that ψ (β′ · (t, e)) and β′ ·(t, e) is time and speed-of-light

consistent.

Now, from Property 6 we derive π(β′) · e ∈ π(Tr (P)).
On the other hand, β′ · (t, e) ∼ β′′ for some β′′ ∈ Tr (P)
such that π(β′) · e = π(β′′). Finally, Property 4 gives us

β′ · (t, e) ∈ Tr (P).
Case 2 (e /∈ Recv): Let i be the largest number in

{1, . . . , n} such that actor (ei) = actor (e). If i does not
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exist, then from Property 5 we obtain that e ∈ π(Tr (P)) and

therefore (t′, e) ∈ Tr (P) for some t′ ∈ R. Hence, as (t, e)
is time and speed-of-light consistent, Property 4 gives us

(t, e) ∈ Tr (P) as (t, e) ∼ (t′, e). Further, ψ ((t, e)) trivially

holds, which leaves us with the remaining case in which i
exists.

Let α′ = (t1, e1) · · · (ti, ei). Then, from the induction

hypothesis (given that |α′| = i−1 < n and α′ ∈ Tr (P) due

to Properties 3 and 4) it follows that there exists β′ ∈ Tr (P)
with (ti, ei) ∈ β′ such that β′ � α′ and ψ (β′). Thus, ψ (β′)
along with t−ti ≥ d (ei, e) /c = 0 give us that ψ (β′ · (t, e))
and β′ · (t, e) is time and speed-of-light consistent.

Now, from Property 6 we derive π(β′) · e ∈ π(Tr (P)).
On the other hand, β′ · (t, e) ∼ β′′ for some β′′ ∈ Tr (P)
such that π(β′′) = π(β′) · e. Finally, Property 4 gives us

β′ · (t, e) ∈ Tr (P).
Lemma 2 below is an extension of Lemma 1. It states

that if a valid trace α satisfies ψ (α), then not only any

pair of consecutive events in α satisfy the time/location

constraint but also any pair of events in α. The proof follows

from the application of the triangle inequality d (e, e′) /c+
d (e′, e′′) /c ≥ d (e, e′′) /c, for all e, e′, e′′ ∈ Ev, given that

d models physical distances.

Lemma 2. Let P be a well-formed protocol and α ∈ Tr (P)
such that ψ (α). Then for all (t, e), (t′, e′) ∈ α it holds that
|t− t′| ≥ d (e, e′) /c.

Proof: Let α = (t1, e1) · · · (tn, en) and i, j ∈
{1, . . . , n}. Assume without loss of generality that i < j.
Given that ψ (α) we have that tx − tx−1 ≥ d (ex−1, ex) /c
for all x ∈ {i+ 1, . . . , j}. Hence,

tj − ti = (tj − tj−1) + (tj−1 − tj−2) + · · ·+ (ti+1 − ti)
≥ d (ei, ei+1) /c+ d (ei+1, ei+2) /c+ · · ·+

d (ej−1, ej) /c. (3)

Thus, by applying the triangle inequality in Equation 3

above, we obtain tj − ti ≥ d (ei, ej) /c.

The last lemma of this section concerns agent substi-

tutions. We extend Property 7 from the set of untimed-

traces π(Tr (P)) of a given protocol P to the set of timed-

traces Tr (P). The lemma proves that, given a protocol’s

valid trace α = (t1, e1) · · · (tn, en), it is possible to replace

an agent A by another agent B (under certain conditions

described in the lemma) to obtain another valid trace α′ =
(t′1, e

′
1) · · · (t′n, e′n) such that the difference between t′i and

ti only depends on the number of events before the i-th
event on α that were executed by A. Consequently, the time-

difference between two events of α where A does not act

is equal to the time-difference between the corresponding

events of α′. This is actually a strong result because it

implicitly shows that event-intervals where the prover does

not act cannot be used to securely upper-bound the prover-

to-verifier distance.

Lemma 3. Let P be a well-formed protocol and α =
(t1, e1) · · · (tn, en) ∈ Tr (P). Let A ∈ actor (α), B ∈
Agent \ actor (α) such that either {A,B} ⊆ Honest or
{A,B} ⊆ Dishonest. Then there exists μ ∈ R≥0 such
that α′ = (t′1, e

′
1) · · · (t′n, e′n) ∈ Tr (P) where for all

i ∈ {1, . . . , n} it holds that:

e′i = ei[A �→ B] and t′i = ti + μ · qi, where

qi = |{j ∈ {1, . . . , i− 1} | actor (ej) = A}|+ si, and

si = 1 if (A = actor (ei) ∧ ei ∈ Recv) , or otherw. si = 0.

Proof: Consider the set R = {B} ∪ actor (α) and

μ = max
X∈R

{d (A,X) /c}. We will proceed to prove that

α′ ∈ Tr (P). To do so we will first prove time and speed-

of-light consistency for α′.
Time consistency: For all i ∈ {1, . . . , n− 1}, we have

that qi+1 ≥ qi and therefore t′i+1 − t′i = ti+1 − ti + μ ·
(qi+1 − qi) ≥ ti+1 − ti ≥ 0.

Speed-of-light consistency: Let j ∈ {1, . . . , n} such

that ej ∈ Recv. Also, as α is speed-of-light consistent, we

derive that there exists i < j such that ei � ej and tj−ti ≥
d (ei, ej) /c. Hence, given that e′i � e′j , it becomes sufficient

to prove that t′j−t′i ≥ d
(
e′i, e

′
j

)
/c. Let us consider the three

cases:

1) A = actor (ei). In this case qj ≥ qi +1 because ei /∈
Recv. Therefore t′j − t′i ≥ tj − ti + μ ≥ d

(
e′i, e

′
j

)
/c

as μ ≥ d
(
e′i, e

′
j

)
/c.

2) A 	= actor (ei) and A = actor (ej). In this case we

have again qj ≥ qi + 1 as ej ∈ Recv, and it follows

analogously to the previous case.

3) A /∈ {actor (ei) , actor (ej)}. This case gives us

actor (ei) = actor (e′i) and actor (ej) = actor (ej).
Thus, d (ei, ej) /c = d

(
e′i, e

′
j

)
/c and therefore t′j −

t′i = tj − ti + μ · (qj − qi) ≥ tj − ti ≥ d (ei, ej) /c =
d
(
e′i, e

′
j

)
/c.

Thus, α′ is time consistent and speed-of-light consistent.

Consider now σ = π(α). From Property 7 we have that

σ[A �→ B] ∈ π(Tr (P)). Therefore, there exists γ ∈ Tr (P)
such that π(γ) = σ[A �→ B]. Finally, given that γ ∼ α′,
from Property 4 we obtain α′ ∈ Tr (P).
Theorem 1. A well-formed protocol P satisfies secure

distance-bounding (Definition 1) if and only if P satisfies
causality-based secure distance-bounding (Definition 2).

Proof: We will proceed by proving Sufficiency (i.e.,

Equation 1 ⇒ Equation 2) and Necessity (i.e., Equation 2

⇒ Equation 1):

Sufficiency: Assume Equation 1 holds and Equation 2

does not. Our goal is to reach a contradiction. The statement

that Equation 2 does not hold is equivalent to stating that

there exist σ = σ1 · · ·σn ∈ π(Tr (P)), V, P ∈ Agent, u, v ∈
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Ev and l ∈ {1, . . . , n} such that σl = claimV (P, u, v) and:

∀i, j, k ∈ {1, . . . , n} :
u = σi ∧ v = σk ∧ i < j < k =⇒ P 	≈ actor (σj) . (4)

Consider now the following sets:

IK = {(i, k) ∈ N× N | σi = u ∧ σk = v},
J = {j ∈ N | ∃(i, k) ∈ IK : i < j < k},

{G1, . . . , Gg} = {G ∈ actor (σ) | P ≈ G}.
If P is honest, then the set {G1, . . . , Gg} consists of the

singleton {P}, otherwise it contains all dishonest agents

acting in σ.

Let Eve,Charlie ∈ Agent \ actor (σ) be two dif-

ferent agents such that {P,Eve, Charlie} ⊆ Honest or

{P,Eve, Charlie} ⊆ Dishonest.
Consider the sequence of traces σ1, . . . , σg+1 ∈

π(Tr (P)) such that σ1 = σ and for all i ∈ {1, . . . , g},
σi+1 = σi[Gi �→ Eve]. The fact that σ1, . . . , σg+1 ∈
π(Tr (P)) follows from the substitution-closedness property.

Hence, let e1 · · · en = σg+1, i.e., the trace resulting from σ
after the successive substitutions of all agents G1, . . . , Gg

by Eve. Therefore N ⊆ Agent exists such that:

actor (e1 · · · en) = {V,Eve} ∪N and

∀E ∈ N : Eve 	≈ E. (5)

Let t1, . . . , tn ∈ R such that (t1, e1) · · · (tn, en) ∈ Tr (P).
Observe that the ti’s exist because e1 · · · en ∈ π(Tr (P)).
Hence, from Equations 1 and 5 and given that el =
claimV (Eve, ei, ek) for some (i, k) ∈ IK , we derive that

δ ∈ R≥0 exists such that:

d(V,Eve) + δ =
c

2
max

(i,k)∈IK
{tk − ti}. (6)

From Lemma 3 we have that there exist μ ∈ R≥0,

(t′1, e
′
1) · · · (t′n, e′n) ∈ Tr (P) and q1, . . . , qn ∈ N such

that for all i ∈ {1, . . . , n}, e′i = ei[Eve �→ Charlie]
and t′i = ti + μ · qi (see the construction of the qi’s in

Lemma 3). On the other hand, from Equation 4 we have

that ∀j ∈ J : Eve 	= actor (ej). Therefore

∀(i, k) ∈ IK : t′k − t′i = tk − ti. (7)

Furthermore, given that {Eve,Charlie} ⊆ Honest or

{Eve,Charlie} ⊆ Dishonest, it holds that:

actor (e′1 · · · e′n) = {V,Charlie} ∪N and

∀C ∈ N : Charlie 	≈ C. (8)

Again, e′l = claimV (Charlie, e′i, e
′
k) for some (i, k) ∈

IK , so from Equations 1 and 8 we derive:

d(V,Charlie) ≤ c

2
max

(i,k)∈IK
{t′k − t′i}. (9)

Finally, from Equations 6, 7 and 9 we derive that

d(V,Charlie) ≤ d(V,Eve) + δ. This is a contradiction,

as δ does not depend on Charlie who is an arbitrary agent

from the same set as P in Honest or Dishonest. Therefore

we can always find Charlie such that his distance to V is

larger than d(V,Eve) + δ.

Necessity: Assume Equation 2 holds. We will prove

that Equation 1 holds as well. Let σ ∈ π(Tr (P)) and

α ∈ Tr (P) such that σ = π(α). Let V, P ∈ Agent,
u, v, w ∈ Ev and tw ∈ R such that (tw,w) ∈ α and

w = claimV (P, u, v). Also, let β ∈ Tr (P) such that β � α,

(tw,w) ∈ β and ψ (β). Observe that β exists because of

Lemma 1.

From Equation 2 and given that π(β) ∈ π(Tr (P)), we

have that there exist tu′, tv′ ∈ R, P ′ ∈ Agent and (t, e) ∈ β
such that P ′ = actor (e), tu′ ≤ t ≤ tv′, (tu′, u) ∈ β,

(tv′, v) ∈ β and P ≈ P ′. Hence, Lemma 2 gives us:

tv′ − tu′ = (tv′ − t) + (t− tu′) ≥ d(e, v) + d(u, e)

c
= 2d (V, P ′) /c,

which proves Equation 1 as (tu′, u) ∈ β � α, (tv′, v) ∈
β � α and (tw,w) ∈ β � α.

The result obtained from Theorem 1 means that, within

the semantic domain described in Section IV-A, the se-

cure distance-bounding property can be verified by simply

analysing the ordering of events in the traces. Therefore, the

notions of time and location are indeed unnecessary for the

symbolic verification of distance-bounding protocols.

VI. AUTOMATED VERIFICATION

We implemented the causality-based definition of secure

distance-bounding in the software tool Tamarin [15]. This

allowed us to automatically verify the (in)security of 13
distance-bounding protocols and their variations. The source

code of our implementation can be freely accessed online1.

A discussion on the Tamarin tool and its specifics can be

found in the appendix.

To explain the overall methodology we use to analyse

distance-bounding protocols, we perform a comprehensive

analysis of the Terrorist-fraud Resistant and Extractor-free

Anonymous Distance-bounding (TREAD) protocol [24] in

Section VI-A. Later on, in Section VI-B we show and

discuss the results of our automated verification.

A. Breaking the TREAD Protocol

The TREAD protocol was claimed to satisfy various

security properties, making use of the computational model

DFKO introduced in [8]. Relaying on this model, a proof

is given to show probabilistic resistance2 against mafia-

fraud, distance-fraud, terrorist-fraud, and distance-hijacking

attacks. However, by using our framework, we have iden-

tified mafia-fraud and distance-hijacking attacks on this

protocol.

1At http://satoss.uni.lu/software/DBVerify/
2No attack succeeds with non-negligible probability.
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Verifier V Prover P
k−1: dec. key k: enc. key

Slow phase
Pick α, β ∈ {0, 1}2n
σ = {α|β|idpriv(P )}sk(P )

e,P←−−−−−−−−−−−−−− e = {α|β|σ}k
Pick m ∈ {0, 1}n m−−−−−−−−−−−−−−→

Fast Phase
for i = 0 to n− 1

Pick ci ∈ {0, 1}
Start Clock

ci−−−−−−−−−−−−−→
ri =

{
αi if ci = 0

βi ⊕mi if ci = 1
ri←−−−−−−−−−−−−−

Stop Clock
store Δti

Final phase
If all ri’s and Δti’s

are correct,
then OutV = 1;

else OutV = 0
OutV−−−−−−−−−−−−−−−→

Figure 8. The TREAD protocol.

TREAD consists of three phases (see Figure 8). First,

the prover P generates two nonces α and β, and creates

the message σ = α|β|idpriv(P ), where idpriv(P ) is an

anonymous group identity. This message is signed by P and

sent encrypted to the verifier V , together with P ’s identity

idpub(P ). Upon reception, V decrypts the message and

verifies the signature. If correct, V finishes the first phase

by sending a random nonce m of size n to P . The second

phase is a standard n-round fast phase wherein V sends a

random bit ci with i ∈ {0, . . . , n − 1} and P replies back

with αi if ci = 0, with βi ⊕ mi otherwise. The protocol

finishes successfully if all responses during the fast phase

are correct and the round-trip times are below a predefined

threshold (third phase).

To symbolically verify TREAD, we transform the fast

phase into a single challenge-response message exchange

(see Figure 9). We also ignore details that are irrelevant

to our security analysis, such as the anonymous identity

of the prover, and upgrade bitwise operations to stronger

cryptographic primitives, such as a hash function. Overall,

our goal is to obtain an abstraction of the original protocol

such that every attack found in the abstraction can be

mapped back onto the original protocol.

TREAD can be instantiated with either a symmetric or

an asymmetric encryption scheme. We thus specified in

Tamarin two variants of the TREAD protocol: one where

k is a symmetric key and another one where k is an asym-

metric key. In the second variant, Tamarin finds a simple

man-in-the-middle attack that violates the secure distance-

bounding property. The attack is depicted in Figure 10 and

works as follows. An intruder I initiates a session with the

prover P by requesting P to prove proximity. P then sends

the message ({α, β, {α, β}sk(P )}pk(I), P ) to I . Now the

k−1

V

k

P

nonces α, βnonces m, c

σ = {α, β}sk(P )

{α, β, σ}k, P
m

c

f(c,m, α, β)

P is close

Figure 9. A representation of the TREAD protocol.

intruder decrypts the received message, learns the nonces

α and β, and re-encrypts the message with the public key

of the verifier. Next, the intruder starts a session with a

legitimate verifier V with goal of impersonating P . To do so,

I sends ({α, β, {α, β}sk(P )}pk(V ), P ) to V . Then V checks

that the signed message {α, β}sk(P ) indeed corresponds to

P , and sends back two nonces m and c. The attack ends

with the intruder correctly replying to the challenges with

f(c,m, α, β).

Observe that the attack described above and depicted in

Figure 10 not only breaks standard authentication properties

such as agreement and synchronization [18], [39], but also

the secure distance-bounding property as follows. Assume

P is far from V and the intruder wants to convince V that

P is close. To do so, the intruder just needs to be close to

V and executes the attack above. Note that the fast phase

corresponds to the events containing the messages c and

f(c,m, α, β), which the intruder can successfully produce

without relaying.

Interesting enough, if k is a symmetric key the described

mafia-fraud attack does not work. The reason is that the

intruder does not know the secret key shared between P
and V . Thus the intruder is prevented from re-encrypting the

message received from P with the correct key. Nevertheless,

a distance-hijacking type of attack exists irrespective of the

encryption scheme. The attack is represented in Figure 11.

Assume an honest prover P is close to the verifier V , while

the intruder I is far from V . As before, P executes the

protocol to prove its proximity to I . This allows I to learn

α and β. Thus I starts a session with V by using the nonces

α and β from P . At this point, V believes I is a legitimate

prover and accept its signature. During the fast phase, P ,

which is close to V , receives the challenge (supposedly from

I) sent by V and replies correctly. Then V receives the

response f(c,m, α, β) (supposedly from I) from P who is

close to V , and finishes the protocol with I correctly.

Neither of the two described attacks are possible when
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V

Intruder

I P

nonces α, βnonces m, c

σ = {α, β}sk(P )

{α, β, σ}pk(I), P
{α, β, σ}pk(V ), P

m

c

f(c,m, α, β)

P is close

Figure 10. A mafia fraud on TREAD with asymmetric encryption.

V P

Intruder

I

nonces α, βnonces m, c

σ = {α, β}sk(P )

{α, β, σ}sh(I,P ), P

σ′ = {α, β}sk(I)

{α, β, σ′}sh(V,I), I
m

c

f(c,m, α, β)

I is close

Figure 11. A distance hijacking on TREAD with symmetric encryption.

considering the adversary model used by the authors of the

TREAD protocol, because their model does not allow for

“malicious” verifiers. In their model an honest prover will

fail to initiate a communication with an untrusted verifier

as the first message in each attack will not be sent. This

adversary model is weaker than other models that are more

common in the distance-bounding literature.

B. Verification Results and Discussion

We applied the above analysis methodology on a number

of distance-bounding protocols. To the best of our knowl-

edge, this is the first large-scale automated security analysis

of distance-bounding protocols in literature.

Table I summarizes the results of the verification. The

columns Code and Time refer to the code complexity (num-

ber of lines of code) and the verification execution time (in

seconds), respectively. To measure execution time, we ran

Table I
VERIFICATION OF A SET OF PROTOCOLS IN TAMARIN. PROTOCOLS

MARKED WITH ∗ AND ∗∗ HAVE IDENTICAL FORMALIZATION,
RESPECTIVELY.

Protocol Attacks Code (lines) Time (s)

BC-Signature [5] DH 185 5.98

BC-FiatShamir [5]∗ DH, DF 189 6.51

BC-Schnorr [5]∗ DH, DF 189 6.51

CRCS [21] DH 182 5.56

Meadows et al. [23] DH 226 18.59

Tree-based [26]∗∗ None 186 2.51

Poulidor [27]∗∗ None 186 2.51

Hancke and Kuhn [20]∗∗ None 186 2.51

Uniform [28]∗∗ None 186 2.51

Kim and Avoine [29] None 184 1.76

Munilla et al. [30] None 193 3.24

Reid et al. [40] None 192 2.74

Swiss-Knife [41] None 207 2.92

TREAD-PK [24] MF 195 4.50

TREAD-SH [24] DH 201 6.01

PaySafe [25] DF 222 15.59

the verification 10 times for each protocol and computed

the average time. The column Attacks indicates the type of

attack found (if any) by Tamarin: mafia fraud (MF), distance

fraud (DF), or distance hijacking (DH). The protocols were

verified by using a 64-bit Ubuntu 16.04 LTS computer with

15.5 Gb of RAM memory and a processor Intel Core i7-

6700HQ CPU @ 2.60GHz × 8.

We remark that the Tree-based, Poulidor, Hancke and

Kuhn’s and Uniform protocols have equivalent Tamarin

implementation as their symbolic formalization is the same.

Similarly, the Brands and Chaum’s (BC) protocol versions

with Fiat-Shamir and Schnorr identification schemes have

also the same representation. When verifying these two

versions of the protocol, we found a distance-fraud attack

against them. However, as the authors have pointed out, such

an attack is no longer possible if a challenge/response causal

relation is used during the fast phase, such as the XOR

operation employed in the signature-based version of the

protocol.

On average, the Tamarin implementation of a protocol

consists of 194 lines of code and the verification takes 5.62
seconds. A total of 5 protocols (and their variations) were

found vulnerable to attacks, of which 3 had been already re-

ported flawed in the literature. The two remaining protocols

are TREAD (whose analysis was detailed in Section VI-A)

and PaySafe [25].

Figure 12 shows a representation of the PaySafe protocol,

which is a variant of the classical EMV contactless payment

protocol. PaySafe features a distance-bounding mechanism

560



secret KM

R

ATC, secret KM

C

nonce UN nonce nC

Hello

UN, amount

ATC, nC

Hi

KS={ATC}KM
AC=MACKS

(amount,ATC,UN)

SDAD={nC,UN,AC}sk(C)

SDAD,AC

C is close ATC ++

Figure 12. A representation of the PaySafe protocol.

to avoid relay attacks. Although not in contradiction with the

authors’ claim regarding PaySafe security, our Tamarin ver-

ification found a successful distance-fraud attack against it.

This attack is possible as there is no causal relation between

the challenge and response in the fast phase (dashed arrows).

Consequently, a dishonest prover C can send (ATC, nC)
before receiving (UN, amount). A simple solution to this

attack is to include the nonce UN in the response message.

When considering distance hijacking, our security analy-

sis is consistent with the analysis performed by Cremers et

al. in [10]. That is to say, in general protocols based on the

Brand and Chaum’s design (see Section II, third paragraph)

are vulnerable to this type of attacks, whereas those based

on Hancke and Kuhn’s are not. In addition, we observed that

protocols following Hancke and Kuhn’s approach seem to

be resistant not only to distance hijacking but also to mafia

and distance frauds.

A few of the analysed protocols have been automatically

verified in previous works. Those protocols are Brands and

Chaum’s and its variations, as well as Meadows et al’s

with F (...) = (NV , NP ⊕ P ), which were verified in

Isabelle/HOL3 by using Basin et al’s model [13], [19]. No

formal symbolic verification (automatic or not) has been

reported for the rest of the protocols from Table I.

Our method compares well with the Isabelle/HOL im-

plementation of Basin et al. While our approach is fully

automatic, proving a protocol insecure with Isabelle/HOL

requires user-assistance to prove the existence of an attack

trace. In addition, the code complexity of a protocol when

implemented in Isabelle/HOL tends to be much larger.

For example, the implementation of Brands and Chaum’s

protocol consists of 185 lines of Tamarin code, whilst the

Isabelle implementation (including attack trace) takes 653.

3At http://www.infsec.ethz.ch/research/software/protoveriphy.html

VII. CONCLUSION AND FUTURE WORK

In this work, we addressed the topic of formal verification

of distance-bounding protocols. We described and analysed

a tool-supported verification framework by Basin et al. [13],

[19] based on timed-events and agents’ locations. By con-

sidering the language and semantics of this formalism, we

characterized a semantic domain of well-formed distance-

bounding protocols in which the timestamps associated to

the agents’ actions are only utilized for proximity verifica-

tion purposes and not for, e.g., taking a different branch in

the execution. This is not a trivial class of distance-bounding

protocols but it contains, to the best of our knowledge, all

protocols published to date. Our main result consists of the

first causality-based security model for symbolic verification

of distance-bounding protocols, which we prove equivalent

to Basin et al’s model.

Our proposal does not consider time and location, but

is instead based on the order of events in the execution

traces. By implementing our proposed model in the Tamarin

verification tool, we automatically verified various state-of-

the-art protocols. It is therefore the first fully automated for-

mal verification framework for distance-bounding protocols.

With our automated verification, we identified unreported

vulnerabilities in two recent protocols: a mafia-fraud and a

distance-hijacking attack on the TREAD protocol [24], and

a distance-fraud attack against the EMV-based contactless

payment protocol PaySafe [25].

As future work, we plan to extend the formalism to

capture terrorist-fraud attacks (which are not covered in

Basin et al’s model either), and formalize the different at-

tacks and protocols’ characteristics to prevent them. We also

plan to extend our methodology as to capture probabilistic

reasoning in a causality-based model. This will allow us to

automatically determine the probability of success of a given

attack against a distance-bounding protocol.
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APPENDIX

TAMARIN SPECIFICS

In this section we discuss relevant aspects of the Tamarin

tool and the implementation of the secure distance-bounding

property. First, a brief overview of the tool as well as

its strengths and limitations are given. An introduction

to the specification language that Tamarin uses follows.

Finally, we provide a specification of the causality-based

secure distance-bounding security claim inside Tamarin, and

discuss some of the details behind how the tested protocols

were implemented.

A. The Tamarin Prover Tool

The Tamarin prover is a software tool for automatic

verification of security protocols. Tamarin makes use of

multiset rewriting systems to specify the protocols.

The Tamarin implementations are in some cases not able

to precisely reproduce the original protocols, and must make

overestimations. Although Tamarin allows for a user-defined

equational theory, it is required to be subterm convergent.

Ongoing work, such as that of Dreier et al. [42] continues

to reduce these restrictions.

The stateful environment that Tamarin uses means that

it will never identify false attacks (e.g., it will never claim

that there is an attack when one does not exist). This is in

contrast to other verification tools, such as ProVerif [43],

which can find false attacks. In the other direction, Tamarin

is also sound in its analysis: if a claim is verified, then

there indeed exist no traces that violate this claim. This

property extends to the protocol that is being modelled, up

to the accuracy of the implementation of protocol rules and

equational theory. For example, Tamarin does not identify

the probabilistic attack on Hancke and Kuhn’s protocol

(mentioned in Section II), as the function used during the fast

phase is abstracted to a secure hash function. Tamarin is not

guaranteed to terminate for all claims, but in our case study

no such problems arose, with all protocols taking less than

20 seconds (< 6 on average) to either successfully verify or

provide an attack trace.

B. Tamarin Specification Language

Tamarin uses a specification language built on multiset

rewriting. The elements of the multiset are facts: first order

logic terms built from a fact name and a number of subterms.

Subterms are built from atoms of type Pub or Fresh. Note

that Fresh corresponds directly to Nonce as defined in the

paper, and that Pub is assumed by design to include Agent
from the paper as a subset. Msg is a superset of these, and

security claims can make use of terms of type Temporal
(a discrete type with partial order). However, atoms of type

Temporal are never used inside a protocol rule. Atoms can

also be either variables or constants. Constants are almost

always public (and indeed are in all of our implemented

protocols).
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Atoms are extended to the full set of terms by function

symbols and an equational theory. These are defined entirely

by the user, with the only exception being the 2-ary function

symbol 〈 , 〉, 1-ary function symbols fst( ) and snd( ) and

the equations

fst(〈x, y〉) = x snd(〈x, y〉) = y

In general, equational theories must be subterm conver-

gent. Tamarin allows the importing of some stronger pre-

built equational theories with more capabilities, such as fully

modelling the exponentiation rules necessary for using the

Diffie-Hellman scheme.

Tamarin reserves some fact names. Fr(n) represents the

generation of a fresh nonce n. In(x) and Out(x) represent

the sending or receiving of the message x from the network.

K(x) represents the adversary knowing the term x. Unless

the type of an atom is explicitly denoted, it is always

assumed to be of type Msg. For clarity’s sake, it is assumed

that the arity of a fact name is constant over all instances of

it in a protocol specification.

A protocol rule is written as a ‘left-hand side’ and a ‘right-

hand side’, each a sequence of facts. The starting state of the

protocol is the empty multiset. If the variables in the left-

hand side of a rule can be instantiated in such a way that

it is a subset of the current multiset, then the rule can be

executed, with the (instantiated) facts in the left-hand side

removed from the state and replaced with the facts in the

right-hand side.

Tamarin supports two special kind of facts. Persistent facts

may appear on the left-hand side of a rewrite rule, but are not
removed from the multiset as a consequence of its execution.

Action facts may only appear on the right-hand side of a

protocol rule. All security claims are made based on the

presence and ordering of these Action facts, and so protocol

rules are in fact written as:

[ LHS ]--[ ACTION ]->[ RHS ]

For example, the sending of a freshly generated nonce onto

the network might be written as:

[ Fr(˜n) ]--[ SendNonce(˜n) ]->[ Out(˜n) ]

where ∼ indicates that n is of the type Fresh.

Security claims are first order logic statements based on

the action facts in the protocol specification. For example,

suppose that a protocol’s intended execution ends with the

rule:

[ In(n) ]--[ Secret(n) ]->[]

The fact name Secret(n) has been chosen to suggest that

the agent enacting the rule believes the value n to be a

secret. The corresponding security claim might read as in

Figure 13, which is interpreted as: “For any value n and

event t such that it is believed that n is secret at event t,

lemma Secrecy:
"
All n #t. Secret(n)@t ==>

not( Ex #s K(x)@s )
"

Figure 13. The Tamarin lemma Secrecy.

is it not the case that there is a corresponding event at s in

which the adversary knows n”.

The Tamarin adversary follows the Dolev-Yao model [11],

assuming full control over the network. It automatically

makes use of the equational theory provided to deduce as

much information as possible, and has free choice in the

order of protocol rules chosen and the choice of instantiation

for the variables. We provide the adversary with the addi-

tional power to corrupt certain agents, gaining knowledge of

their long term secrets. Security claims are made with this

in mind, in line with how the language introduced in the

paper does not discriminate between dishonest agents.

C. Implementation Details

The definition of the causality-based secure distance-
bounding property is not immediately compatible with the

specification model that Tamarin uses. We note the following

factors:

1) The definition uses a claim event that refers specifi-

cally to other events (which mark the start and end of

the fast phase). Tamarin does not allow for an event

to be one of the subterms of a fact.

2) The specification language partitions agents into the

sets Honest and Dishonest of honest agents (who

attempt to perfectly follow the protocol’s intended

execution) and dishonest agents (who are willing to

make use of other rules in order to violate security

properties). Tamarin carries no understanding of the

intended execution of a protocol. Further, Tamarin

does not inherently carry the notion of agents, al-

though they are trivially modelled by public variables.

The adversary is not considered an agent in Tamarin,

and the sending of messages by the adversary is

modelled using built-in rewriting rules that are often

not straightforward to write claims around.

3) The security property is dependent on the identity of

the actor of an event: i.e. the agent who performed the

action. Tamarin does not explicitly attach an identity

to a rewriting rule’s application, as a consequence of

agents not being an inherent feature of Tamarin.

These issues were addressed as follows:

1) In order to model claim events, state facts con-

taining session data were used. In particular, the

VerifierComplete(params) state fact was added to all

rewrite rules designed to symbolise that the verifier
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role believes they successfully completed the protocol

with session data params . The term params is built

from all session data added to the protocol in the order

that it is added. This necessarily includes two public

variables to model the identities of the prover and

verifier, as well as at least one fresh variable used in

the protocol execution. However, different protocols

make use of different numbers of fresh variables,

so the number of them inside this state fact varies

slightly. The state facts StartFastPhase(data) and

EndFastPhase(data) model the start and end of the

fast phase as defined by the protocol specification.

Note that in protocols involving pre-commitments, the

verifier is not fully aware of the value of all of the

session data at the start or end of the fast phase, and

so it is not necessarily the case that params and data
will be equal. However, the subterms of data are a

strict subset of the subterms of params .

Assuming that the session data of a protocol is dif-

ferent between different runs of the protocol, the sub-

terms of the VerifierComplete fact refer unambigu-

ously to the corresponding state facts for the denoting

fast phase. If a protocol does not have different session

data between executions, it is trivially vulnerable to

replay attacks.

2) Agents are modelled in protocol specifications as

public terms. Rewrite rules are included to model an

agent receiving any secret keys or other information

they have at the start of a protocol’s execution. In this

case, we see facts of the form Ltk(A, k), denoting

that the agent A has key k. Additional rewrite rules

are added for the corruption of agents (in which a

fact containing a secret key is sent on to the network,

revealing the identity of the agent), and also to model

a corrupt agent sending a message on the network.

This is important for adding state facts to symbolise

the adversary acting during the fast phase.

3) For the secure distance-bounding claim to make sense

the identity of the prover must be used in the protocol

in some way: either their identity is used in a message,

or the prover possesses a long-term secret key used

in a calculation. This could be for symmetric or

asymmetric encryption, or in some cases for signed

hashes. Any multiset rule that uses an agent’s identity

(or carries session data from an earlier rule in the

protocol which does) is marked with the state fact

Action(agent).

With these in mind, the Tamarin lemma dbsec is defined

in Figure 14. This lemma can be understood as meaning

that whenever a verifier reaches the end of their protocol

execution, one of three following events is possible:

1) The verifier is corrupt: they have revealed their long

term secret key to the adversary, making their claim

lemma dbsec:
"
All P V m n #t. (
VerifierComplete(P, V, m, n)@t ) ==>
(

Ex #tc.
Corrupt(V)@tc

)|(
Ex #t1 #t2 #t3.

StartFastPhase(V, m)@t1 &
Action(P)@t2 &
EndFastPhase(V, m)@t3 &
(#t1 < #t2) &
(#t2 < #t3) &
( (#t3 < #t ) | (#t3 = #t) )

)|(
Ex CAgent #t4 #t5 #t6 #t7.

StartFastPhase(V, m)@t5 &
EndFastPhase(V, m)@t7 &
Corrupted(P, V)@t4 &
CAction(CAgent)@t6 &
(#t5 < #t6)&
(#t6 < #t7)&
( (#t7 < #t) | (#t7 = #t) )

)
"

Figure 14. The Tamarin lemma dbsec.

invalid.

2) Between the start and end of the fast phase, the agent

P that the verifier believes is close performed some

action.

3) The agent P that the verifier believes is close has

revealed their long term secret key to the adversary.

Between the start and end of the fast phase, some

corrupt agent (who may be P or another agent who

has revealed their long-term key) performed an action.

Our implementations of the protocols also involve a num-

ber of reachability lemmas. These lemmas are not related to

the main dbsec lemma, but instead prove that the protocol

has been implemented in such a way that the various

stages of the protocol can be reached as per their intended

execution. If the end of the protocol is not reachable, then

the dbsec property is trivially true.

Finally, the protocol implementations include some trace
restrictions, also known as axioms. These are claims that

are assumed to be true when Tamarin constructs proofs for

the lemmas. The main axioms used are at_most_once
(Figure 15) and equality (Figure 16).

The axiom at_most_once is used to ensure that a

single agent (or pair of agents) may only be given a single

long term key (or shared key, respectively), and the axiom
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axiom at_most_once:
"
All A #t1 #t2.
Once(A)@t1 & Once(A)@t2 ==>
(

#t1 = #t2
)
"

Figure 15. The Tamarin axiom at_most_once.

axiom equality:
"
All a b #t1. Eq(a, b)@t1 ==> a = b
"

Figure 16. The Tamarin axiom equality.

equality serves to verify that an equation holds: typically

used in the case of verifying that a signature lines up with

the message it is intended to be signing.

D. Expressiveness and Abstraction

The Tamarin verifier supports stateful protocol specifica-

tions: where the output of the system is dependent on the

internal state, potentially causing repeated executions to have

differing consequences. The specification model provided in

Section V is built in a stateless manner, but allows for this

extension in a natural way. Of the protocols analysed, the

PaySafe protocol is the only one which contains stateful

components (in the form of an incrementing counter, ATC
in Figure 12). The attack provided on PaySafe can be

identified in a stateless variant of the protocol and shown

to hold even in the full version.

A key advantage with our form of automated verification

is that the protocol specification and associated security

claim are disjoint (save for markers indicating which events

the claim is made about). This means that the security

definition does not need to be adapted in order to be

compatible with a given protocol, and the analyst can focus

on attempting to represent the protocol’s specification as

faithfully as possible. There is occasional need for the

analyst to make decisions about the abstraction of certain

details (such as which aspects of the equational theory

behind the exclusive-OR operator should be available), but

this is a consequence of the limitations of the verification

tool, not the specification model.
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