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Abstract—Identifying security vulnerabilities in software is a
critical task that requires significant human effort. Currently,
vulnerability discovery is often the responsibility of software
testers before release and white-hat hackers (often within bug
bounty programs) afterward. This arrangement can be ad-hoc
and far from ideal; for example, if testers could identify more
vulnerabilities, software would be more secure at release time.
Thus far, however, the processes used by each group — and how
they compare to and interact with each other — have not been
well studied. This paper takes a first step toward better under-
standing, and eventually improving, this ecosystem: we report
on a semi-structured interview study (n=25) with both testers
and hackers, focusing on how each group finds vulnerabilities,
how they develop their skills, and the challenges they face. The
results suggest that hackers and testers follow similar processes,
but get different results due largely to differing experiences and
therefore different underlying knowledge of security concepts.
Based on these results, we provide recommendations to support
improved security training for testers, better communication
between hackers and developers, and smarter bug bounty policies
to motivate hacker participation.

I. INTRODUCTION

Software security bugs, also known as vulnerabilities, con-

tinue to be an important and expensive problem. There has

been significant research effort toward preventing vulnerabilities

from occurring in the first place, as well as toward automatically

discovering vulnerabilities, but so far these results remain fairly

limited: Human intelligence is often required to supplement au-

tomated tools, and will continue to be needed in the foreseeable

future [1]–[9]. For now, the job of finding vulnerabilities prior

to release is often assigned to software testers who typically aim

to root out all bugs — performance, functionality, and security

— prior to release. Unfortunately, general software testers do

not typically have the training or the expertise necessary to

find all security bugs, and thus many are released into the

wild [10].

Consequently, expert freelancers known as “white-hat hack-

ers” examine released software for vulnerabilities that they

can submit to bug bounty programs, often aiming to develop

sufficient credibility and skills to be contracted directly by

companies for their expertise [11], [12]. Bug bounty programs

offer “bounties” (e.g., money, swag, or recognition) to anyone

who identifies a vulnerability and discloses it to the vendor. By

tapping into the wide population of white-hat hackers, compa-

nies have seen significant benefits to product security, including

higher numbers of vulnerabilities found and improvements in

the expertise of in-house software testers and developers as

they learn from the vulnerabilities reported by others [12]–[17].

This vulnerability-finding ecosystem has important benefits,

but overall it remains fairly ad-hoc, and there is significant

room for improvement. Discovering more vulnerabilities prior

to release would save time, money, and company reputation;

protect product users; and avoid the long, slow process of

patch adoption [18]–[23]. Bug bounty markets, which are

typically dominated by a few highly-active participants [13]–

[16], lack cognitive diversity1, which is specifically important

to thoroughly vet software for security bugs [3], [12]. Bug

bounty programs can also exhibit communication problems

that lead to low signal-to-noise ratios [17]. Evidence suggests

that simply raising bounty prices is not sufficient to address

these issues [25], [26].

To improve this overall ecosystem, therefore, we must better

understand how it works. Several researchers have considered

the economic and security impact of bug bounty programs [16],

[27]–[30]; however, little research has investigated the human

processes of benign vulnerability finding. In this work, we take

a first step toward improving this understanding. We performed

25 semi-structured interviews with software testers and white-

hat hackers (collectively, practitioners), focusing on the process

of finding vulnerabilities in software: why they choose specific

software to study, what tools they use, how they develop the

necessary skills, and how they communicate with other relevant

actors (e.g., developers and peers).

We found that both testers and hackers describe a similar

set of steps for discovering vulnerabilities. Their success in

each step, however, depends on their vulnerability discovery

experience, their knowledge of underlying systems, available

access to the development process, and what motivates them

to search for vulnerabilities.

Of these variables, practitioners report that experience —

which differs greatly between testers and hackers – is most

significant to success in vulnerability finding. Differences

in experience stem primarily from the fact that hackers are

typically exposed to a wider variety of vulnerabilities through

a broad array of sources including employment, hacking

1The way people think and the perspectives and previous experiences they
bring to bear on a problem [24, pg. 40-65].
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exercises, communication with peers, and prior vulnerability

reports. On the other hand, we find that testers are typically

exposed to only a narrow set of vulnerabilities through fewer

sources, as testers primarily search for vulnerabilities in only

a single code base, only read bug reports associated with

that program, and only participate in small, internal hacking

exercises, if any.

Access to the development process and motivation also differ

notably between hackers and testers. While participants report

that more experience is always better, their opinions on access

and motivation are less straightforward: more access can help

or hinder vulnerability finding depending on circumstances,

and the relationship between motivation and success can be

highly variable.

From these findings, we distill recommendations to improve

human-driven vulnerability discovery for both populations.

II. RELATED WORK

In this section, we review prior work in four key areas.

A. Bug identification process

Previous work has studied how different populations perform

the task of bug identification. Aranda et al. studied how

developers and testers found 10 performance, security, and

functionality bugs in a production environment [31]. They

reviewed all reporting artifacts associated with the bugs

and interviewed the developers and testers who found and

fixed them. They found that bugs were most commonly

discovered through manual testing; close cooperation and verbal

communication were key to helping developers fix bugs.

Fang et al. surveyed hackers who disclosed vulnerabilities in

the SecurityFocus repository, asking how participants choose

software to investigate, what tools they use, and how they

report their findings [32], [33]. They found that hackers

typically targeted software they were familiar with as users,

predominantly preferred fuzzing tools to static analysis, and

preferred full disclosure. Summers et al. studied problem-

solving mental models through semi-structured interviews of 18

hackers [34]. They find that hackers require a high tolerance for

ambiguity, because they seek to find problems that may or may

not exist in a system they did not design. Additionally, Summers

et al. observed that hackers rely on discourse with others or

visualization techniques (i.e., mapping system semantics on

a white-board) to deal with ambiguity and identify the most

probable issues.

We expand on these prior studies by comparing white-hat

hackers and testers specifically in the domain of security and

including testers and hackers from multiple companies and bug

bounty programs. Also, we thoroughly investigate participants’

processes, communication about vulnerabilities and reporting

strategies, skill-development, and reasons for using specific

tools.

B. Tester and hacker characteristics

Lethbridge et al. discuss the wide breadth of software

testers’ backgrounds, estimating that only 40% possess a

computing-related education and a majority lack formal training

in software engineering practices [35]. They recommend

expanding interactive educational opportunities for testers

to support closing gaps in essential knowledge. Relatedly,

Bertolino et al. examined how testers can harness their domain-

specific knowledge in a distributed fashion to find more bugs

more quickly [36]. We expand on this previous work to provide

the first exploration of how software testers currently learn and

expand their knowledge of vulnerability discovery practices.

Al-Banna et al. focus on external security professionals,

asking both professionals and those who hire them which

indicators they believed were the most important to discern se-

curity expertise [37]. Similarly, Cowley interviewed 10 malware

reverse engineering professionals to understand the necessary

skills and define levels of professional development [38]. We

borrow the concept of task analysis from this work to guide

our interviews while expanding the scope of questions and

comparing hackers to software testers.

Criminology research has also examined why some individu-

als who find vulnerabilities become cyber criminals, finding that

although most hackers work alone, they improve knowledge

and skills in part through mentoring by peers [11], [39], [40].

While we explicitly do not consider black-hat hackers, we build

on these findings with further analysis of how hackers learn

skills and create communities.

C. Measurement of bug bounty programs

Several researchers have investigated what factors (e.g.,

money, probability of success) most influence participation

and productivity in bug bounty programs. Finifter et al. studied

the Firefox and Chrome bug bounty programs [16]. They found

that a variable payment structure based on the criticality of the

vulnerability led to higher participation rates and a greater

diversity of vulnerabilities discovered as more researchers

participated in the program. Maillart et al. studied 35 public

HackerOne bounty programs, finding that hackers tend to focus

on new bounty programs and that a significant portion of

vulnerabilities are found shortly after the program starts [12].

The authors suggest that hackers are motivated to find “low-

hanging fruit” (i.e., easy to discover vulnerabilities) as quickly

as possible, because the expected value of many small payouts

is perceived to be greater than for complex, high-reward

vulnerabilities that might be “scooped” by a competitor.

While these studies suggest potential motivations for hacker

behavior based on observed trends, we directly interview

hackers about their motivations. Additionally, these studies do

not explore the full decision process of bug bounty participants.

This exploration is important because any effective change to

the market needs to consider all the nuances of participant

decisions if it hopes to be successful. Additionally, prior

work does not compare hackers with software testers. This

comparison is necessary, as it suggests ways to best train

and allocate resources to all stakeholders in the software

development lifecycle.
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D. Other studies with developers and security professionals

Similarly to our work, many researchers have investigated the

specific needs and practices of developers and other security

experts in order to understand how to improve application

and code security [41]. For example, researchers have focused

on understanding how and why developers write (in)secure

software [42]–[51] and have investigated the usability of

static analysis tools for vulnerability discovery [3], [52]–[60],

network defense and incident response [61]–[69], malware

analysis [70], and corporate security policy development and

adherence [71]–[78]. While these works investigate different

topics and questions than the work presented here, they

highlight the benefits of the approach taken in our research:

studying how experts approach security.

III. METHODOLOGY

To understand the vulnerability discovery processes used by

our target populations, we conducted semi-structured interviews

with software testers and white-hat hackers (henceforth hackers
for simplicity) between April and May 2017. To support

rigorous qualitative results, we conducted interviews until

new themes stopped emerging (25 participants) [79, pg. 113-

115]. Because we interview more than the 12-20 participants

suggested by qualitative research best practices literature, our

work can provide strong direction for future quantitative work

and generalizable design recommendations [80].

Below, we describe our recruitment process, the development

and pre-testing of our interview protocol, our data analysis

procedures, and the limitations of our work. This study was

approved by our university’s Institutional Review Board (IRB).

A. Recruitment

Because software testers and hackers are difficult to re-

cruit [31]–[33], we used three sources to find participants:

software testing and vulnerability discovery organizations,

public bug bounty data, and personal contacts.

Related organizations. To recruit hackers, we contacted the

leadership of two popular bug bounty platforms and several

top-ranked Capture-the-Flag (CTF) teams. We gathered CTF

team contact information when it was made publicly available

on CTFTime.org [82], a website that hosts information about

CTF teams and competitions.

To reach software testers, we contacted the most popular

Meetup [83] groups with "Software Testing" listed in their de-

scription, all the IEEE chapters in our geographical region, and

two popular professional testing organizations: the Association

for Software Testing [84] and the Ministry of Testing [85].

Public bug bounty data. We also collected publicly available

contact information for hackers from bug bounty websites. One

of the most popular bug bounty platforms, HackerOne [86],

maintains profile pages for each of its members which com-

monly include the hacker’s contact information. Additionally,

the Chromium [87] and Firefox [88] public bug trackers provide

the email addresses of anyone who has submitted a bug report.

To identify reporters who successfully submitted vulnerabilities,

we followed the process outlined by Finifter et. al. by searching

for specific security-relevant labels [16].

Personal contacts. We asked colleagues in related industries

to recruit their co-workers. We also used snowball sampling

(asking participants to recruit peers) at the end of the recruit-

ment phase to ensure we had sufficient participation. This

recruitment source accounts for three participants.

Advertisement considerations. We found that hackers were

highly privacy-sensitive, and testers were generally concerned

with protecting their companies’ intellectual property, com-

plicating recruiting. To mitigate this, we carefully designed

our recruiting advertisements and materials to emphasize the

legitimacy of our research institution and to provide reassurance

that participant information would be kept confidential and that

we would not ask for sensitive details.

Participant screening. Due to the specialized nature of the

studied populations, we asked all volunteers to complete a

20-question survey to confirm they had the necessary skills

and experience. The survey assessed participants’ background

in vulnerability discovery (e.g., number of security bugs

discovered, percent of income from vulnerability discovery,

programs they have participated in, types of vulnerabilities

found) and their technical skills (e.g., development experience,

reverse engineering, system administration). It also concluded

with basic demographic questions. We drew these questions

from similar surveys distributed by popular bug bounty plat-

forms [13], [15]. We provide the full set of survey questions

in Appendix A.

We selected participants to represent a broad range of

vulnerability discovery experience, software specializations

(i.e., mobile, web, host), and technical skills. When survey

responses matched in these categories, we selected randomly.

To determine the participants’ software specialization, we asked

them to indicate the percent of vulnerabilities they discovered

in each type of software. We deem the software type with the

highest reported percentage the participant’s speciality. If no

software type exceeded 40% of all vulnerabilities found, we

consider the participant a generalist (i.e., they do not specialize

in any particular software type).

B. Interview protocol

We performed semi-structured, video teleconference2 inter-

views, which took between 40 and 75 minutes. All interviews

were conducted by a single interviewer. Using a semi-structured

protocol, the interviewer focused primarily on the set of

questions given in Appendix B, with the option to ask follow-

ups or skip questions that were already answered [89]. Each

interview was divided along three lines of questioning: general

experience, task analysis, and skill development.

Prior to the main study, we conducted four pilot interviews

(two testers, two hackers) to pre-test the questions and ensure

2Interviews were conducted via video teleconference because it was
geographically infeasible to meet face-to-face.
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validity. We iteratively updated our protocol following these

interviews, until we reached the final protocol detailed below.

General experience. We began the interviews by asking

participants to expand on their screening-survey responses

regarding vulnerability discovery experience. Specifically, we

asked their motivation behind doing this type of work (e.g.

altruism, fun, curiosity, money) and why they focus (or do not

focus) on a specific type of vulnerability or software.

Task analysis. Next, we asked participants what steps they

take to find vulnerabilities. Specifically, we focused on the

following sub-tasks of vulnerability discovery:

• Program selection. How do they decide which pieces of

software to investigate?

• Vulnerability search. What steps are taken to search for

vulnerabilities?

• Reporting. How do they report discovered vulnerabilities?

What information do they include in their reports?

To induce in-depth responses, we had participants perform a

hierarchical task analysis focused on these three sub-tasks.

Hierarchical task analysis is a process of systematically

identifying a task’s goals and operations and decomposing

them into sub-goals and sub-operations [90]. Each operation is

defined by its goal, the set of inputs which conditionally activate

it, a set of actions, and the feedback or output that determine

when the operation is complete and which follow-on operations

are required. Hierarchical task analysis was developed to

analyze complex, non-repetitive, cognitively loaded tasks to

identify errors or inefficiencies in the process. We adopted this

for our study, as it provides a useful framework for eliciting

details from experts who typically perform some parts of tasks

automatically and subconsciously [90].

For each sub-operation identified, we also asked participants

to discuss any specific tools they use, what skills are useful

to complete this step, how they learned and developed their

process for completing the necessary actions, and how the

steps they take differ across software and vulnerability types.

Skill development. Finally, we asked participants to describe

how they developed the skills necessary to find vulnerabilities.

Here, we focused on their learning process and how they

interact with other members of their respective communities.

During the task analysis portion of the interview, we asked

participants to explain how they learned how to complete certain

tasks. In this segment, we broadened this line of questioning and

asked what development steps they recommend to newcomers

to the field. This question was intended to elicit additional

learning sources that may have been missed previously and

highlight steps participants believe are the most important.

Finally, we asked each participant to describe their interac-

tions with other members of their local community and the

vulnerability discovery and software tester community at large.

Specifically, we discussed who they interact with, the forms

of their interaction (e.g., one-to-one, large groups), how these

interactions are carried out (e.g., conferences, online forums,

direct messaging), and what types of information are discussed.

C. Data analysis

The interviews were analyzed using iterative open coding [91,

pg. 101-122]. When all the interviews were completed, four

members of the research team transcribed 10 interviews. The

remaining 15 interviews were transcribed by an external

transcription service. The interviewer and another researcher

independently coded each interview, building the codebook

incrementally and re-coding previously coded interviews. This

process was repeated until all interviews were coded. The codes

of the two interviewers were then compared to determine inter-

coder reliability using the ReCal2 software package [92]. We

use Krippendorff’s Alpha (α) to measure inter-coder reliability

as it accounts for chance agreements [93].

The α after coding all the interviews was .68. Krippendorff

recommends using α values between .667 and .80 only in

studies “where tentative conclusions are still acceptable” [94];

and other work has suggested a higher minimum threshold of

.70 for exploratory studies [95]. To achieve more conclusive

results, we recoded the 16 of our 85 codes with an α less

than .70. For each code, the coders discussed a subset of the

disagreements, adjusted code definitions as necessary to clarify

inclusion/exclusion conditions, and re-coded all the interviews

with the updated codebook. After re-coding, the α for the study

was .85. Additionally, all individual codes’ αs were above .70.

Next, we grouped the identified codes into related categories.

In total, there were six categories describing the partici-

pants’ discovery process (i.e., Information Gathering, Program

Understanding, Attack Surface, Exploration, Vulnerability

Recognition, and Reporting) and four categories regarding

factors that influenced participants’ implementation of this

process (i.e., Vulnerability Discovery Experience, Underlying

System Knowledge, Access to the Development Process, and

Motivation). We then performed an axial coding to find

connections between categories and between codes within

categories [91, pg. 123-142]. Based on the categories and

connections between them, we derive a theory describing the

process practitioners use to find vulnerabilities, the factors

that influence their implementation of this process, and how

testers and hackers differ with respect to their process and

implementation.

D. Limitations

Our study has several limitations common to exploratory

qualitative research. A lack of complete recall is especially

prominent in studies like ours, where participants are asked

to describe expert tasks [90]. We employ a hierarchical task

analysis in our interview protocol to improve the thoroughness

of information elicited. Participants may have also adjusted

their answers to portray themselves as more or less skilled,

if they were concerned with the interviewer’s perception of

them [96], [97]. Additionally, there could be selection bias

among the testers and hackers studied. Because we explicitly

stated the purpose of the study when recruiting, it is possible

that those with experience or an interest in security were more

likely to respond to our request. Also, since some hackers

tend to be more privacy sensitive, some may have decided not
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to participate in order to protect their identity or intellectual

property. To partially mitigate these issues, we recruited through

a wide variety of sources and interviewed a diverse pool of

participants to increase the likelihood that relevant ideas would

be stated by at least one participant. Finally, for each finding,

we give the number of testers and hackers that expressed a

concept, to indicate prevalence. However, if a participant did

not mention a specific idea, that does not necessarily indicate

disagreement; they may have simply failed to state it. For

these reasons, we do not use statistical hypothesis tests for

comparison among participants. Our results do not necessarily

generalize beyond our sample; however, they suggest many

directions for future work and provide novel insights into the

human factors of software vulnerability discovery.

IV. PARTICIPANTS

We received 49 responses to our screening survey. We

selected 10 testers and 15 hackers. (Themes related to their

vulnerability discovery process converged more quickly with

testers than with hackers, so we required fewer interviews [79]).

Table I shows our participants’ demographics, including their

self-reported vulnerability-discovery skill level (on a scale

from 0-5, with 0 indicating no skill and 5 indicating an expert),

self-reported number of vulnerabilities they have discovered,

company size (only applicable for testers), and the method

used to recruit them.

Hacker demographics match prior surveys. Our study de-

mographics are relatively congruent with hacker demographics

reported in studies from the popular bug bounty services

HackerOne [13] and BugCrowd [98]. 90% of HackerOne’s

70,000 users were younger than 34; 60% of BugCrowd’s 38,000

users are 18-29 and 34% are 30-44 years old. Our hacker

population was 60% under 30 and 90% under 40 years old.

Regarding education, 84% of BugCrowd hackers have attended

college and 21% have a graduate degree; 93% of our hackers

have attended college and 33% have a graduate degree.

Testers are more diverse than hackers. In contrast to our

hacker population, none of our software testers were under 30

and only 60% were under 40 years old. All of our testers have

some college education, but only one has a graduate degree.

With respect to ethnicity and gender, the software tester group

was much more diverse, at 60% male and 60% Caucasian.

Hackers reported higher vulnerability discovery skills. As

expected, there is a contrast in vulnerability finding skills

between testers and hackers. The hacker population self-

reported an average skill level of 3.5, whereas software testers

self-reported an average skill of 2.5. This self-reported measure

cannot be used to directly compare participants’ abilities;

instead, it indicates their self-efficacy, telling us that testers

tend to be less confident in their ability to find security bugs.

Interestingly, despite the hacker population possessing more

vulnerability finding experience, more software testers self-

reported having discovered more than 500 vulnerabilities.

However, we note that the number of vulnerabilities is not

ID1,2 Gender:
Age:Race3 Educ. Skill

Vulns.
Fnd

Org.
Sz Source4

T1W M:30-39:H B.S 1 0-3 >20K O
T2W F:40-49:W B.S. 2 0-3 100 O
T3W F:30-39:W B.S 3 26-50 150 O
T4G M:30-39:A SC 5 >500 200-10K O
T5W M:30-39:W B.S. 4 >500 200 O
T6W M:50-59:A B.S. 3 51-100 60K O
T7G M:30-39:A B.S. 4 >500 50 O
T8H F:50-59:W Assoc. 0 101-500 2K O
T9W F:30-39:W B.S. 0 0-3 2K C
T10W M:40-49:W M.S. 3 0-3 10-50K O

H1H M:18-29:W B.S. 4 11-25 - O
H2H M:30-39:W B.S. 4 51-100 - O
H3G M:30-39:W M.S. 5 >500 - O
H4H F:18-29:W M.S. 4 26-50 - O
H5M M:18-29:W B.S. 4 101-500 - O
H6G M:18-29:H M.S. 3 101-500 - O
H7W M:18-29:W M.S. 3 26-50 - O
H8M M:30-39:W SC 5 101-500 - C
H9G M:18-29:W H.S. 4 26-50 - O
H10H M:18-29:W SC 2 11-25 - O
H11W M:18-29:W B.S. 4 51-100 - O
H12W M:40-49:B B.S. 1 11-25 - O
H13W M:30-39:W B.S. 4 >500 - C
H14W M:30-39:W M.S. 4 101-500 - P
H15W M:18-29:W B.S. 2 26-50 - P

1 IDs are coded by population (T: Tester, H: Hacker) in date order
2 Software Specialization – W: Web, H: Host, M: Mobile, G: General
3 W: White, B: Black, A: Asian, H: Hispanic
4 Recruitment method – O: Related Organization, P: Public Bug Bounty
Data, C: Personal Contact

TABLE I: Participant demographics.

necessarily representative of participant skill. It may instead

depend on their specialization. For example, participants who

focused on web applications reported finding more vulnera-

bilities, but these are generally considered less complex and

therefore are less profitable in bug bounties [99].

V. VULNERABILITY DISCOVERY PROCESS

Perhaps our most surprising result is that hackers and testers

described a similar exploratory process for vulnerability finding.

They first focus on learning what the program does, then

use their intuition and experience to find ways to perform

unintended, malicious actions. Across participants, this process

was generally broken into five phases: Information Gathering,
Program Understanding, Attack Surface, Exploration, Vulnera-
bility Recognition, and Reporting. Participants described the

second (Program Understanding) through fourth (Exploration)

phases as a loop that they iterate until a vulnerability is found.

Figure 1 shows the process our participants described, as well as

the factors that influence the process. In all the category graphs

in this paper, we represent process categories as hexagons,

influencing categories as rectangles, and items that determine

the influencing categories as ovals. Additionally, we represent

relationships between categories with arrows whose direction

indicates the direction of influence. For readability, we color

arrows from influencers to process categories to indicate the

influence category they are derived from.

In this section, we briefly outline the overall vulnerability

discovery process. In the following section, we discuss in detail
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Fig. 1: Vulnerability-finding process and influencing factors.

the factors which influence the execution of each phase, and

which exhibit greater differences between our two populations.

Information gathering. In the initial phase of vulnerability

discovery, practitioners quickly collect preliminary information

about the program to develop context prior to reading any

code or executing the program (T=6, H=14). This includes

finding any previous bugs reported in the program (T=3, H=9),

determining the age of the code and update history (i.e.,

looking at change logs to identify old or recently updated

code segments) (T=5, H=9), and identifying the libraries used

(T=1, H=2). This phase’s goal is to develop an understanding

of prior efforts, as well as the technologies the program is built

on. Information Gathering is also used specifically by some

hackers to decide whether to expend additional effort or move

on to a different target (T=0, H=3).

Program understanding. Next, our participants try to de-

termine how the program operates, how it interacts with its

environment (i.e., the user, network, etc.), and how individual

components interact with each other. Initially, this step is

based on communication with developers (T=7, H=0) or on

reading documentation (T=5, H=5), when available. Through

iterations of the loop (i.e., Program Understanding, Attack

Surface, and Exploration), as they execute the program and

read code, practitioners learn about the program by its behavior

(T=6, H=11). T4G described iteratively building up an idea of

the program structure by “touching a little bit everything, and

then you are organizing that structure in your head. . . [and]

you can formalize it [with the code].” H9G tries to get into the

developer’s mindset by rewriting the code himself. He starts

by thinking about the possible “inputs from the management

or business side that [go] into the specification,” then he writes

a version of the program himself and “look[s] for matches

between the machine code I’m seeing [the original program]

and the machine code that my C++ program produces.”

Attack surface. Our participants then identify how a user

can interact with the program (T=9, H=15). Their goal is to

determine what an attacker can manipulate and how they can

influence program execution. This allows our participants to

focus only on critical components of the program. H4H explains

“I look at things that I can touch, [for example] what can I

get to from the network. . . . That’s necessary to narrow down

the target[s].” Our participants discussed looking for direct

program inputs (T=9, H=10), such as website form fields, as

well as indirect inputs (T=4, H=10), such as data pulled from

their social media page or backend communication to a server.

Exploration. Next, practitioners explore the effect of a range

of inputs to see whether it is possible to perform some

malicious action by providing data the program mishandles.

H5M described this as “enumerating all the variable[s] and all

the parameters. . . I can quickly make a bunch of accounts and

see how the user ID changes and how it associates one user

with multiple devices.” Our participants described a range

of approaches to exploring program behavior, typically a

combination of executing the program with a set of test inputs

(T=9, H=11) and code inspection (T=6, H=12).

Of the tools mentioned during our interviews, almost all

were used in this phase. Our participants reported preferring

tools that automate simple, repetitive tasks so that they can

focus on more complicated problems (T=4, H=13). Such tasks

include quickly searching through code or network captures

(T=2, H=10), providing suggestions for test cases (T=5, H=3),

or making code easier to read (e.g., callee-caller method cross-

referencing, variable renaming) (T=1, H=6). We found that

hackers were much more likely to utilize tools to automate this

phase of the process, preferring dynamic analyses (e.g., fuzzing)

(T=5, H=12) over static analyses (e.g., symbolic execution)

(T=0, H=2), which matches Hafiz and Fang’s findings [32].

On the other hand, seven hackers mentioned specifically

focusing on doing things manually, or using tools that aided

them in doing so, because they feel this gives them a

competitive advantage (T=0, H=7). For example, H15W says

he avoids fully automated tools because “I assume that [large

companies] already run static and dynamic analysis tools. . . so

there’s not much of a point of me doing it.”

Vulnerability recognition. Participants iterate through the

prior three phases until they eventually identify a vulnerability.

This phase can be as simple as seeing a crash that produces

a known bad behavior or getting a tool output that indicates

a problem. However, in most cases our participants described

relying on their intuition and system knowledge to recognize

where an assumption is violated or a simple crash shows a

bigger security problem (T=6, H=14).

Reporting. Finally, once the vulnerability is found, it must

be reported. In their reports, our participants focus on making

sure the information is presented in a way that is easily

understandable by developers (T=8, H=11). Specifically, they

stressed communicating the importance of fixing the vulnera-
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bility (T=10, H=12). T4G explained that even after you find

a vulnerability, “you have to have the weight of someone

else to agree that [it] is a bug. . . you do have to [convince]

someone that there’s a risk. . . It’s quite timely [time consuming],

running a ticket.” This emphasis on selling the importance of the

vulnerability mirrors the findings of Haney and Lutters [100].

Exception to the process. Four hackers in our study reported

a notable exception to the order of phases described above.

These hackers stated that they, in some cases, first recognize a

vulnerability and reverse the normal process by looking for an

execution path to the insecure code (T=0, H=4). This occurs

whenever they find known insecure code (e.g., memcpy or

printf in a C program) using a string search or other simple

static analysis. Then they trace the execution path back through

the code manually to find any input that triggers the vulnerable

code. While this is a different order of operations, the general

phases of the process remain the same.

VI. INFLUENCING FACTORS

While all our participants described a similar process, their

implementation of this process differed. These differences can

be loosely grouped into four influencing factors: Vulnerability
Discovery Experience, Underlying System Knowledge, Access
to the Development Process, and Motivation. We found that

both groups of practitioners expect increases in Vulnerability

Discovery Experience and Underlying System Knowledge to

improve vulnerability discovery success. Further, we found

that hackers and testers reported similar levels of underlying

system knowledge, yet the most important difference between

our hackers and testers was in their vulnerability discovery

experience. To our surprise, we did not find a straightforward

relationship between increased access to the development

process and successful vulnerability finding. Finally, the impact

of different motivational influencing factors was likewise more

complex than expected.

A. Vulnerability discovery experience

Overall, hackers and testers agreed that prior experience

finding vulnerabilities significantly improves their vulnerability

discovery process (T=10, H=13); the key difference is that

hackers reported notably more experience than testers.

In particular, we find that regardless of role, experience

improves a practitioner’s ability to efficiently identify the attack

surface, select test cases, recognize vulnerabilities, and sell the

resulting report. Both groups reported that the best approaches

to gaining the relevant experience are real-world code analysis,

hacking exercises, learning from their community, and prior

bug reports. However, hackers were more likely than testers to

rely on hacking exercises and bug reports. Further, hackers are

exposed to a wider variety of vulnerabilities across all these

learning approaches. Figure 2 shows the effect of vulnerability

discovery experience on phases of the process and the ways

practitioners develop experience.

Fig. 2: Vulnerability Discovery Experience Category Graph.

1) How does experience affect the process? Across both

groups of practitioners, participants identified several key ways

that experience adds to vulnerability discovery success.

Helps recognize a problem quickly. Our participants fre-

quently mentioned learning to recognize patterns that indicate

a problem based on prior experience (T=6, H=14). For example,

as he explores a program for possible bugs, H10H stated that

he has a set of potential problems that he knows could occur

based on prior experience. He said “I know that if there’s a loop

[that’s] going through my input, it could be going out of bounds

on the array, could be underflow, overflow.” Relatedly, most

participants discussed maintaining a mental or physical list of

all the vulnerabilities they have seen through past experience

and checking for these whenever they test a new piece of

software (T=9, H=11).

Informs test case selection. In complex real-world systems,

it is impractical to perform a complete search of all possible

program inputs, so our participants stated that they rely on their

intuition, learned from prior experience, to triage (T=9, H=8).

For example, T3W discussed creating a list of standard test

cases “based on things we’ve found from Rapid7 [web security

scanning tool]” or after asking “one of the developers. . . if

there is other security testing we should be doing.” From her

experience, she “broadened the scope of security testing at

the time [was just SQL injection], and brought in cross-site

scripting.” H2H explained how he built a set of file formats

that he tries to open “in some random image parser, and half

the time it would [cause a crash].” He said that he created

his list based on his experience working with other security

professionals in an “apprentice”-like situation where “You

watch them, they watch you, and soon you’re doing it on your

own.”

Helps identify the attack surface. We observed that only

participants with more experience mentioned indirect inputs

as part of the attack surface (T=4, H=10). Indirect inputs

are more difficult to identify because they require a complex

combination of events that may not occur frequently. Typically,

our practitioners suggested that they only know to look for

these complex interactions because they have seen something

similar previously. T3W discussed learning about indirect inputs
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after incidentally finding a vulnerability in the way a program

accepted user input from a LinkedIn third-party login service,

“as soon as I found the LinkedIn problem, I made sure to test

[FB and Twitter] to make sure [they were processed correctly].

And if we did allow login with another 3rd party in the future,

I would check that too.”

Helps describe a vulnerability’s impact. Testers and hackers

leverage prior experience to explain how a vulnerability could

be used by a malicious actor when arguing its impact to

developers. T10W recalled a time where he used the story

of a denial of service attack, caused by the same type of

vulnerability, to explain the importance of fixing a new problem

quickly.

Without experience, slower and more random. Without

prior experience guiding triage, our practitioners relied on

stumbling across vulnerabilities incidentally (T=5, H=4); or on

their curiosity (T=8, H=5), personal creativity (T=3, H=6), and

persistence (T=2, H=9) with ample time (T=4, H=9) to dig

through the complexity of a program. Such incidental discovery

is time consuming and haphazard, with little consistency in

results. H1H described looking for a vulnerability in a complex

program and “spent the whole summer on it and failed”, but

after reviewing bug reports for similar programs, he returned

to searching the same program and found a vulnerability after

“about a month”. Thus, prior experience provides a useful and,

in the opinion of some of our hackers, critical stimulus to the

bug finding process (T=0, H=4).

2) How is experience developed? Our participants developed

experience through hands-on practice, supplemented by support

from their peers and by reading other practitioners’ vulnerability

reports. Most notably, hackers reported a greater variety of

learning methods, and more diverse experiences within each

method, than testers; as a result, hackers developed more, and

more valuable, experience.

Gained by searching real-world programs. All of our testers

mentioned gaining experience through their job, supporting

findings from Lethbridge et al [35]. Six reported gaining

vulnerability-discovery experience by incidentally finding secu-

rity vulnerabilities while seeking out functionality bugs. Four

reported learning something from their company’s security-

training best practices, but also reported that these best practice

guides provide, at best, limited information.
The hackers in our study also develop hands-on experience

through employment, which tended to be in security-specific

roles such as full-time bug bounty participation and contracted

penetration testing (H=13). As might be expected, this security-

focused experience provides a strong advantage. Additionally,

the ad-hoc and frequently changing nature of hackers’ em-

ployment exposes them to a wider variety of programs, and

therefore types of vulnerabilities, compared to testers who

focus only on a single program or a few programs developed

by their company and change focus less frequently.
In addition to their full-time jobs, we found that many of

our hackers and some testers performed vulnerability discovery

on real-world programs as a hobby (T=3, H=11). These

participants explained that they searched for vulnerabilities,

though there was no expected economic benefit, for the purpose

of hands-on learning and personal enjoyment.

Gained through hacking exercises. Many of our hackers

and some of our testers participate in hacking exercises like

capture-the-flag competitions or online war games [101], [102]

(T=4, H=13). These exercises expose players to a variety of

vulnerabilities in a controlled, security-specific setting with

little program functionality aside from vulnerable components.

H3G explained that hacking exercises help players focus

on important details without becoming “overloaded"; these

exercises also offer a “way of measuring the progress of your

skills." Notably, the four testers had participated in only a few

narrowly-focused workplace competitions, while our hackers

mentioned many broad-ranging exercises.

Learned from their community. Both hackers and testers

reported similar experiences learning through colleagues, both

within and external to their workplace. Participants mention

learning from co-workers (T=7, H=7); from hobbyist (T=7,

H=10) and professional (T=2, H=0) organizations in which

they are a member; and from informal personal contacts (T=6,

H=12). Within these communities, practitioners are taught by

those with more experience (T=10, H=13) and learn by working

through and discussing difficult problems with their peers (T=6,

H=9). For example, T5W described “Just watching other people

test, grabbing what one person uses and then another and

adding it to your own handbook.” H2H explained that starting

his career at a security company with “a lot of institutional

knowledge” was critical to his development because he had

“a lot of folks that I was able to pick their brain.” Whenever

personal contacts are not sufficient, practitioners also seek out

information published online, typically in the form of expert

blog articles and web forum posts (T=6, H=10).

Learned from prior vulnerability reports. Additionally,

many participants—but particularly hackers—regularly read

other individuals’ vulnerability reports or discussed vulnera-

bilities found by colleagues to learn about new vulnerability

types and discovery techniques, essentially gaining practical

experience vicariously (T=6, H=15). H1H described using bug

reports to test his vulnerability finding skills. Before reading a

report, he asks himself, “Can I see the bug?” in the vulnerable

version of the program. If the answer is no, he looks at the

report to see “what the issue was and what the fix was and then

where in the source the bug was.” However, testers commonly

only look at internal reports (T=5, H=0), whereas hackers view

reports from a variety of programs (T=1, H=15), exposing

them to a wider range of experiences.

Rarely learned through formal education. Finally, some

participants mentioned more formal training such as books

(T=1, H=7), academic courses (T=2, H=6), and certifications

(T=0, H=1). In all cases, however, these methods were

perceived to only support attaining the skills to participate

in hands-on methods, not to be sufficient on their own.
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Fig. 3: Underlying System Knowledge Category Graph.

B. Underlying system knowledge

Almost all participants in both populations (T=8, H=15) em-

phasized the importance of underlying system knowledge (e.g.,

operating systems, programming languages, network protocols,

and software libraries) for successful vulnerability discovery.

Unlike with vulnerability discovery experience, our hackers and

testers expressed similar levels of system knowledge. Instead,

the biggest variation is in which underlying systems participants

understand, primarily due to software specialization. Many

participants reported focusing on a particular type of software

(e.g., web, mobile, host) out of necessity, such as limited time

to maintain proficiency in all software types (T=5, H=11).

We found that practitioners in both populations limit their

vulnerability searches based on their specialty (e.g., mobile

specialists only consider a mobile app and not its associated

web server).

Both populations indicated that system knowledge plays a

role in the Attack Surface phase; hackers were more likely to

report that it also plays a role in the Vulnerability Recognition

phase (See Figure 3.)

1) How does system knowledge affect the process? Under-

standing the underlying system components allows practitioners

to recognize vulnerabilities caused by discrepancies between

the developer’s assumptions about how the system behaves and

what actually occurs (T=2, H=6). H14W described how his

understanding of Mozilla web add-ons helps him recognize

vulnerabilities in other developers’ code, saying that add-on

developers “have no idea what they are doing there, and I see

they do horrible stuff.”

Strong system knowledge helps practitioners identify more

input vectors into a program, as well as the full range of

potential inputs (T=5, H=12). H1H gave an example of better

system understanding improving his view of the attack surface:

“I took [Operating Systems] where I was writing a kernel,

and that was incredibly important. It wasn’t until I took

this that I really understood what the attack surfaces really

were. . . The idea of being the [Virtual Machine] host where

you’re communicating with the GPU via some channel, I

wouldn’t have thought about that layer if I hadn’t written

a kernel.”

Fig. 4: Access to development process category graph.

2) How is system knowledge developed? The development

of system knowledge closely parallels the development of

vulnerability discovery experience, with participants relying on

hands-on experience and the community. Participants indicated

learning through a mixture of on-the-job learning as a tester

or hacker (T=10, H=13) and experience as a developer (T=6,

H=11) or systems administrator (T=0, H=3). H5M discussed

the impact of his prior employment; “I worked at an antivirus

company and you had to look at a lot of samples really

quick. . . and [now] it’s easy to say ‘Ok, here’s where they’re

doing this’. . . and just quickly looking at it.”

Participants also mentioned using community (T=7, H=7)

and online resources (i.e., expert blogs and web forums) (T=7,

H=8) to supplement their experiential learning. Participants

also learn from standards documents such as network protocol

RFCs and assembly language instruction set documentation

(T=2, H=4). Again, very few mentioned formal education (T=2,

H=2), and of those who did, none considered it necessary. H6G

explained that he has read some good books and has a computer

science degree, but finds hands-on learning the best because

“For me I need ten hours reading a book. It’s the same as 2

[or] 3 hours trying to solve a challenge.”

C. Access to development process

Another factor that influences the vulnerability discovery

process is whether a practitioner has access to the development

process. Figure 4 shows the effect of this access on the

phases of vulnerability discovery. Clearly, because testers serve

in an internal role, they have greater access to the source

code, program requirements, and the developers themselves;

they are also commonly involved in program-design decisions

(T=7, H=0). All of our hackers, conversely, are (intentionally)

outsiders (H=15) approaching the program as a black box with

access at most to the source code if it is an open-source project

or unobfuscated client-side script. Our participants report that

both perspectives have key advantages and disadvantages: as

outsiders by design, hackers are not biased by the assumptions

of the developers, but testers have potentially valuable inside

knowledge as well as an advantage in communicating findings

to developers.

Internal efforts rely on documentation and direct developer
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communication. When gathering information, most testers rely

on internal code tracking databases and communication with

developers and other testers to determine the results of prior

vulnerability discovery efforts (T=9, H=0). When trying to

understand the program, because testers are involved in the

program’s design, they get into the mindset of developers by

talking to them (T=8, H=0). T6W described participating with

developers and other stakeholders in “a design session. That’s

where we are going to put down the requirements.” This session

includes discussions about how to build the system and “what

kind of testing we are going to [do].”

Having internal access to the development process can reveal

flawed assumptions that would never be found by an outsider.

However, knowing too much about the program going into

the vulnerability search can blind the investigator to certain

issues. T4G explains this, saying, “I try to learn as much about

it without knowing too much about it. . . . It’s hard to ignore

certain details once you know about certain areas already.”

However, T4G still recognized the value of communicating

with his developers, saying, “You can give feedback to your

teammates, your developers, your product owners. . . .You’re

coming back with information, and then they react on it. Then

you have to go back there [to explore] again.”

External efforts use black-box testing and reverse engi-
neering techniques. Because hackers do not have access to

internal resources, they have to use more complicated methods

to directly interrogate the system. When initially gathering

information about a program, hackers use network-scanning

tools and other black-box enumeration techniques to determine

how the program is built and what underlying technologies

it uses (T=0, H=5). During the program understanding phase,

hackers rely only on their ability to reverse engineer the

developer’s intentions by reading and executing the code in

lieu of talking to developers (T=0, H=15). H9G builds a clear

picture of how the developer is thinking and what they are

trying to do by looking directly at their code, because “when

you look at the binary. . . you get a more intimate look into

how the programmer was thinking.” He reads the code to “see

certain implementations and certain patterns in the code. . . that

can potentially allow you to make an assumption about a part

of the specification.”

Building rapport with developers. In contrast to the mixed

effect on the vulnerability search, our participants indicated

that having greater access to the development process provides

an advantage when reporting the vulnerability. Our testers

discussed using this connection to develop a shared language

about the program (T=8, H=0) and build a relationship where

they can go to the developers directly to discuss the issue and

mitigate the problem (T=9, H=0). T1W stated that he tries

“to use the same verbiage, so if for example I’m testing an

application and I’m referencing certain parts, . . . [I’ll] see how

they name those specific fields. . . and I’ll try to use the terms

they’re using versus regular colloquial terms.” He explained

that the shared language and relationship allows him to avoid

misunderstandings that could slow or even stop the remediation

process.

Our hackers rarely have the same rapport because, as external

participants, they communicate with developers only when they

find a vulnerability, which may only occur once per program.

In a few cases, our hackers were able to develop a strong

relationship with a particular company (H=2), but this only

occurred after they submitted multiple reports to that company.

H8M focuses on a very specific program type, mobile device

firmware, and therefore has developed a relationship with most

of the major companies in this area. He described adjusting

the information he reports depending on previous interactions.

For less security-proficient companies he needs “to go into

full details, as well as sending a fully compiled, weaponized

exploit,” but for companies he has a better relationship with,

he just says “In this application in this class, you don’t handle

this right,” and they can identify and fix the issue quickly. This

avoids wasting his time creating a lengthy report or developers’

time reading it.

Hackers make up for lack of access with proofs-of-concept.
Because most hackers have minimal communication with

developers, they stressed the necessity of proving the existence

and importance of the vulnerability with a proof-of-concept
exploit to avoid spending significant amounts of time explaining

the problem. H3G explained that “including the proof-of-

concept takes more time to develop, but it saves a lot of

time and communication with the [developers], because you

show that you can do an arbitrary [code execution]. . . and that

this theoretical vulnerability cannot be mitigated.” While this

approach is straightforward, developing an exploit can be the

most time-consuming part of the process (H=2), and developers

may not accept a report even in the face of evidence (T=7, H=9)

or appropriately fix the code because they do not understand

the root of the problem (T=7, H=9). H15W gave an example

of a time when he was reviewing a bug report and found that

“they didn’t fix it properly. [It was] still exploitable in other

ways.” Testers overcome these challenges by spending time in

discussion with the developers to clear up misunderstandings,

but hackers typically do not have these necessary relationships

and access to developers.

D. Motivation

The final influencing factor on the discovery process is a

practitioner’s motivation for looking for vulnerabilities. Figure 5

illustrates how motivations affect the discovery process. Most of

our participants select which programs to search and what parts

of the code to look at based on a calculation of likelihood to

find vulnerabilities versus the value of the vulnerabilities found

(T=10, H=11). The four hackers who did not describe this

likelihood versus value calculation still consider likelihood as a

factor (T=10, H=15), but either are paid a fixed rate as part of

an internal security team or contracted review or are motivated

by some non-monetary benefit (see Section VI-D). Overall, our

hackers and testers estimate vulnerability likelihood similarly,

but differ significantly when determining value. Additionally,
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Fig. 5: Motivation category graph.

we found that all participants were motivated to report clearly,

no matter their likelihood vs. value calculation.

Estimating likelihood. Because most modern code bases are

very large, both populations expressed the need to triage which

program components to search based on the likelihood of

finding a vulnerability. Both populations described several

similar heuristics for this. First, practitioners focus on code

segments that they expect were not heavily tested previously

(T=5, H=11). H7W, for example, considers where developers

are “not paying attention to it [security] as much.”

Next, testers and hackers look at parts of the code where

multiple bugs were previously reported (T=3, H=9). As T2W

said, “There were issues with those areas anyway. . . so I figured

that that was probably where there was most likely to be

security issues. . . bugs cluster.”

Both populations mentioned situations when code is new

(e.g., rushed to release to fix a major feature issue) (T=5,

H=5), or when they do not think the developers understand the

underlying systems they are using (e.g., they noticed an odd

implementation of a standard feature) (T=1, H=3). Additionally,

some hackers also looked at old code (e.g., developed prior to

the company performing stringent security checks) (T=0, H=7)

and features that are rarely used (T=0, H=3).

Testers determine value by impact to company. As we

would expect, testers determine value by estimating the negative

effect to the company if exploited (T=8, H=3) or if the program

fails a mandated audit (e.g., HIPAA, FERPA) (T=4, H=0).

Because of this motivation, they tend to focus on features that

are most commonly used by their user base (T=2) and areas of

the code that handle sensitive data (e.g., passwords, financial

data) (T=8). T5W said he considers “usage of the site, [that

is] how many people are going to be on a certain page or

certain area of the site, [and] what’s on the page itself, [such

as] forms” to determine where a successful attack would have

the most impact.

Hackers maximize expected payout using several strategies.
Previous research has shown that hackers are more likely to

participate in a program whenever the bounties are higher [17],

and bounty prices increase with vulnerability severity [16]. We

also observed that hackers cite the size of the bounty payout

as their key motivator; however, we found that hackers follow

one of two strategies when deciding how to best maximize

their collective payouts.

The first strategy seeks out programs where the hacker has

a competitive advantage based on specialized knowledge or

experience that makes it unlikely that others will find other

similar vulnerabilities (H=9). Hackers following this strategy

participate in bug bounties even if they are unlikely to receive

immediate payouts, because they can gain experience that will

help them later find higher-payout vulnerabilities. H1H said

that he focuses on more complex problems even though “I had

no success for the first year, I knew that the barrier to entry

was so high, that once I got good enough, then it would work

out consistently that I could find bugs and get rewards. . . once

you get good at it there’s less competition.”

The other payout maximizing strategy we observed is to

primarily look for simple vulnerabilities in programs that have

only recently started a bug bounty program (H=8). In this

strategy, hackers race to find as many low-payout vulnerabilities

as possible as soon as a program is made public. Hackers

dedicate little time to each program to avoid the risk of report

collisions and switch to new projects quickly. H12W said that

he switches projects frequently, just looking for “low-hanging

fruit,” because “somebody else could get there before you,

while you are still hitting your head on the wall on this old

client.” This aligns with the phenomenon observed by Maillart

et al., where hackers switch quickly to new bug bounties

because they are more likely to have more vulnerabilities [12].

We found that hackers typically consider this approach when

searching for web vulnerabilities, which have a “lower barrier

to entry” than finding vulnerabilities in host software for which

“the process to become proficient is higher [harder]” (H1H).

Additionally, some hackers completely avoid any company

they have previously had poor relations with, either because

they do not think it is likely they will be compensated fairly

for their efforts or because the payment is not worth the

administrative struggle (T=0, H=6). H9G described submitting

a remote-code-execution vulnerability, but never receiving a

response, when it should have garnered a large bounty based

on the company’s published policy. He said that “When we

encounter that hostile behavior, that’s pretty much an instant

turn-off” from working with that company again.

Some participants also consider non-monetary value.
Specifically, participants cited motivations including altruism

(i.e., bounty paid to charity or improved security for the greater

good) (T=2, H=7), enjoyment (T=1, H=11), peer pressure (T=0,

H=1), and personal protection (i.e., fix security bugs in products

they use to avoid personal exploitation) (T=0, H=2). However,

these factors are commonly secondary to monetary value.

All practitioners are motivated to report well. Practitioners’
motivations also influence how they communicate with devel-

opers when reporting. Both populations expressed the need

to make developers aware of the importance of fixing these

bugs (T=10, H=12). Testers are only able to prevent harm

to the company if developers accept and adequately fix the

vulnerabilities they report. Hackers, motivated by a bug bounty

payout, receive their payment only when the company accepts

their report and are only paid at the level they expect if the
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developers agree with their assessment of severity. Participants

defined importance as a function of the business impact on

the company (T=8, H=3), how much control the vulnerability

gives the attacker (e.g., limited data leakage vs. arbitrary code

execution) (T=3, H=6), and how easily an attacker can exploit

the vulnerability (T=2, H=6). T10W said ,“You need to be

able to express not only what the problem is and where the

problem lies, but also how this could be used to do X amount of

damage.” Additionally, some hackers discussed spending time

after finding a vulnerability to understand the full implications

of the issue (T=0, H=4). H9G said “When I find an issue, I

don’t necessarily rush to the developer. . . I could probably chain

the vulnerability to other vulnerabilities to be more impactful

and more impressive. . . [and] I get paid more, which is certainly

a factor.”

Our practitioners also emphasized the need to make their

reports easy for developers to understand by considering the

technical and security background of their audience (T=7,

H=11). As T2W stated, when “there’s not enough experience

with security across the [development] team, I tend to give

them more information to make it easier.” Some practitioners

also use phrasing and wording that are easy to read (T=4, H=5).

T1W said he checks to see if “I missed anything grammar-

wise. . . does it have proper flow?” If he thinks it might be hard

to read, he “pull[s] another tester and say[s], ‘Hey, does this

make sense?’ ” In some cases, practitioners use a fixed format

(T=6, H=3) so that developers know where to look for specific

information based on previous reports or by looking at the

headings. Finally, many participants discussed maintaining an

open-minded, respectful tone when discussing the vulnerability

to avoid triggering a defensive response (T=8, H=5). T2W

stressed the importance of respectful tone, saying, “Probably the

biggest thing is keeping it factual and neutral. Some developers

take any [report] as an attack on their ability to code.”

VII. DISCUSSION AND RECOMMENDATIONS

Our key findings can be summarized as follows:

• The two factors most critical to vulnerability discover suc-

cess are vulnerability discovery experience and underlying

system knowledge.

• Both hackers and testers typically develop sufficient sys-

tem knowledge through their employment and interactions

with their community.

• Although hackers and testers develop vulnerability dis-

covery experience through similar means, hackers are

exposed to a wider variety of programs and vulnerabilities

through the different types of employments, exercises, and

communities they are involved in and the more diverse

bug reports they read. This provides hackers an important

advantage over testers.

• Access to the development process is a mixed blessing.

Access facilitates reporting for testers by building rapport

and shared language, but “outsider by design” status allows

hackers to recognize mistaken assumptions.

• Hackers attempting to maximize value typically pursue

one of two strategies: identify “low-hanging fruit” quickly

or develop a deep knowledge advantage.

With these findings in mind, we suggest recommendations for

organizations and individuals involved in software vulnerability

discovery and directions for future work.

A. Training in the workplace

Our results suggest that extending testers’ vulnerability

discovery experience will improve their efficacy at finding

vulnerabilities before release. We suggest two approaches for

use within testers’ existing work context; we also recommend

future work to explore how to expand that context.

Security champions. Many of our testers described learning

from more experienced testers (T=8). As a first change, we

recommend hiring a small number (one or two) hackers to

work alongside testers, highlighting potential vulnerabilities and

sharing security-testing techniques. Deliberately introducing

hackers to the team should cultivate learning opportunities.

T8H discussed the success of this approach in her organization,

saying, “I had two gentlemen. . . who were really into security

testing. . . . They eventually went on to create a whole new

security team. . . .Most of my security testing is all from

what I’ve learned from them.” T8H emphasized that this

effort, which began with two testers experienced in security

pointing out problems to their less experienced co-workers, led

within three years to development of a company-wide security

consciousness. Further, she said that external security reviews

of their product now find many fewer vulnerabilities than they

did prior to introducing security champions.

Bug-report-based exercises. Many of our testers spend time

discussing interesting bugs found by their peers in regular

training sessions (T=7). However, simply discussing a vulner-

ability does not allow the hands-on practice our participants

considered necessary. Instead, we suggest hands-on training

based on vulnerabilities previously found in the company’s

code, either via formal exercises or simply by asking testers

to search the pre-fix code and try to find the vulnerability (as

suggested by H1H in Section VI-A2. Such exercises will allow

testers not only to learn about different vulnerabilities, but also

to gain practical experience looking for them.

Future work to increase variety of experiences. The afore-

mentioned approaches, however, will still only expose testers

to a limited range of vulnerabilities within the program(s) on

which they work. Further research is required to determine

the best way to provide broader exposure to testers. Many

of our testers participate in internal hacking exercises (T=6),

but it was not clear why they do not participate in external

exercises. Prior research has found that these exercises typically

require a significant time commitment and prior knowledge,

which we hypothesize are not a good fit for testers [103], [104].

One possible solution is to create tailored CTFs with hints

that slowly introduce new concepts, as some CTFs currently

do [105]. This approach is referred to as “scaffolding” in
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education literature and provides students the necessary support

to allow learning and avoid despair [106].

Similarly, many testers cited internal bug reports as a learning

source (T=6), but they do not spend time reading external

reports like hackers do (T=1, H=13). One possible reason

could be that it is difficult to find vulnerability reports without

knowing the correct online resources to consult. Currently bug

reports are dispersed among corporate vulnerability disclosure

sites [81], [86], [107], personal GitHub repos [108], community

mailing lists [109], and public vulnerability databases [110],

[111]. Creating a single aggregated repository or searchable

source for bug reports and discovery tutorials, and pointing

testers to it, could expose testers to a wider range of informa-

tion.

Further work should evaluate these techniques and develop

others to encourage testers to expand the variety of their

vulnerability discovery experience.

B. Hacker-developer relationships

While improving testers’ vulnerability-finding skills could

meaningfully improve security, companies will likely still

need security experts to find the most complex problems.

Unfortunately, many of our hackers described difficulties

communicating with developers, resulting in their findings

either not being accepted or not being fixed properly (T=9).

To solve this challenge, we look to learn from the strengths of

our testers.

Establish consistent relationships early. We found that testers

have an advantage in the reporting phase because they have built

a relationship with developers through their inherent access to

the development process. Additionally, the two hackers who

mentioned cultivating a close relationship with a particular

company described similar benefits. We therefore recommend

companies make efforts to build relationships with hackers as

early as possible.

First, we recommend that organizations maintain a consistent

point of contact with hackers, so that any time a hacker reports

a vulnerability, they communicate with the same person and

build a shared language, understanding, and trust. Obviously,

a single point of contact is not always useful because a hacker

may only report one vulnerability. In these cases, it is important

for companies to be as open as possible when providing

requirements and expectations to the hacker. Some potential

improvements might be to provide more detailed templates and

examples of effective reporting, to give feedback or ratings

on (specific sections of) reports and how they did or didn’t

help developers, and answer hacker questions throughout the

process to avoid confusion.

Further, our results support industry-wide standardization of

vulnerability reporting procedures. This includes agreeing on

report templates, “good” reporting examples, and vulnerability

definitions. Standardizing expectations and vocabulary should

provide consistency across programs and reduce the burden to

build individual relationships with each company.

Hackers as security advocates. Additionally, further work

is needed to understand how hackers can best convey the

importance of a vulnerability, given limited communication

channels and time to influence developer decisions. Future

research should therefore focus on improving hacker reporting

through improved resources and training. For example, a

centralized repository of real-world cases where an attacker

has exploited a vulnerability that hackers can use as examples

could help with demonstrating a vulnerability’s importance.

Relatedly, Haney and Lutter suggest providing hackers with

formal training in how to best advocate for cybersecurity within

complex organizational and structural environments [100].

C. Tailor compensation to motivation

Assuming we can improve testers’ vulnerability discovery

skills so they can find a greater number of relatively simple

vulnerabilities, bug bounty policies should be adjusted to focus

hacker searches on more challenging vulnerabilities. Based on

our results, we suggest two possible bug bounty policy changes

below. Further research is necessary to evaluate the efficacy of

these changes in real-world settings.

Adjust payout structure as security posture matures. Ini-

tially, a company could offer high payouts for all vulnerabilities,

attracting hackers via a high likelihood-to-value ratio. This

higher participation will likely generate a large number of bug

reports that testers can learn from. As the company grows

more security-mature internally, it may be possible to reduce

payouts for low-level vulnerabilities and shift these funds to

pay for more complex vulnerabilities. Further, they may wish

to reward hacker specialization by offering bonuses for finding

multiple vulnerabilities.

Use non-monetary motivators. In addition to increasing

monetary funding, companies can also take advantage of non-

monetary motivators to increase the overall payout without com-

mitting additional dollars. Most bounties already take advantage

of recognition and fun through the use of leaderboards or “walls

of fame” as well as the innate enjoyment our participants report

deriving from finding a vulnerability. However, companies

should also consider the negative effects of their actions during

the reporting process, such as delaying or not publishing a

report due to company politics (T=0, H=2) or dismissing the

report without providing sufficient feedback (T=7, H=9). These

actions depress the recognition and enjoyment value for the

hacker. Companies can take advantage of hackers’ altruistic

tendencies by indicating the impact an exploited vulnerability

could have on the affected user base in the project’s description.

Finally, companies could attract hackers seeking personal

growth by highlighting skills that could be developed while

looking for vulnerabilities and offering online resources to

support learning.
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APPENDIX A

SURVEY QUESTIONNAIRE

Vulnerability-discovery experience.
1) On a scale from 1-5, how would you assess your

vulnerability discovery skill (1 being a beginner and 5

being an expert)?

2) Please select the range which most closely matches the

number of software vulnerabilities you have discovered.

(Choices: 0-3, 4-6, 7-10, 11-25, 26-50, 51-100, 101-50, >

500)

3) How many total years of experience do you have with

vulnerability discovery?

4) Please select the range that most closely matches the

number of hours you typically spend performing software

vulnerability discover tasks per week. (Choices: < 5, 5-10,

10-20, 20-30, 30-40, > 40)

5) Please specify the range that most closely matches the

number of hours you typically spend on non-vulnerability

discovery, technical tasks per week (e.g. software or

hardware programming, systems administration, network

analysis, etc.). (Choices: < 5, 5-10, 10-20, 20-30, 30-40,

> 40)

6) What percentage of the bugs you have discovered were

found in the following contexts?

a) Bug Bounty programs (i.e., sold specific bug to vendor)

b) General Software Testing

c) Penetration Testing

d) Vulnerability finding exercise (e.g., Capture-the-Flag

competition, security course)

e) Unrelated to a specific program (i.e., for fun or curios-

ity)

f) Other

7) What percentage of the bugs you have discovered were

in software of the following types?

a) Host (e.g., Server or PC)

b) Web Application
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c) Network Infrastructure

d) Mobile Application

e) API

f) iOT or Firmware

g) Other

8) What percentage of the bugs you have discovered were

of the following types?

a) Memory Corruption (e.g., buffer overflow)

b) Input Validation (e.g., XSS, SQL injection, format string

misuse)

c) Cryptographic Error (e.g., weak key use, bad random

number generator)

d) Configuration Error (e.g., unpatched network device)

e) Incorrect Calculation (e.g., integer overflow, off-by-one

error)

f) Protection Mechanism Error (e.g., incorrect access

control, improper certificate check)

g) Poor Security Practices (e.g., insecure data storage or

transmission)

Note: In the previous three questions, we did not provide

our own definitions for software type or program type and only

provided examples for vulnerability types. We selected terms

used by multiple popular bug bounty platforms (i.e., SynAck,

HackerOne, and BugCrowd) and allowed participants to select

options based on their own definitions. During the interview,

we included follow-up questions to understand their definitions

for the top ranked item in each category.

Technical skills.

1) On a scale from 1 to 5, how would you assess your

proficiency in each of the following technical skills (1

being a beginner or having no experience and 5 being an

expert)?

a) Networking

b) Database Management

c) Object-Oriented Programming (e.g., Java, C++)

d) Functional Programming (e.g., OCaml, Haskell)

e) Procedural Programming (e.g., C, Go)

f) Web Development

g) Mobile Development

h) Distributed/Parallel Computing

i) System Administration

j) Reverse Engineering

k) Cryptanalysis

l) Software Testing

m) Test Automation

n) Hardware/Firmware Development

o) Other

Demographics.

1) Please specify the gender with which you most closely

identify. (Choices: Male, Female, Other, Prefer not to

answer)

2) Please specify your age. (Choices: 18-29, 30-39, 40-49,

50-59, 60-69, > 70, Prefer not to answer)

3) Please specify your ethnicity (Choices: White, Hispanic or

Latino, Black or African American, American Indian or

Alaska Native, Asian, Native Hawaiian, or Pacific Islander,

Other)

4) Please specify which country/state/province you live in.

5) Please specify the highest degree or level of school you

have completed (Choices: Some high school credit, no

diploma or equivalent; High school graduate, diploma or

the equivalent; Some college credit, no degree; Trade/tech-

nical/vocational training; Associate degree; Bachelor’s

degree; Master’s degree; Professional degree; Doctorate

degree)

6) If you are currently a student or have completed a college

degree, please specify your field(s) of study (e.g., Biology,

Computer Science, etc).

7) Please select the response option that best describes

you current employment status. (Choices: Working for

payment or profit, Unemployed, Looking after home/fam-

ily, Student, Retired, Unable to work due to permanent

sickness or disability, Other)

8) If you are working for payment, please specify your

current job title.

9) If you are currently working for payment, please specify

the business sector which best describes you job (Choices:

Technology, Government or government contracting,

Healthcare and social assistance, Retail, Construction, Edu-

cational services, Finance, Arts/Entertainment/Recreation,

Other)

10) Please specify the range which most closely matches

your total, pre-tax, household income in 2016. (Choices:

< $29,999, $30,000-$49,999, $50,000-$74,999, $75,000-

$99,999, $100,000-$124,999, $125,000-$149,999,

$150,000-$199,999, > $200,000)

11) Please specify the range which most closely matches

your total, pre-tax, household income specifically

from vulnerability discovery and software testing in

2016. (Choices: < $999, $1,000-$4,999, $5,000-$14,999,

$15,000-$29,999, $30,000-$49,999, $50,000-$74,999,

$75,000-$99,999, $100,000-$124,999, $125,000-$145,999,

$150,000-$199,999, > $200,000)

APPENDIX B

INTERVIEW QUESTIONS

A. General experience

1) What was the motivation/thought process behind perform-

ing vulnerability discovery in the different contexts you

listed in the survey?

2) If most of the bugs are in a particular software or bug

type:

a) Why do you focus on a specific area? Why this area?

b) Have you ever developed software in this area?

c) Have you worked outside of this area of expertise in

the past? What was the reason for the change?

3) If the types of bugs are generally split across software or

bug type:
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a) What do you see as the importance of staying general?

b) Are there any unique trends you’ve noticed that encour-

age you to stay general with your skills?

B. Task analysis

Program selection.
1) In general, how do you decide which software [for testers:

part of the program] to investigate for vulnerabilities and

which not? What factors do you consider when making

this decision?

2) Which of these factors do you consider to be the most

important? Why?

3) Are there any factors that you consider non-starters (i.e.

reason not to try looking for bugs)?

4) Is there a specific process you use when determining

where to look for vulnerabilities and which of these

characteristics different software exhibit?

a) Why did you choose this particular process?

b) How did you develop/learn this process?

c) Are there any tools that you use that assist you in this

process?

i) What were the benefits of these tools? Weaknesses?

ii) Have you ever used anything else for this purpose?

What led you to switch?

Vulnerability-discovery process.
1) Once you’ve selected a software target, what steps do you

take when looking for vulnerabilities?

a) For each step:

i) What are your goals for this step? What information

are you trying to collect?

ii) What actions do you take to complete this step?

Have you every tried anything else? What are the

advantages/disadvantages of this set of actions?

iii) Are there any tools that you use to complete

this step? What were the benefits of these tools?

Weaknesses?

iv) What skills do you use to complete this task? Why

do you think these skills are important? How did

you develop/learn these skills?

v) How do you know when you have successfully

completed this step?

vi) How do you decide when to take this step? Is

it something you repeat multiple times? Do you

always do this step?

vii) How did you learn to take this step? Why did you

find this source of information helpful?

2) Is there anything else you haven’t mentioned that you’ve

done to try to find vulnerabilities and stopped? What are

the main differences between your current process and

what you did in the past? What led you to switch?

Reporting.
1) What kinds of information do you include in the report?

Do you always report the same information? What factors

do you consider when deciding which information to

include in the report?

2) What information do you think is the most important in

vulnerability reports?

3) Have you ever included/excluded anything that you didn’t

feel was important, but just included/excluded because

you felt it was traditional/expected?

4) What bug report information is the most difficult/time

consuming to get?

5) Do you ever look at anyone else’s bug reports to learn

from them? Why do you think these are helpful?

6) Do you use any special tool for reporting? What were the

benefits of these tools? Weaknesses?

7) Do the organizations you submit to reach out to you with

questions about the bugs? If so, what do they ask about?

8) Can you give me an example of a bad/good experience

you’ve had with reporting? In your opinion, what factors

are the most important for a good reporting experience?

C. Skill development

Learning.
1) Imagine you were asked for advice by an enthusiastic

young person interested in learning about vulnerability

discovery. How would you recommend they get started?

What steps would you suggest they take?

Community participation.
1) Do you have regular communication with other hackers

or software testers?

2) How do you typically communicate with others?

3) How important is each community you participate in to

your/others development?

4) What community that you belong to do you find most

useful? Why?

5) What information do you typically share?

6) How often do you communicate (specifically regarding

technical information)?

7) How close are the relationships you have with others?

How many other hackers/testers do you communicate

with?
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