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Abstract—The aviation industry’s increasing reliance on GPS
to facilitate navigation and air traffic monitoring opens new
attack vectors with the purpose of hijacking UAVs or interfering
with air safety. We propose Crowd-GPS-Sec to detect and
localize GPS spoofing attacks on moving airborne targets such
as UAVs or commercial airliners. Unlike previous attempts to
secure GPS, Crowd-GPS-Sec neither requires any updates of
the GPS infrastructure nor of the airborne GPS receivers,
which are both unlikely to happen in the near future. In
contrast, Crowd-GPS-Sec leverages crowdsourcing to monitor
the air traffic from GPS-derived position advertisements that
aircraft periodically broadcast for air traffic control purposes.
Spoofing attacks are detected and localized by an independent
infrastructure on the ground which continuously analyzes the
contents and the times of arrival of these advertisements. We
evaluate our system with real-world data from a crowdsourced
air traffic monitoring sensor network and by simulations. We
show that Crowd-GPS-Sec is able to globally detect GPS spoofing
attacks in less than two seconds and to localize the attacker up to
an accuracy of 150 meters after 15 minutes of monitoring time.

I. INTRODUCTION

Today, more than a billion devices rely on the Global

Positioning System (GPS) for various applications that re-

quire accurate positioning or precise time synchronization.

With its ubiquitous coverage, GPS has become the de facto
standard means of navigation and tracking services in outdoor

environments, where it achieves an accuracy of up to three

meters [1]. For navigation purposes, satellite systems such

as GPS are mission-critical for Unmanned Aerial Vehicles

(UAVs), ranging from consumer-class mini or micro drones

to tactical and strategic UAVs.

Although GPS is commonly used in aviation, the system

is not secure, i. e., civilian (public) GPS signals sent by

the satellites are neither authenticated nor encrypted. As a

consequence, aircraft and UAVs are vulnerable to GPS signal

spoofing attacks, where a malicious transmitter emits signals

similar to those from the satellites but at a higher power and,

potentially, at slightly different time delays. The aircraft’s GPS

receiver will lock on to the spoofed signal as it arrives with a

higher signal strength than the authentic signals.

By selectively varying the time offsets of the spoofed

satellite signals, attackers are able to mimic arbitrary positions.

These kinds of spoofing attacks are well-known [2]–[7] and

have been shown to be feasible in the real-world [5], [8]. In

fact, GPS spoofing has allegedly been used to hijack a CIA

stealth drone (RQ-170) in Iran in 2011 [9] or luring ships

off their course [4], [10]. Moreover, GPS spoofing has been

used as a defense against GPS-controlled UAVs flying in the

vicinity of the Kremlin in Russia [11].

Over the years, the price to perform GPS spoofing attacks

has dramatically dropped. Mobile commercial off-the-shelf

GPS spoofing devices are available for less than $1,000 [4]

and publicly available software tools [12] allow the generation

of arbitrary GPS signals. The price fall and low-expertise

requirements raise the risk for applications relying on GPS

for safety- or security-critical decisions and processes.

The democratization of GPS spoofing technologies has trig-

gered the development of various countermeasures, which can

be coarsely categorized into three classes: (i) cryptographic

techniques, (ii) detection at signal level, and (iii) direction

of arrival sensing. Cryptographic techniques [13]–[16] aim at

authenticating signals from satellites with additional signals

that are unpredictable to users that do not own a secret

key. However, these techniques are not resistant to replay

attacks and would require a costly upgrade of the GPS infras-

tructure. Spoofing detection at signal level are based either

on anomaly checks in the physical signal waveform [17]–

[19] or on measuring the angle of arrival from which the

signal is originating [20], [21]. While these techniques do

not require a change in the structure of GPS signals, they

impose modifications on existing receivers and increase the

complexity and computational requirements of those devices.

We conclude that existing countermeasures are unlikely to

be implemented in the near future since they all require far-

reaching modifications of either the GPS infrastructure or the

receiving devices.

Driven by the increasing threat and the lack of realistic

short-term solutions, we propose Crowd-GPS-Sec, a system

that detects and localizes GPS spoofing attacks on aerial

vehicles without the need to update the structure of the

GPS satellites’ signals nor the logic of the airborne GPS re-

ceivers. Crowd-GPS-Sec leverages crowdsourcing to monitor

the position advertisements derived from GPS that aircraft and

UAVs periodically broadcast for air traffic surveillance. Using
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those advertisements, we devise a GPS spoofing detection and

localization solution that analyzes the contents and the time of

arrival of these surveillance messages as received by different

sensors on the ground.

We have evaluated Crowd-GPS-Sec with simulations and

real-world data from the OpenSky Network [22], a crowd-

sourcing initiative which maintains a network of more than

700 air traffic communication sensors around the world. Our

implementation of Crowd-GPS-Sec is able to globally detect

GPS spoofing attacks in less than two seconds and to localize

the attacker up to an accuracy of 150 meters after 15 minutes

of monitoring time.

While the problem addressed in this work is related to

spoofing detection and localization in classical direction find-

ing [20], [21] and multilateration systems [23], there is one

fundamental difference and unique advantage. Instead of try-

ing to detect and localize the GPS spoofer through direct

measurements of its own signals, we rely on indirect mea-

surements from the position advertisements that the aircraft

are broadcasting. This approach enables us to detect and

localize the spoofer even when there is no direct line-of-

sight connection from a sensor to the spoofer. Maintaining

a line-of-sight connection to the aircraft is much simpler

and thus more effective since the aircraft are in the sky and

use high transmission power levels which render the signals

receivable from the ground up to several hundred kilometers

away. Another major advantage is that Crowd-GPS-Sec relies

on data from air traffic monitoring sensors that are already

widely deployed around the world. Thus, the solution does

not require a dedicated GPS signal acquisition infrastructure

for spoofing detection and localization. To the best of our

knowledge, this paper is the first to propose a GPS spoofing

countermeasure which takes advantage of considering indirect

GPS-inferred data rather than raw GPS signals.

In summary, this paper makes the following contributions:

• We propose Crowd-GPS-Sec and elaborate on the idea to

provide security via an existing infrastructure of crowd-

sourcing sensors.

• We present algorithms for the detection of GPS spoofing

attacks on airborne targets by using aircraft reports and

multilateration.

• We provide a novel technique for the localization of GPS

spoofers based on position differences between pairs of

spoofed aircraft.

• We report on experiments with aircraft transponders and

assess the performance of Crowd-GPS-Sec analyzing

real-world air traffic control data.

II. THE GLOBAL POSITIONING SYSTEM

The GPS infrastructure is a satellite-based navigation net-

work of over 30 satellites located in the medium Earth orbit,

more than 20,000 km above the Earth’s surface. GPS-capable

receivers can determine their position and time by measuring

the time of arrival (ToA) from at least four satellites. Based

on the ToA and the transmission time embedded in the

signals, receivers can calculate distances to each satellite.

RADAR ADS-B/Flarm

GPS
Satellite-to-Aircraft

Aircraft-to-Ground

Fig. 1. Schematic overview of currently deployed technologies used to
monitor air traffic including GPS, RADAR, and ADS-B/Flarm.

Multilateration of those distances yields the position and the

local time of the receiver.

The ToA measurements are affected by a range of errors

resulting in a typical localization uncertainty of σ = 4m
(mean error of about 7m) [24]–[27]. While civilian (public)

GPS signals can be decoded by everyone, including airplanes,

drones, and other UAVs, military GPS signals are protected

by (at least) secret spreading codes restricting their users

to a selected group with additional knowledge. We focus

on civilian GPS with non-authenticated signals, which is the

standard in commercial and general aviation.

A. GPS Usage in Aviation

While in the past, radar and inertial systems used to be the

two main localization technologies in aviation, GPS is today

often the preferred solution due to its superior accuracy. Mod-

ern airliners, smaller aircraft, gliders, helicopters, or UAVs

are almost all equipped with GPS receivers. GPS is typically

used by pilots or UAVs for self-localization but the technology

is also used for remote air-traffic surveillance and collision-

avoidance applications. In the latter cases, aerial vehicles are

required to periodically broadcast position and velocity adver-

tisements to inform neighboring aircraft and ground controllers

about their presence. Larger aerial vehicles generally transmit

those messages over the Automatic Dependent Surveillance –

Broadcast (ADS-B) system while smaller and slower vehicles

rely on the Flarm [28] system. Irrespective of the used system,

these advertisements contain a position that is directly derived

from airborne GPS receivers as depicted in Figure 1.

In this work, we propose to leverage the position advertise-

ment messages of ADS-B and Flarm in order to detect and lo-

calize GPS spoofers. While ADS-B and Flarm rely on different

radio frequencies and message formats, the underlying concept

is the same. On regular random intervals (around twice per

second), aircraft broadcast their current position together with

their unique addresses. Neighboring aerial vehicles and ground

stations receive these messages to generate a recognized air

picture. The advertisement messages can be received over long

distances. In ADS-B, messages can be received up to distances
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of 700 km when there is a direct line-of-sight connection

between the transmitter and the receiver. In Flarm, the range

is smaller but reception ranges of up to 100 km are possible.

B. GPS Spoofing Attacks

GPS spoofing attacks exploit the lack of encryption and

authentication of civilian GPS signals by imitating the legit-

imate signals with the purpose of modifying the localization

or time result of a victim [3], [7], [25]. Technically, spoofing

attacks are based on fake GPS signals manipulating the ToAs

of signals that otherwise use the same payload as real signals.

In the past, incidents were reported [4], [9]–[11] where

spoofers successfully interfered with the integrity of GPS-

dependent systems, thus rendering the spoofing threat far

from being only of theoretical nature. As a result, currently

marketed drones, aircraft, helicopters, or any kind of vehicles

that rely on GPS are prone to spoofing attacks and lack

effective countermeasures.

Based on common assumptions on attacker capabilities and

recent incidents, we assess the resulting threat model in this

section. First, we clarify our considered adversary model. Sec-

ond, we reason about key assumptions that Crowd-GPS-Sec
is based on to detect and localize spoofing attacks.

1) Threat Model: The attacker’s motivation to interfere

with the air safety by injecting false positioning information

into UAVs or aircraft can be manifold. An attacker may

consider hijacking the targeted victim for an own benefit of

acquiring goods or circumventing flying bans. Even more

severe, an attacker may participate in terrorist attacks by

manipulating the air-traffic control or the collision-avoidance

systems, e. g., by spoofing fake position information to fool

the safety logic of these systems.

In our adversary model, the attacker is able to transmit

specially crafted signals identical to those broadcasted by

GPS satellites but can achieve a higher power at the target
location. The attacker aims at spoofing a moving aircraft or

a UAV from a position on the ground. In order to conduct a

stealthy and unnoticed attack, the spoofer may use a directional

antenna1 directed towards the victim in the sky. However, due

to the target’s movement, the attacker needs to transmit signals

from a considerable distance, hundreds of meters to kilometers

away. We note that typical operating altitudes of UAVs range

from 60m to 20,000m and their mission radii vary from 5 km
to 200 km and beyond [30]. Hence, if the route taken by the

victim is not predictable, the attacker will be forced to use

antennas with wide-beam propagation patterns. This forces the

attacker to transmit signals of such a strength and propagation

that the spoofing signals most likely will not only be received

at a particular primary target location but also over a wider

area, affecting other aircraft and UAVs in the neighborhood.

Since the spoofer is targeting moving vehicles, we further

assume that the spoofer is emulating a moving track such as

a straight line or a curve with some potential acceleration.

1We focus on the common assumption that the attacker uses a single antenna
for transmitting the spoofing signals, but the proposed technique could also
be extended to multi-antenna attackers representing an emerging threat [29].

(a) PowerFLARM Core (b) PowerFLARM Portable

Fig. 2. Two newest-generation Flarm transponder models. Both transponders
have an integrated GPS receiver but do not provide any protection to GPS
spoofing and advertise false positions when spoofed.

2) Validation of Assumptions: Crowd-GPS-Sec relies on

two key assumptions which we validate in this section. The

first assumption is that whenever a GPS receiver locks on

to the spoofed signals, the position advertisements of the

aircraft and UAVs will contain the spoofed GPS positions.

While commercial GPS receivers are known to be vulnera-

ble to spoofing attacks [2]–[5], [8], [10], [31]–[33], aviation

transponders could have additional plausibility checks to pre-

vent that spoofed GPS positions propagate to the broadcasted

position advertisements. The second assumption is that the

spoofed signals will not only affect the target victim of the

spoofer but also neighboring aircraft and UAVs. We validate

these two assumptions with controlled lab experiments and

simulations with real-world air traffic data from the OpenSky

Network.

GPS Spoofing Experiments. We perform GPS spoofing

experiments with two Flarm transponders that are widely

deployed. As we could not get formal approval from our

national office of communications to perform GPS spoofing

experiments in the wild with real aircraft, we rely on an

isolated experimental setup inside a shielded lab environment.

The goal of these experiments is to demonstrate that existing

transponders do not perform any checks on the derived GPS

position and that spoofers can precisely control the position

and speed of victim receivers.

Our experimental setup consists of two new-generation

Flarm transponder models from Flarm Technology: a Pow-
erFLARM Core and a PowerFLARM Portable both with an

integrated GPS receiver from u-blox, see Figure 2. More than

30,000 manned aircraft, helicopters, and UAVs over the world

are equipped today with these transponders [28]. As GPS

spoofer, we rely on a USRP B200 from Ettus Research and

the software-defined GPS signal simulator gps-sdr-sim [12].

To monitor the reported Flarm position advertisements by

the transponders, we use a Raspberry Pi with an RTL-SDR

software-defined radio dongle and the flare open-source Flarm

decoder [34]. All devices are equipped with omnidirectional

antennas.
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Fig. 3. Cumulative distribution function (CDF) of deviation between spoofed
and reported position messages of the PowerFLARM Core transponder.

We put all devices in vicinity of each other and spoof

tracks with speeds of 0, 6, 30, 100, 300, and 1,000 km/h,

respectively. The difference between the fake target positions

emitted by the spoofer and the reported positions in the Flarm

advertisements is plotted in Figure 3. While the deviation

becomes larger with increasing speed, our experiments confirm

that an attacker can exactly control the derived position and

speed at the Flarm devices. Even for speeds up to 1,000 km/h,

the deviation of both spoofed devices is always smaller

than 160m, and thus significantly smaller than the mandated

separation minima in aviation [35]. These experiments also

confirm that such commercial transponders as deployed in

aerial vehicles do not perform plausibility checks on the

GPS signal input and simply report the spoofed GPS data

in the advertisement messages. This result is inline with air

traffic communications not being protected against wireless

attacks [36].

GPS Spoofing Coverage Estimation. To validate the as-

sumption that a GPS spoofer will affect the GPS receivers

of multiple aerial vehicles at the same time, we evaluate the

reception range of a spoofer using the free-space path loss

model and a typical airspace density model as observed by

the OpenSky Network in the European airspace.

Since the power of GPS signals at the Earth’s surface is

very low (approx. −160 dBW), the necessary power to create

adequate spoofing signals is accordingly low. We assume an

attacker with standard equipment, who can reasonably achieve

a generated signal power of 15 dBm (USRP2 [37]) coupled

with an exemplary antenna gain of 12 dBi in the main lobe.

We also consider an additional signal attenuation at aircraft of

approx. 30 dB due to the fuselage and the downward direction.

Based on these estimations, we can calculate the reception

range with regard to the free-space path loss [38]:

Lfs = 32.45 + 20 log10(dkm) + 20 log10(fMHz), (1)

where dkm is the distance between the source of the signal and

the receiver in kilometers and fMHz is the signal frequency

given in megahertz; the constant of 32.45 depends on the
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Fig. 4. The number of affected aircraft depends on the directional antenna
beamwidth and the inclination angle. The figure uses a realistic airspace
density sampled from OpenSky Network data.

utilized units. The resulting reception range is based on the

signal power impaired by all attenuation sources and the

distance d from Equation (1):

Power− Lfs(d)−Attenuation ≥ −160 [dBW],

which results in a distance d of approx. 34 km. Considering

our parameter estimations, all aircraft within the main lobe

closer than 34 km will receive the spoofing signal with at

least −160 dBW.

In general, an attacker will be interested to exceed these

power levels to ensure the takeover of the GPS lock at the

intended targets. However, to remain as stealthy as possible,

the attacker is likely to use an attack setup with directional

antennas to avoid a wide signal broadcast detectable by, e. g.,

ground-based signal power sensors. A directional antenna

setup is characterized by its beamwidth influencing the signal

spread and the inclination angle determining how the main

lobe of the signal beam is targeted. Notably, an attack on

moving targets requires to increase the beamwidth and to use

higher inclination angles, resulting in a certain proliferation of

the affected area.

Based on data from the OpenSky Network of the European

airspace, we perform a conservative estimate of the average

number of aircraft affected by a spoofing attack targeting

a randomly selected aircraft, as shown in Figure 4. The

baseline (0◦ beamwidth) is an attacker that can perfectly

pinpoint a victim, thus avoiding secondary targets. Such a

small beamwidth is however impossible to achieve in practice

and would further be very sensitive to small orientation errors

of the antenna. As we can see, already small beamwidths

and inclination angles span enough space to affect several

aircraft around the intended target, making it highly likely to

hit several additional aircraft. The assumption that our work

relies on is therefore realistic for dense airspaces such as found

in Europe.
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Fig. 5. Worldwide coverage of Crowd-GPS-Sec as of December 2017.

III. CROWD-GPS-SEC

We propose Crowd-GPS-Sec as an independent system

infrastructure on the ground that continuously analyzes the

contents and the time of arrival of Flarm and ADS-B position

advertisements. As its name suggests, Crowd-GPS-Sec relies

on crowdsourcing to monitor those messages at global scale.

The sensors used for Crowd-GPS-Sec are part of the growing

OpenSky Network [39], a crowdsourcing initiative with the

purpose to make air traffic communication data available to

the public.

The vast majority of the sensors are installed and operated

by aviation enthusiasts and volunteers which support the

cause of the network. As of this writing, it collects more

than 200,000 messages per second at peak times from over

700 sensors which are distributed all over the world2 as shown

in Figure 5. Europe and the American continent exhibit a

particular high density of sensors such that individual position

advertisement messages are most likely being received by

more than four sensors.

The goals of Crowd-GPS-Sec are to detect GPS spoof-

ing attacks on aerial vehicles as quickly as possible and

to localize the position of the spoofer(s). To achieve these

goals, Crowd-GPS-Sec has three modules which continuously

process all position advertisements that are received from the

OpenSky Network, as shown in Figure 6. The multilatera-
tion (MLAT) module estimates the location of the aircraft

based on the time difference of arrival (TDoA) of position

advertisements between different sensors. This module is

fundamental to Crowd-GPS-Sec as it allows us to determine

the true position of the aircraft independently of the content

of the advertised messages. The spoofing detection module

checks for inconsistencies between multilaterated positions

and GPS-derived positions in the advertisement messages as

well as for inconsistencies between position advertisements

from different aircraft (e. g., when two aircraft advertise the

same position at the same time). The spoofer localization
module, finally, is triggered only when the spoofing detection

module has detected a GPS spoofer. It then estimates the

position of the spoofer by analyzing time differences between

2See https://opensky-network.org/network/facts for more statistics.

GPS Spoofer
ADS-B/Flarm Sensors 

OpenSky Network Crowd-GPS-Sec

Aircraft

Spoofing Detection

Spoofer Localization

MLAT

Spoofer
Position

Spoofing
Incident

Fig. 6. Crowd-GPS-Sec system overview. A GPS spoofer transmits fake
GPS signals that are received by multiple aircraft periodically broadcasting
ADS-B/Flarm position reports. Ground-based sensors record these reports,
which are then processed by Crowd-GPS-Sec for spoofing detection and
spoofer localization.

received positions in advertisements from the aircraft and the

true position as estimated by MLAT. We describe the modules

in the next three subsections.

A. Multilateration (MLAT)

The implementation of MLAT as an independent aircraft

localization will serve as an auxiliary component for one of

the spoofing detection tests and the subsequent spoofer local-

ization. To implement such a system, we make use of the fact

that in regions with high sensor density position advertisement

messages are received by multiple geographically distributed

sensors. Each message is timestamped at the receiver on arrival

and can be represented as a simplified tuple of the reported

position and the time of arrival:

ADS-B/Flarm Report := (âi, ts), (2)

where âi denotes the reported position of aircraft i as derived

by GPS and ts is the timestamp as generated by sensor s.

Since the sensors are geographically distributed, propaga-

tion distances of the transmitted signals differ. Hence, the same

broadcasted message is timestamped differently at diverse sen-

sors. If the sensors are synchronized to the same global clock,

e. g., by GPS time synchronization, and are deployed at known

positions, we can formulate relations between the propagation

distances and the differences in the time of arrival (TDoA):

dist(si,A)− dist(sj ,A) = Δti,j · c, (3)

where si, sj denotes the position of sensor i and sensor j. The

TDoA of the same message from reference aircraft A between

these sensors is Δti,j = ti − tj , and c is the speed of light.

Equation (3) is fulfilled for all points that have the same

distance difference to both considered sensors determined by

the TDoA. By construction of at least four relations of this

type, we perform multilateration to approximate the position

of the targeted aircraft. Geometrically, each relation describes

a hyperbola in 2D and a hyperboloid in 3D. The intersecting

point of all relations indicates the aircraft position. Figure 7

provides a visual interpretation of this multilateration process.
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Fig. 7. Implementation of an independent aircraft localization scheme
based on multilateration considering the TDoA of broadcasted ADS-B/Flarm
messages.

B. GPS Spoofing Detection

Spoofing detection is the first step in a mitigation strategy

to counter GPS spoofing attacks. The idea of Crowd-GPS-Sec
to detect GPS spoofing attacks is based on the broadcasted

ADS-B/Flarm reports containing potentially spoofed position-

ing information. We propose a verification process consisting

of two complementary checks.

1) Time Alignment of Transmissions: Since ADS-B/Flarm

messages are broadcasted at variable transmission times, we

need to time-align those reports in order to make them

comparable. This is achieved by incorporating the results from

the MLAT computation. To align the position reports to a

reference global time, two steps are performed subsequently.

The first step yields the transmission time tTX at which the

GPS-derived position was reported:

tTX = ts −
dist(s, a)

c
, (4)

with ts being the time at which sensor s has timestamped

the message, dist(s, a) representing the Euclidean distance

between the considered sensor and aircraft, and c being the

speed of light.

The second step is an interpolation to approximate the

aircraft position aREF at a global reference time tREF. We

need to consider the following three cases:

aREF =

⎧⎪⎨
⎪⎩

aTX·(tTX+1−tREF)+aTX+1·(tREF−tTX)
tTX+1−tTX

tTX < tREF

aTX tTX = tREF
aTX·(tREF−tTX−1)+aTX−1·(tTX−tREF)

tTX−tTX−1
tTX > tREF

with aTX = â denoting the aircraft position at transmission

time, TX−1, TX, and TX+1 being the previous, current, and

next transmission event, respectively. After this interpolation,

all reported positions are time-aligned and can be compared

with respect to the same time basis. In the remainder of this

paper, we assume time-aligned positions.

2) Test 1 (Cross-Checks with MLAT): We propose the

implementation of two complementary tests. The first test

performs a cross-check between the reported positions and the

estimated real positions from the previously described MLAT

approach. We check for each incoming position report whether

dist(ai, âi)
?
< T1 (5)

holds, where ai is the real position of aircraft i determined

by MLAT, âi is the position reported by aircraft i using

ADS-B/Flarm, dist() is the Euclidean distance function, and

T1 denotes a predefined threshold which tolerates measure-

ment errors in ai and âi. Choosing the right threshold T1
depends on the accuracy of the underlying secondary local-

ization method (here MLAT). Smaller T1 lead to higher false

positive rates, while larger T1 create more room for undetected

manipulations.

Complexity. Let n be the number of aircraft. Equation (5)

needs to be checked once for each aircraft, i. e., n times,

resulting in a complexity of O(n). For each sampling time,

we require the positioning information from ADS-B/Flarm and

MLAT. The comparisons of both positioning sources can be

parallelized, since the checks for each aircraft are independent

of all other aircraft. As a result, the first test of GPS spoofing

detection scales linearly with the number of simultaneously

tracked aircraft.
3) Test 2 (Multiple Aircraft Comparison): The second test

makes use of the information provided by other aircraft.

In particular, we perform a comparison between reported

positions of multiple aircraft. When multiple aircraft receive

the signals from the same spoofer device, they will appear

at the same location [7] since the time differences between

individual satellites are emulated on the radio of the spoofer

prior transmission. Due to mandatory separation minima [35],

i. e., minimum required distances between en-route aircraft,

similar positions are critical and are caused either by a

serious incident, e. g., near-collision, or a GPS spoofing attack.

Eventually, the multiple aircraft comparison test is defined as:

dist(âi, âj) = di,j
?
> T2, (6)

where i and j denote two different aircraft, âi and âj are the

GPS-derived positions of aircraft i and aircraft j, dist() is the

Euclidean distance function, and T2 is a threshold tolerating

the GPS positioning noise. Choosing an appropriate T2 de-

pends on the mandated separation minima in the considered

airspace and the accuracy of the GPS information provided via

position reports. However, as accuracy is one of the design

goals of ADS-B and Flarm and the separation minima are

usually in the order of kilometers, a threshold as small as a

few hundreds of meters is appropriate.

Complexity. Let n be the number of aircraft. Since Equa-

tion (6) considers pairs of aircraft, a naive implementation

would require
(
n
2

)
= n2−n

2 comparisons resulting in a com-

plexity of O(n2). However, since Test 2 considers spatial

data only, the complexity can be reduced by implementing

nearest neighbor searches based on k-d trees and cover trees.
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TABLE I
SPOOFING DETECTION TESTS COMPARISON

Feature Test 1 Test 2

Equation dist(ai, âi)
?
< T1 dist(âi, âj)

?
> T2

Complexity O(n) O(n · logn)
Requirement MLAT positioning Multiple aircraft

Advantages
Single spoofed Independent of MLAT

aircraft detection Separation of attacks

In fact, since Test 2 fails if there is any neighbor closer

than T2, solving the 1-nearest-neighbor problem for each

aircraft is sufficient. Using the aforementioned data structures,

this can be accomplished at a complexity of O(log n) for each

aircraft [40], resulting in a global complexity of O(n · log n).
4) Complementary Design: We propose a complementary

design consisting of both tests in parallel. Table I contains

a comparison of the spoofing detection tests. While the first

test based on the cross-check of Equation (5) is independent

of other flights, the second test based on the comparison of

multiple aircraft of Equation (6) is independent of the MLAT

positioning and can thus tolerate bad MLAT performance

(e. g., when sensors have a bad geometric distribution leading

to high dilution of precision). Furthermore, the second test is

able to separate multiple spoofing attacks occurring at the same

time as there will be independent sets of coinciding aircraft.

The combination of both tests can overcome the pitfalls of the

other and we can achieve a more versatile and robust spoofing

detection.

C. GPS Spoofer Localization

After spoofing detection, Crowd-GPS-Sec aims at localizing

spoofer devices. This is the next step in tracing an attacker in

order to take appropriate action for shutting down an attack.

We present a novel localization approach to remotely pinpoint

such devices using already available ADS-B/Flarm reports

broadcasted by aircraft. We start by describing the high-level

idea and then detail on the functionality of the crowdsourced

localization system.

1) Localization Model: If a malicious device emits GPS

spoofing signals, aircraft within the effective range will broad-

cast spoofed positions as contained in their ADS-B/Flarm

reports. All aircraft that receive the same fake GPS signals

will report positions on the same track but timely shifted as a

result of the propagation delay from different distances to the

spoofing source [7]. In particular, at the same global time, the

aircraft have different synchronizations on the spoofing signals

based on how long it takes the signals to arrive at the aircraft’s

GPS receiver, i. e., aircraft that receive the fake signals earlier

are ahead on the spoofed track, whereas aircraft that are further

away from the spoofer receive the signals at a later point

in time and are thus behind on the track. We extract the

resulting position differences from the ADS-B/Flarm reports

and backtrace these deviations to the location of the spoofing

device.

���� ��, SP

���� ��, SP − ���� �	, SP = ��,	 ∗
�

������

���� ��, SP
���� �, SP

GPS Spoofer

Aircraft 1

Aircraft 2

Aircraft 3

Fig. 8. Each relation forms a hyperboloid representing all points with the
same distance differences. For the shown 2D projection, we can construct
three distinct relations considering three different aircraft.

Our starting point is the identification of the currently

spoofed aircraft, which is the outcome of the GPS spoofing

detection module. For those identified aircraft, we forward

related information to the spoofer localization module. We

further require the actual aircraft positions ai, aj from MLAT

and the mutual distances di,j with i, j ∈ {spoofed aircraft}.
As next step, we put the aircraft distance into relation with

the propagation distances and the rate of position change, i. e.,

the spoofed track velocity. We can formulate this as follows:

dist(ai, SP)− dist(aj , SP) = di,j ·
c

vtrack
, (7)

where ai, aj indicate the actual position of aircraft i, j as given

by MLAT, SP is the unknown spoofer location, di,j the respec-

tive aircraft distance, and vtrack the velocity of the spoofed

GPS track. The factor c
vtrack

relates the position change rate to

the signal propagation speed (close to the speed of light). We

note that we need to assure vtrack �= 0 and hence require a track

of changing positions. Having related the reported positions

to the spoofer location, we solve each equation towards this

location. In particular, each equation describes all points that

have the same mutual distance differences.

Geometric Interpretation. Considering the solutions of one

relation of the type given by Equation (7), all potential solu-

tions geometrically describe a hyperbola in 2D and a hyper-

boloid in 3D with foci ai, aj and distance difference di,j · c
vtrack

.

With two different relations, the possible solutions describe

a curve, which is the intersection between the hyperboloids.

Eventually, three hyperboloids intersect in at most two points,

whereas four or more hyperboloids narrow down the location

of the spoofer to a single point. The general functionality of

this approach is depicted in Figure 8 (2D projection).

Requirements. In order to get at least four different relations,

we need to fulfill one of the cases shown in Table III. In

particular, we either require four or more different reference

aircraft or, in the case we have less, we need to gather reports

from the same reference aircraft but from different locations on

their tracks. In other words, position reports sent by only two
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TABLE II
MLAT VS. SPOOFER LOCALIZATION

Approach Scenario Equation Reference Target Measure Scaling Factor

MLAT dist(si,A)− dist(sj ,A) = Δti,j · c Sensors Aircraft Time c

Spoofer
Localization

dist(ai,SP)− dist(aj ,SP) = di,j ·
c

vtrack
Aircraft Spoofer Position

c

vtrack

TABLE III
LOCALIZATION REQUIREMENTS

Affected Aircraft Possibility of Localization

1 Localization not possible

2 At least 4 different locations

3 At least 2 different locations

4+ Localization possible

aircraft but from four different locations are already sufficient

to perform spoofer localization. Since we consider moving

targets, the transmission origins will also change likewise.

Hence, we are able to trade the number of spoofed aircraft

with the required observation time, which we can formulate

as follows: (
m

2

)
· ts ≥ 4, (8)

where m is the number of spoofed aircraft and ts denotes the

number of observed samples from different aircraft positions.

The binomial coefficient provides the number of possible

relations. Equation (8) defines the minimum requirements for

our spoofer localization. If fulfilled, we can construct at least

four equations and eventually determine a distinct solution.

Comparison with MLAT. The described localization ap-

proach exhibits similarities to the MLAT process of Sec-

tion III-A but is characterized by decisive differences as com-

pared in Table II. Our approach uses the position information

included in the ADS-B/Flarm reports, whereas MLAT is based

on differences in the time of arrivals at multiple sensors. We

want to highlight that it is not possible to trace the location

of spoofing devices with MLAT. In our approach, we thus

exploit a characteristic that is attacker-controlled such as the

spoofed positions in the advertisements. As a result, we obtain

a multilateration with switched roles, i. e., the references are

moving aircraft as compared to the stationary ADS-B/Flarm

sensors. Since the considered measure is shifted from time to

positioning information, we need to adjust the scaling factor

with the velocity of the spoofed track. As a beneficial side

effect, this diminishes the factor with which the uncertainties

in the GPS-derived positions are multiplied and consequently

minimizes the noise impact on the localization accuracy.

2) Error Minimization: In contrast to a definite analytic

solution considering relations based on Equation (7), real-

world signal reception and measurements suffer from several

error sources and hence prevent a distinct solution for the

spoofer position. Both the positions from MLAT as well as

the reported spoofed GPS positions are affected by noise.

Notably, the interpolation process for time-alignment induces

even more noise into the system. Consequently, compared to

the theoretical analysis, the constructed hyperboloids do not

intersect in a distinct point but rather mark an area.

In order to find the optimal solution for the spoofer posi-

tion SP, we formulate the following error function Et(·):

Et(SP, i, j) = dist(ai, SP)−dist(aj , SP)−di,j ·
c

vtrack
, (9)

where di,j is the distance in the reported ADS-B/Flarm

positions and t is the current sample time. The real aircraft

positions are denoted by ai, aj and c is the speed of light.

All resulting errors add up to the overall error, which we try

to minimize by computing the root mean square error (RMSE).

Eventually, our algorithm outputs the most likely spoofer

position:

argmin
SP

√√√√∑∞
t=1

∑m
i=1

∑i−1
j=1 Et(SP, i, j)2

t ·
(
m2

2 −m
) , (10)

with t indicating the sample time corresponding to Equa-

tion (9). The inner two sums aggregate the errors of relations

between all spoofed aircraft, whereas the outer sum aggregates

the errors over all sample times. The argument with the

minimum error is calculated to be the best approximation for

the spoofer position.

When time progresses, the total number of relations consid-

ering different references increases. This also affects the error

minimization process by expanding the system of equations

that are simultaneously evaluated. However, the complexity

increase is only linear and, as we will show, this process

stabilizes quickly. As all measurements are affected by noise,

more relations are beneficial to reduce the system-intrinsic

errors and the localization is predicted to gain precision.

3) Improved Filtering: For GPS spoofing targeting multiple

aircraft, we identify an additional optimization technique that

helps to lower the impact of uncertainty in the reported

positions even further. As all affected aircraft receive the

same spoofing signals, they report positions on the same track

irrelevant of timing information. This allows to better predict

the underlying track by incorporating all available reports.

Consequently, we can apply a subsequent filtering of the

spoofed aircraft positions.
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Fig. 9. Detection rates and coverage of Test 1 and Test 2 in the considered
OpenSky Network data set depending on the attacker’s range.

In particular, we apply a projection of the reported positions

on the combined estimated track. Notably, with this projection

we cannot correct timing inaccuracies, but we can better

estimate the most likely position at the current measurement

time. The (orthogonal) projection provides the least error with

respect to the estimated track and can be described as:

âi − âi
′ ⊥ track, (11)

where âi is the noisy GPS position and âi
′ is the projected

point with âi − âi
′ being orthogonal on the estimated track.

Moreover, we do not necessarily require a continuous straight

line but the track can also contain separated segments, which

are then evaluated separately to apply the projection.

IV. EVALUATION

To evaluate the applicability of Crowd-GPS-Sec to real-

world air traffic, we assess its performance in terms of

spoofing detection and accuracy of the spoofer localization. In

particular, we have implemented Crowd-GPS-Sec and applied

it to real-world data from the OpenSky Network. Moreover,

we have built a simulation framework to generate results with

respect to spoofing scenarios.

A. Spoofing Detection Performance

We compare our two spoofing detection tests with regard to

their coverage, detection delay, and detection rate. The tests

are applied to air traffic data of Central Europe as received

by the OpenSky Network over a period of 1 h. The data set

contains 141,693 unique positions of 142 aircraft.

Coverage. We define the coverage of a test as the percentage

of aircraft positions that is protected by a test. Protection

means that a test indicates a spoofing attack if the aircraft

is indeed spoofed. For simplicity, we assume that the attacker

is using an omnidirectional antenna and is positioned right

underneath the target using exactly the required transmission

power to have the target aircraft lock on the spoofer. This

results in an attack range in the form of a sphere with a radius

of the altitude of the aircraft. Note that this setup models an

unrealistically optimal attacker since in reality, the attacker

may not be able to stay exactly underneath the target aircraft

as the aircraft is moving and it may use higher transmission

powers than the minimal required power.
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Fig. 10. Comparison of the detection rates of Test 1 and Test 2 in the OpenSky
Network data set depending on the target’s altitude.

Since both tests rely on different features, the sets of

positions covered by one test is different from the one covered

by the other test, but there are overlaps. We therefore analyze

how many aircraft in our data set are covered by which

test. Figure 9 shows the fractions of aircraft in the data set

covered by Test 1, Test 2, or both depending on the target’s

altitude. The results show that Test 1 clearly outperforms

Test 2. Overall, 61.2% of the aircraft are covered only by

Test 1 while 2.9% are covered only by Test 2. In addition,

8.9% are covered by both tests. This result is not surprising

since the receiver density of the OpenSky Network is high

(which benefits Test 1), while the aircraft density (which Test 2
relies on) is limited due to separation minima. In total, we can

summarize that if the spoofer’s target is at an altitude above

11 km and the spoofer is directly underneath the target, the

detection rate is about 75% using both tests. If the spoofer uses

higher transmission powers or if it is not directly underneath

the target, the detection rate increases quickly towards 100%
(not shown in the Figure).

As mentioned above, Test 1 directly depends on multilatera-

tion coverage and should therefore work better at high altitudes

where aircraft are tracked by more sensors. In contrast, Test 2
benefits from dense airspaces since close aircraft “protect”

one another. To further investigate this effect, we considered

the cumulative distribution of the altitudes of all aircraft and

compared it to those of the aircraft protected by either of the

tests. The results are shown in Figure 10. As expected, Test 2
has a distribution similar to all altitudes. The steep inclines in

its distribution confirm that it is most effective at the common

altitudes above 10 km (en route flights) and at around 1 km
(approach areas). Most aircraft detected by Test 1, on the other

hand, were higher than 10 km which also complies with the

above hypothesis.

Detection Delay. We define the detection delay as the delay

between the point in time when the attack takes effect, i. e.,

when the aircraft’s GPS sensor locks on to the spoofed signal

until the detection test will detect the attack. As for Test 1,

this corresponds to the delay between receiving the ADS-B

position and the MLAT position update. To evaluate this, we

used the open-source MLAT implementation [41] with the

OpenSky Network’s real-time data stream and measured the

time between the reception of an ADS-B position and the
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Fig. 11. Comparison of the detection times of Test 1 and Test 2 in the
OpenSky Network data set.

TABLE IV
SIMULATION FRAMEWORK PARAMETERS

Parameter Parameter Range Default

Sensor Density 10 . . .100
[

1
(100 km)2

]
OpenSky

Airspace Density 10 . . .100
[

1
(100 km)2

]
OpenSky

Flightpath random OpenSky

Flight Altitude 0 . . .10,000 [m] OpenSky

Airspeed 0 . . .1,000 [km/h] OpenSky

Spoofer Position random random

Spoofing Range 10 . . .200 [km] 100 km

Spoofed Track Velocity 0 . . .10,000 [km/h] 1,000 km/h

GPS Noise (std) 0.01 . . .4 [m] 4m

MLAT Noise (std) 1 . . .100 [m] 10m

emission of the respective position by the MLAT implementa-

tion. As for Test 2, the delay can be reduced to the inter-arrival

times between spoofed position reports. Figure 11 shows the

distributions for the delays of the two tests. The delay of

Test 1 is a result of the delay of the relatively long MLAT

calculations. Test 2, on the other hand, can detect an attack as

soon as a false position report is received from two different

aircraft. Note that the position broadcast interval of ADS-B

is random within an interval of 0.4 s to 0.6 s, explaining the

average detection delay close to 0.5 s.

Conclusion. The results of our evaluation show that with

realistic air traffic and implementation characteristics, the two

tests can reach a detection rate of up to 75% when the attacker

is directly underneath the target. While Test 1 performs much

better in terms of coverage and detection rate, the detection

delay is much smaller for Test 2. These results encourage a

complementary implementation as proposed in Section III-B4.

B. Spoofer Localization Performance

To evaluate Crowd-GPS-Sec in terms of GPS spoofer lo-

calization accuracy, we have built a simulation framework in

MATLAB, which allows us to analyze spoofing scenarios in a

controlled environment without having to spoof real aircraft.

In particular, we assess the impact of noise in the GPS-derived

position reports, MLAT positioning noise, and spoofed track

velocity.
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Fig. 12. The impact of GPS noise models ranging from σGPS = 4m to
0.01m on the spoofer localization, depicted including standard deviation
errorbars. The MLAT positioning accuracy is fixed to σMLAT = 10m.

Simulation Framework. While we are interested in results

from varying parameter sets, we otherwise incorporate realistic

data observed by the sensor infrastructure of the OpenSky

Network. Table IV contains an overview of the utilized

simulation parameters. In the default case, our simulation

samples aircraft from the OpenSky Network including reported

positions, altitudes, airspeeds, and headings. The spoofer is

randomly positioned in an exemplary area of (400 km)2 and

its range is set to 100 km spoofing a track of 1,000 km/h.

On the other hand, we are able to simulate different airspace

constellations, attacker configurations, and noise impacts of

MLAT and GPS. In particular, we consider standard assump-

tions taken from specifications [1] and technical reports [42]

as well as more optimistic assumptions that could be achieved

with more sophisticated equipment.

To simulate the impact of GPS spoofing on aircraft, we

imitate position reports from already spoofed aircraft by incor-

porating the attacker-controlled position and adding Gaussian

noise according to the considered noise model. Subsequently,

we apply standard noise correction techniques based on a

Kalman filter [43]. For the error minimization considering

distance relations, we implement a numerical solver. To cope

with an increasing number of equations, we only evaluate the

relations at discrete time intervals which are defined as the

time that has elapsed since the spoofing attack was launched,

ranging from a few seconds up to 15 minutes.

Metrics. In order to quantify our results we define two

metrics. First, we consider the distance between the actual

spoofer position and our estimation. Second, we construct a

circle around our estimated position with a radius equal to

the distance to the actual spoofer. We consider this to be

the search space to find the attacker and we compare it to

the observed area of (400 km)2, on which the spoofer was

randomly positioned. For each of the analyzed parameter sets,

we performed 200 randomized simulation runs and averaged

the results.
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Fig. 13. The considered MLAT positioning noise models in the range
of σMLAT = 100m to 1m do not show any significant impact on the local-
ization accuracy. The results are based on a high GPS noise of σGPS = 4m.

1) Impact of GPS Accuracy: Figure 12 depicts the impact

of high GPS noise (σ = 4m) to low GPS noise (σ = 0.01m)

applied to the latitude and longitude direction. We do not

require altitude information for spoofer localization and can

therefore neglect altitude inaccuracies. We conclude that the

extent of noise in the reported GPS positions is a dominating

factor that can make the difference between a few kilome-

ters and merely tens of meters in spoofer localization. In

particular, we achieve an average localization accuracy of ap-

prox. 8.2 km for σGPS = 4m, approx. 1.7 km for σGPS = 1m,

and approx. 149m for σGPS = 0.1m, each after 15 min-

utes. Considering the search space reduction, we need to

scan approx. 0.13% for σGPS = 4m, approx. 5.8× 10−5

for σGPS = 1m, and approx. 4.4× 10−7 for σGPS = 0.1m,

again after 15 minutes. Furthermore, we can observe that

the localization accuracy increases rapidly within the first

few minutes, whereas after 5min the accuracy only improves

slowly. From 5min to 15min, the distance roughly halves.

As a result, we can already give a good spoofer position

estimation in a timely manner after the spoofing attack is

launched and narrow it down to a more exact position after a

few minutes.

2) Impact of MLAT Accuracy: Another uncertainty of our

localization approach is the accuracy of the MLAT posi-

tioning that we require to determine the actual (unspoofed)

aircraft positions. We choose to vary the MLAT accuracy

between high noise (σMLAT = 100m) and lower noise lev-

els (σMLAT = 1m), each representing the standard deviation

in latitude, longitude, and altitude. Figure 13 contains the

impact on the localization of different MLAT noise levels.

In contrast to the strong dependence on the GPS noise in

the spoofed measurements, the MLAT noise has little impact

on the accuracy of the spoofer localization. As a result, our

localization approach does not rely on highly accurate MLAT

measurements of the actual aircraft position and can still

perform decently on relatively noisy data.
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Fig. 14. The velocity of the spoofed track is analyzed for speeds be-
tween vtrack = 6km/h to 1,000 km/h. The results consider a GPS
noise level of σGPS = 1m and an MLAT positioning accuracy error
of σMLAT = 10m.

3) Impact of Spoofed Track Velocity: As the spoofed track

velocity vtrack is part of the scaling factor in the distance

relations, we identify it to be another important parameter.

The results for varying spoofed track velocities are depicted in

Figure 14. For a spoofed track velocity of vtrack = 300 km/h,

the accuracy decreases by nearly one fourth. The accuracy

decreases further for a track velocity of vtrack = 100 km/h.

Eventually, for track speeds lower than vtrack = 30 km/h,

the spoofer localization fails to narrow down a useful search

radius. However, considering less GPS noise, we expect to

see better results even for lower track velocities. The strong

dependence on the track velocity is due to the scaling factor,

which relates the observed distances to the spoofed track

velocity and the speed of light. Hence, low velocities result

in smaller distance differences among the spoofed aircraft and

are relatively more affected by system-intrinsic noise.

V. DISCUSSION

Combined Error Effects. The spoofer localization accuracy

of Crowd-GPS-Sec depends on the GPS error, the MLAT

error, and the spoofed track velocity. These three parameters

are all components of the relations defined in Equation (7)

and thus impact the accuracy. While the MLAT noise is less

decisive, the GPS noise and the spoofed track velocity are

significantly affecting the achievable accuracy. This is due to

the small differences in spoofed aircraft positions with respect

to the speed of light divided by the spoofed track velocity.

In general, we expose the following relationship between the

localization error E, the GPS noise σGPS, and the spoofed

track velocity vtrack:

E ∝
√
2 · σGPS

vtrack
, (12)

with σGPS being scaled with
√
2 due to the Euclidean distance

based on two normally distributed points in space. Hence, we
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can expect to see similar results for low track velocities with

low GPS noise and high track velocities with high GPS noise.

Localizing Spoofers of Stationary Targets. The attacker

model considered in this paper assumes that the spoofer’s

target is a moving object. If instead the target is stationary,

the attacker could also spoof constant positions. While the

detection would still work, the localization would fail since the

differences in propagation delays between spoofer and aircraft

would not be reflected in the reported position differences

(compare di,j in Equation (9)). One way to cope with such at-

tackers is to additionally propagate GPS time synchronization

information to the ground infrastructure. As time is evolving,

the spoofer would have to imitate a progressing GPS time to

remain undetected by the target. Having information about

the time synchronization of affected aircraft would allow

performing a localization by analogy. More specifically, if t
denotes the real GPS time and t̂i the reported time of aircraft i,
the relation from Equation (7) can be rewritten to:

dist(ai, SP)− dist(aj , SP) = (t̂i − t̂j) ·
c

δ
, (13)

where δ denotes a factor representing the spoofed GPS clock’s

speed. Equation (13) is independent from the spoofed position

and therefore allows localizing spoofers, even if the target is

stationary.

Applicability to Other Networks. The underlying idea of

Crowd-GPS-Sec does not only apply to aircraft but can also

be relevant to GPS spoofing attacks on cars, trucks, ships,

or other vehicles on ground. Similar to the broadcasting

of avionic position reports via ADS-B or Flarm, vehicular

systems could also report state information to, e. g., roadside

units. The combined reports can then be used to run our

spoofing detection and localization scheme. Even though the

speeds of vehicles are comparably low, the density of affected

targets is much higher and the GPS filtering is expected to

be more conditioned. Eventually, we envision the merging of

information provided by different networks. In particular, each

spoofed system, such as aircraft, vehicles, vessel, etc., can

collaborate by sharing their information in a crowdsourcing

manner.

VI. RELATED WORK

As GPS is known to be vulnerable to spoofing attacks [2],

[5], [8], [31], several works demonstrated their feasibility [3],

[4], [10], [32], [33]. Attacks can target different domains

such as vehicle navigation systems [4], [10], [32] or criti-

cal infrastructures [6]. The requirements for successful GPS

spoofing attacks are analyzed in [7]. Attacks that also change

the data content of the signals are discussed in [44]. It is

worth noting that GPS spoofing has also been proposed as

a countermeasure, e. g., to defend against hostile UAVs [8],

[11], [32] by means of hijacking or misguidance.

General techniques for detecting and localizing wireless

spoofing attacks (not specific to GPS satellite signals) are

proposed by Chen et al. [45]. The authors use received signal

strength (RSS) readings from different locations and compare

them against RSS maps built during an offline calibration

phase to locate the spoofer. They evaluated their scheme in

802.11 and 802.15.4 networks. Later, Yang et al. [46] extended

the scheme to deal with attackers which vary their transmission

power. Rather than using direct RSS values, they consider RSS

differences at multiple locations.

A rich body of countermeasures specific to GPS exists in the

literature which can be categorized into prevention and detec-
tion measures. In order to prevent spoofing of GPS signals,

several works propose the use of cryptographic techniques

to authenticate satellite signals [13]–[16]. This is similar to

how military GPS signals are protected. However, crypto-

graphic techniques require profound modifications of the GPS

infrastructure as well as a key distribution system which is

challenging to implement for applications with disconnected

receivers. Further, the use of encryption alone does not protect

against signal replaying attacks [33].

The detection of GPS spoofing attacks has also received

considerable attention in the literature. Overviews can be

found in [18] and [31]. Akos [19] suggests to monitor the

incoming signal power and the state of the automatic gain

control. Another technique called SPREE relies on auxiliary

peak tracking [17] to detect suspicious peaks from signals with

weaker acquisition correlation peaks. Psiaki et al. [47] propose

a detection scheme which uses an additional reference receiver

to correlate the received signal with authentic signals assuming

the inclusion of the encrypted military signal. A spoofed signal

does not correlate with the reference node’s received signal

and the attack can be detected.

A different class of detection approaches deploys multiple

antennas. Tippenhauer et al. [7], [48] use multiple co-located

GPS receivers whose calculated positions and times are com-

pared; coinciding locations indicate an attack. A dual antenna

receiver setup to determine the angle of arrival of incoming

signals is proposed by Montgomery et al. [20] and extended

by Psiaki et al. [49] to include differential carrier phase mea-

surements. Magiera and Katulski [21] suggest even the use of

arrays of antennas showing that antenna diversity is effective

at detecting single antenna spoofers without knowledge of the

target’s position. Although these detection approaches do not

require changes to the GPS infrastructure, they assume more

sophisticated GPS receivers which would significantly increase

the complexity, size, costs, and power requirements. This,

however, is contradictory to the objectives of GPS. It is also

worth noting that, in principle, almost any passive localization

technique (such as multilateration) could be used to locate GPS

spoofers. However, in contrast to our approach, these methods

assume a direct line-of-sight between the localization system

and the attacker. As a consequence, this requires a dedicated

infrastructure which covers all potential attacker positions.

The authors of [23], [50]–[52] have proposed techniques to

detect spoofing attacks in ADS-B. However, the threat model

in these works is different as they consider spoofed ADS-B

signals and not spoofed GPS signals. These techniques are

therefore not capable of localizing GPS spoofers such as in

Crowd-GPS-Sec.
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VII. CONCLUSION

This work presented Crowd-GPS-Sec, an independent sys-

tem to detect and localize GPS spoofing attacks targeted

at aircraft and UAVs. Crowd-GPS-Sec is lightweight and

leverages existing wireless air traffic broadcast infrastructures,

the ADS-B and Flarm systems, to identify spoofing attacks

from a remote location—possibly far from where the attack

is happening. We have shown that our approach is effective

at localizing spoofing devices by using differences in reported

positions by multiple aircraft. Using simulations based on real-

world input from the OpenSky Network, we have demon-

strated that Crowd-GPS-Sec achieves attack detection delays

below two seconds and an attacker localization accuracy of

around 150 meters after 15 minutes of monitoring time.
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S. Čapkun, “Investigation of Multi-device Location Spoofing Attacks on
Air Traffic Control and Possible Countermeasures,” in ACM Conference
on Mobile Computing and Networking, ser. MobiCom ’16. New York,
USA: ACM, Oct. 2016, pp. 375–386.

[24] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins, Global Posi-
tioning System: Theory and Practice, 5th ed. Springer, 2001.

[25] P. F. Swaszek and R. J. Hartnett, “Spoof Detection Using Multiple COTS
Receivers in Safety Critical Applications,” in International Technical
Meeting of The Satellite Division of the Institute of Navigation, ser.
ION GNSS+ ’13, Nashville, TN, USA, Sep. 2013, pp. 2921–2930.

[26] ——, “A Multiple COTS Receiver GNSS Spoof Detector – Extensions,”
in International Technical Meeting of The Institute of Navigation, ser.
ION ’14, San Diego, CA, USA, Jan. 2014, pp. 316–326.

[27] P. F. Swaszek, R. J. Hartnett, M. V. Kempe, and G. W. Johnson, “Anal-
ysis of a Simple, Multi-Receiver GPS Spoof Detector,” in International
Technical Meeting of The Institute of Navigation, ser. ION ’13, San
Diego, CA, USA, Jan. 2013, pp. 884–892.

[28] Flarm. (2017) Flarm. [Online]. Available: https://flarm.com
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[36] M. Strohmeier, M. Schäfer, R. Pinheiro, V. Lenders, and I. Martinovic,
“On Perception and Reality in Wireless Air Traffic Communication
Security,” IEEE Transactions on Intelligent Transportation Systems,
vol. 18, no. 6, pp. 1338–1357, Jun. 2017.

[37] Ettus Research. (2017) Universal Software Radio Peripheral (USRP).
[Online]. Available: https://www.ettus.com

[38] D. L. Adamy, EW 101: A First Course in Electronic Warfare, 1st ed.
Artech House, 2001.
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