
xJsnark: A Framework for Efficient Verifiable
Computation

Ahmed Kosba
UMD

akosba@cs.umd.edu

Charalampos Papamanthou
UMD

cpap@umd.edu

Elaine Shi
Cornell

rs2358@cornell.edu

Abstract—Many cloud and cryptocurrency applications rely
on verifying the integrity of outsourced computations, in which
a verifier can efficiently verify the correctness of a computation
made by an untrusted prover. State-of-the-art protocols for verifi-
able computation require that the computation task be expressed
as arithmetic circuits, and the number of multiplication gates in
the circuit is the primary metric that determines performance.
At the present, a programmer could rely on two approaches for
expressing the computation task, either by composing the circuits
directly through low-level development tools; or by expressing
the computation in a high-level program and rely on compilers
to perform the program-to-circuit transformation. The former
approach is difficult to use but on the other hand allows an expert
programmer to perform custom optimizations that minimize the
resulting circuit. In comparison, the latter approach is much more
friendly to non-specialist users, but existing compilers often emit
suboptimal circuits.

We present xJsnark, a programming framework for verifiable
computation that aims to achieve the best of both worlds:
offering programmability to non-specialist users, and meanwhile
automating the task of circuit size minimization through a
combination of techniques. Specifically, we present new circuit-
friendly algorithms for frequent operations that achieve constant
to asymptotic savings over existing ones; various globally aware
optimizations for short- and long- integer arithmetic; as well as
circuit minimization techniques that allow us to reduce redundant
computation over multiple expressions. We illustrate the savings
in different applications, and show the framework’s applicability
in developing large application circuits, such as ZeroCash, while
minimizing the circuit size as in low-level implementations.

I. INTRODUCTION

Succinct Noninteractive ARguments of Knowledge

(SNARK) [31], [42], [15], [13] is a powerful cryptographic

building block that allows a prover to prove to a verifier the

correctness of some computation, such that the verifier can

check correctness in asymptotically less time than what it

takes to perform the computation. SNARKs promise a broad

spectrum of applications. For example, it allows a possibly

computationally limited device to verifiably outsource

computation to a powerful cloud server, problem that is often

referred to as Verifiable Comptuation [42], [30], [45]. Known

SNARK constructions also allow the prover to supply secret

witnesses to the computation, thus enabling zero-knowledge

proofs (henceforth referred to as zk-SNARKs). zk-SNARKs

have been employed by various cryptocurrency systems such

as ZeroCash [16], PinocchioCoin [25], and Hawk [35], to

provide privacy-preserving transactions and/or smart contracts

in a way that safeguards the integrity of the currency ledger’s

book-keeping and the correctness of smart contract execution.

SNARKs or (zk-SNARKs) support general computations,

i.e., they can be used to prove the correctness of arbitrary,

polynomial-sized computation. Most known SNARK construc-

tions model computation as arithmetic circuits (or alternatively,

as a set of arithmetic constraints) over a finite field. There

are two existing methods for a programmer to express the

computation that needs to be verified, either through compila-

tion from a high-level language [42], [49], [24], or by manual

circuit construction frameworks [15], [5]. The former provides

programmers convenience; while the latter enables lower-level

control and optimizations, resulting in possibly much better

performance than circuits auto-generated by a compiler, but

requires effort and knowledge from the programmer.

In this paper, our goal is to bridge this gap. We design and

implement xJsnark, a programming framework for developing

(zk-)SNARK applications. xJsnark takes a language-compiler

co-design approach: It introduces user- and compiler-friendly

language features that allow the user to conveniently write

programs in a Java-like language and subsequently enable

the back end to extract additional information needed for

converting the user-supplied program to a compact, optimized

circuit.

As we show later, xJsnark reduces programmer effort in

comparison with existing SNARK compilers such as Buf-

fet [49] and Geppetto [24]; and meanwhile improves the

performance of the compiled SNARK implementation by 1.2×
to more than 3× for different cryptographic and memory

access applications. We will also illustrate how the framework

reduces the effort in developing large circuits as in the case

of ZeroCash[16], while producing optimized output.

A. Problem Statement

An important goal of xJsnark is that of “program-to-

circuit” conversion, i.e., to compile a user-supplied program

described in a Java-like source language into a compact

circuit representation that is recognized by existing SNARK

schemes. At the moment, xJsnark emits circuits in a libsnark-

compatible format [6], such that the resulting SNARK can be

executed using the libsnark back end. Thus our contribution

is not the back end SNARK implementation, but rather, the

program-to-circuit conversion stage, and the co-design of the

944

2018 IEEE Symposium on Security and Privacy

© 2018, Ahmed Kosba. Under license to IEEE.
DOI 10.1109/SP.2018.00018

source language and compile-time optimizations to minimize

the compiled circuit.

This problem of program-to-circuit conversion is commonly

encountered in designing programming frameworks for cryp-

tography: besides (zk-)SNARKs, it has also been investigated

in the context of secure multi-party computation [38], [37],

[44], [40] — in particular, known cryptographic building

blocks for securing the integrity and/or confidentiality of

computation customarily express computation as circuits.

SNARK-specific program-to-circuit conversion. Several fac-

tors make the program-to-circuit conversion problem unique in

the SNARK context, and our algorithmic techniques described

later would repeatedly make use of these optimizations to

achieve constant to asymptotic performance improvements

over existing approaches.

First, an important observation that fundamentally differen-

tiates circuit generation in the SNARK context than, say, in the

multi-party computation context [38], [37], [40], [44], [41], is

the following: a SNARK circuit need not necessarily compute

a function in the forward direction, it suffices to generate a

circuit that verifies the correct of the computation result —

and the latter is often much cheaper than the former. For

example, the statement y = x/a can be verified much more

efficiently by checking that x× a = y rather than computing

the division in the forward direction. This observation has also

been pointed out by several earlier works [42], [17], [18],

[24], [49], [25], [36] — but in this paper we will apply it in

new ways in the design of several circuit-friendly algorithms

that achieve constant to asymptotic performance improvements

over existing approaches.

Second, known SNARK constructions rely on arithmetic

circuits over a finite field. Moreover, known SNARK imple-

mentations have a unique performance profile where multipli-

cation of two variables are expensive; whereas addition gates

or multiplication with predetermined constants come almost

for free. Therefore, the optimization metrics are very different

from conventional compilers in our case. We focus on how to

emit arithmetic circuits that express a user-supplied program

while minimizing the number of expensive multiplication

gates.

B. Technical Highlights

To emit compact circuits for user-supplied programs, we

introduce new algorithmic techniques in all stages of the

compilation. Our new algorithms improve the circuit size by
constant to asymptotic factors for frequent building blocks

relative to the state-of-the-art, while not requiring as much

experience from the programmer compared to earlier compil-

ers.

New circuit-friendly building blocks. First, at the building

block level, we design new efficient, circuit-friendly algo-

rithms for frequent operations such as memory accesses and

short and long integer arithmetic; where “circuit-friendliness”

in our context means that the algorithm may be expressed

as a compact arithmetic circuit that minimizes the number of

multiplication gates (more specifically, multiplication of two

variables and not with a predetermined constant). Our new

algorithms can improve the performance by constant to asymp-

totic factors in comparison with known approaches. More

specifically, we make the following algorithmic contributions:

• Efficient read-only memory. We present an algorithm (Sec-

tion V) for verifying a batch of k read-only memory accesses

in total cost proportional to k
√
n where n is the size of the

memory array to be accessed, where cost is expressed in

terms of the number of arithmetic multiplications of two

variables — note that the number of addition gates and

“multiply by constant” gates are still linear in n, but as

mentioned earlier these gates come almost for “free”. (Note

that earlier work on Boolean circuits obtained similar bounds

for the multiplicative complexity of a Boolean function [20].

In contrast, in this work we consider the case of arithmetic

circuits, while relying on the observation that multiplications

by constants are for free, and on external witnesses to

provide efficient checks). We will show that for a broad

range of choices over k and n, our read-only memory access

algorithm outperforms the state-of-the-art by factors ranging

between 3-10×, and overall we illustrate how it can improve

the AES implementation by more than 2×.

• Smart memory. Our xJsnark framework supports a smart

memory algorithm that adapts the memory implementation

to obtain high efficiency. Depending on the concrete value of

k and n, and whether the memory access is read-only, our

back end automatically selects the most efficient memory

access algorithm among the following: 1) the naı̈ve linear

sweep algorithm which may be efficient for sufficiently

small values of k; 2) a permutation network [17], [18],

[49], and 3) our new read-only memory algorithm mentioned

above.

• Long integer arithmetic. We introduce several new circuit-

friendly algorithms for efficient long integer arithmetic.

xJsnark internally expresses long integers as an array of

short integers whose bitwidth can fit in the SNARK’s native

arithmetic field. Henceforth let m denote the length of this

array.

1) Multiplication. Known works employ either a naı̈ve mul-

tiplication algorithm that incurs Θ(m2) circuit size (e.g.,

Cinderella [26]); or adopt Karatsuba [34] that incurs

Θ(m1.58) circuit size (e.g., ObliVM [38], GraphSC [41])

— where circuit size counts only multiplication gates. We

propose a SNARK-friendly long-integer multiplication

algorithm that incurs only O(m) multiplication (by non-

constant) gates.

2) Modular arithmetic. Modular arithmetic is a frequently

encountered operation for implementing a wide class

of cryptographic algorithms (e.g., RSA circuits) in

SNARKs. To support modular arithmetic, an recurring

operation is to verify the modular congruence of two

variables, i.e., verify that a ≡ b ∗ q + r where q is the

modulus.

Using our long integer multiplication technique as a

building block, we devise an improved algorithm for

945

checking the modular congruence of long integers, lead-

ing to an improvement of 3× for this operation, and

improving the overall performance by more than 1.5×
relative to the state-of-the-art [26] that was built on top

of Geppetto [24]. This is while minimizing the program-

mer’s effort/experience requirements.

Global optimizations for integer arithmetic. Besides opti-

mizing individual building blocks, our compiler also makes

(somewhat) global optimization decisions for frequent oper-

ations such as integer arithmetic. One challenge in support-

ing bitwidth-parametrized integers is to figure out when to

perform bitwidth realignment. More specifically, imagine that

the program contains operations on uint32 variables, i.e.,

unsigned integers of 32 bits. Since the SNARK’s native field

is much larger than 32 bits, we need not perform a mod 232

operation for each arithmetic operation (henceforth referred

to as bitwidth realignment). One naı̈ve strategy (i.e., the lazy

strategy) is simply let the bitwidth grow but keep track of

the maximum bitwidth of internal variables — then we only

perform realignment whenever an overflow is just about to

happen. As we show later, this naı̈ve lazy strategy is not the

optimal. Instead, our compiler is able to perform more globally

aware decisions as to when to perform bitwidth realignment.

Circuit minimization. Third, we implement a customized

version of the state-of-the-art circuit minimization techniques

— more specifically, multi-variate polynomial minimization

techniques — to minimize the generated circuit. Such cir-

cuit minimization techniques may have exponential time,

and therefore we devise algorithms to cluster the arithmetic

constraints to be verified into bounded-size groups, and we

apply multi-variate polynomial minimization to each group.

C. Implementation, Evaluation, and Open Source

Besides our new algorithmic techniques and various more

globally aware optimizations, one important contribution we

make is to integrate all these techniques into a unified, user-

friendly programming framework. We hope that the xJsnark
user can benefit from our effort and be able to develop efficient

SNARK implementations without needing much specialized

knowledge on the topic. To this end, we plan to open source

our xJsnark framework in the near future.

Implementation. We present an overview of our xJsnark
framework in Figure 1. xJsnark’s front-end is developed atop

Java using Jetbrains MPS, an open-source project [4] for im-

plementing domain-specific languages. xJsnark’s compilation

back-end encompasses several stages:

• First pass: the back-end collects useful information about the

structure of the circuit, e.g., how variables are being used

(e.g. whether involved in arithmetic or Boolean operations,

and how many times used), how memory is being accessed,

etc. This is done by creating a dummy circuit that does not

realize every low-level detail, but only what is needed to

understand the characteristics of the circuit.

• Second pass: making use of information collected during

the first pass, the back end decides an efficient circuit

representation of the computation.

• Optional third pass: This pass uses a customized multivari-

ate polynomial minimization technique to introduce more

savings in the circuit.

Front end. The front end of xJsnark is developed as a Java

language extension using the Jetbrains MPS framework [4].

xJsnark’s front end supports numerous features designed to

help a non-specialist user. First, we provide parametrized

types, including bitwidth-parametrized integers, and Fp fields

elements at the language level, allowing the user to express

short and long integers very conveniently. The extension comes

with an Interactive Development Environment (IDE) that is

based on projectional editing and real-time type checking that

allows programmers to detect programming errors early on.

We provide code examples in Appendix A, and discuss the

trade-offs of using the underlying framework in Appendix D.

Using previous compilers like Buffet [49] or Geppetto[24],

programmers are assumed to have some additional experience

in order to develop efficient applications on top. For example,

programmers may need to carefully add extra casting state-

ments, specify additional prover inputs or add extra constraints

to the code in order to develop secure and efficient programs.

xJsnark attempts to solve these problems through both the

front end features, and the back end algorithms.

Performance. For four different cryptographic applications

spanning SHA-256, SWIFFT hash function, RSA, and AES,

we illustrate how xJsnark can produce more efficient circuits

by factors ranging between 1.2× to more than 2×, while not

requiring the programmer to be experienced in the underlying

SNARK implementation (Section VII-A). Additionally, we

show how our framework produces efficient random access

circuits by a factor of 2-3× in the case of sorting, while

also providing more efficient ways to obtain more concise

circuits (Section VII-B). Furthermore, we illustrate that the

framework can produce efficient circuits as done by existing

low-level implementations, as in the case of ZeroCash [16]

when developed in our framework (Section VII-C).

II. BACKGROUND AND RELATED WORK

In this section, we provide a necessary background to our

paper, in which we cover the basics and related works on

verifiable computation.

A (Zero-Knowledge) Succinct Noninteractive ARguments

of Knowledge (SNARK) scheme involves two parties, a prover

P and a verifier V , where P proves the correctness of

executing a program F on an input �x from V , and (optionally)

a secret input �u from P . P sends V both the output �y and a

proof �π to verify the result. Specifically, a SNARK scheme

typically consists of three algorithms [42]:

• (PKF , V KF)← KeyGen(F , 1λ): given an outsourced pro-

gram F and a security parameter λ, output a public proving

key PKF and a verification key V KF . The verification key

might be public or private depending on the setting.

946

xjsnark
code

Java
code

Type Checking

Constraint Checking

Code Generation

Optimizations
x

+ x

+

+

x

x + x

….

Front End

Backend

Phase 1
Initial Circuit Preprocessing

High-level Usage
Information

process

Phase 2
Circuit Construction

x

+ x

+

+

x

x + x

….

Phase 3 (optional)
Expression Minimizer

x

+ x

+

+

x

x + x

….

Optimized Circuit

y1 = f1 (x1, x2, x3)
y2 = f2 (x1, x2, x3)

y3 = f3 (x4, x5, x6)
y4 = f4 (x4, x5, x6)

y5 = f5 (x4, x5, x7)

..

To Libsnark

Fig. 1: xJsnark Overview

TABLE I: Our contributions. The part in blue highlights our new algorithms in support of each language feature.

Bitwidth parametrized integers Long integers Memory access Circuit minimization

Buffet [49] Some Library Perm. net. Some

Gepetto [24] Some Library Does not support dynamic mem Some

xJsnark • Smart bitwidth alignment

• Improved algorithms
for multiplication, sub-
traction, and equality

• New algorithm for read-
only mem • Multivar. polynomial minimization• Smart selection btw
linear/read-only/perm net

• (�y, �π) ← Prove(F , PKF , �x, �u): given a program F , the

public proving key PKF , the public input �x, and the prover’s

secret input �u, output �y ← F(�x, �u), and the proof �π proving

the correctness of the computation.

• {0, 1} ← Verify(V KF , �x, �y, �π): given the verification key

V KF , the proof �π, and the statement (�x, �y), output 1 iff

�y = F(�x, �u).
In particular, for the scheme to satisfy succinctness, both

the proof size and the time it takes to execute Verify must be

asymptotically smaller that the time it takes to evaluate F . For

simplicity, we mainly focus on what is called preprocessing

zk-SNARKs, in which the whole program is represented as

a single circuit or a single system of quadratic constraints,

and a one-time setup per each different circuit is needed

in the beginning. However, the techniques we describe in

this paper can also be extended in a straightforward way to

systems that support recursive composition of zk-SNARKs

[19], [24]. In the interest of space, we omit the formal security

definitions for (zk-)SNARKs, we refer interested readers to

existing papers [31] for formal definitions.

A. Program Representation and Cost model

In the preprocessing zk-SNARKs we are considering, the

program to be verified is expressed as a Quadratic Arithemtic

Program (QAP) [31], [42], where computations are repre-

sented as a set of quadratic equations over a finite field

(typically a 254-bit prime field p), or in other words, a circuit

of additions and multiplications gates mod p. We denote

each quadratic equation or a multiplication operation as a

constraint.
To translate a program into set of constraints, the main

operations can be translated as follows:

Arithmetic Operations (mod p). Translation of addition and

multiplication (mod p) is straightforward. Note that additions

and multiplication by constants are almost free operations,

while each multiplication gate costs one constraint.

Bitwise Operations. Access to the individual bits of a wire

in the circuit is expensive. For example, for an n-bit wire w,

it would require n+ 1 constraints to verify that each bit wire

bi achieves the following constraint: bi(1 − bi) = 0, and that

all bits achieve the constraint (
∑

2ibi)× 1 = w . We denote

this gate as split gate, following the naming of Pinocchio,

while the reverse operation as pack gate following the naming

convention of libsnark. Note that the pack operation can be

just implemented as a weighted linear combination of the

bits (some implementations add one constraint per a pack

operation). For any two bits bi, and bj , the operations: AND,

OR, and XOR each costs one constraint, while the negation

of a certain bit can be implemented as a linear combination

of the bit.

Arithmetic Operations (mod p′ �= p). The problem of

representing arithmetic operations is more challenging when

the modulus is not equal to p. For example, when the oper-

ations are done over p′ = 2n, to obtain a correct result, a

remainder operation needs to be applied on the result, which

leads to a number of constraints that are at least equal to

the bitwidth of the result, as it requires at least one split gate.

However, as we see in the paper, the compiler can apply some

heuristics for efficient translations of such operations. Previous

compilers such as [42], [24], [49] assume that the programmer

is responsible for taking such decisions.

Assertions and Comparisons (mod p). This refers to gates

that verify a constraint given input wires. In its general form,

an assertion gate accepts three inputs a, b and c, and verifies

that a × b = c. This differs from checking the equality of

two n-bit wires, which requires two constraints, while the

unsigned integer <,> comparison costs about n+2 constraints

(assuming n < �log2 p� − 1).

947

Memory accesses. A program is different from a circuit in

that it has control flows and dynamic memory accesses whose

addresses cannot be determined at compile time. We will

discuss how existing works and xJsnark translate memory

accesses to circuits later in the paper Section V.

B. Existing Tools

The currently used utilities for developing verifiable pro-

grams span two different categories:

High-level language compilers. This includes many works

such as Pinocchio [42], TinyRam [18], Pantry [21], ZØ[29],

Buffet [49], and Geppetto [24]. Pinocchio’s compiler translates

a subset of the C programming language to an arithmetic

file that provides a circuit representation of the computation

to be verified. Plus its support for large-scale computations

via Multi-QAPs, Geppetto’s compiler provides additional fea-

tures over Pinocchio’s compiler, e.g. enabling programmers

to define long integer types, specify bounding constraints in

the code and access to bit values. Geppetto’s compiler also

employs energy-saving circuits, by which the prover’s cost

gets minimized in branches that are not taken during execution.

Pantry and Buffet support a larger subset of the C language.

Pantry was the first to extend verifiability to computations with

state, such as map-reduce jobs. Buffet provides more efficient

control flow, and random memory accesses, combining the

permutation network approach with compiler optimizations.

The TinyRam compiler compiles high-level C programs to

TinyRam assembly instructions (a simple RISC architecture),

and generates arithmetic circuits that verifies the execution of

TinyRam programs. In a later work[15], vnTinyRam generates

a universal circuit that does not require a set up each time,

but results in higher cost per program step. ZØ translates

applications written in C# into code that produces scalable

zero knowledge proofs of knowledge. It splits applications

to distributed multi-tier code, and chooses between two zero-

knowledge back-ends (Pinocchio and ZQL) to optimize per-

formance.

Although the above tools include many theoretical and

engineering optimizations, it is not straightforward to develop

programs efficiently for zk-SNARKs, especially for crypto-

graphic operations.

Low-level circuit construction tools. Although such tools

require more programming effort, they were used in many

applications that require optimized performance [16], [35],

[33]. This for example includes libsnark’s gadget libraries [6],

and jsnark [5]. In libsnark’s C++ libraries, a programmer rep-

resents the verifiable program as gadgets connected together.

Each gadget defines a set of constraints, and how to set the

value of its output variables. jsnark provides a simpler Java

interface to libsnark so that it can make development easier

and likely to produce more efficient circuits, and it uses the

same libsnark cryptographic back end eventually. Other works

include snarklib [23] , and bellman [1].

III. xJsnark’S FRONT END

In this section, we discuss the language extension features,

in addition to some optimizations that can be applied early

during the translation to Java code process. Using our Java

extension built on top of Java using Jetbrains MPS, a program-

mer will specify the code for the computation to be verified.

Code examples are provided in Appendix A. Background and

discussion of Jetbrains MPS are provided in Appendix D.

A. Extension Features

1) Parametrized Types: To give the programmer greater

control, and in the same time enable our back end implementa-

tion to translate the code efficiently, our framework introduces

parameterized types for integers and field elements, where

the programmer can specify the bitwidth of integers, and the

modulus of the field elements. The following snippet shows

examples of variables declared using those types.

uint 7 x1 = 12;
uint 1024 x2 = 8105278157615764165361523651316112323v;
F swifft y1 = 123;
F p256 y2 = 810527815761576416536152365131v;
bit b1 = 1;

Note that the programmer easily specifies long integer

and field element types, without specifying how that will be

implemented in the background. Also, the programmer can

specify long integer literals without dividing them to chunks

according to the native underlying field. In order to enable the

programmer to define finite field types, the framework has a

special file where field identifiers can be specified, typically

in the following syntax:

swifft : 257
p256: .. // NIST Curve P−256 prime

Then, the programmer can use these identifiers when defining

field elements.
2) Operators: The framework allows the programmer to

directly use typical arithmetic operators with the types defined

above (e.g. +,−, ∗, /,&, |,) when applicable, instead of using

special methods. For example, the following snippet shows a

piece of code that verifies the ownership of an RSA secret

key:

Program RSA SecretKey Knowledge{
uint 2048 modulus;
uint 1024 p;
uint 1024 q;

input{ modulus };
output { };
witness {p, q};

void Main(){
verifyEq ((uint 2048)p∗q, modulus); // Equality Assertion

}
}

Due to the underlying Java implementation in MPS Jetbrains

, we introduce new operators for bit and equality operators

such as (AND, OR, NOT) to be compatible with our types.

948

We also introduce new operators like inv, which obtains the

multiplicative inverse of a field element (assuming a prime

order).

3) External Code Blocks: In many cases, computing the

value of prover’s witnesses can be more expensive than its

verification, e.g. verifying a solution for a linear system of

equations has less complexity than computing the solution

itself. In such cases, previous compilers assume that the

computation of such witnesses happens independently outside

the circuit, and only the verification is specified in the code.

We believe this may be inconvenient, due to writing code

in two different frameworks. Instead, the programmer can

specify in our framework within the same code how these

computations will take place in Java. To specify code to be

executed outside the circuit, the xJsnark programmer can use

the external code blocks, and the val operator, which

refers to the value during runtime (See Appendix A-B).

4) Smart Memory and Permutation Verifier: As we will

discuss in detail in the back end, xJsnark provides a smart

memory implementation that decides the best way to translate

memory operations after analyzing the workload of each array.

Additionally, xJsnark provides a function that can be used to

verify that a group of elements is a permutation of another,

without exposing the programmer to the internal details of

switching networks. This feature can be used along with the

external code block and constraints to compile some appli-

cations more efficiently, e.g. sorting with respect to arbitrary

criteria (See Appendix A-B for an example, and Section VII-B

for performance results).

We provide additional technical details on type and syn-

tactic checking, control flow, code generation and additional

extension features in the full version of the paper ([10]).

IV. DATA TYPE REPRESENTATION

In this section, we describe how xJsnark’s back end

represents data types and implements their operations. The

discussion will be mainly focused on integers and field el-

ements (recall that integers are field elements, where the

modulus is a power of two). In the beginning, we make a

distinction between short integer and large integer arithmetic.

Assuming the underlying SNARK prime is p, typically a 254-

bit prime, then short integer arithmetic is applied when the

modulus of the field p′ is less than
√
p. For simplicity, when

�log2 p′� < 0.5�log2 p� . The reason for that decision is to

make sure that the initial result of multiplying two elements

will be less than p, i.e. fits in one wire. Otherwise, dividing

the element across multiple words will be needed, as will be

shown when the long arithmetic is described in detail.

Representing the operations of a different field on top of

the SNARK field requires some care, as operations are done

modulo p in the circuits. Therefore, adding two 32-bit integers

is expected to produce a 33-bit value, but we mainly care

about the least significant 32-bit. Converting the 33-bit value

to the correct 32-bit is an expensive process that requires

34 multiplications. This conversion is not always necessary.

In other words, many operations can be done, e.g. additions

or multiplications, before it comes necessary to convert the

element to a value within its field, e.g. to avoid overflows

(when the result of an operation exceeds p), or if the element

is involved in a comparison. The same holds for general field

elements, but the conversion is even more costly here due to a

more expensive remainder operation, as will be shown shortly.

In order to make our implementation safe against overflows,

we keep track of the maximum value that any element can

have at any point. For an element or word x, we denote the

maximum value it can have as xmax.

In the following subsections, we discuss different design

decisions for both short and long integer arithmetic.

A. Short Integer Arithmetic

Assume the field being represented is Fp′ , log2 p
′ < 0.5 ∗

log2 p. Each element is represented as a single word.

1) Bitwidth Adjustment: Addition and multiplication are

straightforward operations for short integer arithmetic, how-

ever they typically increase the bitwidth of the resulting ele-

ment beyond �log2 p′�. Deciding when to convert an element

back to the range of its field is a challenging problem. First,

we have to make a distinction between three types of elements.

• Elements within range, i.e. 0 ≤ emax < p′ : examples

include input elements (which are guaranteed to be in

range), or elements resulting from bitwise operations, e.g.

bitwise XOR. In that case, the output element is guaranteed

to be within range, as it is been computed based on packing

individual bits.

• Elements that could be above the range, i.e. p′ ≤ emax < p
and required to be returned within range: This may in-

clude elements that are labeled as output, elements that are

involved in bitwise operations and comparisons, elements

involved in operations like division or remainder, and ele-

ments that are involved in memory operations. In the context

of integer elements, this also includes elements that are

involved in operations or assignments with higher bitwidth.

For example, adding a 32-bit element to a 64-bit element,

requires that the 32-bit element is in range. Otherwise, this

will lead to a wrong result.

• Elements that could be above the range, i.e. p′ ≤ emax < p
but are not always required to be within range: This includes

intermediate elements between multiplication and addition

operations, such that none of the above conditions apply.

In order to be able to classify the elements into the above

categories, we make an initial pass constructing a dummy

circuit to identify the class of each of the elements. This is

one main objective for the initial phase described in Figure

1. Based on the classification of the elements above, the

main question is when to adjust the bitwidth of an element

e falling in the third category, to achieve the following two

goals (in order): Ensuring no overflows can happen in later

operations involving e, and minimizing the total cost resulting

from bitwidth adjustments.

This can be modeled as a constrained optimization prob-

lem. To illustrate that by example, Figure 2 provides sample

circuits, assuming p′ = 232. For each element ei that does not

949

+

x x

x x

+

x

x x

x

x x

Within range (32-bit)
Adjustment not needed

Above range
Adjustment Required

(a) (b) (c)

b1, v1 b2, v2

b3, v3

b4, v4

b5, v5 b5, v5 b6, v6

x

b6, v6

+

x x

x x
b1, v1 b2, v2

b3, v3

b4, v4

x

b7, v7

+

+

x x

x x

x

Above range
Adjustment Optional

Fig. 2: Bitwidth adjustment examples

fall in the first category, we define the following two variables

bi, vi: bi is a binary variable denoting whether ei is going to be

adjusted or not, while vi represents the value of the bitwidth

before applying adjustments if any. bi is 1 for any elements

falling in the second category. Note that adjusting the bitwidth

of an n-bit element will cost n+ 1 constraints. Now, we can

specify both the objective function and the constraints, for

circuit (a) in Figure 2.

The objective function can be defined as the total number of

constraints resulting from all adjustments f =
∑

i bi(vi + 1)
Subject to the following constraints

v1 =v2 = 64

b5 =b6 = 1

v3 =v1 + b1(32− v1) + v2 + b2(32− v2)

v4 =v3 + b3(32− v3) + 1

v5 =v6 = v4 + b4(32− v4) + 32

vi ∈{32, .., �log2 p� − 1}
bi ∈{0, 1}

It is possible to express the problem as a function of bi’s
only, however, the reason vi’s were introduced is that the size

of the expressions will grow without the equality constraints.

Based on our experience trying multiple nonlinear optimiza-

tion algorithms, using the above approach for large circuits

will not be efficient, but has the advantage of producing

optimal solutions.

Greedy Strategies. Due to the cost of the above solution,

one alternative could be to apply a simple greedy algorithm

after the initial phase, where adjustments are only introduced

if the next operation is going to result in an overflow. This

approach can work well for most of the applications we

consider. Note that the initial phase itself can introduce some

optimizations through the knowledge of how elements are

being used later. For example, in this sample example, it can

be noted that x1 is being used in a bitwise operation later, i.e.

it falls under category 2 defined earlier, and its bitwidth will be

adjusted in all cases. However note that the line x2 = x1 ∗x1
occurs before the bitwise operation. This line could make use

of the fact that x1 will be adjusted back to its range. This is

not possible unless we make a complete pass over the program

first as we do already in the first phase in the back end.

// assume in1, in2 are uint 32 variable inputs , while out is
uint 32 output .

uint 32 x1 = in1∗in2;
uint 32 x2 = x1∗x1;
uint 32 x3 = x1 ˆ in1 ;
..
out = x2+x3;

Another greedy approach will be to study how an element

contributes to different paths leading to an adjustment in the

end. Note that solving the above optimization problem (Figure

2 [a]) will lead to b4 = 1, while b1 = b2 = b3 = 0. This result

can possibly be justified by noticing that wire #4 contributes

eventually to two distinct paths through two multiplication

gates, each leading to an adjustment in the end. However, in

[b] it is expected that no adjustment will be needed in any

of the intermediate levels, although wire #4 still contributes

to two paths, but they are not leading to different adjustment

outcomes. It’s possible during compilation time to study which

intermediate wires contribute to the end points, and select

wires that contribute with multiplications in more than one

path. However, this won’t ensure optimality in all cases as

well. It is also still important to handle the possibilities of

overflows, as the strategy does not directly take that into

account. For example, in Figure 2 [c], applying the strategy

above directly might lead to an overflow in the lower level,

except if the corresponding wire is adjusted.

In summary, the greedy strategies will not always achieve

the optimal solution, but can compile many applications faster.

Adjustment Implementation Adjustment for an element

x is done by computing the element r = x mod p′. Imple-

menting the remainder operation is straightforward when p′

is a power of two. In that case, it is enough to split x, trim

the unnecessary bits, and pack the rest to a new element (if

needed). The cost for the adjustment in that case is nearly:

log2 xmax + 1 constraints.

To get the remainder in the case of general field elements

where p′ is not a power of two, we use the power of SNARK

verification where the prover can provide two values r and q,

950

x

x

+
remainder

m quotient

x y

Group Group

+ -

Aux constant (hardcoded)

Equality Check

assert
==

Aux constant (hardcoded)

Fig. 3: Equality assertion in a modular multiplication circuit

and the circuit checks the following constraint: qp′ + r = x,

while restricting the bitwidth of q such that no overflow will

happen, and also asserting that 0 ≤ r < p′. This last constraint

is implemented by checking that the bitwidth of r is less than

or equal to the bitwidth of p′, and applying the comparison

test mentioned earlier to ensure that r < p′.
However, an additional optimization in the case of fields,

where p′ is not a power of two, is to implement bitwidth

adjustment differently for the elements falling in the third

category described earlier. Such elements do not have to apply

the second part of the third constraint. It is enough for the

prover to provide a value r that satisfies the bitwidth constraint,

but no need to check that r < p′, as adjusting the elements of

the third category is mainly done to avoid overflows.

2) Subtraction: To subtract two short elements x and y, the

result will depend on p if x < y. To avoid that, we introduce an

auxiliary constant a such that a = c.p′, where c is the smallest

integer such that c.p′ ≥ ymax. If c.p′ ≥ p, this means that the

value of y needs to be adjusted, i.e. we need to compute the

value y mod p′ in the circuit as above, and set c to 1 for the

subtraction. The result of the subtraction will be: a+ x− y.

3) Division and Remainder operations: Division and re-

mainder operations supported only for integers have a similar

implementation to the implementation of bitwidth adjustment

described earlier. A similar approach can also apply for

the multiplicative inverse for field elements, by forcing the

remainder of the product of the operand and the result to be

equal to 1 (mod p′), while checking that the inverse result is

in range.

B. Long Integer Arithmetic

Typically, the prime field used in zk-SNARK implementa-

tion is a 254-bit prime field, however in many cryptographic

applications, longer integer arithmetic is required for high

security, such as in RSA or Elliptic Curves. Hence, a long

integer is represented using a group of wires rather than a

0

5

10

15

20

25

16 48 80 112 144 176 208 240

Pr
ov

er
 T

im
e

(s
ec

)

Degree

Naïve
Karatsuba
xJsnark

Fig. 4: Long integer multiplication methods

single wire. An n-bit long integer x is represented by a group

of b-bit words x[i], where i ∈ {0, 1, ..m− 1}, and m =
⌈
n
b

⌉
,

such that x =
∑m−1

i=0 x[i]2ib, and b < log2 p.

A technical question here is how to set b properly to

achieve high performance. As we are going to show, setting the

bitwidth b, to be the largest possible while avoiding overflows

does not necessarily result in the best performance or the

cheapest circuit.

Additionally, as in the short integer case, care is also needed

when another field is represented on top of the 254-bit field

case. However, unlike the short integer case, the algorithms

for when to adjust long integers back will have to be adapted

a little bit as in the following. Most of the operations are

similar to what have been discussed in the short integer case.

We mainly highlight the major differences.

1) Multiplication: Given two long integers x and y each

is m words. While addition is straightforward, i.e. can be

implemented by adding corresponding chunks, multiple op-

tions exist for multiplying x and y in the circuit. For exam-

ple, we can either apply the trivial O(m2) approach, where

z[i] =
∑

j+k=i x[j]y[k], or Karatsuba’s method [34], which

costs O(m1.58) multiplications.

However, it’s possible to have an O(m) approach. The

result of the multiplication z can be computed independently

by the prover and provided as a witness to the circuit.

Then the circuit can verify the result using the following

approach: For each c ∈ {0, .., 2m− 2}, the circuit checks this

constraint: (
∑m−1

i=0 x[i]ci).(
∑m−1

i=0 y[i]ci) =
∑2m−2

i=0 z[i]ci. In

other words, the prover will be required to provide 2m − 1
values that satisfy a linear system of 2m − 1 independent

and consistent equations, that has a single solution. The total

number of constraints to implement this verification circuit

is 2m − 1. Note that we mainly rely on the observation

that multiplication by hard-coded constants in the circuit is

almost free. Figure 4 illustrates a comparison between the

three approaches above with respect to the proof time on a

single processor.

2) Subtraction: Subtraction in the case of long integer

arithmetic is more challenging. Recall that in the case of short

integer arithmetic, an auxiliary constant value was added in

order to make sure the result stays in range. In the case of long

951

integer representation, we also need to ensure that the result of

subtracting corresponding chunks stays in range. The way we

do this is as follows: To subtract two long elements x and y,

we introduce an auxiliary constant a such that a = c.p′, where

c is the smallest integer such that c.p′ ≥ ymax. Additionally,

it must be possible to represent a = c.p′ as a group of words

a[i], such that a[i] ≥ y[i]max for all i.
3) Bitwidth Adjustment: Similar to the case we had before,

bitwidth adjustment in the case of long integers is needed if

any of the operations involving its words may overflow, or if

the number is being used for comparison or equality checks.

The same greedy procedures described earlier can be ap-

plied in the case of long integers, however an easy observation

to make is that when a long integer is involved in a multiplica-

tion, this means that each of its words contributes to multiple

words in the output number, which implies the involvement

in multiple bitwidth adjustment end points. This can make the

decision of adjustment more straightforward. We apply this

simple heuristic: we adjust any long integer that is an output of

a long integer multiplication before being involved in another

multiplication operation.

4) Equality Assertion: In many applications such as RSA

or Elliptic Curves, many inverse and remainder operations

will be required to verify the correctness of the results.

These operations require applying equality constraints on long

integers. This is the most expensive part in the circuit, as

in [24], [36].

What makes the problem of equality assertion in long

integers more challenging is that the words of a long in-

teger operand may not be bounded to their starting range.

For example, consider the main building block of modular

exponentiation illustrated in Figure 3. Both of the integers

z1 = xy, and z2 = nq+ r are supposed to be equal, but their

words do not have to be equal, as any z1[i] or z2[i] are not

expected to be within the range [0, 2b − 1]. Assuming x and

y had properly bounded words, then it’s expected that z1[0]
falls in the range [0, 22b − 1] for example. The way to force

equality efficiently would be by noting that the first b bits for

z1[0] − z2[0] must be zero, while the rest can be propagated

to the check done at the second word, in which the first b bits

of the two words will be checked as well, and so on. This is

the approach applied adopted by [24], [36]. This costs about b
constraints per each pair of words, resulting in a total of 2mb
gates approximately (as xy requires 2m− 1 words).

Additional optimization over [24], [36] is to utilize that

addition and multiplication by constants are free operations.

So, instead of forcing the first b bits of z1[0] − z2[0] to

be zero, we can instead apply a grouping stage (as far

as b allows). For example, if b = 64, it’s clear that we

can apply this constraint instead: force the first 2b bits of

z1[0] + 264z1[1] − (z2[0] + 264z2[1]) to be zero, propagate

the rest of the bits to the next check (nearly b bits). This

implies that the circuit will need to pay about 64 gates per

each 2 pairs of words. If b was chosen the highest possible

(e.g. 120 in Cinderella’s implementation [26]), the number of

words will be less by a factor of 2, but the cost will be higher

0

20000

40000

60000

80000

100000

120000

140000

160000

0 16 32 48 64 80 96 112

N
um

be
r o

f g
at

es

Bitwidth

Fig. 5: Bitwidth Effect on Number of Gates in RSA modular

exponentiation circuit

per every pair of words. As b decreases, the more grouping

that can be done, and the more savings. That said, decreasing

b results in a higher number of words, which means more cost

for the multiplication module in the earlier steps. Based on a

parameter exploration for RSA 2048, choosing b at about 32

bits provides much more savings compared to both extremes

(Figure 5).

V. RAM IMPLEMENTATION

One challenge in translating programs to circuits is that pro-

grams make dynamic memory accesses (whose addresses are

not known at compilation time), whereas circuits have static
wiring. Before presenting our approach, we overview existing

techniques for verifying dynamic memory accesses [42], [49]:

Linear Scan. Each memory access is performed through a

linear sweep of the entire memory. Roughly speaking, this

costs O(kn) for making k memory accesses where n is the

total memory size.

Merkle Tree. Memory accesses are verified through memory

checking techniques such as a Merkle hash tree. This approach

requires roughly Θ(k log n) hash computations inside the

SNARK circuit for making a total of k accesses. Although

the dependence on n is logarithmic, the hash evaluation is

expensive, and therefore this approach is in practice inefficient

unless for very large choices of n.

Permutation Network. Memory accesses are verified using

an AS-Waksman network [14]: This approach costs O((k +
n) log(k+ n)) for k accesses where the starting memory size

is n. This approach was proposed in [17], and subsequently

used in TinyRAM [18], and Buffet [49].

In Appendix B-A, we discuss low-level optimizations for

both Merkle tree and permutation network approaches.

A. Algorithm for read-only memory access

In this section, we discuss a new method for implementing

dynamic memory accesses in read-only arrays whose contents

are prepopulated. This can fit many applications where the

memory content is known in advance, such as the cases for

S-box evaluation in cryptographic primitives, as in AES. It can

952

== 0? x =

LSys (n)

Hardcoded
Constants

Dot
Product

1 �� ��2 ��3 .. ��n

1 �� ��2 ��3 .. ��n
.
.
.

1 ���� ����2 ����3 .. ���� n

��
��.
.

����
1

��
��.
.

����

��
��.
.

����
1

Preprocessing (Outside Circuit)

1
�
.
.
.�n-1

�n

Circuit Construction � = 	(�)

Compute
Powers
Vector

(n)

No Preprocessing

Circuit Construction (� = 	[�])

�

−��
== 0?

== 0?

Σ

�

.

.

.

LScan (n)

(i) Linear Scan Method – O(n) (ii) Linear System Method – O(n)

Cost = 0

Cost = n - 1
Cost = 2n

−��

−����

× ��
× ��

× ����
�

�

Fig. 6: O(n) methods for read-only memory access

also be extended to other cases where look-up tables are used

instead of expensive floating-point arithmetic computation, as

in logarithmic and trigonometric functions.

Problem statement and known techniques. Formally, given

a mapping M from A = {0, 1}log2 n → B = {0, 1}log2 n.

Assume there is no straightforward mapping from A to B, as

in the case of random permutations. For simplicity, assume

that n is an even power of two. The mapping is fixed and

known in advance, however, an accessed index a in the circuit

is unknown at compilation time. To resolve the mapping

and obtain b = M(a) in the circuit, we can employ any

of the known techniques, including linear scan, Merkle tree,

or permutation networks — in fact, we can make further

optimizations that improve the performance by O(1) factor

by making use of the fact that the array contents are known

at compile time (i.e., constants), and multiplication with a

constant comes for free in our cost model. When comparing

with these existing techniques, Table II will assume that these

optimizations have been applied to existing techniques.

Our algorithm. Now, we will show how to have a useful

O(
√
n) algorithm for resolving b = M(a) that can asymptot-

ically be better than all the above cases in practical cases.

Building block: polynomial function via a linear system
solution. We first describe a new building block for accessing a

read-only memory. Although this building block alone requires

O(n) cost per access, we will later explain how to combine

this technique with our naı̈ve linear scan algorithm, to obtain

a new O(
√
n) algorithm.

An n-degree polynomial function can be introduced to

obtain a relation between the inputs and the outputs. In a pre-

processing phase, the compiler constructs an n×(n+1) matrix

P , where each row is the power vector [1, a, a2, .., an] for all

ai ∈ A, and a column vector b that has the corresponding n
elements of B. Then, a coefficient vector c with n+1 elements

can be obtained by solving the linear system Pc = b. Note

that the last element of c is set to 1. A solution will always

exist since the finite field we operate on has a prime order.

Then, in the circuit, the coefficients c can be just hardcoded as

constants in the circuits, and to resolve an index a, the power

vector a is constructed costing n − 1 gates, and the result is

obtained by the dot product b = a · c costing zero gates. We

denote this method as the linear system-based method in the

next discussions.
Intuition. The proposed technique relies on the power of

SNARK verification. The actual value of b = M(a) does not

have to be computed by the circuit, but instead, the prover can

provide b as a witness, and the circuit can just verify that the

pair (a, b) is a valid pair with respect to M .
The O(

√
n) method we propose for checking the validity

of the pair is a hybrid of the first two O(n) methods men-

tioned earlier (Both methods are illustrated in Figure 6). The

approach is mainly inspired by two observations in the second

method: 1) The cost of the dot product operation is zero, since

the coefficient vector is computed in advance. 2) The cost of

the technique is mainly due to computing the powers of a,

which costs O(n) multiplications.
Now, the goal is to reduce the length of the power vector,

while introducing multiple dot product operations instead.

In brief, this will be done by decomposing the problem of

accessing one array that has n distinct elements to checking

membership in
√
n arrays, each has

√
n distinct elements.

In particular, for each array, a linear system is solved in

the preprocessing phase, and a coefficient vector is obtained.

Then, in the constructed circuit, a shorter power vector is

computed (only up to
√
n elements), and then the free dot

product operations are applied on the
√
n hardcoded vectors.

The output element will be verified using a more efficient

version of the linear scan method, which will iterate only over√
n elements instead of n elements.

Approach. More formally, during the compilation time, since

the memory is fixed, the back end can compute the set S =
{z0, z1, ..zn−1}, where zi = bi +n.ai. Note that the elements

zi are guaranteed to be distinct even if the values bi are not,

as the indices ai are distinct, and 0 ≤ bi < n.
The back end then divides the set S into

√
n subsets, such

that each subset Sj = {zk : j
√
n ≤ k ≤ (j+1)

√
n−1} for all

j ∈ 0, 1, ..,
√
n− 1. This implies that the cardinality of each

Sj is
√
n. For each Sj , the back end constructs the following

linear system of equations:
∑√

n−1
k=0 cjkz

k+z
√
n = 0 for each

z ∈ Sj , where cj is a column vector associated with Sj . Since

every set contains
√
n distinct elements, it’s expected to have√

n equations per each linear system, and a unique solution

always exists since we operate in finite field with a prime

order.
In the circuit construction phase, the back end hardcodes the

vectors {ci} in the circuit. To resolve a random access to index

a, the prover provides a witness b, and the circuit checks that

b = M(a). In other words, the circuit checks that the value

z = b+a.n belongs to S. First, the circuit checks the range of

b, i.e. 0 ≤ b < n. This costs about log2 n+1 gates. Then, the

power vector z = [1, z, ..., z
√
n] is computed (costing

√
n− 1

953

1.E+00

1.E+03

1.E+06

1.E+09

0 5 10 15 20 25

N
um

be
r o

f C
on

st
ra

in
ts

log2 k

Linear Scan

Optimized Permutation Network

xjsnark

Merkle tree

> 3x speed up

> 10x speed up

Fig. 7: Comparison between the proposed O(
√
n) method

for read-only memory access, and other optimized approaches

when n = 256. k represents the number of accesses.

TABLE II: Comparing read-only constant memory access

techniques in terms of the total number of constraints for all

accesses (n denotes the memory size, and k denotes the total

number of reads.)

Total Cost (Complexity) Actual Total Cost

Linear Scan O(kn) 2kn
Linear System O(kn) kn

Merkle Tree O(k logn) 2000k log2 n
Perm. N/w O((n+ k)(log(n+ k))) (n+ k)(log2(n+ k))+

2 log2(k + n) + 3 log2 n

xJsnark O(k
√
n) k(2

√
n+ log2 n)

gates), and applied to each vector in the set {cj} via free dot

product operations. If the value b provided by the prover is

correct, then the value z should belong to only one of the sets

Sj , and result in a zero value in the corresponding dot product

operation. To verify the correctness of b, it suffices to check

that any of the dot product outputs is zero. This can be done

through a more efficient linear scan path that just multiplies

all the values and asserts the product value to be zero. This

costs only
√
n gates. An additional visual illustration of the

method can be found in Figure 8 in Appendix B-B. The actual

cost in the circuit will be equal to 2
√
n + log2 n constraints

per access. Further optimization is provided in Appendix B-B.

Comparison with earlier methods In case of small hardcoded

memories, such as in AES S-box (which is a 256-element

array), the proposed method is clearly better than the O(n)
approaches. Additionally, it’s much better than the Merkle tree

approach due to the large cost of the hash function. When

the number of accesses is high, the main competitive to our

approach in the case of small memories is the permutation

network approach, which has two main issues: 1) Since the

memory does not start empty, n write operations will need to

be inserted in the permutation network as input initially. 2)

More importantly, the total cost of applying the permutation

network is O((n + k)(log(n + k))) as mentioned earlier,

which means it also depends on the number of accesses made,

besides the memory size. Table II compares all the techniques

discussed so far.

Case study when n = 256. Figure 7 compares the exist-

ing approaches (after optimizations) to the proposed O(
√
n)

method (in a logarithmic scale), identifying in which regions

each algorithm performs better. As shown, the proposed algo-

rithm performs better than all the other alternatives, achieving

speed-ups ranging from more than 10× when the number of

accesses is 2, to more than 3×, when the number of memory

accesses is more than 32 million.

B. Smart Memory Implementation

In our framework, a programmer will use a special syntax to

instantiate a smart memory, however the programmer will be

able to use the typical array operators. In the first preprocess-

ing stage of the back end, each memory is studied separately,

and the compiler takes the following factors into account: 1)

The number of read/write operations, 2) The type/size of data

being accessed, and 3) Whether the memory contents is read

only and known in advance or not. Based on these factors,

the back end decides the most appropriate implementation,

and its specifics. For example, in case of a general read-write

memory (with contents unknown during compilation time), it

can decide that a linear scan method is better than constructing

a permutation network, when the operations done are not

many or when they involve few random accesses among many

accesses to constant locations. Also, in the case of read-only

hardcoded memories, the framework automatically chooses the

best implementation, and performs any required preprocessing.

VI. ARITHMETIC OPTIMIZATION MODULE

In the previous optimizations, we discussed how to reduce

the number of constraints resulting from split gates, random

memory accesses and other operations. In this section, we

describe a low-level optimization that can further reduce the

number of gates via multivariate polynomial minimization.

This module is motivated by the following: As mentioned

earlier, the cost for bit-level operations is high. Any inefficient

implementation of boolean operations will have an effect on

the size of the circuit that correlates with the bitwidth of the

variables. For example, in this SHA-256 code, the majority

variable is being computed as in the following equation, where

all a, b and c are 32-bit words.

for (int i = 0; i < 64; i++){
// ..
maj = (a ˆ b) & (b ˆ c) & (a ˆ c)
// ..
c = b;
b = a;
a = /∗ Code omitted f(maj) ∗/ ;

}

If this equation is translated into a circuit directly, given

the bits of a, b and c, computing each bit in maj will

cost 5 multiplications per bit, however using minimization

techniques, this can be reduced to 2 multiplications, saving

a total of 6144 multiplications across all bits in all rounds.

To achieve that, each bit i of maj can be expressed as:

maji = ti + ci(ai + bi − 2ti), where ti = aibi.

954

This cannot be specified directly in high-level C or java,

but instead, taking Geppetto as an example, the compiler

supports special instructions to have access to bits, and to write

constraints accordingly. An additional optimization that can be

done is to observe that the variable b is assigned to c, and a is

assigned to b. This implies that the maj computation across

rounds will have shared variables on the bit level. Making

use of that observation, additional 1024 multiplications can

be saved.

To perform such optimization automatically, we imple-

mented a customized technique for multi-variate polynomial

minimization based on [32] as a building block. This block

takes a set of multivariate polynomials as inputs, and tries

to minimize the expressions cost based on a greedy strategy.

Due to the large circuit sizes, we developed techniques for

clustering the arithmetic expressions into smaller subgroups

that can be optimized independently in parallel. Due to space

constraints, we provide the details in Appendix C.

VII. EXPERIMENTAL EVALUATION

In this section, we illustrate how our framework provides

savings for multiple cryptographic building blocks, spanning

hash functions, signatures, and encryption, compared to other

compilers, while achieving programmability. Additionally, we

discuss savings for random memory access. Furthermore,

the evaluation also includes the full large circuit used by

ZeroCash [16] for anonymous transactions, which we compare

to existing manual optimized implementations, and show that

our framework provides competitive performance to manual

implementation, while reducing the programmer’s effort.

A. Cryptographic Primitives

In the following, we evaluate four cryptographic prim-

itives using our proposed framework and algorithms. The

comparison is primarily done with respect to the state-of-

the-art compilers, [24], [49]. The savings are measured in

the number of the constraints (multiplication gates), while

any additional programmer effort/experience required by the

other compilers is mainly characterized by the following: 1)

Introducing additional prover inputs and constraints to the

circuit. 2) Specifying where bitwidth adjustment/remainder

operations are needed. 3) Adding special procedures, e.g. a

linear search code to implement random access.

SHA-256. We start by evaluating the SHA-256 circuit gen-

erated by the three compilers. SHA-256 has been used and

optimized for zk-SNARKs in many earlier systems before,

e.g. ZeroCash [16] and Hawk [35], mostly in a manually
optimized way built using either libsnark [6] or jsnark [5],

which provide a circuit that has approximately 27100 and

26100 gates respectively. In the following, we show how

xJsnark reduces the gap between the automated solutions and

the manual ones.

The code tested for SHA-256 is a typical SHA-256 code,

except that Java integer type is replaced by xJsnark’s

parametrized type uint_32. We assume a corresponding C

code for both Buffet and Geppetto. We assume that the circuit

hashes one block only, and that all inputs are variables, i.e.

no padding is applied. Our experiments (Table III) indicate

that the SHA-256 circuit produced automatically by xJsnark
achieves (1.5× and 1.7×) savings over the alternatives. Two

main reasons behind the savings in our automatically produced

SHA-256 circuit. The first is the smart bitwidth adjustment,

which saves about 3,200 constraints over Geppetto, 10,000

constraints over Buffet, and the multivariate polynomial min-

imization, which saves 8,800 constraints over both compilers.

Note that it is possible to enhance the SHA-256 circuits

in Geppetto and Buffet, but with the cost of additional pro-

gramming effort/experience (e.g. optimizing the expressions

by hand in Geppetto, or adding casting statements in Buffet).

In this example specifically, we assumed almost the same code

in all of the three alternatives.

SWIFFT hash function. The SWIFFT function is a lattice-

based hash function [39], in which the computations run in a

field with p′ = 257. As mentioned earlier, xJsnark allows the

programmer to define Field types for arbitrary p′. On the other

hand, Buffet and Geppetto do not have native data types that

represent fields. As indicated in Table III, xJsnark achieves

the most savings while being easy to program. The savings

are due to efficient remainder checking when the represented

p′ can be expressed as 2n + 1, while the programmability

is mainly due to that fact that the programmer in that case

does not choose where to do the remainder operation. In

comparison, Buffet supports mod operations (in a less efficient

way), and the programmer will have to select where to do the

mod operations. The result in Table III assumes the optimal

positioning of remainder operations in Buffet.

To the best of our knowledge, Geppetto does not (yet)

support mod operations when the modulus is not a power

of two, so it’s assumed that the programmer will have to

manually add the additional inputs and constraint checking

of the remainder operations, plus choosing where to perform

the remainder operations.

RSA-2048 Modular Exponentiation. Due to the complexity

of the RSA circuit, we only compare with existing imple-

mentations/specifications, such as the state-of-the-art imple-

mentation in Cinderella [26], which was developed on top of

Geppetto. It is true that Buffet as well provides a library for

long integer operations, however the remainder operation is not

implemented, and to implement it efficiently, it would require

the programmer to specify prover witness inputs to the circuit.

To ensure a fair comparison, we implemented the speci-

fication provided in the Cinderella paper (assuming a pre-

known modulus), and compared it with our back end technique

described earlier (The cost of our Cinderella implementation

is less, which provides a good lower bound). Cinderella’s

implementation divides the big integers to 120-bit words,

and hence cannot apply the group step described in our

equality assertion algorithm, while in xJsnark’s case, the back

end sets the bitwidth to 32, applies our O(n) multiplication

algorithm, and the improved equality assertion algorithm with

the additional group step. The result is shown in Table III,

955

TABLE III: Comparison between different compilers with

respect to the number of constraints and programmability.

A filled circle indicates more effort/experience by the pro-

grammer relatively. A † symbol indicates a conservative lower

bound.

Buffet [49] Geppetto [24] xJsnark

SHA-256 44999 � 38556 � 26155 �
SWIFFT 3857 �� 3006† � 3006 �
RSA-2048 - � 144933[26] �� 90804 �
AES-128 (300) 9.3×106† � 27.2×106† �� 4.2×106 �

showing more than 1.5× speed-up overall. Looking closer, the

enhancement in the equality assertion step exceeds 3×, as both

implementations share about 70,000 constraints for verifying

the range of prover witness values. Note that in our case, the

programmer does not deal with any additional witness inputs

or constraints, compared to Cinderella’s code in Geppetto. This

all happens in the background.

AES-128. The major cost incurred by an AES block in

naive implementations is mainly due to the cost of randomly

accessing its S-Box, therefore we focus in this section only

on this part while assuming that the rest of the AES function

has been implemented optimally for all the other compilers.

This is in particular to show the savings that our proposed

memory technique introduces. Table III illustrates the results,

when the number of AES blocks is high, e.g. 300. (Note

that our technique always provides better results (Figure 7)).

To the best of our knowledge, Geppetto does not currently

support random accesses of unknown indices, therefore the

linear scan method is the default method to implement S-Box

there. For the Buffet case, we computed an estimate using

the equation provided in the original paper [49], which uses

an unoptimized permutation network. As shown in the table,

our O(
√
n) technique provides more than 2× speedup over

Buffet for the whole AES circuit. It should also be noted

that our O(
√
n) approach used in this evaluation achieves

1.7× enhancement over the optimized permutation network

approach we use. The savings also apply to the key sizes and

the memory usage.

B. Random Memory Access Application

In this section, we discuss the savings introduced by our

framework in sorting applications. We start by comparing the

result of compiling merge sorting code using Buffet [49],

and xJsnark. The first two columns of Table IVcompare

the circuit sizes produced by a merge sort implementation

of an array of 16-bit integers, that is according to Buffet’s

available repository [2]. The code written using xJsnark is

almost similar except for minor syntax differences. For the

first case where n = 32, our adaptive memory algorithm selects

the linear scan method over the permutation network after

analyzing the memory workload in the first phase. In the other

cases, the linear scan performs worse, and the back end selects

the permutation network instead. In both cases, there is 2-3×
improvement over earlier implementations.

TABLE IV: Number of constraints for sorting circuits (n: input

size)

n
Buffet[49] xJsnark xJsnark
Merge Sort Merge Sort Verify Permut.

32 276×103 79×103 782
64 714×103 266×103 1646
512 7.9×106[49] 3.8×106 14830

TABLE V: Comparison between the manual implementation

and different compilers in the case of ZeroCash’s Pour Circuit.

A filled circle indicates more effort/experience by the program-

mer. A † symbol indicates a conservative lower bound.

Constraints Development Effort

Existing Manual 4× 106[16], [7] �
Implementations

xJsnark 3.8×106 �
Buffet [49] 6×106† �
Geppetto [24] 5×106† �

Furthermore, note that it will be more efficient to write

code for verifying the sorting result directly, using the high-

level permutation verification feature introduced in Section III.

This method provides significantly better results as it saves

a logarithmic factor of comparisons, and eliminates the cost

of read/write memory operations. Table IV shows the savings

compared to basic approaches (Appendix A-C provides a code

example).

C. ZeroCash’s ZK-SNARK Circuit

Using our framework, we developed one existing applica-

tion that was manually developed using the libsnark gadget

library [6], [7], mainly the pour circuit in the ZeroCash system

[16], which is used to add privacy to transactions on top of

the blockchain.

Table V compares the alternatives for developing the Ze-

roCash Pour circuit. The reason xJsnark provides slightly

better results than the manual optimized implementation is

due to some further low-level arithmetic optimizations that can

be automatically detected such as those by the multi-variate

polynomial minimizer, by detecting similarities across loops

(As described in Section VI). In terms of the development

effort, the implementation is more compact in comparison with

the existing available implementation online on Github [7],

and the gadgets it uses from libsnark [6]. The rest of the table

shows the efficiency achieved by xJsnark compared to other

compilers.

A detailed discussion of limitations and future work is

provided in Appendix E. The full version of the paper and

additional code examples will be made available on this

website [10].

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their com-

ments and suggestions. This work was supported in part by

NSF awards #1514261 and #1652259 and by a NIST award.

956

REFERENCES

[1] “bellman,” https://github.com/ebfull/bellman.

[2] “Buffet’s Merge Sort Benchmark,” https://github.com/pepper-project/
pepper/blob/master/pepper/apps sfdl/merge sort.c.

[3] “Jetbrains MPS,” https://www.jetbrains.com/mps/.

[4] “Jetbrains MPS Github,” https://github.com/JetBrains/MPS.

[5] “jsnark: A java library for building snarks,” oblivm.com/jsnark.

[6] “libsnark,” https://github.com/scipr-lab/libsnark.

[7] “LibZeroCash Github,” https://github.com/Zerocash/libzerocash.

[8] “mbeddr,” http://mbeddr.com.

[9] “MetaR,” https://github.com/CampagneLaboratory/MetaR.

[10] “xJsnark website,” www.xjsnark.com.

[11] “Xtext,” http://www.eclipse.org/Xtext/.

[12] “Youtrack,” https://www.jetbrains.com/youtrack/.

[13] M. Backes, M. Barbosa, D. Fiore, and R. M. Reischuk, “Adsnark:
nearly practical and privacy-preserving proofs on authenticated data,”
in Security and Privacy (SP), 2015 IEEE Symposium on. IEEE, 2015.

[14] B. Beauquier and E. Darrot, “On arbitrary size waksman networks and
their vulnerability,” Parallel Processing Letters, vol. 12, no. 03n04, pp.
287–296.

[15] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct non-
interactive zero knowledge for a von neumann architecture,” in USENIX
Security, 2014.

[16] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza, “Zerocash: Decentralized anonymous payments from
bitcoin,” in S & P, 2014.

[17] E. Ben-Sasson, A. Chiesa, D. Genkin, and E. Tromer, “Fast reductions
from rams to delegatable succinct constraint satisfaction problems,”
in Proceedings of the 4th conference on Innovations in Theoretical
Computer Science. ACM, 2013, pp. 401–414.

[18] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza, “Snarks
for C: verifying program executions succinctly and in zero knowledge,”
in CRYPTO, 2013.

[19] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Scalable zero
knowledge via cycles of elliptic curves,” in CRYPTO, 2014.

[20] J. Boyar, R. Peralta, and D. Pochuev, “On the multiplicative complexity
of boolean functions over the basis (,Ł, 1),” Theoretical Computer
Science, vol. 235, no. 1, pp. 43–57, 2000.

[21] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg, and
M. Walfish, “Verifying computations with state,” in Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles.
ACM, 2013, pp. 341–357.

[22] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang,
“Mis: A multiple-level logic optimization system,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 6,
no. 6, pp. 1062–1081, 1987.

[23] J. Carlsson, “snarklib: a c++ template library for zero knowledge proofs,”
https://github.com/jancarlsson/snarklib.

[24] C. Costello, C. Fournet, J. Howell, M. Kohlweiss, B. Kreuter,
M. Naehrig, B. Parno, and S. Zahur, “Geppetto: Versatile verifiable
computation,” in S&P, 2014.

[25] G. Danezis, C. Fournet, M. Kohlweiss, and B. Parno, “Pinocchio Coin:
building Zerocoin from a succinct pairing-based proof system,” in
PETShop, 2013.

[26] A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, and B. Parno, “Turning
shabby x.509 certificates into elegant anonymous credentials with the
magic of verifiable computation,” in S& P, 2016.

[27] C. Fournet, C. Keller, and V. Laporte, “A certified compiler for verifiable
computing,” in Computer Security Foundations Symposium (CSF), 2016
IEEE 29th. IEEE, 2016, pp. 268–280.

[28] M. Fowler, “Language Workbenches: The Killer-App for Domain
Specific Languages?” http://www.issi.uned.es/doctorado/generative/
Bibliografia/Fowler.pdf, accessed: 11-01-2016.

[29] M. Fredrikson and B. Livshits, “Zø: An optimizing distributing zero-
knowledge compiler,” in Proceedings of the 23rd USENIX Security
Symposium, San Diego, CA, USA, August 20-22, 2014., 2014, pp. 909–
924.

[30] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable com-
puting: Outsourcing computation to untrusted workers,” in Proceed-
ings of the 30th Annual Conference on Advances in Cryptology, ser.
CRYPTO’10, 2010, pp. 465–482.

[31] R. Gennaro, C. Gentry, B. Parno, and M. Raykova, “Quadratic span
programs and succinct nizks without pcps,” in Advances in Cryptology–
EUROCRYPT 2013. Springer, 2013, pp. 626–645.

[32] A. Hosangadi, F. Fallah, and R. Kastner, “Optimizing polynomial expres-
sions by algebraic factorization and common subexpression elimination,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 25, no. 10, pp. 2012–2022, 2006.

[33] A. Juels, A. Kosba, and E. Shi, “The ring of gyges: Using smart contracts
for crime,” Manuscript, 2015.

[34] A. Karatsuba and Y. Ofman, “Multiplication of multidigit numbers on
automata,” in Soviet physics doklady, vol. 7, 1963, p. 595.

[35] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” in IEEE Symposium on Security and Privacy, 2016.

[36] A. Kosba, Z. Zhao, A. Miller, Y. Qian, H. Chan, C. Papamanthou,
R. Pass, abhi shelat, and E. Shi, “C∅c∅: A framework for building
composable zero-knowledge proofs,” Cryptology ePrint Archive, Report
2015/1093, 2015, http://eprint.iacr.org/2015/1093.

[37] B. Kreuter, B. Mood, A. Shelat, and K. Butler, “PCF: A portable circuit
format for scalable two-party secure computation,” in Usenix Security,
2013.

[38] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi, “ObliVM: A
programming framework for secure computation,” in S&P, 2015.

[39] V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen, “Swifft: A
modest proposal for fft hashing,” in International Workshop on Fast
Software Encryption. Springer, 2008, pp. 54–72.

[40] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, “Fairplay: a secure two-
party computation system,” in USENIX Security, 2004.

[41] K. Nayak, X. S. Wang, S. Ioannidis, U. Weinsberg, N. Taft, and E. Shi,
“GraphSC: Parallel Secure Computation Made Easy,” in IEEE S & P,
2015.

[42] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: Nearly
practical verifiable computation,” in S & P, 2013.

[43] V. Pech, A. Shatalin, and M. Voelter, “Jetbrains mps as a tool for
extending java,” in Proceedings of the 2013 International Conference on
Principles and Practices of Programming on the Java Platform: Virtual
Machines, Languages, and Tools. ACM, 2013, pp. 165–168.

[44] A. Rastogi, M. A. Hammer, and M. Hicks, “Wysteria: A programming
language for generic, mixed-mode multiparty computations,” in S&P,
2014.

[45] E. Shi, A. Perrig, and L. V. Doorn, “BIND: A fine-grained attestation
service for secure distributed systems,” in IEEE Symposium on Security
and Privacy, 2005.

[46] M. Voelter, “Language and IDE modularization and composition with
MPS,” in Generative and Transformational Techniques in Software
Engineering IV, International Summer School, GTTSE 2011, Braga,
Portugal, July 3-9, 2011. Revised Papers, 2011.

[47] M. Voelter, D. Ratiu, B. Schaetz, and B. Kolb, “mbeddr: an extensible
c-based programming language and ide for embedded systems,” in
Proceedings of the 3rd annual conference on Systems, programming,
and applications: software for humanity. ACM, 2012, pp. 121–140.

[48] M. Voelter, J. Siegmund, T. Berger, and B. Kolb, “Towards user-friendly
projectional editors,” in International Conference on Software Language
Engineering. Springer, 2014, pp. 41–61.

[49] R. S. Wahby, S. T. V. Setty, Z. Ren, A. J. Blumberg, and M. Walfish,
“Efficient RAM and control flow in verifiable outsourced computation,”
in NDSS, 2015.

APPENDIX A

ADDITIONAL CODE EXAMPLES

A. Simple Circuit Example

The following piece of code specifies a simple circuit that

performs a dot product operation:

Program SimpleCircuit {
// SIZE denotes the vector size
uint 32 [] x = new uint 32[SIZE];
uint 32 [] y = new uint 32[SIZE];
uint 32 z;

inputs {x, y}; // circuit inputs
outputs {z}; // circuit outputs

957

witnesses {}; // external prover input

void Main(){
z = 0;
for (int i = 0; i < SIZE; i++){

z = z + x[i]∗y[i];
}

}
}

B. External Code Example

The following piece of code specifies a circuit, where a

solution is desired for a simple 2×2 linear system of equations:

Program LinearSystemVerification {
uint 32 [] a1 = new uint 32 [2];
uint 32 [] a2 = new uint 32 [2];
uint 32 b1;
uint 32 b2;
uint 32 [] solution = new uint 32 [2];

inputs{ a1,a2,b1,b2 };
outputs { };
witnesses { solution };

void Main(){
external {

// read the values of the variables during runtime , and
// convert them to the BigInteger Java type
BigInteger [] a1 vals = new BigInteger[]{a1 [0]. val ,

a1 [1]. val};
BigInteger [] a2 vals = new BigInteger[]{a2 [0]. val ,

a2 [1]. val};
BigInteger [] b vals = new BigInteger[]{b1.val , b2.val};

BigInteger [] solution vals = solve (a1 vals , a2 vals , b vals) ;
solution [0]. val = solution vals [0];
solution [1]. val = solution vals [1];

}
verifyEq(solution [0]∗a1[0] + solution [1]∗a1 [1], b1)
verifyEq(solution [0]∗a2[0] + solution [1]∗a2 [1], b2)

}

BigInteger [] solve (..){
// A Java method that solves linear systems of equations over

finite fields
}

}

C. Sorting Code Example

This example illustrates the usage of both the permutation

verifier feature along with the external code blocks. The

omitted code is simple Java sorting calls.

Program Sort {
int SIZE = 1024;
uint 32 [] array = new uint 32[SIZE];
uint 32 [] sortedArray = new uint 32[SIZE];

inputs { array };
witnesses { sortedArray };
outputs { sortedArray };

void Main(){
external {

// outside circuit

// extract values
BigInteger [] values = new BigInteger[SIZE];

for (int i = 0; i < SIZE; i++)
values [i] = array [i]. val ;

/∗∗ code omitted ..
Apply sorting outside the circuit to obtain sortedValues
and sortedIdx (the index of elements after sorting) . ∗∗/

// provide solution
for (int i = 0; i < SIZE; i++)

sortedArray [i]. val = sortedValues [i];

// Give hint to the evaluator during run time
resolve permutation (sortedIdx , ”id1”) ;

}
// Inside circuit
verify permutation <uint 32>(array , sortedArray , ”id1”) ;
for (int i = 0; i < SIZE − 1; i++)

verify (sortedArray [i] <= sortedArray[i + 1]) ;
}

}

APPENDIX B

ADDITIONAL DETAILS FOR MEMORY IMPLEMENTATION

A. Optimizations for earlier methods
In this section, we discuss optimizations for both the Merkle

tree and the permutation network approaches:
1) Merkle tree approach: The main bottleneck in Merkle

tree implementations is the cost of the hash function applied at

each level. Pantry reported about 4700 multiplication gates per

level. Instead, it is possible to use a SNARK-friendly collision

resistant hash function, as the one initially proposed in [19],

and later analyzed in [36]. Using such hash function, the cost

per level can be 2032 gates to achieve more than 128 bit

security level.
2) Permutation network approach: A permutation network

is typically implemented as an AS-Waksman network in order

to fit the arbitrary number of accesses. Buffet reported the

cost per access nearly to be: c + 10 log k + 2 log n, where

k is the number of memory accesses, n is the memory size

and c is a constant. The reason for the factor of 10 is due to

the observation that every memory access contributes a record

of four wires to the permutation network, since every memory

access is implemented as a tuple of four elements (Timestamp,

Index, Data Element, LOAD/WRITE). Any switch in the

permutation network will receive two tuples as input, and a

verifiably binary input to set the direction of the switch.
In some situations involving small memories and short data

elements, it might be better to pack the four elements of a tuple

together to a single wire, such that every switch in the network

will only have two wires as inputs. An interesting observation

here is that a switch in that case can be implemented without

using an input to handle the switching. In fact, it can be

implemented using one constraint. For a switch receiving two

wires w1 and w2, the prover provides the first output wire as

an external witness w′
1, such that (w1 − w′

1)(w2 − w′
2) = 0,

and the other wire can be computed as a linear function of the

three other wires, simply by w′
2 = (w1 + w2)− w′

1.
Deciding whether to do the packing or not is a decision by

the compiler that depends on the memory workload, and the

type/size of the data elements stored.

958

��
��.
.

����

A B
��
��.
.

����

� = �� + �. ��

� = �� + �. ��.

.

��� = ���� + �. ����

�

�.
.

 ���

 �

 ���
.
.

 ���

�� �

�� ���

.

.

���

0
0
.
0

x =

1 zj zj
2. . .
� � ��

LSys (�)

…

0
0
.
0

x =

1 zj zj
2. . .
� � � ���

LSys (�)

…

(i) Preprocessing

�

Compute Powers
Vector (�)

Verify � � = �

�

 = � + �. �

.

.

.

.

{��}
Dot

Product
Dot

Product

Dot
Product

i = 0

i = 1

i = � -1

Hardcoded Constants

�
Must
be
Zero

LScan (�)

Cost = �

Cost = �

Cost =(� − �)

(ii) Circuit Construction

Split to � subsets

…

Check
0 ≤ � ≤ � − 1

�

Cost =log � + 1

�

+× �

Verification Circuit

.

.

.

Fig. 8: Additional illustration of the read-only memory approach in Section V-A

B. The Read-only memory case

Additional Illustration Figure 8 provides an additional visual

illustration of the read-only memory approach in Section V-A.

Additional Optimizations. Further optimizations can be made

to the earlier approach to reduce the number of gates per

access, but still within the O(
√
n) complexity. For example,

in the above description, instead of completely relying on

the power vector in constructing the linear systems, if the

bit decompositions of a and b are available/needed for other

purposes in the circuit (b’s bit decomposition is already needed

for the range check), then the bits can be used instead to

partially construct the linear systems. This has to be done

carefully, such that the constructed linear system of equations

ensure a unique solution. This may require shuffling the

elements before dividing them into
√
n groups, and including

few elements from the power vector.

Such optimization helps in reducing the cost of the AES

implementation, since the bit decomposition of a and b are

typically needed for other parts in the circuit.

APPENDIX C

ARITHMETIC OPTIMIZATION MODULE DETAILS

In this section, we illustrate the details of the arithmetic

optimization module.

A. Assignment of Input and Output Symbols

In many programs, it is not possible to express the circuit

outputs as polynomial functions of the inputs. This is mainly

due to having special kinds of gates, where the output cannot

be written as a polynomial function of the inputs. This

includes the split gate, the zero checking gate, and typically

user-defined gadgets that rely on verification properties, e.g.

a gadget for verifying a linear system of equations. Such

gates appear in any programs that have bitwise operations,

conditionals, division and others. Therefore, we may need

to split the circuit to multiple sub-circuits depending on its

shape. The way this is done is by labeling wires as opt-input
(denoting an input variable to an optimization problem) or

opt-output (denoting an output variable to an optimization

problem) in an initial phase. The notion of opt-input and opt-

output variables used above should not be confused with the

input and output wires of the circuit. After labeling, the sub-

problems are chosen accordingly.
The criteria by which we initially label wires as opt-input

or opt-output variables, are as follows.

• Program input and prover witness wires are labeled as

opt-inputs, while outputs are labeled as opt-outputs.

• For any gates in which the output cannot be expressed

as a polynomial of the input, the inputs to the gate are

labeled as opt-outputs, while the outputs of the gate are

considered opt-inputs to be used in later expressions.

This applies to the split gate and conditional gates.

Furthermore, although the pack gate does not fall under

the same category (as its output can be expressed as a

linear combination of its inputs), we apply the same rule

here in order to separate the Boolean operations from

arithmetic ones.

• All inputs to assertions, which have no output wires, are

959

Split

Pack

Split

Pack

Arithmetic Operations

Bitwise Operations

Condition?

Arithmetic Operations

SubcircuitSubcircuit

Circuit Inputs

Fig. 9: How opt-input and opt-output wires are selected. Red

wires indicate opt-inputs, and green wires indicate opt-outputs.

labeled as opt-outputs.

Additional criteria can also be employed for selecting opt-

output wires. One approach would be to rely on the usage

count. When the usage count of a certain intermediate wire

is high, this may suggest that this is a good point to split

this part of the circuit. For example, assume a program that

computes a linear function of the inputs, and then use the

result in a heavy computations later that are independent from

the previous part. To reduce the running time of the optimizer,

it may be beneficial to use such criteria.

For the rest of the discussion, we will denote opt-input and

opt-output wires assigned to the optimization problems as xi

and yi. Figure 9 illustrates an example of how the wires of a

simple circuit are labeled.

B. Clustering Expressions

After opt-input and opt-output variables are chosen, the

expressions are computed by iterating over the gates of the

circuit, and computing the output polynomial of each gate

given its input polynomials.

Optimizing single multivariate expressions alone may not

lead to the optimal solution. However, when we have a group

of such expressions, we can eliminate shared computation and

allow one expression to benefit from intermediate variables

of another. For example, in the following case, the terms

x1x2 and x1x3 can be computed once, and no additional

multiplications will be needed to compute any of yi.

y1 = x1x2 + x1x3; y2 = x1x2 + x4; y3 = x1x3 + x5

If each expression is optimized alone, the resulting expres-

sions will be:

y1 = x1(x2 + x3); y2 = x1x2 + x4; y3 = x1x3 + x5

This will be more costly than the earlier case when we had

a more global view of other expressions. Therefore, in order

to decide whether an optimization is useful to apply or not,

its effect on other parts of the circuit should be considered,

by studying multiple related expressions at the same time.

We would ideally like to perform optimizations over all

expressions extracted from the circuit. However, since the

multivariate polynomial minimization algorithm we rely on

runs in worst-case exponential time, in practice this global

approach would be too expensive. Our approach is to instead

cluster the expressions together based on the variables they

share. We define a cluster as a set of expressions in which

any two expressions must share at least two input variables,

or different power terms for the same input variable.

It should be noted that before running the next step, the

symbolic evaluation of the circuit so far can help reduce the

number of multiplication gates. For example, it can detect the

cases where some operations are unnecessary, e.g. when a

programmer writes code for a swapping operation using XOR

instructions instead of using a temporary variable. Using the

XOR method is much more expensive for SNARKs, compared

to the free assignment instructions. The symbolic execution

can detect and partially optimize this case.

C. Minimization

After clustering the equations based on the input variables,

we implemented a customized optimization technique for

reducing the cost of multivariate polynomial evaluations. Our

implementation follows the greedy algorithm specified in [32],

which is already based on known techniques in Multi-level

logic synthesis, such as [22]. The implemented techniques

can provide better results in comparison with multi-variate

Horner’s rule, and techniques for common sub-expression

elimination.

The main difference between our implementation, and the

algorithm in [32] is that we distinguish between multiplication

of variables, and multiplication by constants, to suit the cost

model described earlier in the background section. Addition-

ally, we added a brute force exploration module within the

algorithm that can help with small problem sizes. Finally, we

add a tunable parameter for the programmer to control the

level of exploration required for the optimization.

D. Limitation

Our approach is greedy and does not guarantee optimality

— in general achieving optimality is intractable. However, it

was observed that this approach performs better than others

for common cases [32]. Another limitation is its running time

and memory consumption for large problems, therefore, we

restrict the size of the problems tackled by this module.

APPENDIX D

ADDITIONAL BACKGROUND: LANGUAGE EXTENSION AND

JETBRAINS MPS

Our language extension for the front end is built using

Jetbrains MPS [4], an open source language workbench [28]

960

based on projectional editing. In this section, we provide some

background on language workbenches and Jetbrains MPS.

Language workbenches have been developed to facilitate

the development of new general-purpose or domain-specific

languages. They can be generally classified into parser/text-

based development tools, such as Xtext [11], and projectional

editor-based workbenches such as Jetbrains MPS that we

use here [3]. Projectional editing is a technique that allows

the programmers to manipulate the abstract syntax tree of a

program directly, without relying on parsers/grammars.

Jetbrains MPS provides flexibility in defining new language

extensions, and in modular composition of languages. The

MPS approach has been used already to develop different

domain-specific languages, including mbeddr [8] which pro-

vides extensions on top of the C language for embedded

system development. Other examples include Youtrack [12],

an issue tracking system that has a Java language extension for

working with persistent data and queries among others [46],

and MetaR which facilitates biological data analysis with the R

language [9]. For the drawbacks, the use of projectional editing

is less common than text editing for general programming,

however the usage of a projectional editor enables the modular

composition of language extensions in a more flexible way.

Additionally, Jetbrains MPS attempts to handle most of the

usability issues that arise from projectional editing [48], while

the mbeddr authors [47] argue that their pilot usability study

suggest a quick learning curve for the end language users to get

familiar with the editor. In the discussion section (Appendix

E), we discuss other future plans to investigate the usage of

other front ends for our optimizations and algorithms in the

back end.

In the following, we give a brief idea about the necessary el-

ements that a Java language extension on top of MPS Jetbrains

needs to have [43]. To define a language extension, such as

the one that we use in this paper, the following modules need

to be defined. Some details are omitted/simplified for brevity.

Abstract syntax: The first step is to define the structure,

by specifying the additional AST nodes required for the

extension. This is done through the definition of new con-
cepts. A concept definition typically includes the properties,

children and references of each node. Then, the constraints
on the structure are defined, to specify any restriction on the

properties, children and references of any concept.

Editor (Concrete Syntax): This specifies the projectional

editor behavior for the new concepts, e.g. the visualization

of the newly added extensions, and the automated actions by

the editor.

Type system: This specifies the type system equations needed

for any introduced new types.

Code generation: This specifies how the extensions constructs

will be translated to the base Java language, based on the

definition of reduction rules.

After the language developer specifies the above, the user of

the extended language will be able to write programs in the

new language with IDE support, e.g. auto-completion, error

highlighting, and others.

APPENDIX E

DISCUSSION AND FUTURE WORK

In this section, we discuss the limitations of our current

implementation, and directions for future work.

1. Integration of other optimizations. Previous implementa-

tions like Buffet or Geppetto have other orthogonal optimiza-

tions that we plan to integrate in our next implementation.

For example, Buffet provides a technique for loop coalescing,

which helps to reduce the complexity of nested loops, when

the total running time is O(n), while the trivial compilation to

SNARK circuits can lead to O(n2) size. This can be helpful

for some applications, beyond what we discussed in this paper.

An optimization implemented by Geppetto is energy-saving

circuits, which reduces the prover’s running time by making all

the wire values for not taken branches have a zero value. Other

optimizations include: dead code elimination, which ignores

any parts of the circuit that did not contribute to the output

of the circuit. Most of such optimizations can be integrated in

our back end. Another direction would be to formally argue

about the correctness of the compiler as in the PinocchioQ

compiler [27].

2. Front end alternatives. As illustrated earlier, we used

Jetbrains MPS to build our Java extension for the front end.

One possible drawback of using MPS Jetbrains is that in

order for the programmers to develop the code, it has to be

done in the projectional editor provided by MPS. Although

this framework is free and can be used on top of Windows,

Linux, OS X and others, we plan to make our implementation

more generic, and investigate other approaches for developing

the java extension in order for our framework to be more

accessible. Note that the optimizations described in our back

end does not depend on the specific framework of the front

end, and can be integrated with any other front end providing

a similar interface.

3. Dynamic Pointer/Reference Assignments. Our current

implementation does not allow manipulating references to

xJsnark’s structs (which correspond to pointers in C) within

code blocks that rely on a circuit run-time conditional check.

Although the Buffet compiler [49] supports it, it might not be

implemented in the most optimized way, as it does not take

into account how the pointers are being used. Additionally,

in some cases, it might be more efficient to cluster pointer

accesses into groups, and study each separately. One direction

of future work will be how to analyze pointer usage in the

first pass automatically, and integrate our adaptive memory

back end algorithms with pointer manipulation.

961

