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Abstract—Much of Internet traffic nowadays passes through
active proxies, whose role is to inspect, filter, cache, or trans-
form data exchanged between two endpoints. To perform their
tasks, such proxies modify channel-securing protocols, like
TLS, resulting in serious vulnerabilities. Such problems are
exacerbated by the fact that middleboxes are often invisible to
one or both endpoints, leading to a lack of accountability. A
recent protocol, called mcTLS, pioneered accountability for
proxies, which are authorized by the endpoints and given
limited read/write permissions to application traffic.

Unfortunately, we show that mcTLS is insecure: the pro-
tocol modifies the TLS protocol, exposing it to a new class
of middlebox-confusion attacks. Such attacks went unnoticed
mainly because mcTLS lacked a formal analysis and security
proofs. Hence, our second contribution is to formalize the goal
of accountable proxying over secure channels. Third, we pro-
pose a provably-secure alternative to soon-to-be-standardized
mcTLS: a generic and modular protocol-design that care-
fully composes generic secure channel-establishment protocols,
which we prove secure. Finally, we present a proof-of-concept
implementation of our design, instantiated with unmodified
TLS 1.3 draft 23, and evaluate its overheads.
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I. INTRODUCTION

Internet protocols are largely designed around the end-to-

end principle, which says that all application logic, except

for the mundane activity of forwarding packets, should

reside at the endpoints. However, a good portion of In-

ternet traffic today passes through one or several active

proxies or middleboxes that inspect, filter, and transform

packets, based on dynamically configurable policies. These

middleboxes include content delivery networks, personal

and enterprise-level firewalls, compression proxies, malware

scanners, parental-control content filters, and many other in-

network functionalities that are considered desirable by client

institutions, web servers, and network operators.

All of these functionalities require read access and/or

write access to client-server traffic, and are consequently

hindered by the prevalence of end-to-end encryption pro-

tocols like Transport Layer Security (TLS). To continue

working, middlebox providers have resorted to a variety of

ad-hoc techniques that enable them to decrypt TLS traffic

between clients and servers. These techniques necessarily

contradict the end-to-end security goals of TLS, by turning

a well-studied two-party secure channel into a non-standard

multi-party cryptographic protocol with unknown security

properties. In fact, middleboxes often introduce new threats,

since adversaries aiming to break secure connections can

now attack not just endpoints but also the middleboxes. Our

goal in this paper is to precisely identify these threats and to

formally define the security goals of proxied TLS connections,

in order to enable a rigorous evaluation of existing and new

middlebox-based designs.

Content Delivery Networks. CDNs like Akamai and Cloud-

flare are good examples of widely-used active proxies. For

example, Akamai owns 233,000 HTTP and HTTPS caching

proxy servers in over 130 countries and within more than

1,600 networks around the world, serving 27% of the world’s

network traffic on behalf of many of the top websites. In

October 2015, they estimated that 45% of their traffic was

TLS-encrypted traffic [29] and this number has undoubtedly

significantly increased since.

In order to serve TLS-traffic on behalf of a website, CDNs

like Akamai need the website-owner to allow them to hold

a valid X.509 certificate for the website’s domain(s) and the

associated private key on their behalf, essentially licensing

the CDN to impersonate the website to connecting web-

browsers. This form of delegation endows a high degree

of trust in the CDN infrastructure, since a bug or attack

on any of the CDN’s “edge” servers around the world may

allow an attacker to steal the website’s private key or other

sensitive user data (e.g.see the recent Cloudbleed bug in

Cloudflare [35]). Websites can try to mitigate this risk by

delegating only certain subdomains to the CDN, rather than

the full web-applications, but this has limited effectiveness on

websites where JavaScript from one subdomain is routinely

loaded on another.

An alternative to the CDN-architecture above, denoted

Keyless SSL, is offered as a premium service by the CDN

called Cloudflare. Cloudflare only gets the X.509 certificate

for a CDN-ed domain (and the public key within the cert), and

Cloudflare’s customers securely store the associated private

keys on their own servers, only granting a limited key-usage

API to the Cloudflare’s proxy servers. This design requires a

minor refactoring of the TLS handshake, but even this small

change results in a new three-party protocol whose security

guarantees are subtle. Indeed, recently, Bhargavan et al. [4]
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demonstrated several vulnerabilities of Keyless SSL; they

used a provable security approach to formally analyze it and

proposed alternative designs that achieve stronger security

goals, albeit with reduced performance.

Client-side firewalls and content filters. Firewalls are

commonly used in enterprises and educational institutions

to protect computers from malware and age-inappropriate

content. To be able to inspect TLS traffic between machines

inside the firewall and the open Web, these firewall proxies

effectively mount a man-in-the-middle attack on the TLS

connection by asking all clients to install a CA certificate

that they can then use to issue certificates for any web server.

This gross misuse of the public key infrastructure completely

bypasses the end-to-end guarantees of TLS, and hence

requires complete trust in the design and implementation

of the proxy itself.

Worryingly, recent studies of such proxies uncovered a

plethora of serious security issues, from inappropriate or

inexistent certification validation and ciphersuite downgrades,

to the execution of completely invalid TLS handshakes [15],

[34]. A typical example of what can go wrong is the Superfish

scandal of 2015 [18] where the private key of the CA

certificate used by a client-side proxy was leaked, allowing

attackers to impersonate any website to any client who used

the proxy. More generally, client-side proxies that install root

CA certificates are completely invisible to both the client and

server, making it impossible for web browsers or websites to

impose their own security policies for sensitive transactions,

say between a client and a bank.

Fine-grained access control with mcTLS. A recent proto-

col called mcTLS [33] proposes a different design where all

middleboxes are fully visible to both the client and the server,

both of whom must agree on the read/write privileges of each

middlebox before the middleboxes get to intercept the TLS

connection. Hence, mcTLS offers fine-grained access control

to both the client and server over all proxied TLS connections.

To achieve this efficiently, the protocol significantly modifies

the TLS handshake protocol, aggressively sharing messages

and key material across multiple hops to perform several

TLS handshakes at once.

Because of its excellent performance and support for fine-

grained policies, mcTLS is being standardized within the

ETSI standards organization as the default middlebox security

protocol for network operators.1 Consequently, the protocol is

poised to have a big impact on practical middlebox designs.

However, before the protocol is standardized and widely

deployed, we believe it is important to formalize its security

goals and verify that mcTLS meets them.

The authors of mcTLS do offer an informal security

analysis [33] of the protocol, but without a formal proof.

Indeed, as we show in the next section, certain intended use-

1https://portal.etsi.org/webapp/WorkProgram/Report WorkItem.asp?
WKI ID=52930

cases of mcTLS are demonstrably insecure, which motivates

the need for formal analysis, and provides a stark warning

against tampering with existing protocols like TLS without a

formal proof. This is particularly important for TLS 1.3, the

new version of TLS which was designed to be provably

secure and has received considerable attention from the

academic community, but whose strong guarantees can still

be completely broken by badly designed proxies.

Our approach and contributions. In this paper, we adopt

a provable security approach to proxied TLS connections:

• We show that existing proxying mechanisms, including

mcTLS, fail to ensure intuitive security notions of

authentication, confidentiality, and integrity, even in

common proxying scenarios.

• We provide (to our knowledge) the first fully for-

malized security definition for proxied TLS. We call

this definition authenticated and confidential channel
establishment with accountable proxies (ACCE-AP).

• We provide a modular protocol construction that only

allows proxying with the full, explicit knowledge and

consent of both partners (akin to mcTLS). Unlike

mcTLS, our construction is provably secure and can be

instantiated with any authenticated key-exchange (AKE)

protocols which respect some reasonable conditions2.

In particular, our design composes TLS connections in

a way that allows us to rely on existing proofs of TLS,

rather than prover our protocol’s security from scratch.

• We describe a proof-of-concept implementation, showing

how our new design can be deployed modularly on top

of miTLS, a high-assurance TLS 1.3 library.

We provide a more extended review of related literature

in Appendix A.

II. ACTIVE PROXY ARCHITECTURES AND THEIR FLAWS

The goal of an active proxy is to provide in-network func-

tionality between a client and a server, while preserving (as

much as possible) end-to-end confidentiality, authentication,

and data integrity. Figure 1 depicts a typical scenario with

one proxy. We note that the proxy may offer its services to

many clients and servers, some of whom may be malicious

or otherwise controlled by an adversary. Furthermore, we

assume that the TLS connections between the client and

middlebox, and between the middlebox and server are subject

to standard network attacks.

A. Proxying Architectures

Existing proxying architectures can be broadly categorized

in terms of which participants are aware of the proxying.

We discuss two common setups below, before focusing

on mcTLS, one of the most sophisticated and convincing

proxying protocols designed to date.

2On the one hand, this means that we can use TLS 1.3 as our building-
block. On the other hand, we do not use any specific property of a given
version of TLS 1.3, not in the construction nor in the proofs.
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Figure 1: Active proxying

Invisible Proxies. Before encrypted connections became the

norm, a variety of in-network proxies were used to provide

compression, caching, load-balancing, and other bandwidth-

saving or latency-reducing services. Once they were installed

and configured, these proxies were fully invisible to both

the client and server, since they could operate directly on

unencrypted data. To continue working over TLS, these

proxies need to be able to impersonate the client and the

server to each other, a “feature” called SSL Interception.

On the Web, clients are usually anonymous, but servers

are identified by X.509 public-key certificates, and so such

proxies need to have access to a valid certificate (and private

key) for the server. This means that the proxy cannot be

perfectly invisible to both parties. Either the proxy needs

to be fully trusted by the server, who provisions it with a

certificate, or it needs to be even more trusted by the client,

who allows it to install a CA certificate that the proxy can

use to impersonate any web server. We call the former design

client invisible and the latter design server invisible.

Invisible proxies are attractive because they require little

change to existing client-server deployment, but they are

vulnerable to a number of attacks because the security

of the TLS ecosystem relies on a careful collaboration

between mechanisms implemented by both clients (web

browsers) and servers (websites), and these mechanisms

can be bypassed if one or both endpoints are unaware of

the proxying. For example, modern browsers remember the

certificates of important websites, through a technique called

public-key pinning, and are able to enforce sophisticated

certificate revocation policies through protocols like OCSP,

but these protections no longer apply if the proxy uses its

own certificate. Similarly, a browser or website may require

a modern version of TLS with a strong ciphersuite, but the

proxy may downgrade the connection to use a legacy version

of the protocol. In addition, the high level of trust needed in

the proxying software itself has been undermined by a series

of flaws and attacks on middleboxes [15], [34], [18].

Accountable Proxies. The many vulnerabilities of invisible

proxies stem from their adoption of ad hoc mechanisms based

on misusing the public key infrastructure. An alternative is to

design proxies that are not only visible, but request explicit

authorization from one or both endpoints, and do not interfere

with connections for which they do not have authorization.

This would allow sensitive websites, like those for online

banking, to forbid middleboxes and ensure that their clients’

account details are not visible to any party other than the

user’s web browser. Such accountable designs may even

become mandatory because of privacy laws like the recently

adopted Data Protection Regulation (EU regulation 2016/679),

which requires that personal information pertaining to any

citizen may only be sent, handled, and stored with that

individual’s express consent.
Accountability allows network operators to reintroduce in-

network functionality like caching and compression proxies

over TLS without requiring full trust from clients and servers.

For example, the Keyless SSL proposal from Cloudflare [4],

and the related Lurk draft standard [30], enable server-visible

caching proxies that require the proxy to contact a key server

on every TLS session, allowing the key server to easily

disable proxying based on a variety of server-side policies.

These designs are not without their flaws, and alternative

designs can offer even stronger and provably secure notions

of accountability [4].
A new and radical proxy architecture, called mcTLS, offers

even more fine-grained control over proxies’ behaviors, by

requiring both the client and the server to negotiate and agree

upon the read-write access rights given to each intermediate

proxy. In the rest of this section, we describe this important

new protocol, curently undergoing standardization by ETSI,

and evaluate its security. In particular, we describe several

middlebox confusion attacks against mcTLS and use them

to motivate a rigorous formal analysis of active proxying.

B. The mcTLS protocol
The mcTLS protocol uses the same message formats and

cryptographic constructions as TLS 1.2 (hence the name)

but is a completely new multi-party protocol that modifies

TLS in significant ways. The protocol features a client C , a

server S , and a number of middleboxes situated between them.

The server and the middleboxes are provisioned with public-

key certificates. Each middlebox is given read and/or write

permission to various mcTLS contexts, which are portions of

an application-data stream, such as HTTP bodies/headers. For

example, a firewall middlebox may only have read access for

a particular HTTP header, whereas a caching middlebox may

have write access to the full HTTP response. To enforce these

access rights, the client and server generate read and write

keys for each context and deliver them to each authorized

middlebox over point-to-point TLS-like channels.
Figure 2 depicts the mcTLS protocol when run for a single

middlebox, denoted MW . The handshake consists of three in-

terleaved TLS-DHE (ephemeral Diffie-Hellman) handshakes

that share messages and key material: the primary handshake

between the client and the server, and two intermediate

handshakes between the client and middlebox, and middlebox

and server. The server and middlebox authenticate themselves

on all connections, but the client is unauthenticated. The client

and server exchange nonces NC ,NS and Diffie-Hellman key

shares gx, gy; the middlebox adds its own nonce NMW and

separate key shares gz, gt for use with the client and server.
At the end of the handshake, three sets of channel keys

are computed using the TLS 1.2 key-derivation mechanism:

801



C MW (CertMW , skMW ) S (CertS , skS )

Choose NC
NC ,S−−−−−−−−−−−−→ Choose NMW

NC ,NMW ,S−−−−−−−−−−−→ Choose NS

Choose x, get gx Choose z, t, get gz, gt Choose y, get gy

NS ,NMW←−−−−−−−−−−− Set σz
MW = SignskMW

(gz)
NS←−−−−−−−−−−−− Set σS = SignskS (g

y)
and σt

MW = SignskMW
(gt)

CertS ,g
y,σS←−−−−−−−−−− Verify CertS , σS

CertS ,g
y,σS←−−−−−−−−−−−−

Verify certs and signatures
CertMW ,gz,σz

MW←−−−−−−−−−−−
gx

−−−−−−−−−−→ gx,CertMW ,gt,σt
MW−−−−−−−−−−−−−→ Verify CertMW , σt

MW

Compute C ↔ S TLS keys ckC ,S Compute C ↔ S TLS keys ckC ,S

Compute C ↔ MW TLS keys ckC ,MW Compute C ↔ MW TLS keys ckC ,MW Compute MW ↔ S TLS keys ckMW ,S

Compute MW ↔ S TLS keys ckMW ,S

Choose SC Choose SS

(KC
r ,KC

w ) = PRF(SC ;NC )
AE(ckC ,MW ;KC

r ,KC
w )−−−−−−−−−−−−−→ AE(ckMW ,S ;K

C
r ,KC

w )−−−−−−−−−−−−−→ (KS
r ,K

S
w ) = PRF(SS ;NS )

AE(ckC ,S ;K
C
r ,KC

w )−−−−−−−−−−−−−→ AE(ckC ,S ;K
C
r ,KC

w )−−−−−−−−−−−−−→
Set FinC = PRF(ckC ,S ; SHash)

FinC−−−−−−−−−−−−−→ FinC−−−−−−−−−−−−−→ Verify FinC
AE(ckC ,MW ;KS

r ,K
S
w )←−−−−−−−−−−−− AE(ckMW ,S ;K

S
r ,K

S
w )←−−−−−−−−−−−−

AE(ckC ,S ;K
S
r ,K

S
w )←−−−−−−−−−−−− AE(ckC ,S ;K

S
r ,K

S
w )←−−−−−−−−−−−−

Verify FinS
FinS←−−−−−−−−−−−−− FinS←−−−−−−−−−−−−− Set FinS = PRF(ckC ,S ; SHash)

Access keys: Access keys: Access keys:

Kr = PRF((KC
r ,KS

r );NC ,NS ) Get Kr,Kw as C Get Kr,Kw as C
Kw = PRF((KC

w ,KS
w );NC ,NS )

Figure 2: The mcTLS Handshake.

the client and server derive keys from gxy , NC , and NS , the

client and middlebox derive keys from gxz , NC , and NMW ,

the middlebox and server derive keys from gyt, NMW , and

NS . These channel keys are then used to distribute context-

specific read and write keys. The client and server generate

independent context keys, say by applying a key derivation

function to local temporary secrets (SC , SS ), and deliver

these keys to each other and to each authorized middlebox.

After delivering the context keys, the two endpoints complete

the handshake by exchanging Finished messages that contain

MACs over the entire transcript as seen by each endpoints

over the two sessions it runs, to ensure that none of the

handshake messages has been tampered with.

Next, the client and server start exchanging application

data; the data stream is divided into fragments, each fragment

is labeled with a specific context and encrypted with the

corresponding context key. Middleboxes that are authorized

to read or write a particular context can then use the

corresponding context keys to decrypt and/or reencrypt these

packets, but not others.

The mcTLS protocol extends and deviates from the

standard TLS 1.2 handshake in many ways. First, it adds

a middlebox negotiation extension to the ClientHello and

ServerHello messages, so that the client and server can

agree upon the sequence of middleboxes they wish to use.

Second, mcTLS reuses nonces and ephemeral Diffie-Hellman

key shares between multiple connections, which is not

recommended but is relatively harmless. Third, mcTLS only

completes a full TLS handshake between the client and server;

the client-middlebox and middlebox-server handshakes do

not include any Finished messages, and so the middlebox

cannot know whether the handshake has been tampered with.

This is a more significant change to TLS, and as we shall

see below, it leads to serious attacks on mcTLS. Fourth,

mcTLS modifies the record-layer protocol to use context

keys instead of channel keys for encryption. This is again

an important change that exposes the protocol to record-

layer attacks. Finally, to reduce server overhead, the mcTLS

authors [33] propose a client key distribution mode where

the client unilaterally generates and distributes context keys

to the server and all middleboxes. As we shall see, this mode

also weakens the protocol and enables attacks.

C. Middlebox Confusion Attacks on mcTLS
To better understand the security guarantees of mcTLS,

let us first consider some of its intended use case scenarios.

In the first scenario, a client C uses a firewall middlebox

MW to protect it from malware on the web. It requires MW
to filter all its connections, including those to a trusted server

S , and those to an attacker-controlled website A . MW has

read access to all incoming data and it imposes different

filtering policies for different websites; in particular, it has

stricter rules for A than for S . The adversary’s goal is to

bypass MW and deliver malware to C .

In the second scenario, a client C uses a caching proxy

MW to speed up its accesses to the web. The proxy retrieves

and caches static pages for a trusted server S as well as an

untrusted server A . When C connects to S via MW and

asks for a specific resource, e.g.GET/login.html, MW looks

in the cache it holds for S and immediately delivers the page

if it is found. The attacker’s goal is to read or write private

user data (e.g.her password) that is sent between C and S .

Note that in both these scenarios, the middlebox MW
makes important decisions based on the identity of the server.

Consequently, if an attacker can confuse the middlebox

about the identity of the server, it can fool the middlebox

into making incorrect decisions. While mcTLS seeks to
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C A (CertA , skA ) MW (CertMW , skMW ) A (CertA , skA ) S (CertS , skS )

NC ,S−−−−−−−−−−→ NC ,A−−−−−−−−−−→ NC ,A−−−−−−−−−−→ NC ,S−−−−−−−−−−→
NS←−−−−−−−− NS←−−−−−−−− NS←−−−−−−−− NS←−−−−−−−−

CertS ,g
y,σ←−−−−−−−− CertA ,gy,σ∗

←−−−−−−−−− CertA ,gy,σ∗
←−−−−−−−−− CertS ,g

y,σ←−−−−−−−−
Continue protocol normally, with A forwarding messages between all parties.←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Figure 3: Unknown Key Share Attack on mcTLS Middleboxes.

protect endpoints against malicious middleboxes, the security

analysis of the protocol appears to overlook attacks against

middleboxes themselves, a category of attacks that we call

middlebox confusion attacks.

Poisoning Caches with an Unknown Key Share Attack.
In our first attack, a client C wants to communicate with a

trusted server S through an honest middlebox MW . However,

the network between C and MW is controlled by the

adversary, which interferes with the mcTLS protocol, as

depicted in Figure 3. Importantly, the attacker only modifies

messages that are seen by MW ; it then restores the correct

messages and forwards them to C and S , so that they cannot

detect this tampering.

When C sends its connection request (ClientHello) to

MW , the attacker replaces the identity of S (typically

indicated in the TLS-SNI extension) with its own identity A .

MW then initiates a connection with the attacker’s server, and

A forwards these handshake messages to S . When S returns

its certificate and signature over its key share gy , the attacker

replaces them with its own certificate and signature over the

same server key share. When MW forwards these messages

to C , the attacker intercepts and replaces the certificate

and signature with the original messages sent by S . The

mcTLS handshake proceeds normally to conclusion, since

the transcripts at the endpoints match. The transcript at the

middlebox is quite different, but MW does not send or receive

any Finished MACs in mcTLS, and so it cannot detect the

attacker’s tampering.

At the end of this handshake, the client and server correctly

believe that they have a connection to each other via MW ,

but MW believes that it is proxying a connection between

C and the attacker-controlled website A . This is a form of

unknown key share attack on the middlebox, and even though

the attacker does not know any of the context keys, it can still

mount a serious attack. If the middlebox is a caching proxy,

it will now deliver to C content that was previously retrieved

from the attacker’s website, thereby allowing the attacker to

inject data (and hence JavaScript) into connections between

C and S . Hence, a network attacker can completely break

the server authentication guarantees of caching proxies in

mcTLS.

Bypassing Firewalls using Client Key Distribution. Our

second attack is similar in structure to the previous scenario,

but is exploitable in a different way. This time, the client C
wishes to connect to the attacker’s website A via a firewall

proxy MW . The attacker intercepts the client’s request and

tampers with it to make MW believe that the C wishes to

connect to the trusted server S instead. The attacker then

completes the handshake with the client (using its own key

shares). The connection with S cannot be completed, since

the transcripts at C and S do not match, but if the protocol

uses the client-key-distribution mode, it then unilaterally

generates and sends context keys to A and MW .

At this point, the C correctly thinks it is connected to the

attacker’s server A via MW , but MW thinks it is proxying a

connection between C and S . This is a server impersonation
attack on the middlebox. It allows the attacker to inject

malware to the client, which will not be filtered as strictly as

it should be, because MW thinks that the message is being

sent by the trusted server S . Hence, mcTLS with client key

distribution cannot enforce site-specific firewalling policies.

Record-Layer Attacks. mcTLS modifies the TLS record

protocol to enforce fine-grained access control, but the

resulting protocol is too weak for many use-cases. For

example, an attacker who controls the network between C
and its firewall MW can always inject malware into C ,

bypassing the firewall. This is because mcTLS privileges the

endpoints over the middleboxes, allowing them to read and

write all contexts. So all the attacker has to do is to present

an innoccuous data stream to MW and then it can decrypt,

modify, and reencrypt data between MW and C .

As a more subtle example, consider a scenario where the

attacker has obtained the reading key for some context, by

compromising some middlebox, for instance. Since it does

not have write access, the attacker should not be able to

tamper with the data. However, since a reading context-key

can be used both to verify and to create new MACs, the

attacker can fool honest middleboxes into accepting tampered

data, and then restore the original data before the endpoint

sees it. Hence, even with read-only access, an attacker can

inject data into the caches for trusted servers, or it can cause

firewall protections to be bypassed.

Towards Provably Secure Accountable Proxies. The

mcTLS protocol represents the most robust and flexible

proxying proposal to date, and we believe that its approach

is commendable. The middlebox confusion attacks described

above can be prevented by using stronger variants of TLS,

such as TLS 1.3 or TLS 1.2 with the session-hash extension.

The record-layer attacks are harder to prevent without signif-

icant redesign. The main lesson from our attacks, however,
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is that the security guarantees of active proxying scenarios

can be subtle and even well-designed proposals can benefit

from rigorous formal analysis.

III. DEFINING ACCE-AP SECURITY

So, in this section, we formally capture the security guaran-

tees we believe should be attained by secure and accountable

proxying, in the shape of the following authenticated and
confidential channel establishment with accountable proxies
(ACCE-AP) notion.

Using ACCE. Traditional authenticated key-exchange (AKE)

security models [2] aim to prove that obtained session keys

are indistinguishable from random. This is a very strong,

composable guarantee; pseudorandom keys may then be

securely used by any symmetric-key primitive. By con-

trast, Authenticated and Confidential Channel Establishment

(ACCE) security [20] relaxes this, focusing on the security

of the channel obtained by using those keys. An ACCE-

secure key-exchange protocol guarantees that the established

keys are able to construct a secure channel. ACCE security

was designed to capture the complexities of TLS 1.2, whose

key-confirmation step acts as a distinguishing oracle for the

pseudorandomness of the session keys, without damaging

the security of the established channel [25], [8].

TLS 1.3 was designed to (provably) guarantee composable

AKE security, unlike TLS 1.2. Indeed, the session keys in TLS

1.3 are indistinguishable from random, which, coupled with

the security of the authenticated encryption algorithms, should

yield strong, composable security. However, the composition

of AKE and secure record-layer exchanges is not trivial [9].

As a result, proofs such as [13] cannot simply stop at the

key-establishment step. We choose instead to use the ACCE

definitions, which provides no composability, but –in turn–

makes explicit the guarantees of confidentiality, authenticity,

and integrity we may expect of the established channel.

We focus on accountable proxying over secure channels.

A crucial aspect of this is indeed defining what security

(in particular authenticity and integrity) can be guaranteed

at the record layer. That is where the augmented risk of

added middleboxes is most obvious. To highlight this, and to

describe precisely what is lost by giving third parties access

to encrypted traffic, we choose to rely on ACCE security. We

review both AKE and ACCE terminology in the appendix.

On proxy visibility. One implicit assumption of mcTLS and

of our work is that both the client and the server are aware,

when starting the handshake, of all the proxies that can be

found between them. We believe this is a necessary property

when sensitive communication is exchanged between the

client and the server. Indeed, a client might e.g., be more

cautious with the data it requests from a server if it knew

that the traffic is proxied by a middlebox.

In practice, the client and server might not be aware

of all the proxies connected to them, and especially, to

their communication partners. However, it would suffice

to ask those proxies to identify themselves (and request

permissions) in a first protocol step, orthogonal to our design.

No cryptographic requirements would be made of this step:

i.e., we authentication is needed. This will be taken care of

during our protocol.

Notations. Following the approach of Bhargavan et al. [4],

the two-party ACCE notion with mutual authentication will

be denoted 2-ACCE, whereas for server-only authenticated

handshakes we use the notation 2-SACCE. Like Bhargavan

et al., we view the proxied handshake in the presence of

(possibly multiple) middleboxes as a number of linked 2-party

protocols that are executed in parallel.

A. An intuition of the ACCE-AP model

Tuples of 2-party protocols. Our protocol is run by several

parties, which are either clients, or middleboxes, or servers.

We view an n-party session (with one client, one server, and

n−2 middleboxes) as a set of smaller, 2-party sub-protocols,

in which instances of one party play the client or the server

of a traditional 2-party handshake. This is defined as the role
that the party plays in a 2-party execution.

Each party may run multiple concurrent executions of

a 2-ACCE or 2-SACCE protocol: each protocol session is

executed by a party instance. As a consequence, in an n-

party handshake, various instances of the same party maybe

executed at the same time: in some of these the instance will

be a client, in others, a server. The m-th instance of party

Pi is denoted πm
i .

Although this may seem restrictive, it is more a matter of

notation: indeed we choose to separate the communication

between, say, the middlebox and the client, and the middlebox

and the server because it is easier to keep track of it. We

do assume that those instances may share state, which is

certainly the case for the TLS handshake.

Instance partnering. Two-party handshakes use the notion

of partnering or matching conversation to define which

instances of two parties execute the protocol together. When

moving from 2- to multi-party handshakes, a crucial notion

that extends partnering is that of session binding, defining

which 2-party handshakes take place as part of the same

multiparty handshake. The binding is established through

stored local information on direct communication partners,

but also global information describing the configuration of

the handshake, the parties acting as endpoints, the precise

proxies used, and their access rights. In our model, all the

parties involved in the handshake need to keep track of

some cumulative attributes. Since the endpoints control

the handshake, they also additionally need to store master
parameters, such as the access rights of each middlebox. We

refer to the endpoint instances that authenticate the master

parameters by master instances.

Configurations and contexts. Session binding is defined in
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terms of a handshake configuration, which is a suite of party

identities ordered from the client to the server. We always

assume that the client remains anonymous in the handshake,

i.e., it always runs server-only authenticated handshakes. The

middleboxes may play the role of either client or server, but

always authenticate to their partner.

We divide each message into disjoint contexts, following

mcTLS terminology. The list of all possible contexts is

denoted Γ. Contexts can be defined, e.g., as the concatenation

of the message type (either request or response) and a message

fragment (the header, the body, or a fragment thereof). Thus,

one context could be “request | header”.

Each middlebox will have some read, write, or none access

permissions on the defined contexts. We assume that entities

which have write permissions for a given context may also

read those contexts.

ACCE-AP security. We capture the security of the

accountably-proxied secure-channel establishment protocols

(called ACCE-security with accountable proxies – in short,

ACCE-AP) in terms of the following requirements:

The (S)ACCE security of each independent, 2-party hand-

shake, when the two partners are honest;

The soundness of the configuration in these 3 cases:

Fully honest. If all parties are honest, then all the in-

stances are properly coupled, and all parties finish the

configuration successfully, with all the appropriate keys.

Malicious MW . No collusion of malicious proxies learn

anything about keys they have no right to.

Malicious endpoint. If an endpoint behaves maliciously

w.r.t. the established configuration, contexts, or permis-

sions, this will be detected by the remaining participants.

B. The ACCE-AP model

In what follows, we formalize configurations, permissions,

and contexts as described above.

Oracles in ACCE-AP. Let k be an arbitrarily fixed integer.

We consider AKE protocols executed between a client,

a server, and up to k − 2 middleboxes. More formally

a handshake configuration HConfig is a list of parties

P1, . . . ,Pk, such that P1 is a client, Pk is a server, and

the remaining parties are middleboxes. The configuration is

ordered so that conversation will be forwarded in increasing

order of indices for request messages, and inversely for the

response.

Moreover, in each handshake, each of the proxies is associ-

ated with a list of contexts and corresponding permissions, as

formalized below. For any configuration HConfig of size k, its

corresponding contextual access list aclHConfig is a hash-table

of size k− 2, indexed by middleboxes in that handshake. For

a given proxy Pi, the entry in aclHConfig corresponding to Pi

is a list of length |Γ| which, for each context c, contains the

permissions (i.e., exactly one value amongst none, read,

orwrite) given to Pi for that context c.

As explained, a proxied handshake consists of a number of

parallel AKE sessions executed concomitantly. Each session

is run between two instances, one for each of the two

communicating parties. The number of executions per proxied

handshake is protocol-specific: mcTLS for instance ran three

sessions for the 3-party case, and six for the 4-party case. The

multiple parallel sessions are also taken into account by our

modification of the traditional NewSession oracle (presented

in the Appendix).

Party attributes. Following the ACCE model, parties keep

track of values such as their long-term secret keys, while

party instances store session-specific values, e.g., session and

partner identifiers, the secret bits used by the Encrypt and

Decrypt oracles, and established keys. These attributes are

described in detail in Appendix C.

Instance-local ACCE-AP attributes. In addition to typi-

cal ACCE attributes, presented in the Appendix, the following

attributes are specific to sole party instances:

πm
i .bid.The binding identifier πm

i .bid of an instance πm
i is a

special session-identifier that ties πm
i to a proxied handshake.

Its value is set upon configuration acceptance. Note that

πm
i .bid could differ from the same instance’s session identifier

πm
i .sid3.

πm
i .β. The configuration-acceptance bit πm

i .β of instance

πm
i takes values in {0, 1,⊥}. Initially, πm

i .β is set to ⊥.

If πm
i accepts the configuration input to NewSession, then

πm
i .β is set to 1; in case of rejection, it is set to 0.

Cumulative ACCE-AP attributes. Cumulative attributes

store the partnering, session, and binding information of all

the instances of a given party taking part in a single handshake

(which we call siblings).

πm
i .siblings. The siblings πm

i .siblings of instance πm
i are all

the instances of Pi output by the NewSession oracle that

generated πm
i , including πm

i itself.

Cumulative attributes are inherent to k-party handshakes;

they are needed to established accountability.

πm
i .c.pid. The cumulative partner identifier πm

i .c.pid of an

instance πm
i is a table of entries of the type (πn

i , π
n
i .pid),

for each πn
i ∈ πm

i .siblings.
πm
i .c.bid. The cumulative binding identifier πm

i .c.bid of an

instance is a tuple of binding identifiers π�
i .bid. Each identifier

π�
i .bid corresponds to one instance π�

i ∈ πm
i .siblings, i.e.,

πm
i .c.bid is (π�

i .bid)π�
i∈πm

i .siblings.

πm
i .c.config. The cumulative configuration πm

i .c.config of a

proxy instance πm
i stores the configuration it has accepted for

a given handshake. This attribute is middlebox-specific. End-

points will store a master configuration attribute πm
i .m.config

(see below).

πm
i .c.perm. The cumulative permission attribute πm

i .c.perm
is a list of |Γ| elements, each taking a single value in the set

3Both the partner and session identifiers are protocol-specific, and typically
include public and private information that makes each session unique.
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{none, read,write}. This value represents the permission Pi

has on the corresponding context. If Pi ∈ C ∪S , then all

permissions are set to write.

πm
i .c.ctxt.keys. The cumulative context-key list

πm
i .c.ctxt.keys consists of |Γ| elements, each of them

a tuple of values corresponding to the read and write keys

for a given context (or ⊥ if the value is unavailable). All

sibling instances of a configuration-accepting party Pi share

the same keys; if moreover Pi ∈ C ∪S , all the keys are

non-⊥.

Master ACCE-AP attributes. Only stored by the hand-

shake’s endpoints, these attributes keep track of information

on the handshake configuration and all the access-rights

pertaining to the proxies. Thus, endpoints will be able to

enforce accountability for all proxies.

πm
i .m.config. The master configuration attribute is the

endpoint equivalent to the middleboxes’ π.c.config. For an

endpoint instance πm
i accepting the configuration HConfig,

πm
i .m.config stores HConfig if it is the configuration for

which NewSession was run.

πm
i .m.perm. The master permission-list attribute

πm
i .m.perm stores, for each of the k − 2 middleboxes

input to NewSession, their permissions per context if they

correspond to the aclHConfig value input to NewSession.

Permissions are listed in the tabular style of aclHConfig.

πm
i .m.bid. The master binding identifier πm

i .m.bid is a list of

tuples indexed by parties Pj in the configuration, containing

binding identifiers π�
j .bid of instances π�

j involved in that

handshake. We include Pi’s values as well; in particular,

πm
i .bid is also included.

πm
i .μ. The master configuration-acceptance bit πm

i .μ of a

master instance πm
i , with Pi ∈ C ∪S is a value {0, 1,⊥}.

Initially πm
i .μ is set to ⊥, and may later change to 1 or 0,

depending on whether that master instance has validated a

given configuration or not.

πm
i .m.ctxt.keys. The master context key list πm

i .m.ctxt.keys
is a list of |Γ| pairs of read and write keys, one for each

possible context.

Partnering. We extend 2-party partnering to our proxied

case in Def. 1. For an instance πm
i we require two sets: a

set πm
i .PSet of entities partnered to πm

i (incl. Pi), and a set

πm
i .InstSet of instances partnered to πm

i (incl. πm
i ).

Definition 1. (Partnering in ACCE-AP.) Let πm
i be an

instance of Pi. We define πm
i .PSet and πm

i .InstSet as:
If Pi ∈ C ∪ S , πm

i .InstSet contains all instances πn
j

such that πn
j .bid ∈ πm

i .m.bid (incl. πm
i ). The set πm

i .PSet
includes all Pj with instances in πm

i .InstSet (incl. Pi).
Let Pi ∈ MW . Find the unique πn

j .m.bid of a party
Pj ∈ C ∪ S such that πm

i .bid ∈ πn
j .m.bid. The set

πm
i .InstSet is equal to the set πn

j .InstSet (computed as
in the previous bullet point), and πm

i .PSet := πn
j .PSet.

Correctness. We cannot limit the correctness of proxied

handshakes to the correctness of partnering and keys. Indeed,

we will also need to account for the aspects of session binding,

cumulative and master configurations, and proxy permissions.

Definition 2. (Correctness). Consider a handshake executed
for a configuration HConfig and a contextual access list
aclHConfig. Consider the parties Pi ∈ HConfig and their
instances in this handshake. The following conditions must
hold simultaneously:
A. Partnering correctness. This is three-fold:

Instances. For each instance πm
i , there must exist an

instance of πm
i .pid whose session identifier sid equals

πm
i .sid (the instance’s partner is in that handshake).

Parties. All instances of Pi correctly accumulate the
partner- and session-information of their siblings (cumula-
tive attributes are consistent w.r.t. each sibling’s partnering
and session information).
Configuration. Consider a NewSession query outputting
instances πn

j , including master instances πm
i of endpoints

Pi (client or server), and middlebox instances π�
k of

middleboxes.
We require: (i) All instances accept partner authentica-
tion and the handshake configuration; (ii) all accepting
instances store the same configuration; (iii) the master

binding identifier of master instances πm
i includes exactly

twice the binding identifier πn
j .bid of each instance πn

j

output by the same NewSession query (this includes the
binders of Pi)4.

B. Access-control correctness. We require the consistency
of permissions allowed by the endpoints to all middleboxes.
Consider a NewSession query yielding a handshake for which
the instances complete in an accepting state. The following
must hold simultaneously:

Master context. The master permission set πm
i .m.perm

of both endpoints coincides to aclHConfig.
Middlebox context. The permissions for the handshake
stored by each proxy, stored in πm

i .c.perm, must be
consistent with those given in aclHConfig.

C. Key correctness. Partnered instances are also required to
compute the same channel keys, and all read/write keys for
a given permission must coincide.

Channel keys. Instances with the same session identifier
compute the same channel key πm

i .ck.
Master keys. All master instances compute the same
master context keys.
Middleware keys. Each middlebox stores keys consistent
with the permissions and context keys of master instances.

ACCE-AP security. We define security in terms of security

games played by an adversary against a challenger. The

adversary will have access to a number of oracles including

4Each binder is stored twice because our handshakes consist of tuples of
2-party handshakes.
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traditional 2-ACCE oracles (described in the Appendix).

However, we modify the NewSession oracle to take into

account the transition from 2 to k parties:

NewSession(HConfig, aclHConfig). The query takes as in-

put a handshake configuration HConfig and a contextual

access list aclHConfig. The output is a list of k sets of

tuples (πj
i , π

j
i .ρ, π

j
i .pid). Each set {(πj

i , π
j
i .ρ, π

j
i .pid)}�ij=1

corresponds to a party Pi in the HConfig. Here �i ≥ 1 is

public, but not adversarially-fixed; it depends on the protocol

and number of participants5. Each set {(πj
i , π

j
i .ρ, π

j
i .pid)}�ij=1

is a series of oracle-instances πj
i (with roles ρ and partner

identifiers pid) of the party Pi.

The remaining, ACCE-like oracles we use are:

Send. The adversary uses this oracle to send a message to a

given, existent instance, forwarding its reply.

Reveal. This oracle allows the adversary to learn the channel

keys of a given party instance.

Corrupt. By this oracle, the adversary corrupts either mid-

dleboxes or servers, obtaining their long-term keys.

Encrypt. This is a left-or-right oracle, which allows the

adversary to encrypt one of two possible messages of equal

length, depending on a hidden bit b.
Decrypt. This oracle allows the adversary to decrypt only

ciphertexts not returned by Encrypt.

The security properties. We define the security of a proxied

handshake in terms of three properties: instance entity-

authentication, instance channel-security, and configuration

soundness. The first two are backward compatible with

traditional 2-party (S)ACCE models, with a difference in

the partnering. In the ACCE-AP model, each instance has

more partners, none of which can be corrupted.

Each game will begin with a setup phase, in which all

the nP parties are instantiated, with corresponding long-

term keys and certificates, returning the public parameters

to the adversary A . The adversary’s winning advantage is

quantified over the randomness of all participants.

Definition 3. (Entity Authentication). In the entity authen-

tication game, after setup, A is given arbitrary access to the
new NewSession oracle above, and also to Send, Corrupt,
and Reveal. Finally A halts, and wins if there exists an
instance πm

i such that all the following conditions occur:
– πm

i has ended in an accepting state: πm
i .α = 1, with

partner πm
i .pid = Pj ∈MW ∪S ;

– No party in πm
i .PSet (partnered to πm

i ) is corrupted;
– There exists no session πn

j partnered with πm
i (πn

j 	∈
πm
i .InstSet).

The adversary’s advantage is its success probability.

Definition 4. (Channel Security). For channel security, after
setup, A is given access to the new NewSession oracle and

5If �i = 1, the output coincides with what would be returned by the
standard NewSession query for each participant Pi.

to Send, Corrupt, Reveal, Encrypt, and Decrypt. Whenever
a new instance πm

i is created via NewSession, the attribute
storing the secret bit used in Encrypt, denoted πm

i .b, is chosen
uniformly at random. Finally, A halts, outputting a tuple
consisting of an instance πm

i for Pi ∈ C and a guess-
bit d. We say A wins if the following conditions occur
simultaneously:
– πm

i .b = d;
– No Corrupt query was made on any party in πm

i .PSet;
– No Reveal query is made on instances in πm

i .InstSet.
A ’s advantage is defined as

∣
∣pA − 1/2

∣
∣, where pA is A ’s

success probability.

Configuration soundness. We now describe a new security

property capturing configuration soundness with respect to

the input of NewSession. Configuration soundness has three

components, formalized separately: (1) the soundness of the

configuration w.r.t. fully-honest partners; (2) the soundness

of the access-control-key distribution in the presence of cor-

rupted middleboxes (and honest endpoints); (3) the soundness

of the key-distribution even for a corrupted endpoint. We do

not consider security against a collusion between endpoints

and middleboxes: as soon as such a collusion occurs, we can

guarantee practically no security for the middleboxes situated

between the two colluding partners. Instead, the security level

becomes somewhat equivalent to that of a smaller handshake,

in which the colluding middlebox acts as the endpoint.
The three games begin with the setup described above.

Then, A is given access to the new NewSession oracle and

also to Send, Corrupt, Reveal, Encrypt, and Decrypt.

Definition 5. (Config. soundness: partnering). The game
is played as above. The adversary ends by outputting a
master instance πm

i , with Pi ∈ C , ending in an accepting
state with respect to its configuration, i.e., πm

i .μ = 1. Let
πn
j ∈ πm

i .InstSet be such that Pj ∈ S , πm
i .sid = πn

j .sid
and πn

j .μ = 1. We write HConfig for the configuration input
to the NewSession query that outputs πm

i . The adversary
wins if the following conditions occur simultaneously.
I. No Corrupt query was made on parties in πm

i .PSet;
II. No Reveal query is made on instances in πm

i .InstSet.
III. One of the following conditions occurs:
a. The master configuration πm

i .m.config 	= πn
j .m.config,

or πm
i .m.config = πn

j .m.config 	= HConfig;
b. The cumulative configuration of middlebox instances π�

k ∈
πm
i .InstSet differs from πm

i .m.config or HConfig;
c. There is an instance π�

k ∈ πm
i .InstSet such that π�

k.bid 	∈
πm
i .m.bid;

d. There is an instance π�
k ∈ πm

i .InstSet s.t. π�
k.β = 0.

Condition (III.d) sometimes implies (III.c): it does for our

protocol. However, this is not always true: the binding of

all instances π�
k ∈ πm

i .InstSet could be correct, but there

may exist an instance π�
k ∈ πm

i .InstSet that rejects that

configuration, that is πn
j .β = 0.
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Definition 6. (Config. soundness: malicious MW ). The
game is played as above. The adversary will output, in a test
phase, a tuple consisting of an instance πm

i with πm
i .μ = 1

and a context ctxt, such that Pi ∈ C and there exists an
instance πn

j ∈ πm
i .InstSet such that Pj ∈ S and πm

i .sid =
πn
j .sid. The challenger will output either the true context key

Kctxt in πm
i .m.ctxt.keys or a random key of the same length,

according to a hidden bit b. Then A may continue querying
oracles, finally outputting a bit d, winning if the following
occurs simultaneously:

– d = b;
– All instances π·

i ∈ πm
i .InstSet end in an accepting state

with respect to the configuration, i.e., π·
i.β = 1;

– No Corrupt query was made on any Pk ∈ πm
i .PSet s.t. ctxt

is registered as a permission for Pk in aclHConfig;
– No Reveal query is made on instances in πm

i .InstSet.

Finally, we guarantee that honest middleboxes accepting

the configuration cannot distinguish from random the keys

they are not entitled to, even if one endpoint is malicious.

Definition 7. (Config. soundness: malicious endpoint). The
game is played as above, and A eventually halts. It wins
if there exists a client or server instance πm

i storing a
configuration πm

i .m.config s.t. the following conditions apply
simultaneously.

– All instances π·
j for Pj ∈MW ∩ πm

i .PSet accepted the
configuration;
– Parties Pj ∈MW ∩ πm

i .PSet are uncorrupted;
– No Reveal query is made on instances in πm

i .InstSet.
– One of the following two conditions holds:
• If Corrupt was queried on a server Pk ∈ {S ∩
πm
i .m.config} (with Pk 	= Pi), then the following holds

simultaneously: (a) Pi ∈ C ; (b) there are instances
π�
i , π

s
k ∈ πm

i .InstSet with π�
i .sid = πs

k.sid; (c) all
instances πt

i ∈ πm
i .InstSet ended in an accepting state

w.r.t. the configuration, i.e., πt
i .μ = 1; (d) there exists

Pj ∈MW ∩πm
i .PSet and some instance πz

j ∈ πm
i .InstSet

with π�
i .m.perm 	= πz

j .c.perm.
• If no Corrupt query is made on the server Pk ∈ {S ∩
πm
i .m.config}, then the following holds simultaneously:

(a) Pk = Pi (the party Pi was the handshake server); (b)
all instances πz

i ∈ πm
i .InstSet accepted the configuration

(πz
i .μ = 1); (c) there exists Pj ∈MW ∩πm

i .PSet and an
instance πt

j ∈ πm
i .InstSet s.t. πm

i .m.perm 	= πt
j .c.perm.

IV. AN ACCE-AP-SECURE DESIGN

We now propose a protocol that is provably ACCE-AP se-

cure. In fact, we introduce a generic design, to be instantiated

with one or multiple accountable proxies. For one middlebox,

this yields Figure 4; a 2-middlebox case is presented in the

full version. In Appendix B, we also depict how to optimally

apply our design to TLS 1.3.

A. The ACCE-AP-secure Protocol Construction Π

We denote by Π a generic secure-channel establishment

protocol with accountable proxies, like the one in Figure 4.

We use a modular construction, with a careful composition

of independent, unmodified 2-party protocols guaranteeing

slightly more than 2-party SACCE and respectively ACCE-

security.

Our protocol consists of three phases: 2-ACCE, binding,

and access-control.

2-ACCE Phase. This phase consists of running a number

of parallel 2-SACCE and ACCE sessions, thus establishing

channel and exported keys. Although not standardly output

by AKE protocols, exported keys feature in many real-world

AKE protocols, including TLS 1.3 (which standardizes an

exporter secret)6.

Each party in the protocol starts the following instances:

Transport instances. These instances are run by each

entity with its direct neighbor(s): the endpoints only open

one such instance, whereas each middlebox opens two.

After successful completion, the transport sessions are

used to securely exchange binding and access-control

information. They also serve as an outer channel for record-

layer message-exchanges.

Master instance. Only the client and the server open one

such instance (irrespective of how many proxies take part

in the handshake). In this session, the configuration and

access control data are agreed upon, and the read/write

keys are computed.

Key-transfer instance. Finally, each endpoint must open

one instance to each middlebox it is not directly connected

to via a transport session. Key-transfer instances are

used to provide access-control keys and confirm the

configuration with the middlebox so that the latter may

accept or reject the handshake.

For the 1-middlebox case in Figure 4, the key transfer

is done in the transport sessions: the client, the middlebox,

and the server each open precisely two instances, yielding

two transport sessions and the master session. For two

middleboxes, each party opens three instances: the endpoints

create one transport instance (which also serves to transfer

keys to the closest proxy), one key-transfer instance (to the

farthest middlebox), and the master instance. Each proxy

opens two transport sessions (one to the neighboring endpoint,

one to the second middlebox) and one key-transfer instance

(to the non-neighboring endpoint).

Note that each instance will first need to finish in an

accepting state with respect to authentication before the

binding phase proceeds.

Binding Phase. We bind sibling instances together by using

the exported keys output in each of the parallel sessions.

6The TLS 1.2 key exporter construction [11] is insufficient: we will need
our exported keys to be unique (for instance, they could depend on the full
session hash, not just the nonces).
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C MW (CertMW , skMW ) S (CertS , skS )

2-SACCE C ↔ MW←−−−−−−−−−−−−−→ 2-ACCE MW ↔ S←−−−−−−−−−−−−−−→
Compute: ck1, ek1 Compute: ck1, ek1 Compute: ck2, ek2
t1 = PRF(ek1; “e.sid”; SHash) Compute: ck2, ek2 t2 = PRF(ek2; “e.sid”; SHash)

Get t1, t2
AE(ck1;t1,t2)←−−−−−−−−−−−−−−− AE(ck2;t1,t2)−−−−−−−−−−−−−−−→

2-SACCE C ↔ S←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Compute: ck3, ek3, t3 Compute: ck3, ek3, t3

Verify that:
AE(ck3;(t2,t3),HConfigS ,ctxtS ,PermS )←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(t2, t3) are compatible

HConfigS = HConfigC
ctxtS = ctxtC
PermS = PermC

Else abort.
AE(ck3;(t1,t3),HConfigC ,ctxtC ,PermC )−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Mirror client for verification

Set:

lbC = ((t1, t2, t3),HConfigC , ctxtC ,PermC ) Set lbS as C did.

Compute config. keys: Compute config. keys:

Ki = PRF(ek3; ctxt
i; lbC‖SHash) Ki = PRF(ek3; ctxt

i; lbS‖SHash)
Set: KC

MW = {Ki|ctxti ∈ PermC [MW ]} Set: KS
MW = {Ki|ctxti ∈ PermS [MW ]}

AE(ck1;HConfigC ,KC
MW )−−−−−−−−−−−−−−−−−→ Check:

AE(ck2;HConfigS ,K
S
MW )←−−−−−−−−−−−−−−−−−

KC
MW = KS

MW

HConfigC = HConfigS
HConfigC OK with MW

Else abort
AE(ck1;Accept)←−−−−−−−−−−−−−−−−− AE(ck2;Accept)−−−−−−−−−−−−−−−−−→

Record Layer

AE(ck1;AE(K
read,Kwrite;m))−−−−−−−−−−−−−−−−−→ Decrypt with ck1

Filter (see Perm) to m̂
AE(ck2;AE(KMW ;m̂))−−−−−−−−−−−−−−−−−−→ Decrypt with ck2, (K

read,Kwrite)

Figure 4: Our generic, ACCE-AP-secure protocol Π, illustrated with a single middlebox

Each session’s binding identifier is output by a pseudorandom

function (like HKDF) keyed with an exported key, on input

a label concatenated with that session’s hash. It is essential

for configuration soundness that the middlebox and server

can verify that they are talking to the same client (since

the client instances have so far been independent). We force

the client to prove its knowledge of its instance binders to

the server, and give it the binder for the remaining sessions;

this will enable the two endpoints to agree on configuration

and access-control details for that handshake. Both endpoints

must agree on a configuration and an access control list

before proceeding to the next phase.

In Figure 5, the binding identifiers are the values

t1, t2, t3, computed from the exported keys and the tran-

script hashes, as the output of a PRF instance, i.e., ti =
PRF(eki; “e.sid”; SHash). Each values ti (i ∈ {1, 2, 3}) is

stored individually in an π.bid, while π.m.bid stores all three

of them.

Access-Control Phase. Finally, the endpoints each compute

the access control keys for the handshake by running the same

PRF as before, keyed with the exported keys of the master ses-

sion, on input a label describing the context, and the transcript

hash. More precisely, for a context ctxti and permissions

a, the label lbPi is a string ctxti|a. The access control keys

are computed as Ki = PRF(ek3; ctxt
i; lbPi ‖SHash)). Each

middlebox receives the handshake configuration, one set of

keys from the client, and one from the server, over a direct,

secure channel (a key-transfer or a transport session). The

middlebox verifies that its view is consistent with the received

configurations, and that the keys sent by the endpoints

coincide. If either verification fails, the middlebox rejects
the configuration. Otherwise, it accepts the configuration and

sends a message to that effect to the endpoints. Only then

do the endpoints end in an accepting state, as well.

B. Security analysis

We first discuss the security assumptions we make on our

primitives. Then, we state the security of our generic design

for accountable proxying, given in Figure 4; due to lack of

space, we leave the full proofs of these to the full version.

Security assumptions. The security of our protocol will

require a 2-SACCE secure authenticated key-exchange (AKE)

protocol Π1 between the client and the middlebox, a 2-ACCE
secure AKE protocol Π2 between the middlebox and the

server, and a 2-SACCE secure AKE protocol Π3 between

the client and the server. Notably, Π1 and Π3 offer unilateral

authentication, whilst Π2 is mutually authenticated.

For i ∈ {1, 2, 3}, let Ψi denote the extension of Πi to a

protocol Ψi(Πi) that runs Πi, outputting ck, but in addition

outputs an export key ek. We require that the export keys

output Ψi(Πi) be indistinguishable from random, and in

addition, that no PPT adversary (with access to the usual

2-party oracles NewSession, Send, Reveal, Corrupt) can find

two non-partnered sessions for which the output export keys
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are identical, even if A can corrupt all servers (for the SACCE
protocols) and all parties (for the ACCE protocol). We call

the latter property pseudo-uniqueness of ek.

Our main reason for this assumption on the export keys

is our notion of binding. We need to ensure that each

configuration yields a unique set of binders even when

a legitimate party in the handshake misbehaves. Such a

condition helps us bypass e.g.attacks of the triple-handshake

kind, like those on mcTLS shown in Section II-C. Two

important aspects should be mentioned, regarding the pseudo-

uniqueness assumption: (1) it is non-standard in AKE security

(though interestingly it holds for TLS 1.3); (2) we do not

require this same condition for the channel keys ck.

We do not demand pseudo-uniqueness of channel keys

since they play no part in binding. As we do not consider

resumption, or other short-cuts needing stronger keys, we

only need channel keys be pseudo-random.

The ACCE-AP-security of the 1-middlebox-version of
Π. We provide two security theorems for the multicontext

handshake proposed in Figure 4: Theorem 1 captures entity

authentication and channel security, and Theorem 2 captures

configuration soundness (in its three aspects). The proofs are

described in the full version.

Theorem 1. Let Π be protocol in Figure 4, for which
Π1,Π2,Π3 and Ψ1,Ψ2,Ψ3 are defined as above. If Π1,Π3

are 2-SACCE secure, and Π2 is 2-ACCE secure, then:
– Π guarantees ACCE-AP entity authentication and
channel security;

Theorem 2. Let Π be the protocol in Fig. 4, for which
Π1,Π2,Π3 and Ψ1,Ψ2,Ψ3 are defined as above. If: (1)
Π1,Π3 are 2-SACCE secure and Π2 is 2-ACCE secure; (2)
Ψ1,Ψ2,Ψ3 extend Π1,Π2,Π3 to also yield export keys ek
which are indistinguishable from random and pseudo-unique;
(3) the KDF used to compute t1, t2, t3 is a secure PRF;
(4) the hash function used for the recurring session hash is
collision-resistant, then:

– Π is configuration sound w.r.t. partnering, malicious
middleboxes, and malicious endpoints.

These theorems informally guarantee 4 properties: a

network adversary cannot convince an (honest) party it is

part of a different configuration than is actually the case; all

access-control keys are correctly distributed (middleboxes get

the keys they are entitled to, and no collusion of malicious

middleboxes can learn anything about keys it is not entitled

to know); middleboxes can detect malicious behavior in

one endpoint (with respect to the permissions); no network

adversary can learn anything about the messages sent at the

record layer of our multicontext handshake.

The security of the handshake, however, makes no guar-

antee w.r.t. the integrity and authenticity of messages sent

at the proxied record layer. The secure-channel statement

guarantees the integrity and authenticity of messages, but only

within a two-party session. To capture integrity on the end-

to-end record layer, we need to consider the functionalities
and permissions of the middleboxes. We do so next.

Record-layer security. For a middlebox MW and a message

fragment m (as given by the division into contexts), let

m′ = MW (m) be the message m′ obtained by the honest

modification of m by MW . Note that m′ could be the same

as m, a correctly formatted message other than m, or it could

also be an error message ⊥.

For the one-middlebox case, we can prove the following

result w.r.t. record-layer security. The case of several middle-

boxes will be discussed in the full paper, since it presents

more problems.

Theorem 3. For any handshake of the protocol in Figure 4,
for all instances ending in an accepting state w.r.t. the
configuration, for all contexts, consider a message-fragment
m sent from one endpoint (which we will call sender) to the
other endpoint (here called the receiver). Assume that the
receiver receives a ciphertext c∗, for which it accepts the
authentication of the message, decrypting it to a message
fragment m∗. Then:

– If the middlebox is corrupted, but has read-only permis-
sions for the context corresponding to fragments m,m∗,
then m∗ = m.
– If the sender is corrupted, but the receiver and middlebox
are honest, then m∗ = MW (m).

We can make no integrity and authenticity statement for

a corrupted middlebox with write access. However, this is

a flaw inherent to using read and write keys. The second

guarantee in Theorem 3 is something no SSL inspection

method, including mcTLS, has so far provided. Indeed, our

double-encryption thwarts the middlebox-bypass attack we

presented in Section II-C. This is a useful guarantee, as it

ensures that honest proxies always perform their due tasks

on messages sent to them, even by a dishonest endpoint.

Enhancing integrity. We could also make this integrity

guarantee stronger, and ensure, like mcTLS, that a message

that is sent unchanged from the honest sender to the honest

receiver can be distinguished from a message that modified

by a potentially-malicious middlebox with write access. This

is easily done by adding a MAC, under, e.g., a key derived

from the export key of the master session under a new label.

At the record layer, instead of just sending an authenticated

encryption under the read and write key of a message, we

could also add a MAC of that same message computed with

the write key for that fragment. We choose to avoid this

overhead, since the guarantees we can offer for the record

layer are anyway limited.

C. Prototype Implementation

We built a proof-of-concept implementation of the

ACCE-AP-Π protocol instantiated with TLS 1.3, as per
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depicted in Fig. 5. Our implementation is based on the

miTLS [7] library, an implementation of TLS 1.3 (draft 23)

in F� [37]. We prefer to use miTLS over more mainstream

implementations, such as OpenSSL, for several reasons:

• miTLS is written in a modular way, with well-contained

local state in the various modules (e.g., the key schedule,

negotiation module, handshake state-machine); this

simplifies the writing of protocol extensions, in par-

ticular when multiple handshakes must be managed

simultaneously, compared to implementations with large

amount of ambient state. miTLS has been previously

used for similar purposes within the FlexTLS tool [12];

• miTLS is designed to enable formal verification. The

miTLS implementation of TLS 1.3 is under active

development, but the security and correctness of many of

its components have been formally proved, including the

underlying cryptographic library [38] and the the record

layer [5]. Currently, the miTLS implementation does

not prove pseudo-uniqueness of exporter keys (which

we rely on in our security proofs), but we believe that

the key schedule contains all the necessary elements for

such a proof, based on the PRF assumptions on HKDF

and on the PRF-ODH assumption already in place for

key indistinguishability, and that it is likely to be added

in the future by the miTLS authors.

Our main change to miTLS is the addition of a new content

type and record sub-protocol, which is used for the (t1, t3)
and (t2, t3) exchanges and for transmitting KC

MW and KS
MW .

Using a separate content type means that those messages

are invisible to the miTLS handshake and do not interfere

with its internal invariant and state machine (in particular, the

transcript hashing and post-handshake messages). Similarly,

these extra messages do not interfere with the flow of

application data, following the multi-stream model of the

miTLS record [5], and so do not interfere with the current

application guarantees of miTLS.

Our changes are mostly contained to two files within

miTLS: the top-level interface (TLS.fst) and the new middle-

box sub-protocol (Middlebox.fst). Only minor changes are

needed to the handshake to give access to the exporter secret-

keyed PRF to the middlebox protocol. Our total changes

consist of under 1000 lines of F�code, which is less than 5%

of the miTLS protocol code. Our prototype implementation

is available on Github as a branch of the miTLS repository.7

We note that this prototype is restricted to a single middlebox

whose certificate is known in advance to the client and server,

and which has full read and write permissions.

To test our implementation, we use the simple HTTP

client/server tool provided by miTLS. For the middlebox, we

created a new application that exercises the new options

added to the top-level interface TLS.fst. Our middlebox

7https://github.com/mitls/mitls-fstar/tree/middlebox

is configured to read and display the traffic, but otherwise

performs no function.

We measured the performance of our code when using

AES128-GCM record algorithm, HKDF-SHA256 for the key

schedule, Curve25519 for the Diffie-Hellman key exchange,

and ECDSA on the NIST P-384 curve with SHA-384 for

the server and middlebox signatures. We measure a marginal

increase in connection time (35ms→ 38ms), but a significant

throughput loss of about 40% (516MB/s → 299MB/s) in our

experiment, compared to a direct connection between the

client and server.

The latency increase is caused by the additional Diffie-

Hellman computation at the middlebox, and disappears when

PSK or 0-RTT is used. The decrease in throughput is

primarily due to the re-encryption overhead, which is done

sequentially in our prototype. We believe this overhead can

be mitigated by parallelizing encryption and decryption on

the middlebox.

V. CONCLUSIONS

In this paper, we proposed a new security definition,

as well as a modular, provably-secure construction of an

accountably-proxied secure channel. We hope that our design

will provide a better example of how accountability can be

achieved without harming the authenticity and integrity of the

underlying channel. However, our formal model/definitions

are complex, and –even so– we achieve limited record-layer

guarantees in multi-middlebox setting. This illustrates the

intuitive principle that the more middleboxes are interspersed

between the client and the server, the weaker the security

of incoming and outgoing messages becomes. If many

(potentially-malicious) middleboxes are present, the endpoints

may no longer rely on each of the proxies to inspect the traffic.

As our analysis suggests, the most important middlebox

should then be placed closest to the server to guarantee

its functionality is observed.

Finally, our proposed protocol design is not meant to

encourage widespread active proxying. Instead, we hope

to have shown that, beyond the loss of end-to-end security

inherent to proxying, it is difficult to construct a proxied

handshake in a sound way. The integrity and authenticity

properties of the record layer degrade quickly with the number

and position of the corrupted middleboxes, and schemes with

more than two proxies are not very efficient. As such, our

results indicate that care should be taken before introducing

a middlebox, and for sensitive end-to-end communications,

they should preferably be eliminated.
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Diego R. López, K. Papagiannaki, Pablo Rodriguez Rodriguez,
and P. Steenkiste. Multi-Context TLS (mcTLS): Enabling
Secure In-Network Functionality in TLS. In Proceedings of
SIGCOMM 2015, pages 199–212. ACM, 2015.

[34] M. O’Neill, S. Ruoti, K. Seamons, and D. Zappala. TLS
proxies: Friend or foe. In Proceedings of IMC, pages 551–
557, 2016.

[35] T. Ormandy. Cloudflare reverse proxies are dumping
uninitialized memory. https://bugs.chromium.org/p/project-
zero/issues/detail?id=1139, 2015.

[36] K. Paterson, T. Ristenpart, and T. Shrimpton. Tag size does
matter: Attacks and proofs for the TLS record protocol. In
Advances in Cryptology — ASIACRYPT 2011, volume 7073
of LNCS, pages 372–389. Springer-Verlag, 2011.

812



[37] N. Swamy, C. Hritcu, C. Keller, A. Rastogi, A. Delignat-
Lavaud, S. Forest, K. Bhargavan, C. Fournet, P.-Y. Strub,
M. Kohlweiss, J.-K. Zinzindohoue, and S. Zanella-Béguelin.
Dependent types and multi-monadic effects in F*. In 43nd
ACM Symposium on Principles of Programming Languages,
POPL 2016, pages 256–270, 2016.
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APPENDIX A.

RELATED WORK

Two-party authenticated key-exchange protocols are an

old and well-studied primitive [2] and various notions of

channel security have been formalized and applied to TLS

1.2 [20], [25], [8], [22], [31], [36], [27] and 1.3 [13], [14],

[19], [16], [3], [28], [23], [26], [21]. However, as Bhargavan

et al. [4] showed in the context of TLS, and as Alt et al. [1]

and Fouque et al. [17] – in the context of mobile networks,

expanding two-party handshakes to include even a single,

dedicated middlebox can expose the obtained channel to

serious attacks. Our work reuses some parts of [4]’s security

model, specifically the elegant way in which multiparty

protocols can be viewed as compositions of 2-party AKE

schemes; however, the scope of our paper is fundamentally

different. The work of Bhargavan et al. centers around a

particular type of caching middlebox, with all-or-nothing

access rights to server contents. In this paper, our goal is

to provide finer-grained access-rights (as defined through

contexts) to both client- and server-side middleboxes.

Other approaches to delegated or proxied AKE protocols

exist. Composition-centric approaches, such as those of

Brzuska et al. [11], [10] and Jacobsen [24] capture the three-

party handshake usually deployed in WLANs (also called

the 4-way-handshake protocol). The main goals of that work

is to prove that a handshake consisting of three separate

executions of different AKE protocols, relying on different

credentials, can still yield a secure channel. This is different

from our case, for several reasons. The handshakes involved

in the EAP protocol do not interfere with each other and

can be treated independently, whereas in mcTLS and our

protocol, keys are simultaneously established and distributed

to multiple middleboxes. Furthermore, since our middleboxes

have finer-grained access rights, record layer security in our

setting is more subtle.

Our construction builds on the existing mcTLS proto-

col [33], which is a novel and a fundamentally different way

of thinking about proxying TLS connections. In parallel to

our work, a different variant of mcTLS, called middlebox TLS

(mbTLS) [32], has been recently proposed. Like our protocol,

mbTLS tries to keep more of the TLS handshake unchanged.

However, mbTLS appears more focused on the network-

architecture than on (formal) security guarantees. It also ded-

icates a significant part of its thrust to non-security properties

(e.g., deployability, backwards compatibility). Different to our

design, mbTLS looks at achieving certain security guarantees

between two hops via the use of attestation, and at integrating

the latter in the TLS handshake. But, unlike both mcTLS

and mbTLS, we show how our design can be concretely

instantiated with TLS 1.3, and we prove our proposal secure

formally.

APPENDIX B.

INSTANTIATING OUR DESIGN WITH TLS 1.3

Fig. 5 shows how to optimally instantiate our ACCE-AP-

secure design called Π, with TLS 1.38.

We presented our modular, ACCE-AP-secure design called

Π for 1 middlebox, in an abstract manner, using generic

authenticated key-exchange protocols. We will now show

how this translates into a more concrete design, when the

underlying authenticated key-exchange protocol used as the

building block is TLS 1.3; to illustrate the computations

therein, we will focus more on the server party S. I.e., one

server-instance will “liaise” directly with the middlebox (in

Figure 5, computations by this server-instance are written in

blue). Another server-instance will “liaise” with the client

(in Figure 5, computations by this server-instance are written

in black). Similarly, one client-instance will “liaise” directly

with the middlebox (written in red, on Figure 5), and one

will “liaise” with the server (written in black, on Figure 5).

For each instance, the normal computations for TLS1.3 take

place: a handshake transport key htk is derived (in two

stages: first, the TLS1.3 handshake secret hs is derived

using HKDF.extract(·) over the TLS1.3 early secret es
and using as secret input e.g. the value gyz

′
produced by

S’s blue instance; second, the HKDF.expand(·) is used

over hs, a finished key fk is derived (fk is derived using

HKDF.expand(·) of the base-key), and finally a transport

key tk and export keys ek are derived (as explained in

the TLS 1.3 draft). As per TLS1.3, after each handshake

transport key htk is derived, the TLS 1.3 handshake messages

thereafter are encrypted using htk, and the finished messages

are encrypted with fk. In Figure 5, we use the notation

AE(htk; ·) to denote the authentication encryption of a

message under the appropriate handshake traffic key. We

can see that the ACCE part of our design, instantiated herein

via TLS1.3 handshake, ends in each session –as expected–

with the Finished messages. Clearly, the transport keys tk on

Fig. 5 correspond to what in our generic ACCE-AP-secure

construction Π was denoted as the ck keys.

Then, the binding phase can start, whereby different

ti (with i ∈ {1, 2, 3}) are produced by particular nodes

of the communication and are sent across in a particular

order, encrypted with the transport key. To this end, we

write AE(tk; ·) for the authenticated encryption under a

relevant traffic key tk. Like in our generic ACCE-AP-secure

8The newest draft of the TLS 1.3 handshake can be found at https:
//tools.ietf.org/html/draft-ietf-tls-tls13-21.
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C MW (CertMW , skMW ) S (CertS , skS )

Choose CHello,CHello′ Choose MWHello, MWHello′ Choose SHello, SHello′

Choose x, x′ Choose z, z′ Choose y, y′

(CHello, gx)−−−−−−−−−−−−−−−−−−−→ (MWHello′, gz
′
,CertMW )−−−−−−−−−−−−−−−−−−−→

(CHello′, gx
′
)−−−−−−−−−−−−−−−−−−−→ (CHello′, gx

′
)−−−−−−−−−−−−−−−−−−−→

Compute htk, fk
SHello, gy , SHello′, gy

′

←−−−−−−−−−−−−−−−−−−− Compute htk, fk, htk, fk

Verify CertS ,CVfS
AE(htk; CertS ,CVfS )←−−−−−−−−−−−−−−−−−−− CVfS = SignskS (SHash)

Verify FinS
AE(htk; FinS )←−−−−−−−−−−−−−−−−−−− FinS = MAC(fk, SHash)

Compute CVfMW ,FinMW as S did
AE(htk; CReq)←−−−−−−−−−−−−−−−−−−− Compute tk, ek, t2

AE(htk; CertS ,CVfS )←−−−−−−−−−−−−−−−−−−− CVfS = SignskS (SHash)
AE(htk; FinS )←−−−−−−−−−−−−−−−−−−− FinS = MAC(fk, SHash)

Compute tk, ek, t3
Set HConfig = (C,CertMW ,CertS )
Set mcHS = (t2, t3,HConfig, aclHConfig)

AE(tk; mcHS )←−−−−−−−−−−−−−−−−−−−
Compute htk, fk

MWHello, gz←−−−−−−−−−−−−−−−−−−− Compute CVfMW

Verify CertMW ,CVfMW

AE(htk; CertMW ,CVfMW )←−−−−−−−−−−−−−−−−−−− Compute FinMW

Verify FinMW

AE(htk; FinMW )←−−−−−−−−−−−−−−−−−−−
Compute htk, fk

SHello′, gy
′

←−−−−−−−−−−−−−−−−−−−
Verify CertS ,CVfS

AE(htk; CertS ,CVfS )←−−−−−−−−−−−−−−−−−−−
Verify FinS

AE(htk; FinS )←−−−−−−−−−−−−−−−−−−−
Compute FinC , FinC
Compute (tk, ek, t1), (tk, ek, t3)

Verify HConfig, aclHConfig, t3
AE(tk; mcHS )←−−−−−−−−−−−−−−−−−−−

Set mcHC = (t1, t2, t3,HConfig, aclHConfig)

For all contexts i, get Ki (read and write)
AE(htk; FinC ), AE(htk; FinC )−−−−−−−−−−−−−−−−−−−→ Verify FinC

Compute KC
MW

AE(tk; HConfig,KC
MW )−−−−−−−−−−−−−−−−−−−→ Store HConfig,KC

MW

AE(tk; mcHC )−−−−−−−−−−−−−−−−−−−→ AE(htk; CertMW ,CVfMW )−−−−−−−−−−−−−−−−−−−→ Verify CertMW ,CVfMW

AE(htk; FinMW )−−−−−−−−−−−−−−−−−−−→ Verify FinMW

AE(tk; t1)−−−−−−−−−−−−−−−−−−−→ Store t1
AE(tk; mcHC )−−−−−−−−−−−−−−−−−−−→ Verify t1, t3,HConfig, aclHConfig

Check HConfig = HConfig
AE(tk; HConfig,KS

MW )←−−−−−−−−−−−−−−−−−−− Compute all Ki and KS
MW

Check HConfig OK with MW
Check KC

MW = KS
MW

AE(tk; Accept)←−−−−−−−−−−−−−−−−−−− AE(tk; Accept)−−−−−−−−−−−−−−−−−−−→

Record Layer

AE(tk; AE(Kread,Kwrite;m))−−−−−−−−−−−−−−−−−−−→ Decrypt with tk
Filter to m̂

AE(tk; AE(KMW ; m̂))−−−−−−−−−−−−−−−−−−−→ Decrypt with tk, (Kread,Kwrite)

Figure 5: Instantiating our ACCE-AP-secure construction Π, instantiated with TLS 1.3

construction Π, we use a PRF keyed on the relevant ek and

applied over the hash of the session thus far to compute

the t, binding values, i.e. the binder t2 calculated by the

server for the session it has with the middlebox is done as

t2=PRF(ek;“e.sid”;SHash). Similarly, the server computes

a binder t3 for the session it has with the client. All the

configuration, the permissions and the binders t1 and t2
are placed by the server in mcHS , which is sent (via the

MW) encrypted with the transport key tk that S now shares

with the client. Similarly, after the handshake phase, the

client calculates binder t1 (for the session C has with the

middleware), and binder t3 (for the session C has with

the server). As it receives mcHS , the client checks the

configuration, permissions and t3 (as sent by S).

If no fault is encountered by C in the checks of the

configurations and binder t3 as received from S (via MW ),

then the phase of the computation of the access keys can begin.

C will compute the access keys for the MW and send them

across to the MW, encrypted with the transport key tk that

C shares with MW , i.e. AE(tk; HConfig,KC
MW ) (recall that

the color red simply denotes the session C – MW ). C will

also package all the 3 binders along with the configuration

and permissions into mcHC which he sends to S , encrypted

with the transport key tk that C shares with S (via MW ),

i.e. AE(tk; mcHC ).

Upon receiving AE(tk; HConfig,KC
MW ) from C , the
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MW can store the config and permissions as sent by C and

retrieve the binders (notably t1) from KC
MW . To this end,

recall from the main manuscript that KC
MW is composed

of a series of keys Ki = PRF(ek3; ctxt
i;mcHC‖SHash)),

one for each context i. Importantly, having retrieved t1, the

middleware can send it encrypted with the transport key it

shares with the server to the server, i.e. AE(tk; t1) (recall

that the color blue simply denotes the session S – MW ).

From AE(tk; mcHC ) and AE(tk; t1), the server can store

t1 but also check that t1 and t3 as seen by C are the same

as produced by himself (in the case of t3) and received by

the middlebox (in the case of t1). From here on, if no fault

was found by S , then he will compute the access keys at

his end and send them to the middlebox, as done previously

by C , but –of course– encrypted with the key tk for the

S–MW session, i.e. AE(tk; HConfig,KS
MW ) (recall that the

colour blue simply denotes the session S – MW ). So, at this

point the middleware can confront the configs, permissions

and keys as received from C and from S, to check that they

are the same. From here, upon success, the configuration

acceptance messages can be sent and the application layer

exchanges can begin thereafter.

APPENDIX C.

AKE & ACCE SECURITY

The AKE and ACCE models. We now briefly review the

AKE and ACCE security notions, using the notations of

Brzuska et al. [11].

Parties and instances. Both models are defined in the

context of a set P of parties, which is formed of two disjoint

subset, the client set C , and the server set S . Parties are

associated with private keys sk and associated public keys pk,

which are certified by certifying authorities. Each protocol

session in which a party is involved describes an instance of

that party; πm
i denotes the m-th instance of party Pi. Each

instance is associated with a set of attributes, the session-

specific ones intrinsically pertaining to the instances, whereas

the long-term ones being “inherited” by instances from their

“owning” parties.

For the ACCE model, the attributes are as follows: 1) The

private key πm
i .sk := ski and public key πm

i .pk := pki of

an instance πm
i of party Pi; 2) The role πm

i .ρ ∈ {init, resp}
of Pi, i.e., that of an initiator (the party that initiates the

execution of the protocol) or of a responder (the party

responding in that execution); 3) The session identifier
πm
i .sid of an instance; 4) The partner identifier, πm

i .pid is

either a party identifier Pj or, in unilateral authentication, it

can be a label “Client”denoting the client with whom the

party Pi believes to be communicating. 5) The acceptance-
flag πm

i .α is 1 or 0 denoting that party respectively accepts

or rejects the partner’s authentication; to begin with and prior

to the end of the handshake, this attribute is set to ⊥; 6) The

revealed bit πm
i .γ is 1 or 0 denoting that party has had its

session keys revealed or not; to begin with, 0 is assigned

to this attribute; 7) The channel-key, πm
i .ck is set to a non-

null bitstring when πm
i ends in an accepting state; prior to

the successful end of the session, this attribute is set to ⊥;

8) The left-or-right bit πm
i .b, sampled at random when the

instance is generated and used in the key-indistinguishability

and channel-security games; 9) The transcript πm
i .τ of the

instance, containing the suite of messages received and sent

by this instance, as well as all public information.

A crux notion of the ACCE models is that of partnering:

two instances πm
i and πn

j are partnered if their identifiers

πm
i .sid and πn

j .sid are equal and non-⊥.

ACCE/AKE games and adversarial queries. In the ACCE

model, a MiM adversary can interact with parties in concur-

rent or sequential session. His interaction is formally captured

via a series of oracles. I.e., the NewSession(Pi, ρ, pid) oracle-

query produces a new instance of Pi. Sending a message mes
to such an instance πm

i is modelled via the MiM issuing a

Send(πm
i ,mes) query. The Corrupt(Pi) queries encapsulate

the MiM learning party Pi’s secret key. Querying Reveal(πm
i )

denotes the MiM finding out the channel keys for an accepting

instance πm
i .

In the AKE models, the MiM has access to all the above

ACCE queries, as well as to the Test(πm
i ) oracle. On such

a query, the output is either the real channel keys πm
i .ck

computed by the accepting instance πm
i or some random

keys of the same length.

To define ACCE/AKE security on top of a MiM adversary

A having access to all the oracles above, we also need to

employ the notion of session freshness.

Session freshness. A session πm
i is fresh with intended

partner Pj , if the following holds: 1) upon the last query of

the adversary A , the uncorrupted instance πm
i has finished

its session in an accepting state, with πm
i .pid = Pj ; 2) Pj is

uncorrupted; 3) no Reveal query was made for the πm
i , πn

j .

AKE Entity Authentication (EA). In the entity authentica-

tion game, the adversary queries the NewSession(Pi, ρ, pid),
Send(πm

i ,mes), Reveal(πm
i ), and Corrupt(Pi) oracles and

its goal is to make one instance, πm
i , end in an accepting

state, with partner ID Pj , which must be uncorrupted, such

that no other unique instance of Pj partnering πm
i exists. The

adversary’s advantage in this game is its winning probability.

AKE Key-indistinguishability (KI). In the KI game,

A makes queries to the NewSession(Pi, ρ, pid),
Send(πm

i ,mes), Reveal(πm
i ), and

Corrupt(Pi)) oracles and makes a single Test query for

a fresh instance πm
i . It wins if it can guess this party’s

correctly randomly-chosen bit πm
i .b. The adversary’s

advantage is the absolute difference between its winning

probability and 1
2 . The AKE security of a protocol is given

by the sum of the advantages an adversary has to break

either of the two properties, EA or KI.

ACCE security. In the ACCE model, the adversary is
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slightly different to the AKE adversary: 1) it does not have

access to the Test oracle; 2) it has access to the oracles

Encrypt(πm
i , l,M0,M1, H) and Decrypt(πm

i , C,H), which

simulate the access to the secure channel established by party

instances. Intuitively, if the Decrypt oracle is queried on an

adversarially created ciphertext (without using the Encrypt
oracle), it will implicitly reveal the value of the bit b.

ACCE security is defined in terms of two games: the EA

game presented as in the ACCE model, and the following

game expressing the requirement of security for the estab-

lished channel.

ACCE Security of the Channel (SC). In this game,

the adversary A can use the NewSession(Pi, ρ, pid),
Send(πm

i ,mes), Reveal(πm
i ), and Corrupt(Pi) oracles.

For a fresh instance πm
i , A must output, the bit πm

i .b of

that instance. The adversary’s advantage is the absolute

difference between its winning probability and 1
2 .

ACCE-security for TLS. It is known that TLS 1.2 in DHE

mode is (S)ACCE secure with unilateral authentication and

ACCE secure if the mutual authentication mode is used [20],

[25]. A recent compositional result by Brzuska et al. [11]

describes the construction of AKE-secure export keys from

an ACCE-secure key-exchange protocol such as TLS 1.2.

We note, however, that these results only prove the security

of fresh sessions, in which both partners are honest and

legitimate. In particular, the fact that the sessions keys are

computed only on the nonces (and not, e.g., over the entire

session transcript incl. the exchanged certificates) implies a

lack of uniqueness. In particular, a malicious, but legitimate

server can force two different sessions (one with a client

and another with an honest server) to share keys [6]. In

addition, moreover, the client may also be fooled, by a

malicious server, into thinking it is negotiating a handshake

with a different, honest server. In our case, such attacks are

particularly relevant, since we wish to compose handshakes, in

a scenario in which some of the participants may be malicious.

This weakness extends to the export-key construction of

Brzuska et al. [11].

For TLS 1.3 (up to and including draft 10), Dowling et

al. [14] have proved the (multi-stage) AKE security of the

keys output in TLS 1.3. Although the protocol has changed

since, it can still be inferred that the full mode of TLS 1.3

provides the same level of security for the obtained keys.

Note that by construction, TLS 1.3 offers the possibility

of computing export keys, and the proof of Dowling et

al. also postulates their indistinguishability from random. As

opposed to TLS 1.2, the TLS 1.3 handshake does provide the

uniqueness of session keys, even in the presence of malicious,

legitimate servers. This is because the TLS 1.3 key material

is always computed on the entire session hash, including the

authenticating information provided by the client and server.

On a different note, whereas in TLS 1.2 the server can

simply choose DHE parameters as it wishes, in TLS 1.3 it is

the client that chooses the DHE groups from amongst a list

of possible groups that are considered secure. Although this

does not impact our result, it does mean than our multicontext

protocol is secure when instantiated with any of those groups.

Should we wish to instantiate it with TLS 1.2, the security

of the multicontext handshake would depend on which DHE

parameters the server chooses.
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