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Abstract—The Elliptic Curve Digital Signature Algorithm
(ECDSA) is one of the most widely used schemes in deployed
cryptography. Through its applications in code and binary
authentication, web security, and cryptocurrency, it is likely one
of the few cryptographic algorithms encountered on a daily
basis by the average person. However, its design is such that
executing multi-party or threshold signatures in a secure manner
is challenging: unlike other, less widespread signature schemes,
secure multi-party ECDSA requires custom protocols, which
has heretofore implied reliance upon additional cryptographic
assumptions such as the Paillier encryption scheme.

We propose new protocols for multi-party ECDSA key-
generation and signing with a threshold of two, which we prove
secure against malicious adversaries in the random oracle model
using only the Computational Diffie-Hellman Assumption and
the assumptions already implied by ECDSA itself. Our scheme
requires only two messages, and via implementation we find that
it outperforms the best prior results in practice by a factor of 55
for key generation and 16 for signing, coming to within a factor
of 12 of local signatures. Concretely, two parties can jointly sign
a message in just over two milliseconds.

I. INTRODUCTION

Threshold Digital Signature Schemes are a classic notion

in the field of Cryptography [1], which allow a group of

individuals to delegate their joint authority to sign a message

to any subcommittee among themselves that is larger than a

certain size. Though they are extensively studied, these types

of signatures are seldom used in practice, in part because

bespoke threshold schemes are incompatible with familiar,

widely-accepted signature schemes, and, on the other hand,

because threshold techniques for standard signatures tend to

be highly inefficient, reliant upon unacceptable assumptions,

or otherwise undesirable.

Consider the specific case of the Elliptic Curve Digital

Signature Algorithm (ECDSA), perhaps the most widespread

of signatures schemes: all existing threshold techniques for

generating ECDSA signatures require the invocation of heavy

cryptographic primitives such as Paillier encryption [2]–[4].

This leads to both poor performance and to reliance upon as-

sumptions that are foreign to the mathematics on which ECDSA

is based. This is troublesome, because performance concerns

and avoidance of certain assumptions often motivate the use

of ECDSA in the first place. We address this shortcoming by

devising the first threshold signing algorithm for ECDSA that is

based solely upon Elliptic Curves and the assumptions that the

ECDSA signature scheme itself already makes. Furthermore,

we improve upon the performance of previous works by a

factor of sixteen or more.

Notionally introduced by Diffie and Hellman [5] and first

formulated and proven by Goldwasser et al. [6], Digital

Signature Schemes allow one party (the signer) who holds

a secret key to convince anyone who holds the matching public
key that a message is authentic (i.e. that it cannot have been

altered since it was signed) and non-repudiable (i.e. that no one

other than the signer could have signed it). Signature schemes

achieve this through the property of existential unforgeability
against adaptive chosen-message attacks. That is, an adversary

is allowed to choose any number of messages for which it may

request a signature, but we require that it can never produce

a valid signature for a new message on its own unless it has

access to the secret key.

ECDSA is a standardized [7]–[9] derivative of the earlier Dig-

ital Signature Algorithm (DSA), devised by David Kravitz [10].

Where DSA is based upon arithmetic modulo a prime, ECDSA

uses elliptic curve operations over finite fields. Compared to

its predecessor, it has the advantage of being more efficient

and requiring much shorter key lengths for the same level of

security. In addition to the typical use cases of authenticated

messaging, code and binary signing, remote login, &c., ECDSA

has been eagerly adopted where high efficiency is important.

For example, it is used by TLS [11], DNSSec [12], and many

cryptocurrencies, including Bitcoin [13] and Ethereum [14].

A t-of-n threshold signature scheme is a set of protocols

which allow n parties to jointly generate a single public key,

along with n private shares of a joint secret key, and then

privately sign messages if and only if t (some predetermined

number) of those parties participate in the signing operation.

In addition to satisfying the standard properties of signature

schemes, it is necessary that threshold signature schemes be

secure in a similar sense to other protocols for multi-party

computation. That is, it is necessary that no malicious party

can subvert the protocols to extract another party’s share of

the secret key, and that no subset of fewer than t parties can

collude to generate signatures.

The concept of threshold signatures originates with the

work of Yvo Desmedt [1], who proposed that multi-party and

threshold cryptographic protocols could be designed to mirror

societal structures, and thus cryptography could take on a new

role, replacing organizational policy and social convention with

mathematical assurance. Although this laid the motivational
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groundwork, it was the subsequent work of Desmedt and

Frankel [15] that introduced the first true threshold encryption

and signature schemes. These are based upon a combination of

the well-known ElGamal [16] and Shamir Secret-Sharing [17]

primitives, and carry the disadvantage that they require a trusted

party to distribute private keys. Pedersen [18] later removed

the need for a trusted third party.

The earliest threshold signature schemes were formulated as

was convenient for achieving threshold properties; Desmedt and

Frankel [15] recognized the difficulties inherent in designing

threshold systems for standard signature schemes. Nevertheless,

they later returned to the problem [19], proposing a non-

interactive threshold system for RSA signatures [20]. This

was subsequently improved and proven secure in a series of

works [21]–[24]. Threshold schemes were also developed for

Schnorr [25], [26] and DSA [27]–[29] signatures. Many of

these schemes were too inefficient to be practical, however.

The efficiency and widespread acceptance of the ECDSA

signature scheme make it a natural target for similar work, and

indeed threshold ECDSA signatures are such a useful primitive

that many cryptocurrencies are already implementing a similar

concept in an ad-hoc manner [30]. Unfortunately, the design

of the ECDSA algorithm poses a unique problem: the fact that

it uses its nonce in a multiplicative fashion frustrates attempts

to use typical linear secret sharing systems as primitives. The

recent works of Gennaro et al. [3] and Lindell [2] solve this

problem by using multiplicative sharing in combination with

homomorphic Paillier encryption [31]; the former focuses on

the general t-of-n threshold case, with an emphasis on the

honest-majority setting, while the latter focuses on the difficult

2-of-2 case specifically. The resulting schemes (and the latter

in particular) are very efficient in comparison to previous

threshold schemes for plain DSA signatures: Lindell reports

that his scheme requires only 37ms (including communication)

per signature over the standard P-256 [9] curve.

Unfortunately, both Lindell and Gennaro et al.’s schemes

depend upon the Paillier cryptosystem, and thus their security

relies upon the Decisional Composite Residuosity Assumption.

In some applications (crypto-currencies, for example), the

choice of ECDSA is made carefully in consideration of the

required assumptions, and thus using a threshold scheme that

requires new assumptions may not be acceptable. Additionally,

if it is to be proven secure via simulation, Lindell’s scheme

requires a new (though reasonable) assumption about the

Paillier cryptosystem to be accepted. Furthermore, the Paillier

cryptosystem is so computationally expensive that even a single

Paillier operation represents a significant cost relative to typical

Elliptic Curve operations. Thus in this work we ask whether

an efficient, secure, multi-party ECDSA signing scheme can

be constructed using only elliptic curve primitives and elliptic

curve assumptions, and find the answer in the affirmative.

A. Our Technique

Lindell observes that the problem of securely computing an

ECDSA signature among two parties under a public key pk
can be reduced to that of securely computing just two secure

multiplications over the integers modulo the ECDSA curve

order q (Zq). Lindell uses multiplicative shares of the secret key

and nonce (hereafter called the instance key), and computes the

signature using the Paillier additive homomorphic encryption

scheme. We propose a new method to share the products which

eliminates the need for homomorphic encryption.
Recall the signing equation for ECDSA,

sig ..=
H(m) + sk · rx

k
where m is the message, H is a hash function, sk is the

secret key, k is the instance key, and rx is the x-coordinate

of the elliptic curve point R = k ·G (G being the generator

for the curve). Suppose that k = kA · kB such that kA and

kB are randomly chosen by Alice and Bob respectively, and

R = (kA · kB) ·G, and suppose that sk = skA · skB. Alice and

Bob can learn R (and thus rx) securely via Diffie-Hellman

exchange, and they receive m as input. Rearranging, we have

sig = H(m)

(
1

kA
· 1

kB

)
+ rx

(
skA
kA
· skB
kB

)
which identifies the two multiplications on private inputs

that are necessary. In our scheme, the results of of these

multiplications are returned as additive secret shares to Alice

and Bob. Since the rest of the equation is distributive over these

shares, Alice and Bob can assemble shares of the signature

without further interaction. Alice sends her share to Bob, who

reconstructs sig and checks that it verifies.
To compute these multiplications, one could apply generic

multi-party computation over arithmetic circuits, but generic

MPC techniques incur large practical costs in order to achieve

malicious security. Instead, we construct a new two-party

multiplication protocol, based upon the semi-honest Oblivious-

Transfer (OT) multiplication technique of Gilboa [32], which

we harden to tolerate malicious adversaries using the structure

of the signature scheme itself. Note that even if the Gilboa

multiplication protocol is instantiated with a malicious-secure

OT protocol, it is vulnerable to a simple selective failure attack

whereby the OT sender (Alice) can learn one or more bits of

the secret input of the OT receiver (Bob). We mitigate this

attack by encoding the Bob’s input randomly, such that Alice

must learn more than a statistical security parameter number

of bits in order to determine his unencoded input.
Unfortunately Bob may also cheat and learn something

about Alice’s secrets by using inconsistent inputs in the two

different multiplication protocols, or by using inconsistent

inputs between the multiplications and the Diffie-Hellman

exchange. In order to mitigate this issue, we introduce a simple

consistency check which ensures that Bob’s inputs correspond

to his shares of the established secret key and instance key. In

essence, Alice and Bob combine their shares with the secret

key and instance key in the exponent, such that if the shares are

consistent then they evaluate to a constant value. This check is

a novel and critical element of our protocol, and we conjecture

that it can be applied to other domains.
Our signing protocol can easily be adapted for threshold

signing among n parties with a threshold of two. This requires
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the addition of a special n-party setup protocol, and the

modification of the signing protocol to allow the parties to

provide additive shares of their joint secret key rather than

multiplicative shares. Surprisingly, however, this modification

incurs an overhead equivalent to roughly half of an ordinary

multiplication.

B. Our Contributions

1) We present an efficient n-party ECDSA key generation

protocol and prove it secure in the Random Oracle model

under the Computational Diffie-Hellman assumption.

2) We present an efficient two-party, two-round ECDSA

signing protocol that is secure under the Computational

Diffie-Hellman assumption and the assumption that the

resulting signature is itself secure. Since CDH is implied

by the Generic Group Model, under which ECDSA is

proven secure, we require no additional assumptions

relative to ECDSA itself.

3) We formulate a new ideal functionality for multi-party

ECDSA signing that permits our signing protocol to

achieve much better practical efficiency than it could if it

were required to adhere to the standard functionality. We

reduce the security of our functionality to the security of

the classic signature game in the Generic Group Model.

4) In service of our main protocol, we devise a variant

of Gilboa’s multiplication by oblivious transfer tech-

nique [32] that may be of independent interest. It uses

randomized input-encoding along with input commitments

to avoid explicit correctness and consistency checks while

maintaining security against malicious adversaries.

5) Our multiplication protocol has at its core an oblivious

transfer scheme based upon the Simplest OT [33] and

KOS [34] OT-extension protocols. We introduce a new

check system to avoid the issues that have recently cast

doubt on the UC-security of Simplest OT [35].

6) We provide an implementation of our protocol in Rust,

and demonstrate its efficiency under real-world conditions.

In benchmarks, we find our implementation can produce

roughly 475 signatures per second on commodity hardware

without parallelism.

C. Organization
The remainder of this document is organized as follows.

In Section II we review essential concepts and definitions,

and in Section III we discuss the ideal functionality that our

protocols will realize. In Section IV we specify a basic two-

party protocol, which we extend to support 2-of-n threshold

signing in Section V. In Section VI we describe the OT and

multiplication primitives that we use. In Section VII we present

a comparative analysis of our protocols. In Section VIII, we

describe our implementation and present benchmark results. In

the full version of this paper we prove our protocol secure.

II. PRELIMINARIES AND DEFINITIONS

A. Notation and Conventions
We denote curve points with capitalized variables and scalars

with lower case. Vectors are given in bold and indexed by

subscripts, while matrices are denoted by bold capitals, with

subscripts and superscripts representing row indices and column

indices respectively. We use = to denote equality, ..= for

assignment, and← for sampling an instance from a distribution.

We use
c≡ to denote computational indistinguishability,

s≡
to denote statistical indistinguishability, and for statistical

equivalence, we use ≡. Throughout this document, we use

κ to represent the security parameter of the elliptic curve over

which our equations are evaluated. Likewise we use s for the

statistical security parameter.

In functionalities, we assume standard and implicit bookkeep-

ing. In particular, we assume that along with the other messages

we specify, session IDs and party IDs are transmitted so that

the functionality knows to which instance a message belongs

and who is participating in that instance, and we assume that

the functionality aborts if a party tries to reuse a session ID,

send messages out of order, &c. We use slab-serif to denote

message tokens, which communicate the function of a message

to its recipients. For simplicity we omit from a functionality’s

specifier all parameters that we do not actively use. So, for

example, many of our functionalities are parameterized by a

group G of order q, but we leave implicit the fact that in any

given instantiation all functionalities use the same group.

B. Digital Signatures

Definition 1 (Digital Signature Scheme [36]).
A Digital Signature Scheme is a tuple of probabilistic polyno-

mial time (PPT) algorithms, (Gen, Sign,Verify) such that:

1) Given a security parameter κ, the Gen algorithm outputs

a public key/secret key pair: (pk, sk)← Gen(1κ)
2) Given a secret key sk and a message m, the Sign algorithm

outputs a signature σ: σ ← Signsk(m)
3) Given a message m, signature σ, and public key pk, the

Verify algorithm outputs a bit b indicating whether the

signature is valid or invalid: b ..= Verifypk(m,σ)

A Digital Signature Scheme satisfies two properties:

1) (Correctness) With overwhelmingly high probability, all

valid signatures must verify. Formally, we require that over

(pk, sk)← Gen(1κ) and all messages m in the message

space,

Pr
pk,sk,m

[
Verifypk(m, Signsk(m)) = 1

]
> 1− negl(κ)

2) (Existential Unforgeability) No adversary can forge a

signature for any message with greater than negligible

probability, even if that adversary has seen signatures for

polynomially many messages of its choice. Formally, for

all PPT adversaries A with access to the signing oracle

Signsk(·), where Q is the set of queries A asks the oracle,

Pr
pk,sk

[
Verifypk (m,σ) = 1 ∧m /∈ Q :

(m,σ)← ASignsk(·) (pk)

]
< negl(κ)

C. ECDSA

The ECDSA algorithm is parameterized by a group G

of order q generated by a point G on an elliptic curve
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over the finite field Zp of integers modulo a prime p. The

algorithm makes use of a hash function H : {0, 1}∗ �→ Zq.

Curve coordinates and scalars are represented in κ = log2(q)
bits, which is also the security parameter. A number of

standard curves with various security parameters have been

promulgated [9]. Assuming a curve has been fixed, the ECDSA

algorithms are as follows [36]:

Algorithm 1. Gen(1κ):
1) Uniformly choose a secret key sk← Zq

2) Calculate the public key as pk ..= sk ·G
3) Output (pk, sk)

Algorithm 2. Sign(sk ∈ Zq,m ∈ {0, 1}∗):
1) Uniformly choose an instance key k ← Zq

2) Calculate (rx, ry) = R ..= k ·G
3) Calculate

sig ..=
H(m) + sk · rx

k

4) Output σ ..= (sig mod q, rx mod q)

Algorithm 3. Verify(pk ∈ G,m, σ ∈ (Zq,Zq)):
1) Parse σ as (sig, rx)
2) Calculate

(r′x, r
′
y) = R′ ..=

G

(sig ·H(m))
+

pk

(sig · rx)
3) Output 1 if and only if (r′x mod q) = (rx mod q)

The initial publication of the ECDSA algorithm did not

include a rigorous proof of security; this proof was later

provided by Brown [37] in the Generic Group Model, based

upon the hardness of discrete logarithms and the assumption

that the hash function H is collision resistant and uniform.

Vaudenay [38] surveys this and other ECDSA security results,

and Koblitz and Menezes provide some analysis and critique

of the proof technique [39]. In this work, we simply assume

that ECDSA is secure as specified in Definition 1.

D. Oblivious Transfer

Our construction uses a 1-of-2 Oblivious Transfer (OT)

system, which is a cryptographic protocol evaluated by two

parties: a sender and a receiver. The sender submits as input

two private messages, m0 and m1; the receiver submits a single

bit b, indicating its choice between those two. At the end of the

protocol, the receiver learns the message mb, and the sender

learns nothing. In particular, the sender does not learn the value

of the bit b, and the receiver does not learn the value of the

message mb̄. 1-of-2 OT was introduced by Evan et al. [40],

and is distinct from the earlier Rabin-style OT [41], [42]. For

a complete formal definition, we refer the reader to Naor and

Pinkas [43]. Beaver [44] later introduced the notion of OT-

extension, by which a few instances of Oblivious Transfer can

be extended to transfer polynomially many messages using

only symmetric-key primitives. For reasons of efficiency, many

modern protocols (including our own) use OT-extension rather

than plain OT.

III. TWO FUNCTIONALITIES

As our scheme is a multi-party computation protocol in the

malicious security model, its security will be defined relative to

an ideal functionality. Prior works on threshold ECDSA [2], [3]

present a functionality FECDSA (Functionality 1) that applies

the threshold model directly to the original ECDSA algorithms.

The ECDSA Gen algorithm becomes the first phase of FECDSA,

and the ECDSA Sign algorithm becomes the second.

Functionality 1. FECDSA:
This functionality is parameterized by a group G of order

q (represented in κ bits) generated by G, as well as hash

function H : {0, 1}∗ �→ Zq . The setup phase runs once with

a group of parties P such that |P| = n, and the signing phase

may be run many times between any two specific parties

from this group, Alice and Bob.

Setup (2-of-n): On receiving (init) from all parties in P:

1) Sample and store the joint secret key, sk← Zq .

2) Compute and store the joint public key, pk ..= sk ·G.

3) Send (public-key, pk) to all parties in P.

4) Store (ready) in memory.

Signing: On receiving (sign, sigid,B,m) from Alice and

(sign, sigid,A,m) from Bob, if (ready) exists in memory

but (complete, sigid) does not exist in memory:

1) Sample k ← Zq and store it as the instance key.

2) Compute
(
rx, ry

)
= R ..= k ·G

3) Compute

sig ..=
H(m) + sk · rx

k

4) Collect the signature, σ ..= (sig mod q, rx mod q)
5) Send (signature, sigid, σ) to Bob.

6) Store (complete, sigid) in memory.

Our scheme does not realize FECDSA, but instead a new

functionality FSampledECDSA (Functionality 2), which we have

formulated to allow us to build a protocol that requires only

two rounds. Of course, it is well known that generic Multi-party

Computation can compute any function in two rounds [45],

[46] (or even one round, with a complex setup procedure),

but the challenge is to do so efficiently. It is natural to use a

Diffie-Hellman exchange to compute R, which would otherwise

require expensive secure point multiplication techniques, but

this precludes either a two-round protocol or use of the standard

functionality for an intuitive reason: in the (basic) Diffie-

Hellman exchange, Bob sends DB
..= kB · G to Alice, who

replies to Bob with DA
..= kA · G. Both Alice and Bob can

compute R ..= kA ·kB ·G. While Alice cannot learn the discrete

logarithm of R, she does have the power to determine R itself

due to the fact that she chooses kA after having seen DB.

This conflicts with Functionality 1, which requires that the

functionality pick R. It is not obvious how to solve this without

adding rounds or using a much more expensive primitive,
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though we conjecture that a more elaborate one-time setup

procedure may provide a resolution.

Instead, we have devised FSampledECDSA. Relative to the pre-

vious variant, we divide the signing phase of the functionality

into three parts, allowing the parties to abort between them. In

the first two parts, Alice and Bob initiate a new signature for

a message m, and a random instance key k is chosen by the

functionality, along with R = k ·G, which is returned to Alice.

Alice is permitted to request a new sampling of R from the

functionality arbitrarily many times (with a negligible chance

of receiving a favorable value), and to choose from the sampled

set one value under which the signature will be performed.

If neither party aborts, then in the third part the functionality

will return a signature under the chosen R. This accounts for

Alice’s ability to manipulate the Diffie-Hellman exchange, and

yet it ensures that she does not know the discrete logarithm

of the value that is eventually chosen, and that the value is

uniform over G.

In Appendix B we prove in the Generic Group Model [47]

that FSampledECDSA is no less secure than ECDSA itself.

However, if reliance on the GGM is undesirable (ECDSA’s

own reliance notwithstanding) we believe it possible that a

three-round variant of our protocol can realize the FECDSA

functionality directly.

Functionality 2. FSampledECDSA:
This functionality is parametrized in a manner identical to

Functionality 1. Note that Alice may engage in the Offset

Determination phase as many times as she wishes.

Setup (2-of-n): On receiving (init) from all parties in P:

1) Sample and store the joint secret key sk← Zq .

2) Compute and store the joint public key pk ..= sk ·G.

3) Send (public-key, pk) to all parties in P.

4) Store (ready) in memory.

Instance Key Agreement: On receiving (new, sigid,m,B)
from Alice and (new, sigid,m,A) from Bob, if (ready) exists

in memory, and if (message, sigid, ·, ·) does not exist in

memory, and if Alice and Bob both supply the same message

m and each indicate the other as their counterparty, then:

1) Sample kB ← Zq .

2) Store (message, sigid,m, kB) in memory.

3) Send (nonce-shard, sigid, DB
..= kB ·G) to Alice.

Offset Determination: On receiving (nonce, sigid, i, Ri)
from Alice, if (message, sigid,m, kB) exists in memory, but

(nonce, sigid, j, ·) for j = i does not exist in memory:

4) Sample kΔi ← Zq .

5) Store
(
nonce, sigid, i, Ri, k

Δ
i

)
in memory.

6) Compute kΔi,A = kΔi /kB and send (offset, sigid, k
Δ
i,A)

to Alice.

Signing: On receiving (sign, sigid, i, kA) from Alice and

(sign, sigid) from Bob, if (message, sigid,m, kB) exists in

memory and
(
nonce, sigid, j, Ri, k

Δ
i

)
for j = i exists in

memory, but (complete, sigid) does not exist in memory:

7) Abort if kA · kB ·G �= Ri.

8) Set k ..= kA · kB + kΔi and store (rx, ry) = R ..= k ·G.

9) Compute

sig ..=
H(m) + sk · rx

k

10) Collect the signature, σ ..= (sig mod q, rx mod q)
11) Send

(
signature, sigid, R, kΔi , σ

)
to Bob.

12) Store (complete, sigid) in memory.

IV. A BASIC 2-OF-2 SCHEME

We describe a simplified 2-of-2 version of our scheme

initially, abstracting away the multiplication protocols for the

sake of clarity. In Section V we extend our scheme to support

2-of-n threshold signing. The fundamental structure of our 2-

of-2 scheme is similar to that of Lindell [2] in that the signing

protocol ingests multiplicative shares of both the private key

and the instance key from each party.

A. Signing

Alice and Bob begin with m, the message to be signed, and

multiplicative shares of a secret key (skA and skB respectively),

as well as a public key pk that is consistent with those shares.

The protocol is divided into four logical steps:

1) Multiplication: The parties transform their multiplica-

tive shares of the instance key into additive shares. A

second multiplication converts multiplicative shares of

the secret key divided by the instance key into additive

shares. Due to the presence of the consistency check,

the multiplication protocols employed are not required

to enforce correctness or consistency of inputs. Although

many multiplication protocols are valid candidates, we

use the custom OT-based multiplication protocol that we

describe in Section VI-C, referred to here as πMul.

2) Instance Key Exchange: The parties calculate R = k ·G
using a modified Diffie-Hellman exchange.

3) Consistency Check: The parties verify that the first

multiplication uses inputs consistent with the Instance

Key Exchange. This is achieved by adding a random pad

φ to Alice’s input, and then combining the pad with the

multiplication output and the known value R in such

a way that Bob can retrieve the pad only if he acted

honestly. A second check ensures that the multiplications

are consistent with each other and with the public key, by

combining the multiplication outputs with the public key

in the exponent.

4) Signature and Verification: The parties reconstruct the

signature, which is given to Bob. Bob verifies the signature

in the usual way, and, if the signature verifies, then he

outputs it.

The instance key exchange component implements the

second and third phases of the FSampledECDSA functionality

(Functionality 2), and the multiplication, consistency check, and

verification components implement the fourth phase. Although

we make a logical distinction between these four components,

in the actual protocol they are intertwined. In particular, we

reorder the messages such that all messages from Bob to Alice

come first, followed by all messages from Alice to Bob, which
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results in a two-message protocol. Additionally, rather than

perform the consistency check directly, we use its associated

message as a key to encrypt all subsequent communications,

so that the protocol can only be completed if the consistency

check passes. We give the protocol below, and in Figure 1 we

provide an illustration, along with annotations indicating the

logical component associated with each step.

Protocol 1. Two-party Signing
(
πSign
2P-ECDSA

)
:

This protocol is parameterized by the Elliptic curve (G, G, q)
and the hash function H : {0, 1}∗ �→ Zq. It relies upon the

subprotocol πMul. Alice and Bob provide their multiplicative

secret key shares skA, skB as input, along with identical copies

of the message m, and Bob receives as output a signature σ.

Multiplication and Instance Key Exchange:
1) Bob chooses his secret instance key, kB ← Zq , and Alice

chooses her instance key seed, k′A ← Zq . Bob computes

DB
..= kB ·G

and sends DB to Alice.

2) Alice computes

R′ ..= k′A ·DB

kA ..= H(R′) + k′A
R ..= kA ·DB

3) Alice chooses a pad φ← Zq, and then Alice and Bob

run the πMul subprotocol with inputs φ+1/kA and 1/kB
respectively, and receive shares t1A and t1B of their padded

joint inverse instance key

t1A + t1B =
φ

kB
+

1

kA · kB
Alice and Bob also run the πMul subprotocol with inputs

skA/kA and skB/kB respectively (that is, their secret key

shares multiplied by their inverse instance key shares).

They receive shares t2A and t2B of their joint secret key

over their joint instance key

t2A + t2B =
skA · skB
kA · kB

These two protocol instances are interleaved such that

the messages from Bob to Alice are transmitted first,

followed by the messages from Alice to Bob.

4) Alice transmits R′ to Bob, who computes

R ..= H(R′) ·DB +R′

For both Alice and Bob let (rx, ry) = R.

Consistency Check, Signature, and Verification:
5) Alice and Bob both compute m′ = H(m).
6) Alice computes the first check value Γ 1, encrypts her

pad φ with this value, and then transmits the encryption

ηφ to Bob.

Γ 1 ..= G+ φ · kA ·G− t1A ·R

ηφ ..= H(Γ 1) + φ

7) Alice computes her share of the signature sigA and the

second check value Γ 2. She encrypts sigA with the

second check value and then transmits the encryption

ηsig to Bob

sigA
..= (m′ · t1A) + (rx · t2A)

Γ 2 ..= (t1A · pk)− (t2A ·G)

ηsig ..= H(Γ 2) + sigA

8) Bob computes the check values and reconstructs the

signature

Γ 1 ..= t1B ·R
φ ..= ηφ −H(Γ 1)

θ ..= t1B − φ/kB

sigB
..= (m′ · θ) + (rx · t2B)

Γ 2 ..= (t2B ·G)− (θ · pk)
sig ..= sigB + ηsig −H(Γ 2)

9) Bob uses the public key pk to verify that σ ..= (sig, rx)
is a valid signature on message m. If the verification

fails, Bob aborts. If it succeeds, he outputs σ.

On the Structure of the Consistency Check: Because the

consistency check mechanism is non-obvious, we present an

informal justification for it here. In the full version of this

paper, we prove the mechanism formally secure. Suppose that

we reorganized our protocol to omit Alice’s pad φ. Then we

would have

t̂1A + t̂1B =
1

kA · kB t2A + t2B =
skA · skB
kA · kB

(t̂1A + t̂1B) · pk = (t2A + t2B) ·G
If Bob behaves honestly, he should use 1/kB and skB/kB

as his inputs to the two multiplications. Suppose Bob cheats

by using different inputs; without loss of generality, we can

interpret his cheating as using inputs x+1/kB and skB/kB, in

essence offsetting his input for the first multiplication by some

value x relative to his input for the second multiplication:

t̂1A + t̂1B = 1/k + x/kA

(t̂1A + t̂1B) · pk = (t2A + t2B) ·G+ x · pk/kA
and in order to pass the consistency check, Bob would need

to calculate pk/kA, for which the information in his view is

not sufficient.

It is tempting to take advantage of the fact that (t̂1A + t̂1B) ·
R = G to design a similar mechanism to verify that the first

multiplication is consistent with the instance key exchange,

but a check based upon this principle is insecure. Again, if

we suppose that Bob cheats by offsetting his input for the

multiplication by some value x relative to his input for the

Diffie-Hellman exchange that produces R, then

t̂1A + t̂1B = 1/k + x/kA
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Fig. 1: Illustrated Two-party Signing Scheme. Operations are
color-coded according to the logical component with which
they are associated: Multiplication , Instance Key Exchange ,
Consistency Check , and Verification/Signing . We specify how to

instantiate the multiplication subprotocol (πMul) in Section VI-C.

(t̂1A + t̂1B) ·R = G+ x · kB ·G

Unfortunately, the offset produced is made up entirely of

elements known to Bob. We rectify this by introducing into the

equation a term that Bob cannot predict. Alice intentionally

offsets her input to the multiplication using a pad φ. If Bob is

honest, then

t1A + t1B = 1/k + φ/kB

t1B ·R = G+ φ · kA ·G− t1A ·R

which implies that both Alice and Bob can compute t1B · R.

On the other hand, if Bob is dishonest, then

t1A + t1B = 1/k + φ/kB + x/kA + x · φ
t1B ·R = G+ φ · kA ·G+ x · kB ·G+ x · φ ·R− t1A ·R

Because x is unknown to Alice and φ is unknown to Bob,

neither party is capable of calculating the offset that has been

induced. Consequently, if Alice masks φ using the value of

t1B · R that she expects Bob to have, then he will be able to

remove the mask and retrieve φ if and only if he has behaved

honestly. Without knowledge of φ, he will not be able to pass

the second consistency check or reconstruct the signature. We

note that there is an assumption of circular security in this

construction, which is resolved in our proofs via use of the

Random Oracle Model.

B. Setup

We now present a simplified setup protocol for two parties.

This protocol does not implement the setup phase of the

FSampledECDSA functionality, as it does not support threshold

signing, but it does provide a similar functionality to the setup

protocol of Lindell [2]. In short, it implements the ECDSA

Gen algorithm, combining multiplicative secret key shares via a

simple Diffie-Hellman [5] key exchange. Proofs of knowledge

are necessary in order to ensure that if the protocol completes

then the parties are capable of signing, and thus the protocol

makes use of both a direct zero-knowledge proof-of-knowledge-

of-discrete-logarithm functionality FRDL

ZK , and a commit-and-

prove variant FRDL

Com-ZK. These can be concretely instantiated by

Schnorr proofs [25] and the Fiat-Shamir [48] or Fischlin [49]

transforms. Finally, the protocol initializes the OT-extensions, a

process modeled by notifying the F�
COTe functionality that the

parties are ready, and implemented using the πSetup
KOS subprotocol.

To sign successfully, Alice and Bob must remember the state

associated with the OT-extensions and their secret keys.

Protocol 2. Two-party Setup
(
πSetup
2P-ECDSA

)
:

This protocol is parameterized by the Elliptic curve (G, G, q),
and relies upon the F�

COTe, FRDL

ZK , and FRDL

Com-ZK functionalities.

It takes no input and yields the joint public key pk along

with a secret key share skA to Alice, and to Bob a secret key

share skB along with pk.

Public Key Generation:
1) Alice and Bob sample skA ← Zq and skB ← Zq,

respectively.

2) Alice calculates pkA
..= skA · G and Bob calculates

pkB
..= skB ·G.

3) Alice submits (skA, pkA) to the functionality FRDL

Com-ZK,

and Bob becomes aware of Alice’s commitments.

4) Bob submits (skB, pkB) to the FRDL

ZK functionality, and

Alice receives pkB as output, along with a bit indicating

that the proof was sound. If it was not, Alice aborts.

5) Alice instructs the FRDL

Com-ZK functionality to release the

proof associated with her previous commitment. Bob

receives pkA as output, along with a bit indicating that
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the proof was sound. If it was not, Bob aborts.

6) Alice and Bob compute the public key

pk ..= skA · pkB = skB · pkA
Auxilliary Setup:

7) Alice and Bob both send the (ready) messages to the

F�
COTe Functionality to initialize OT-extensions.

V. 2-OF-n THRESHOLD SIGNING

We now demonstrate a simple extension of our two-party

ECDSA protocol for performing threshold signatures among

n parties, with a threshold of two. In Protocol 2, Alice and

Bob supplied individual secret keys skA, skB, which became

multiplicative shares of their joint secret key. In the threshold

setting we will be working with a set of parties P of size n,

each party i with a secret key share ski, and we demand that

if the setup does not abort then any pair of parties can sign

under the joint sk.

In order to achieve this, we specify that in the threshold

setting, the joint secret key sk is calculated as the sum of the

parties’ contributions, rather than as the product:

sk ..=
∑

i∈[1,n]
ski

In other words, the parties’ individual secret keys represent an n-

of-n sharing of sk. It is natural to use a threshold secret sharing

scheme to convert these into a 2-of-n sharing. Specifically, we

use Shamir Secret Sharing [17], and a simple consistency check

allows us to guarantee security against malicious adversaries.

From Shamir shares, any two parties can generate additive

shares of the joint secret key. However, our 2-of-2 signing

protocol (Protocol 1) required multiplicative shares as its input.

We will need to modify the signing protocol slightly to account

for the change. First, we present our 2-of-n setup procedure.

A. Setup

Protocol 3. 2-of-n Setup
(
π2P-Setup
nP-ECDSA

)
:

This protocol is parameterized by the Elliptic curve (G, G, q),
and relies F�

COTe and FRDL

Com-ZK functionalities. It runs among

a group of parties P of size n, from whom it takes no input.

It yields as output for all parties a joint public key pk, and

for each individual party Pi a point p(i) on the polynomial

p and a secret key share ski.
Public Key Generation:

1) For all i ∈ [1, n], Party Pi samples ski ← Zq .

2) For all i ∈ [1, n], Party Pi calculates pki
..= ski ·G and

submits (ski, pki) to the FRDL

Com-ZK functionality, which

notifies all other parties that Pi is committed. When

Pi becomes aware of all other parties’ commitments, it

instructs FRDL

Com-ZK to release its proof to the others. If

any party’s proof fails to verify, then all parties abort.

3) All parties compute the shared public key

pk ..=
∑

i∈[1,n]
pki

4) For all i ∈ [1, n], Pi chooses a random line given by the

degree-1 polynomial pi(x), such that pi(0) = ski. For

all j ∈ [1, n], Pi sends pi(j) to Pj and receives pj(i).
5) For all i ∈ [1, n], Pi computes its point on the joint

polynomial p,

p(i) ..=
∑

j∈[1,n]
pj(i)

It also computes a commitment to its share of the secret

key, Ti
..= p(i) ·G, and broadcasts Ti to all other parties.

6) All parties abort if ∃i ∈ [2, n] such that

λ(i−1),i · Ti−1 + λi,(i−1) · Ti �= pk

where λ(i−1),i and λi,(i−1) are the appropriate Lagrange

coefficients for Shamir-reconstruction between Pi−1 and

Pi. If any party holds a point p(i) that is inconsistent

with the polynomial held by the other parties, then this

check will fail.

Auxilliary Setup:
7) Every pair of parties Pi and Pj such that i < j send the

(ready) message to the F�
COTe functionality to initialize

OT-extensions between themselves.

A Note on General Thresholds: We note that a slight

generalization of the π2P-Setup
nP-ECDSA protocol allows it to perform

setup for any threshold t such that t ≤ n. The only required

changes are the use of polynomials of the appropriate degree

(as in Shamir Secret Sharing), and the evaluation of the

consistency check in step 6 over contiguous threshold-sized

groups of parties. However, our signing protocol is not so

easily generalized, and therefore we leave general threshold

signing to future work.

B. Signing

Once the setup is complete, suppose two parties from the

set P (we will resume referring to them as Alice and Bob)

wish to sign. They can use Lagrange interpolation [50] to

construct additive shares t0A, t
0
B of the secret key, but the signing

algorithm we have previously described requires multiplicative
shares. To account for this, we modify our signing algorithm

in the following intuitive way: originally, the second invocation

of πMul took skA/kA from Alice and skB/kB from Bob and

computed additive shares of the product

skA · skB
kA · kB

We replace this with two invocations of πMul that calculate

t0A
kA · kB and

t0B
kA · kB

respectively. Alice and Bob can then locally sum their outputs

from these two multiplications to yield shares of

t0A + t0B
kA · kB =

sk

k
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Protocol 4. 2-of-n Signing
(
π2P-Sign
nP-ECDSA

)
:

This protocol is parameterized identically to Protocol 1, except

that Alice and Bob provide Shamir-shares p(A), p(B) of sk
as input, rather than multiplicative shares.

Key Share Reconstruction:
1) Alice locally calculates the correct Lagrange coefficient

λA,B for Shamir-reconstruction with Bob. Bob likewise

calculates λB,A. They then use their respective points

p(A), p(B) on the polynomial p to calculate additive

shares of the secret key

t0A
..= λA,B · p(A) t0B

..= λB,A · p(B)
Multiplication and Instance Key Exchange:

2) Bob chooses his secret instance key, kB ← Zq , and Alice

chooses her instance key seed, k′A ← Zq . Bob computes

DB
..= kB ·G

and sends DB to Alice.

3) Alice computes

R′ ..= k′A ·DB

kA ..= H(R′) + k′A
R ..= kA ·DB

4) Alice chooses a pad φ← Zq, and then Alice and Bob

run the πMul subprotocol with inputs φ+1/kA and 1/kB
respectively, and receive shares t1A and t1B of their padded

joint inverse instance key.

5) Alice and Bob run the πMul subprotocol with inputs

t0A/kA and 1/kB respectively. They receive shares t2aA , t2aB
of Alice’s secret key share over their joint instance key

t2aA + t2aB =
t0A

kA · kB
6) Alice and Bob run the πMul subprotocol with inputs 1/kA

and t0B/kB respectively. They receive shares t2bA , t2bB of

Bob’s secret key share over their joint instance key

t2bA + t2bB =
t0B

kA · kB
7) Alice and Bob merge their respective shares

t2A
..= t2aA + t2bA t2B

..= t2aB + t2bB

8) Alice transmits R′ to Bob, who computes

R ..= H(R′) ·DB +R′

For both Alice and Bob let (rx, ry) = R.

Consistency Check, Signature, and Verification:
As in Protocol 1

(
πSign
2P-ECDSA

)
VI. MULTIPLICATION WITH OT EXTENSIONS

The Bulk of both the complexity and the practical cost of

our scheme arises from the OT-extension protocols which we

use to perform multiplication. We augment Simplest OT [33]

with a verification procedure and refer to the new primitive as

Verified Simplest OT (VSOT). VSOT is used as the basis for

a lightly optimized instantiation of the KOS [34] OT-extension

protocol, which is used in turn to build the OT-multiplication

primitive required by our main signing protocol.

If we did not desire simulation-based malicious security,

then it would be sufficient to use the Simplest OT scheme

without modification. In composing the protocol to build a

larger simulation-sound malicious protocol however, there is

a complication. The security proof relies upon the fact that

the protocol’s hash queries are modeled as calls to a Random

Oracle, and uses those queries to extract the receiver’s inputs.

However, the queries need not occur before the receiver has sent

its last message, and so there is no guarantee that a malicious

receiver will actually query the oracle. When Simplest OT

is composed, it may be the case that the receiver’s inputs

are required for simulation before they are required by the

receiver itself, in which case the protocol will be unsimulatable.

This flaw has recently been noticed by a number of authors,

including Byali et al. [51], who discuss it in more detail, and it

seems to affect other OT protocols as well [35], [52]. Barreto

et al. [52] propose to solve the problem by adding a public-key

verification process in the Random Oracle model. Rather than

using expensive public-key operations, however, we specify

that the receiver must prove knowledge of its output using

only symmetric-key operations, ensuring that it does in fact

hold that output, and therefore that its input is extractable.

As a consequence, our protocol is able to realize only an OT

functionality (FSF-OT) that allows for selective failure by the

sender, but we show that this is sufficient for our purposes.

A. Verified Simplest OT

We begin by describing the VSOT protocol. Because Alice

and Bob participate in this protocol with their roles reversed,

relative to the usual arrangement, we refer to the participants

simply as the sender and receiver in this section. The protocol

comprises four phases. In the first, the sender generates a

private/public key pair, and sends the public key to the receiver.

In the second phase, the receiver encodes its choice bit and

the sender generates two random pads based upon the encoded

choice bit in such a way that the receiver can only recover

one. The third phase is a verification, which is necessary to

ensure that the protocol is simulatable. Finally, the pads are

used by the sender to mask its messages for transmission to the

receiver in the fourth phase. This protocol realizes the FSF-OT

functionality, which is given as Functionality 3 in Appendix A.

Protocol 5. Verified Simplest OT (πVSOT):
This protocol is parameterized by the Elliptic curve (G, G, q),
and symmetric security parameter κ = |q|, and a hash function

H : {0, 1}∗ �→ Zq. It relies upon the FRDL

ZK functionality. It

takes as input a choice bit ω ∈ {0, 1} from the receiver, and

two messages α0, α1 ∈ Zq from the sender. It outputs one

message αω ∈ Zq to the receiver, and nothing to the sender.

Public Key:
1) The sender samples b← Zq and computes B ..= b ·G.
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2) The sender submits (B, b) to the FRDL

ZK functionality,

and the receiver receives B along with a bit indicating

whether the proof was sound. If it was not, the receiver

aborts.

Pad Transfer:
3) The receiver samples a ← Zq, and then computes its

encoded choice bit A and the pad ρω

A ..= a ·G+ ω ·B
ρω ..= H (a ·B)

and sends A to the sender.

4) The sender computes two pads

ρ0 ..= H (b ·A)

ρ1 ..= H (b · (A−B))

Verification:
5) The sender computes a challenge

ξ ..= H(H(ρ0))⊕H(H(ρ1))

and sends the challenge ξ to the receiver.

6) The receiver computes a response

ρ′ ..= H(H(ρω))⊕ (ω · ξ)
and sends ρ′ to the sender.

7) The sender aborts if ρ′ �= H(H(ρ0)). Otherwise, it

opens its challenge by sending H(ρ0) and H(ρ1) to the

receiver.

8) The receiver aborts if the value of H(ρω) it received

from the sender does not match the one it calculated

itself, or if

ξ �= H(H(ρ0))⊕H(H(ρ1))

Message Transfer:
9) The sender pads its two messages α0, α1, and transmits

the padded messages α̂0, α̂1 to the receiver

α̂0 ..= α0 + ρ0

α̂1 ..= α1 + ρ1

10) The receiver removes the pad from its chosen message

αω = α̂ω − ρω

For simplicity, we describe VSOT as requiring one complete

protocol evaluation per OT instance. However, if (public)

nonces are used in each of the hash invocations, then the

Public Key phase can be run once and the resulting (single)

public key B can be reused in as many Transfer and Verification

phases as required without sacrificing security. Further note

that if the messages transmitted by the sender are specified

to be uniform, then the sender can actually omit the Message

Transfer phase entirely and treat the pads ρ0, ρ1 as messages,

receiving them as output instead of supplying them as input.

Likewise, the receiver treats its one pad ρω as its output. This

effectively transforms VSOT into a Random OT protocol. We

make use of both of these optimizations in our implementation.

B. Correlated OT-extension with KOS
Our multiplication protocol requires the use of a large number

of OT instances where the correlation between messages is

specified, but the messages must otherwise be random. There-

fore, rather than using VSOT directly, we layer a Correlated

OT-extension (COTe) protocol atop it. This is essentially an

instantiation the KOS protocol; thus we include a protocol

description here for completeness, but refer the reader to Keller

et al. [34] for a more thorough discussion. Being a Correlated

OT protocol, it allows the sender to define a correlation between

the two messages, but does not allow the sender to determine

the messages specifically. As with all OT-extension systems,

it is divided into a setup protocol, which uses some base OT

system to generate correlated secrets between the two parties,

and an extension protocol, which uses these correlated secrets

to efficiently perform additional OTs. These protocols realize

the Correlated Oblivious Transfer functionality F�
COTe, which

is given as Functionality 4 in Appendix A.

Protocol 6. KOS Setup
(
πSetup
KOS

)
:

This protocol is parameterized by the curve order q and the

symmetric security parameter κ = |q|. It depends upon the

OT Functionality FSF-OT, and takes no input from either party.

Alice receives as output a private OTe correlation ∇ ∈ {0, 1}κ
and a vectors of seeds s∇ ∈ Z

κ
q , and Bob receives two vectors

of seeds s0 and s1 ∈ Z
κ
q .

Setup:
1) Alice samples a correlation vector, ∇← {0, 1}κ.

2) For each bit ∇i of the correlation vector, Alice and Bob

access the FSF-OT functionality, with Alice acting as the

receiver and using ∇i for her choice bit and Bob acting

as the sender. Bob samples two random seed elements

s0i ← Zq and s1i ← Zq and Alice receives as output a

single seed element s∇i
i .

3) Alice and Bob collate their individual seed elements

into vectors, s∇ and s0, s1 respectively, and take these

vectors as output.

Protocol 7. KOS Extension
(
πExtend
KOS

)
:

This protocol is parameterized by the OT batch size 
, the OT

security parameter κOT, the curve order q, and the symmetric

security parameter κ = |q|. For notational convenience, let


′ = 
+ κOT. It makes use of the pseudo-random generator

Prg
Z
: Zκ

q �→ Z2�′ , which expands its argument and then

outputs the chunk of 
′ bits indexed by the value given as

a subscript, and it makes use use of the hash function H :
{0, 1}∗ �→ Zq. The protocol also uses a fresh, public OT-

extension index, extid. Alice supplies a vector of input integers,

α ∈ Z
�
q , along with her private OTe correlation ∇ ∈ {0, 1}κ

and seed s∇ ∈ Z
κ
q , which she received during the KOS setup

protocol. Bob supplies a vector of choice bits ω ∈ {0, 1}�
along with his seeds s0 and s1 ∈ Z

κ
q from the OT setup.

Alice and Bob receive tA and tB ∈ Z
�
q as output.
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Extension:
1) Bob chooses γext ← {0, 1}κOT

and collates

w ..= ω‖γext

2) Bob computes two vectors of PRG expansions of his

OT-extension seeds

v0 ..=
{
Prgextid(s

0
i )
}
i∈[1,κ]

v1 ..=
{
Prgextid(s

1
i )
}
i∈[1,κ]

and Alice computes a vector of expansions of her

correlated seed

v∇ ..=
{
Prgextid(s

∇i
i )

}
i∈[1,κ]

3) Bob collates the vector ψ ∈ Z
�′
q , which is the transpose

of v0. That is, the first element of ψ is the concatenation

of the first bits of all of the elements of v0, and so on.

More formally if we define a matrix

V ∈ {0, 1}κ×�′

then the relationship is given by

Vi = Bits(v0
i ) ∀i ∈ [1, κ]

Vj = Bits(ψj) ∀j ∈ [1, 
′]

4) Bob computes the matrix

u ..=
{
v0
i ⊕ v1

i ⊕ w
}
i∈[1,κ]

and then he computes a matrix of pseudo-random

elements from Zq

χ ..= {H (j‖u)}j∈[1,�′]
which he uses to create a linear sampling of w and ψ

w′ ..=
⊕

j∈[1,�′]
wj · χj

v′ ..=
⊕

j∈[1,�′]
ψj ∧ χj

Finally, he sends w′, v′, and u to Alice.

5) Alice computes the vector

z ..=
{
v∇i
i ⊕ (∇i · ui)

}
i∈[1,κ]

and collates the vector ζ, which is the transpose of z
in exactly the way that ψ is the transpose v0. She also

calculates χ in the same manner as Bob

χ ..= {H (j‖u)}j∈[1,�′]
Finally, she computes

z′ ..=
⊕

j∈[1,�′]
ζj ∧ χj

and if z′ �= v′ ⊕ (∇∧ w′
)
, where ∇ is ∇ reinterpreted

as an element in Z2κ , then Alice aborts.

Transfer:
6) Alice computes

tA ..=
{
H(j‖ζj)

}
j∈[1,�]

τ ..=
{
H(j‖(ζj ⊕∇))− tAj +αj

}
j∈[1,�]

and sends τ to Bob

7) Bob computes

tB ..=

⎧⎨
⎩
{
−H(j‖ψj) if wj = 0

τ j −H(j‖ψj) if wj = 1

⎫⎬
⎭

j∈[1,�]

C. Multiplication

In the context of our scheme, we are primarily interested in

using OT-extension as a basis for two-party multiplication. The

classic Gilboa [32] OT-multiplication takes an input from Alice

and an input from Bob, and returns to them additive secret

shares of the product of those two inputs. It works essentially

by performing binary multiplication with a single oblivious

transfer for each bit in Bob’s input.

Unfortunately, this protocol is vulnerable to selective failure

attacks in the malicious setting. Alice can corrupt one of the

two messages during any single transfer, and in doing so learn

the value of Bob’s input bit for that transfer according to

whether or not their outputs are correct. We address this by

encoding Bob’s input with enough redundancy that learning s (a

statistical security parameter) of Bob’s choice bits via selective

failure does not leak information about the original input

value. A consistency check ensures that the parties abort if the

multiplication output is incorrect, and thus the probability that

Alice succeeds in more than s selective failures is exponentially

small. A proposition of Impagliazzo and Naor [53] gives us

the following encoding scheme: for an input β of length κ,

sample κ + 2s random bits γmul ← {0, 1}κ+2s and take the

dot product with some public random vector cR ∈ Z
κ+2s
q . Use

this dot product as a mask for the original input. The encoded

input is

Bits
(
β − 〈cR,γmul〉

)
‖γmul

In the full version of this paper, we prove formally that this

encoding scheme is secure against s selective failures.

Protocol 8. Multiplication (πMul):
This protocol is parameterized by the statistical security

parameter s, the curve order q, and the symmetric security

parameter κ = |q|. It also makes use of a coefficient vector

c = cG‖cR, where cG ∈ Z
κ
q is a gadget vector such

that cGi = 2i−1, and cR ← Z
κ+2s
q is a public random

vector. It requires access to the Correlated Oblivious Transfer

functionality F�
COTe. Alice supplies some input integer α ∈ Zq ,

and Bob supplies some input integer β ∈ Zq . Alice and Bob

receive tA and tB ∈ Zq as output, respectively, such that
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tA + tB = α · β.

Encoding:
1) Bob chooses γmul ← {0, 1}κ+2s and computes

ω ..= Bits
(
β − 〈cR,γmul〉

)
‖γmul

This is essentially a randomized encoding of β.

2) Alice sets

{αj}j∈[1,2κ+2s]
..= {cj · α}j∈[1,2κ+2s]

Multiplication:
3) Alice and Bob access the F�

COTe functionality, with 
 ..=
2κ + 2s. Alice plays the sender, supplying α as her

input, and Bob, the receiver, supplies ω. They receive

tA and tB as outputs, respectively.

4) Alice and Bob compute their output shares

tA ..=
∑

j∈[1,2κ+2s]

tAj tB ..=
∑

j∈[1,2κ+2s]

tBj

D. Coalesced Multiplication

The multiplication protocol described in the foregoing section

supports the multiplication of only a single integer α by a single

integer β, and in our two-party and 2-of-n signing protocols

(Protocols 1 and 4 respectively) we invoke the multiplication

protocol two or three times. An optimization allows these

multiple invocations to be combined at reduced cost, albeit by

breaking some of our previous abstractions.

Consider first the case of two-party signing, wherein two

multiplications must be performed. Each multiplication individ-

ually encodes its input, enlarging it by κ+ 2s bits to account

for the encoding vector γmul, and then individually calls upon

the F�
COTe correlated OT-extension functionality with batch size


 = 2κ+2s. The πExtend
KOS protocol that realizes this functionality

comprises an Extension phase and a Transfer phase. In the latter,

both computation and communication costs are proportionate

to 
, but in the former, they are proportionate to 
′ = 
+ κOT.

Two multiplications performed in the naïve way incur twice

the cost. However, we observe that two multiplication protocol

instances can share a single invocation of πExtend
KOS simply by

doubling the batch size, thereby reducing the extension cost by

an amount proportionate to κOT. Furthermore, we show in the

full version of this paper that our encoding scheme requires

only 2κ + 2s random bits to encode two inputs of length κ
when the inputs are combined into a single extension instance,

rather than 2κ + 4s bits, as would be required if the inputs

were encoded separately. Thus, we can construct an improved

double-multiplication protocol as follows.

Suppose that Alice and Bob wish to compute the products

α1 · β1 and α2 · β2 where the inputs are all of length κ.

Bob chooses the encoding vectors γmul1,γmul2 ← {0, 1}κ,

γmul3 ← {0, 1}2s and computes a single choice bit vector

ω ..= Bits
(
β1 − 〈cR,γmul1‖γmul3〉

)
‖γmul1

‖ Bits
(
β2 − 〈cR,γmul2‖γmul3〉

)
‖γmul2‖γmul3

For her part, Alice calculates α1 from α1 and α2 from α2

using the ordinary coefficient vector c. Alice and Bob then

engage in the Extension phase of the πExtend
KOS protocol with


 = 4κ + 2s, which produces w ∈ {0, 1}� and ψ ∈ Z
�
q as

output for Bob, and ζ ∈ Z
�
q as output for Alice. They then

engage in a modified version of the πExtend
KOS Transfer phase.

Specifically, when hashing the parts of ζ and ψ that correspond

to the encoding vector γmul3, Alice and Bob both use hash

functions of the form H2 : {0, 1}∗ �→ Z
2
q , which produce two

elements from Zq as output rather than the usual one element.

If we use H2
1 (·) and H2

2 (·) to indicate the first and second

elements produced by a particular hash function invocation,

then Alice computes her output and transfer vectors as

tA ..=
{
H(j‖ζj)

}
j∈[1,4κ]

‖
{
H2

1 (j‖ζj)
}
j∈(4κ,4κ+2s]

‖
{
H2

2 (j‖ζj)
}
j∈(4κ,4κ+2s]

τ ..=
{
H(j‖(ζj ⊕∇))−H(j‖ζj) +α1

j

}
j∈[1,2κ]

‖
{
H(j‖(ζj ⊕∇))−H(j‖ζj) +α2

j−2κ

}
j∈(2κ,4κ]

‖
{
H2

1 (j‖(ζj ⊕∇))−H2
1 (j‖ζj) +α1

j−2κ

}
j∈(4κ,4κ+2s]

‖
{
H2

2 (j‖(ζj ⊕∇))−H2
2 (j‖ζj) +α2

j−2κ

}
j∈(4κ,4κ+2s]

Notice that when calculating τ , Alice masks α1 with the

lower halves of the outputs of H2, and α2 with the upper. Bob

computes his output vector

tB ..=
{
H(j‖ζj)

}
j∈[1,4κ]

‖
⎧⎨
⎩
{
−H2

1 (j‖ψj) if wj = 0

τ j −H2
1 (j‖ψj) if wj = 1

⎫⎬
⎭

j∈(4κ,4κ+2s]

‖
⎧⎨
⎩
{
−H2

2 (j‖ψj) if wj = 0

τ j+2s −H2
2 (j‖ψj) if wj = 1

⎫⎬
⎭

j∈(4κ,4κ+2s]

Finally, Alice and Bob compute their output shares

t1A
..=

∑
j∈[1,2κ]
∪(4κ,4κ+2s]

tAj t1B
..=

∑
j∈[1,2κ]
∪(4κ,4κ+2s]

tBj

t2A
..=

∑
j∈(2κ,4κ]
∪(4κ+2s,4κ+4s]

tAj t2B
..=

∑
j∈(2κ,4κ]
∪(4κ+2s,4κ+4s]

tBj

Now Alice and Bob have shares of both products. Because

they have achieved this only by extending the output lengths

of certain hash function instances, the security of this double-

multiplication protocol follows from the security of the original.

Further consider the case of 2-of-n signing, in which three

multiplications are used to compute the products

α1 · β1 α2 · β2 α3 · β1
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Notice that in the first and third multiplications, Bob’s inputs are

identical, while in the second it differs. We can compute the first

and second products using the double-multiplication technique

described previously, and make an additional modification in

order to compute the third. Rather further enlarging the size

of the OT-extension batch generated in the Extension phase

of πExtend
KOS , we can perform the Extension phase in exactly the

same way as before, and modify only the Transfer phase. We

define H3 : {0, 1}∗ �→ Z
3
q , which produces three elements

from Zq. We use H2 to compute the components of tA, τ ,

and tB that correspond to the encoding of Bob’s first input,

and we use H3 to compute the components that correspond

to γmul3. Alice calculates and additional OT input vector α3,

and masks its elements using the additional hash outputs. The

two parties then sum the additional entries in their tA and tB
vectors to find shares of the third product, α3 · β1. Thus Alice

and Bob can thus perform this additional multiplication simply

by enlarging the hash outputs in the KOS transfer phase.

To compute three products in the naïve way, κ · (3κOT +
12κ+ 12s+ 6) bits must be transferred (with a proportionate

amount of computation being performed). Concretely, if we use

κ = 256, s = 80, and κOT = 128+s (following KOS [34]), then

the total comes to 145.7 KiB. Using coalesced multiplication,

only κ · (κOT + 10κ+ 8s+ 2) bits must be transferred (again,

with a proportionate amount of computation). Concretely, this

amounts to 106.6 KiB, a savings of roughly one third.

VII. COST ANALYSIS

When all of the optimizations have been applied and all

functionalities and sub-protocols have been collapsed, we find

that our protocols have communication and computation costs

as reported in Table I. Though we account completely for com-

munications, we count only elliptic curve point multiplications

and calls to the hash function H toward computation cost. We

assume that both commitments and the PRG are implemented

via the hash function H , and that proofs-of-knowledge-of-

discrete-logarithm are implemented via Schnorr protocols with

the Fiat-Shamir heuristic.

The 2-of-n setup protocol is somewhat more complex than

Table I indicates. Over its course, each of the n parties commits

to and then sends a single proof-of-knowledge-of-discrete-

logarithm to all other parties in broadcast and then verifies the

n−1 proofs that it receives. The parties then compute and send

Lagrange coefficients to one another, which requires O(n2)
(parallel) communication in total, and this pattern repeats for

verification. Finally, each party evaluates a single KOS Setup

instance with every other party, for (n2 − n)/2 instances in

total. The entire protocol requires four broadcast rounds, plus

the messages required by the KOS Setup instances.

For ease of comparison, concrete communication costs

for our signing protocol along with the signing protocols of

Gennaro et al. [3], Boneh et al. [4], and Lindell [2] are listed

in Table II. The former pair of schemes are related: Boneh

et al. reduce the number of messages in Gennaro et al.’s
signing protocol from six to four, with the goal of reducing the

communication cost. Apart from requiring only two messages,

our signing protocol requires roughly one twentieth of the

communication incurred by either.

Lindell’s signing scheme requires four messages and excels

in terms of communication cost, only transferring a com-

mitment, two curve points, two zero-knowledge proofs, and

one Paillier ciphertext. However, the Paillier homomorphic

operations it requires are quite expensive. Lindell’s scheme

requires one encryption, one homomorphic scalar multiplica-

tion, and one homomorphic addition with a Paillier modulus

N > 2q4 + q3, or 2048 bits for a 256-bit curve, concretely.

Gennaro et al. and Boneh et al.’s schemes both require one

to three encryptions and three to five homomorphic additions

and scalar multiplications per party, with N > q8, which

likewise results in a 2048-bit concrete modulus for 256-bit

curves. In addition, Lindell’s protocol requires 12 Elliptic Curve

multiplications, while the protocols of the other two require

roughly 100. These Paillier and group operations dominate the

computation cost of the protocols.

VIII. IMPLEMENTATION

We created a proof-of-concept implementation of our 2-of-2

and 2-of-n setup and signing protocols in the Rust language.

As a prerequisite, we also created an elliptic curve library

in Rust. We use SHA-256 to instantiate the Hash function,

per the ECDSA specification, and in addition we use it to

instantiate the PRG. As a result, our protocol relies on both

the same theoretical assumptions as ECDSA and the same

practical assumption: that SHA-256 is secure. The SHA-256

implementation used in signing is capable of parallelizing

vectors of hash operations, and the 2-of-n setup protocol

is capable of parallelizing OT-extension initializations, but

otherwise the code is strictly single-threaded. This approach has

likely resulted in reduced performance relative to an optimized

C implementation, but we believe that the safety afforded by

Rust makes the trade worthwhile.

We benchmarked our implementation on a pair of Amazon

C5.2xlarge instances from Amazon’s Virginia datacenter,

both running Ubuntu 16.04 with Linux kernel 4.4.0, and we

compiled our code using Rust 1.25 with the default level

of optimization. The bandwidth between our instances was

measured to be be 5GBits/Second, and the round-trip latency

to be 0.1ms. Our signatures were calculated over the secp256k1

curve, as standardized by NIST [7]. Thus κ = 256, and we

chose s = 80 and κOT = 128 + s, following the analysis

of KOS [34]. We performed both strictly single-threaded

benchmarks, and benchmarks allowing parallel hashing with

three threads per party, collecting 10,000 samples for setup and

100,000 for signing. Note that signatures were not batched, and

thus each sample was impacted individually by the full latency

of the network. The average wall-clock times for both signing

protocols and the 2-of-2 setup protocol are reported in Table III,

along with results from previous works for comparison.

We benchmarked our 2-of-n setup algorithm using set of 20

Amazon C5.2xlarge instances from the Virginia datacenter,

configured as before with one instance per party. For initializing

OT-extensions, each machine was allowed to use as many
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Rounds Communication (Bits)
EC Multiplications Hash Function Invocations

Alice Bob Alice Bob

2-of-2 Setup 5 κ · (5κ+ 11) + 6 3κ+ 6 2κ+ 6 6κ+ 4 6κ+ 4

2-of-2 Signing 2 κ · (κOT + 8κ+ 6s+ 6) + 2 6 7 2κOT + 16κ+ 12s+ 4 3κOT + 16κ+ 10s+ 4

2-of-n Signing 2 κ · (κOT + 10κ+ 8s+ 6) + 2 6 7 2κOT + 18κ+ 14s+ 4 3κOT + 18κ+ 12s+ 4

Max Min Max Min

2-of-n Setup 5 (n2 − n) · ( 5
2
κ2 + 8κ+ 4) nκ− κ+ 4 n+ 3 5nκ− 5κ+ 1 4nκ− 4κ+ 1

TABLE I: Communication and Computation Cost Equations For Our Protocol. We assume that the hash function H is used to implement
the PRG. Note that communication costs are totals for all parties over all rounds, whereas computation costs are given per party. In the
2-of-n protocol the computation cost depends upon the identity of the party; consequently we give the minimum and maximum.

κ = 256 κ = 384 κ = 521

Lindell [2] 769 B 897 B 1043 B

This Work (2-of-2) 85.7 KiB 176.5 KiB 309.2 KiB

Gennaro et al. [3] ∼1808 KiB ∼4054 KiB ∼7454 KiB

Boneh et al. [4] ∼1680 KiB ∼3768 KiB ∼6924 KiB

This Work (2-of-n) 106.7 KiB 220.0 KiB 385.7 KiB

TABLE II: Concrete Signing Communication Cost Comparison.
Assuming 2-of-n signing for Gennaro et al. and Boneh et al., and
2-of-2 signing for the protocol of Lindell. For our protocols, we use
s = 80 and κOT = 128 + s.

This Work (3 threads) [2]

2-of-2 Setup 44.32 – 2435

2-of-2 Signing 2.27 2.11 36.8

This Work (3 threads) [3] [4]

2-of-n Signing 2.45 2.24 ∼650 ∼350

TABLE III: Wall-clock Times in Milliseconds over LAN, as
compared to the prior approaches of Lindell [2], Gennaro et al. [3],
and Boneh et al. [4]. Note that hardware and networking environments
are not necessarily equivalent, but all benchmarks were performed
with a single thread except where specified.

threads as there were parties, but the code was otherwise

single-threaded. We collected 1000 samples for groups of

parties ranging in size from 3 to 20, and we report the results

in Figure 2.

Transoceanic Benchmarks: We repeated our 2-of-2 setup,

2-of-2 signing, and 2-of-n signing benchmarks with one of the

machines relocated to Amazon’s Ireland datacenter, collecting

1,000 samples for setup and 10,000 for signing, and in the latter

case allowing three threads for hashing. In this configuration,

the bandwidth between our instances was measured to be

161Mbps and the round-trip latency to be 74.6ms. In addition,

we performed a 2-of-4 setup benchmark among four instances

in Amazon’s four US datacenters (Virginia, Ohio, California,

and Oregon), and we performed a 2-of-10 setup benchmark

Fig. 2: Wall Clock Times for 2-of-n Setup over LAN. Note that
all 20 parties reside on individual machines in the same datacenter,
and latency is on the order of a few tenths of a millisecond.

Setup Signing

2-of-2 2-of-4 (US) 2-of-10 (World) 2-of-2 2-of-n

342.02 376.86 1228.46 76.95 77.06

TABLE IV: Wall-clock Times in Milliseconds over WAN. All
benchmarks were performed between one party in the eastern US
and one in Ireland, except the 2-of-4 setup benchmark, which was
performed among four parties in four different US states, and the
2-of-10 setup benchmark, which was performed among ten parties in
America, Europe, Asia, and Australia.

among ten instances in ten geographically distributed data-

centers (Virginia, Ohio, California, Oregon, Mumbai, Sydney,

Canada, Ireland, London, and Paris). The round-trip latency

between the US datacenters was between 11.2ms and 79.9ms

and the bandwidth between 152Mbps and 1.10Gbps, while

round-trip latency between the most distant pair of datacenters,

Mumbai and Ireland, was 282ms, and the bandwidth was

39Mbps. Results are reported in Table IV. We note that in

contrast to our single-datacenter benchmarks, our transoceanic

benchmarks are dominated by latency costs. We expect that

our protocol’s low round count constitutes a greater advantage

in this setting than does its computational efficiency.

A. Comparison to Prior Work

We compare our implementation to those of Lindell [2],

Gennaro et al. [3], and Boneh et al. [4] (who also provide an

optimized version of Gennaro et al.’s scheme, against which
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we make our comparison). Though Boneh et al. and Gennaro

et al. support thresholds larger than two, we consider only their

performance in the 2-of-n case. Neither Gennaro et al. nor

Boneh et al. include network costs in the timings they provide,

nor do they provide timings for the setup protocol that their

schemes share. However, Lindell observes that Gennaro et al.’s
scheme involves a distributed Paillier key generation protocol

that requires roughly 15 minutes to run in the semi-honest

setting. Unfortunately, this means we have no reliable point of

comparison for our 2-of-n setup protocol.

Lindell benchmarks his scheme using a single core on

each of two Microsoft Azure Standard_DS3_v2 instances

in the same datacenter, which can expect bandwidth of roughly

3GBits/Second. Lindell’s performance figures do include

network costs. In spite of the fact that Lindell’s protocol

requires vastly less communication, as reported in Section VII,

we nonetheless find that, not accounting for differences in

benchmarking environment, our implementation outperforms

his for signing by a factor of roughly 16 (when only a single

thread is allowed), and for setup by a factor of roughly 55.

Given that each 2-of-2 signature requires 85.7 KiB of data

to be transferred under our scheme, but only 769 Bytes under

Lindell’s, there must be an environment in which his scheme

outperforms ours. Specifically Lindell has an advantage when

the protocol is bandwidth constrained but not computationally

constrained. Such a scenario is likely when a large number of

signatures must calculated in a batched fashion (mitigating the

effects of latency) by powerful machines with a comparatively

weak network connection.

Finally, we note that an implementation of the ordinary

(local) ECDSA signing algorithm in Rust using our own elliptic

curve library requires an average of 179 microseconds to

calculate a signature on our benchmark machines – a factor of

only 11.75 faster than our 2-of-2 signing protocol.
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APPENDIX A

ADDITIONAL FUNCTIONALITIES

In this section, we present the additional functionalities on

which our protocols rely. As before, we omit notation for

bookkeeping elements that we do not explicitly use such as

session IDs and party specifiers, which work in the ordinary

way; we also assume that if messages are received out of order

for a particular session, the functionality aborts. We begin

with a Selective-failure OT functionality, which differs from

the traditional OT functionality in that it allows the sender to

guess the receiver’s choice bit. If the sender’s guess is incorrect,

the functionality alerts both parties, and if the sender’s guess

is correct, then the sender is notified while the receiver is not.

Functionality 3. FSF-OT:
This functionality is parameterized by the group order q and

runs with two parties, a sender and a receiver.

Choose: On receiving (choose, ω) from the receiver, store

(choice, ω) if no such message exists in memory and send

(chosen) to the sender.

Guess: On receiving (guess, ω̂) from the sender, if ω̂ ∈
{0, 1,⊥} and if (choice, ω) exists in memory, and if

(guess, ·) does not exist in memory, then store (guess, ω̂)
in memory and do the following:

1) If ω̂ = ⊥, send (no-cheat) to the receiver.

2) If ω̂ = ω, send (cheat-undetected) to the sender and

(no-cheat) to the receiver.

3) Otherwise, send (cheat-detected) to both the sender

and receiver.

Transfer: On receiving
(
transfer, α0, α1

)
from the sender,

if α0 ∈ Zq and α1 ∈ Zq, and if (complete) does not

exist in memory, and if there exist in memory messages

(choice, ω) and (guess, ω̂) such that ω̂ = ⊥ or ω̂ = ω, then

send (message, αω) to the receiver and store (complete) in

memory.

What follows is a Correlated OT-extension functionality

that allows arbitrarily many Correlated OT instances to be

executed in batches of size 
. For each batch, the receiver

inputs a vector of choice bits ω ∈ {0, 1}�, following which the

sender inputs a vector of correlations α ∈ Z
�
q . The functionality

samples 
 random pads from Zq and sends them to the sender.

To the receiver it sends only the the pads if the sender’s

corresponding choice bits were 0, or the sum of the pads and

their corresponding correlations if the sender’s corresponding

choice bits were 1. Note that this functionality is nearly identical

to the one presented by Keller et al. [34], but we add an

initialization phase and the ability to perform extensions (each

batch of extensions indexed by a fresh extension index extid)
only after the initialization has been performed.

Functionality 4. F�
COTe:

This functionality is parameterized by the group order q and

the batch size 
. It runs with two parties, a sender S and a

receiver R, who may participate in the Init phase once, and

the Choice and Transfer phases as many times as they wish.

Init: Wait for message (ready) from the sender and receiver.

Store (ready) in memory and send (init-complete) to

the receiver.

Choice: On receiving (choose, extid,ω) from the receiver,

if (choice, extid, ·) with the same extid does not exist in

memory, and if (ready) does exist in memory, and if ω is

of the correct form, then send (chosen) to the sender and

store (choice, extid,ω) in memory.
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Transfer: On receiving (transfer, extid,α) from the sender,

if there exists a message of the form (choice, extid,ω) in

memory with the same extid, and if (complete, extid) does

not exist in memory, and if α is of the correct form, then:

1) Sample a vector of random pads tS ← Z
�
q

2) Send (pads, tS) to the sender.

3) Compute {tRi}i∈[1,�] ..= {tSi + ωi ·αi}i∈[1,�].
4) Send (padded-correlation, tR) to the receiver.

5) Store (complete, extid) in memory.

Finally, we give functionalities for zero-knowledge proofs-

of-knowledge-of-discrete-logarithm. The first corresponds to

an ordinary proof, whereas the second allows the prover to

commit to a proof that will later be revealed. Note that these

are both standard constructions, except that they operate with

groups of parties, and all parties aside from the prover receive

verification.

Functionality 5. FRDL

ZK :
The functionality is parameterized by the group G of order

q generated by G, and runs with a group of parties P such

that |P| = n.

Proof: On receiving (prove, x,X) from Pi where x ∈ Zq

and X ∈ G, if X = x · G, then send (accept, i,X) to all

parties in P. Otherwise, send (fail, i,X) to all parties in

P.

Functionality 6. FRDL

Com-ZK:
The functionality is parameterized by the group G of order

q generated by G, and runs with a group of parties P such

that |P| = n.

Commit Proof: On receiving (com-proof, x,X) from Pi,

where x ∈ Zq and X ∈ G, store (com-proof, x,X) and

send (committed, i) to all parties in P.

Decommit Proof: On receiving (decom-proof) from Pi, if

(com-proof, x,X) exists in memory, then:

1) If X = x ·G, send (accept, i,X) to all parties in P.

2) Otherwise send (fail, i,X) all parties in P.

APPENDIX B

EQUIVALENCE OF FUNCTIONALITIES

We argue that our functionality FSampledECDSA (Functional-

ity 2) does not grant any additional power to Alice by showing

that an adversary who is able to forge a signature by observing

the signatures produced by accessing FSampledECDSA can be

used to forge an ECDSA signature in the standard Existential

Unforgeability experiment that defines security for signature

schemes (see Katz and Lindell [36] for a complete description

of the experiment). We are only concerned with arguing that

an ideal adversary interacting with FSampledECDSA as Alice is

unable to forge a signature because Bob’s view in his ideal

interaction with FSampledECDSA is identical to his view when

interacting with FECDSA (Functionality 1).

Our reduction is in the Generic Group Model, which

was introduced by Shoup [47]. While there are well-known

criticisms of this model [55]–[57], it has also shown itself to

be useful in proving the security of well-known constructions

such as Short Signatures [58] and Short Group Signatures [59].

Furthermore, this is the model in which ECDSA itself is proven

secure [37].

In this model an adversary can perform group operations only

by querying a Group Oracle G(·). More specifically, queries

of the following types are answered by the Oracle:

1) (Group Elements) When the Oracle receives an integer

x ∈ Zq , it replies with an encoding of the group element

corresponding to this integer. Returned encodings are

random, but the Oracle is required to be consistent when

the same integer is queried repeatedly. This corresponds

to the scalar multiplication operation with the generator

in an ECDSA group: Y ..= x ·G.

2) (Group Law) When the Oracle receives a tuple of the form

(r, s,G(x),G(y)), it replies with a random encoding of the

group element given by G(r ·x+s ·y). As before, outputs

must be consistent. This corresponds to a fused multiply-

add operation in an ECDSA group: Z ..= (r ·X + s · Y ),
where X = x ·G and Y = y ·G.

As usual in this model, the reduction itself will control the

Group Oracle, and in particular it has the ability to program

the Oracle to respond to specific queries with specific outputs.

FA
SampledECDSA is used to denote an Oracle version of

the FSampledECDSA functionality accessible only as Alice. In

addition to the previously defined FSampledECDSA behavior, this

Oracle returns the signature σsigid to Alice upon receiving

(sign, sigid, ·, ·). This models the realistic scenario wherein

Alice obtains the output signatures, which we wish to capture

in our reduction, even though the functionality does not output

the signature to her on its own.

Claim B.1. If there exists a probabilistic polynomial time
algorithm A in the Generic Group Model with access to the
FA

SampledECDSA oracle, such that

Pr

[
Verifypk (m,σ) = 1 ∧m /∈ Q :

(m,σ)← AF
A
SampledECDSA (pk)

]
≥ p(κ)

where Q is the set of messages for which A sends queries of the
form (new, ·,m, ·) to the FA

SampledECDSA Oracle, and where the
probability is taken over the randomness of the FSampledECDSA

functionality, then there exists an adversary A such that

Pr
pk,sk

[
Verifypk (m,σ) = 1 ∧m /∈ Q :

(m,σ)← ASignsk(·) (pk)

]
≥ p(κ)− poly(κ)

2−κ

where Q is the set of messages for which A queries the signing
oracle Signsk(·).

Proof sketch. Our reduction is structured in an intuitive way.

For readability we refer to A as Alice in its interactions with

FA
SampledECDSA, and we note that A can only interact with Alice

on behalf of the FA
SampledECDSA Oracle. First, A forces Alice

to accept the same public key that it received externally in the

forgery game, and then, for each query Alice makes to her
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FA
SampledECDSA oracle, A can request a corresponding signature

from the Signsk oracle under the same secret key. The nonce

Rsig in the signature received from Signsk will not match the

nonce R that Alice instructs the FA
SampledECDSA oracle to use.

However, A can take advantage of the fact that FA
SampledECDSA

is allowed to offset the nonce R by a random value kΔ of its

choosing. A sets kΔ so that kΔ ·G is exactly the difference

between R and Rsig. Computing kΔ directly would require A
to know the discrete log of the Rsig value it was given by the

Signsk oracle; instead, A uses its ability to program the Group

Oracle to ensure that G(kΔ) is the difference between R and

the corresponding Rsig. We describe ASignsk(·) formally below.

Algorithm 4. ASignsk(·) (pk):
1) Answer any query G(x) as x · G, and any query

G(r, s,G(x),G(y)) as r ·G(x)+s ·G(y) unless otherwise

explicitly programmed at those points.

2) Send (public-key, pk) to Alice.

3) When a message of the form (new, sigid,m,B) is

received from Alice, sample k
sigid
B ← Zq, calculate

DB
..= k

sigid
B ·G, store (sig-message, sigid,m, k

sigid
B ) in

memory, and reply to Alice with

(nonce-shard, sigid, DB)

4) When a message of the form
(
nonce, sigid, i, Ri,sigid

)
is received from Alice, if (sig-message, sigid,m, k

sigid
B )

exists in memory:

a) Query the Signing Oracle with the message m to

obtain a signature(
sigsigid,i, R

sig
sigid,i

)
= σsigid,i ← Signsk (m)

Note that the oracle will only return the x-coordinate

of Rsig
sigid,i

, but recovering the point itself is easy. Store

(sig-signature, sigid, σsigid,i) in memory.

b) Sample kΔsigid,i ← Zq , then compute

KΔ
sigid,i

..= Rsig
i,sigid

−Ri,sigid

and program the Group Oracle such that

G
(
kΔsigid

)
= KΔ

sigid,i

c) Compute

kΔsigid,i,A = (1/k
sigid
B ) · kΔsigid

and program the Group Oracle such that

G(kΔsigid,i,A) = (1/k
sigid
B ) ·KΔ

sigid,i

d) Send (offset, sigid, k
Δ
sigid,i,A

) to Alice.

5) When a message of the form (sign, sigid, i, kA) is

received from Alice, if (sig-signature, sigid, σsigid,i)

and (sig-message, sigid,m, k
sigid
B ) exist in memory, and

kA · ksigidB ·G = Rsig
isigid

, but (sig-complete, sigid) does

not exist in memory, respond with σsigid,i and store

(sig-complete, sigid) in memory.

6) Once Alice outputs a forged signature sig∗, output this

signature.

Notice that this reduction fails if Alice queries G on an

index kΔsigid,i,A for any sigid and any i before A programs it,

or if she queries it on an index k
sigid
B for any sigid at any time.

By a standard argument, this event occurs with probability

poly(κ)/2κ. If these queries are not made, the reduction is

perfect and the claim follows.
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