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Abstract—Ransomware is a type of malware that encrypts the
files of infected hosts and demands payment, often in a crypto-
currency such as Bitcoin. In this paper, we create a measurement
framework that we use to perform a large-scale, two-year,
end-to-end measurement of ransomware payments, victims, and
operators. By combining an array of data sources, including
ransomware binaries, seed ransom payments, victim telemetry
from infections, and a large database of Bitcoin addresses
annotated with their owners, we sketch the outlines of this
burgeoning ecosystem and associated third-party infrastructure.
In particular, we trace the financial transactions, from the
moment victims acquire bitcoins, to when ransomware operators
cash them out. We find that many ransomware operators cashed
out using BTC-e, a now-defunct Bitcoin exchange. In total we
are able to track over $16 million in likely ransom payments
made by 19,750 potential victims during a two-year period. While
our study focuses on ransomware, our methods are potentially
applicable to other cybercriminal operations that have similarly
adopted Bitcoin as their payment channel.

I. INTRODUCTION

Ransomware is a type of malware that encrypts a victim’s

documents and media, and then urges payment for their

decryption. In its beginnings, ransoms were demanded via

a collection of online cash-equivalent payment instruments,

such as MoneyPak, Paysafecard, or UKash [1]. From the

ransomware operators’ perspective, these instruments have

undesirable properties: their limited geographic availability

shrinks the paying-victim pool, and they are run by companies

subject to the local law, which might compel them into

reversing transactions or tracking the ransom recipients.

To overcome these drawbacks, the operators of many major

ransomware families have adopted Bitcoin. This cryptocur-

rency poses challenges to law enforcement, as it is decen-

tralized, largely unregulated, and all parties in a transaction

are hidden behind pseudo-anonymous identities. Moreover,

all transactions are irreversible, and it is widely available for

victims to purchase. Due to these properties, Bitcoin has also

gained adoption as a payment method for other illicit activities,

such as drug markets [2], online sex ads [3], and DDoS-for-

hire services [4].

However, Bitcoin has a property that is undesirable to cyber-

criminals: all transactions are public by design. This enables

researchers, through transaction clustering and tracing [5],

[6], [7], to glean at the financial inner workings of entire

cybercriminal operations. Before Bitcoin, these insights had

to be only partial and infrequent, as they hinged on sporadic

data leaks [8], [9], [10].

In this paper, we perform a large-scale, two-year measure-

ment study of ransomware payments, victims, and operators.

While prior studies have estimated the revenue for a single

ransomware operation [6] or reverse engineered the technical

inner works of particular ransomware binaries [11], [12], our

study is the first to perform an end-to-end analysis of a large

portion of the ransomware ecosystem, including its revenue,

affiliate schemes, and infrastructure.

To do so, we combine multiple data sources, including

labeled ransomware binaries, victims’ ransom payments, vic-

tim telemetry (collected through an IP sinkhole we deploy),

and a large database of Bitcoin addresses annotated with

their owners (provided by Chainalysis1). This wealth of data

allows us to follow the money trail from the moment a victim

acquires bitcoins, to when the ransomware operators cash them

out. In total, we establish a lower-bound estimate on ransom

payments’ volume of $16 million USD, made by 19,750

potential victims over two years.

The bitcoin-trail allows us to determine the likely geo-

graphic locations of paying victims, which we corroborated

with the collected telemetry of a large ransomware campaign.

We find that South Koreans likely paid over $2.5 million USD

in ransoms to the Cerber ransomware family, which is 34%

of the total Cerber’s revenue we tracked. Our measurements

indicate that South Koreans were also likely disproportionately

impacted by other ransomware campaigns. This calls for fur-

ther studies on why this region is disproportionately impacted,

and what can be done to better protect it.

We also find that ransomware operators strongly preferred to

cash out their bitcoins at BTC-e, a Russian Bitcoin exchange

that converted bitcoins to fiat currencies. This exchange has

now been seized.

Finally, we describe some unique ethical issues that we

faced during our study and limit possible interventions against

ransomware campaigns. For example, any disruption of the

payment infrastructure can result in both the victim’s inability

to access their data and an increased financial burden, as

ransom amounts increase with time in many families.

In summary, our main contributions are as follows. (1)

We develop a set of methodologies that enable an end-to-

end analysis of the ransomware ecosystem. (2) We conduct a

two-year measurement study of the ecosystem, conservatively

1Chainalysis is a proprietary online tool that facilitates the tracking of
Bitcoin transactions by annotating Bitcoin addresses with potential owners.
See https://www.chainalysis.com/.
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estimating that ransomware operators have collected over $16

million USD in ransoms from 19,750 potential victims. We

also identify that BTC-e, a Russian-operated Bitcoin exchange

(now seized by US law enforcement) appeared to be a key

cash out point for ransomware operators. (3) We discuss

possible intervention points, open challenges in ransomware

measurement, and unique ethical issues specific to ransomware

research.

II. BACKGROUND

In this section, we describe the timeline of the archetypal

ransomware infection, from malware delivery to ransom cash

out.

Delivery: Ransomware is distributed through a variety of

vectors, much like generic malware. For instance, Cerber

and Locky were also spread via malicious email attach-

ments [13], [14], while Karma partly relied on pay-per-install

networks [15]. More recent families, such as WannaCry and

NotPetya, exploited known vulnerabilities in network services

to propagate within a LAN [16].

Execution: Once a ransomware binary executes on a host,

it silently encrypts a set of files files deemed valuable to the

user, such as documents and images. When the encryption

completes, the ransomware displays a ransom note on the

host’s screen, informing the user that those files are held for

ransom, payable in bitcoins.

Payment: A ransom note usually includes a guide on how

to purchase bitcoins from exchanges, online services that

facilitate the conversion between Bitcoin and fiat currencies.

Exchanges come in different flavors: they can operate globally

(e.g., Paxful), or regionally (e.g., Coinbase, which only caters

to a US clientele). Most exchanges are centralized, except from

a handful that facilitate direct transactions between buyers and

sellers (e.g., LocalBitcoin).

Furthermore, ransom notes include either ransom addresses,

Bitcoin wallets victims are expected to pay into, or a link to

a payment website which displays this address. Many ran-

somware families (e.g., Locky and Cerber) generate a unique

ransom address for each victim to automate the identification

of paying victims, whereas others reuse addresses for multiple

victims (e.g., WannaCry and CryptoDefense). When addresses

are reused, ransomware operators cannot discriminate paying

victims, so they either require the victim to send them the

payment transaction hash (a verification mechanism suscepti-

ble to abuse, as all transactions are public), or they simply do

not decrypt the victim’s files (e.g., WannaCry [17]). Ransom

amounts are typically fixed, denominated in US dollars (e.g,

$1,000 for some Cerber strains [11]) or Bitcoins (e.g., 0.5

BTC for some Locky strains [18]). A notable exception is

Spora [19], where the estimated value of each victim’s files is

factored into the ransom.

Decryption: Once the payment has been confirmed, ran-

somware either automatically decrypts the files held for ran-

som, or it instructs the victim to download and execute a

decryption binary.

Liquidation: To cash out their proceeds, ransomware opera-

tors often deposit their bitcoins into a wallet controlled by an

exchange to trade them for fiat currencies. As law enforcement

agencies might compel exchanges into disclosing the identity

of their clients, some operators first deposit their bitcoins into

mixers, services that obfuscate bitcoin trails by intermixing

bitcoin flows from multiple sources.

III. DISCOVERING RANSOM DEPOSIT ADDRESSES

The Bitcoin blockchain is a public sequence of times-

tamped transactions that involve wallet addresses, which are

basically pseudo-anonymous identities. To discern transactions

attributable to ransom campaigns, we design a methodology

to trace known-victim payments (this section), cluster them

with previously-unknown victims (Sections IV-A, and IV-B),

estimate potentially missing payments (Section IV-E), filter

transactions to discard the ones that are likely not attributable

to ransom payments (Section IV-F). We show results of these

methods in Section V, where we estimate the revenue of

different ransomware families and characterize their financial

activities.

Our payment tracking pipeline begins with methods to

discover seed addresses — ransom addresses associated with

a small number of known ransomware victims. Two sources

provide us with a list of seed ransom addresses: real victims

who reported ransomware infection [7], [6]; and our method

of generating synthetic victims, where we extract ransom

addresses by executing the ransomware binaries in a controlled

environment — effectively becoming the infection “victims”

ourselves.

A. Real Victims

To find real victims, we automatically scrape reports of

ransomware infection in public forums, such as Bleeping Com-

puter. These reports typically contain screenshots or excerpts

of ransom notes, from which we extract the seed ransom

addresses via text or image analysis. In addition, we obtain

a list of seed ransom addresses from proprietary sources such

as ID Ransomware, which maintains a record of ransomware

victims and the associated ransom addresses [20].

B. Synthetic Victims

However, infection reports from real, paying victims are

hard to come by. For example, we were initially unable to find

any real victim infection reports which contained the ransom

addresses for several families, such as Cerber and Locky.2

To extend our coverage, we complement real victims with

synthetic victims.

Using a technique that we will discuss in Section IV-E, we

first obtain the binaries of Cerber and Locky from VirusTo-

2We selected Cerber and Locky based on media reports indicating that they
were actively infecting large numbers of victims [13], [14].
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tal.3 We execute a subset of the ransomware binaries from

each family on four independent platforms: VmRay [21],

a hypervisor-based commercial sandbox; a VMware-based

commercial sandbox; Cuckoo, an open-source sandbox that

runs on VirtualBox virtual machines (VMs); and Windows XP

on a bare-metal machine. We opt for these diverse platforms

to mitigate potential anti-VM and anti-sandbox techniques in

some variants of Cerber and Locky.

We execute each malware sample for up to twenty minutes,

and then we collect the memory dump (in the case of VM ex-

ecutions), created files, and screenshots, from which to extract

Bitcoin wallet addresses. We do not have any false positives,

since Bitcoin wallet addresses have 32 bits of error-checking

code. We also extract the visible text from screenshots through

a commercial OCR provider [22], and process the output

through the same extraction pipeline in order to obtain the

ransom addresses.

C. Summary of Results

Using the method in Section III-A, we have collected

25 seed ransom addresses from actual victims across 8

ransomware families: CoinVault, CryptXXX, CryptoDefense,

CryptoLocker, CryptoWall, Dharma, Spora, and WannaCry.

In addition, we apply the method in Section III-B and

obtain 32 seed ransom addresses (8 of which from bare-

metal infections) for synthetic Cerber infections, and 28 seed

ransom addresses (3 of which from bare-metal infections) for

synthetic Locky infections. As we will discuss in Section IV-B,

anyone of Cerber’s addresses was sufficient to discover the

additional addresses that Cerber uses; likewise, anyone of

Locky’s addresses was sufficient.

IV. DISCOVERING ADDITIONAL RANSOM ADDRESSES

The seed ransom addresses obtained in Section III are

associated with a small number of known victims, both real

and synthetic. For families such as WannaCry, existing reports

suggest that victims from multiple infections are shown the

same ransom addresses [17]. Thus, the seed addresses them-

selves are sufficient for us to identify both known and potential

victims,4 and we can proceed with estimating the ransomware

revenue.

In contrast, families such as Locky, Cerber, and Spora gen-

erate unique ransom addresses for every infection, a fact that is

corroborated by prior research [19], vetted proprietary sources,

and by our binary executions (Section III-B). On their own,

these seed ransom addresses do not reveal any information

about other potential victims. Any bitcoins received by each

seed ransom address is likely associated with only a single

victim that was provided with that seed ransom address.

3We also obtained binaries of the Sage ransomware, but as we will
discussion in Section IV-B, micropayments to Sage’s ransom addresses did not
result in subsequent bitcoin transfers, so we excluded Sage from our analysis.

4We refer to any victims whom we do not know a priori as potential or
likely victims (as opposed to real or known victims that we know from ground
truth). Absent ground truth, we are uncertain that they are actual victims of
ransomware infections.

Such unique ransom addresses motivate the need to expand

our analysis beyond the seed addresses and identify additional

addresses that are likely to be associated with ransomware

activities. In this section, we describe a new method that is

based on clustering and micropayments to discover additional

ransom addresses.

A. Clustering by Co-spending

Even though we have a relatively small number of seed

ransom addresses, we can infer payment activities of other

potential victims by discovering wallet addresses that co-spent
with the seed addresses. Two wallet addresses are known to be

co-spent if they are used as the input to the same transaction.

In non-CoinJoin transactions [23], we assume that an entity

that creates a transaction has access to the private keys of

all the input wallet addresses in the transaction [24], and

that the entity is in control of all the input addresses. We

call this assumption the co-spending heuristic, which we use

to recursively look for addresses that co-spent with the seed

ransom addresses, and also addresses that co-spent with the

seed ransom addresses’ co-spending addresses [7], [6], [5].

In this way, we construct a cluster of wallet addresses.

Every address in the cluster, which we shall refer to as

cluster address, is presumably under the control of the same

ransomware family. These cluster addresses include the seed

ransom addresses; ransom addresses to which likely victims

made ransom payments (which we cannot validate as coming

from actual victims absent ground-truth); and wallet addresses

that a ransomware family uses for internal book-keeping (e.g.,

aggregating ransom payments). For a given family, if we have

multiple seed ransom addresses, it is possible that each of them

may be in a disjoint cluster (likely because no two addresses

from different clusters were ever co-spent). Since we know

that the seed ransom addresses all belong to the same family,

we manually merge the disjoint clusters into a single cluster,

which we subsequently refer to as the ransomware’s cluster.

We stress that the clustering technique does not apply

to CoinJoin transactions [23], which violate the co-spending

heuristic. The sender of a CoinJoin transaction does not have

access to the private keys of the input wallet addresses. Effec-

tively, two addresses that are co-spent in the same CoinJoin

transaction cannot be clustered together. To detect CoinJoin

transactions in our clustering, we apply a set of heuristics [25]

using BlockSci [26]. We find no CoinJoin transactions in our

clusters, although there is still a possibility that the heuristics

might have failed to detect some CoinJoin transactions. We

will mitigate this problem in Section IV-F by proposing and

evaluating filtering techniques.

B. Augmenting Clustering with Micropayments

The construction of clusters uses the co-spending heuristic,

which requires that bitcoins are spent from the seed addresses.

However, for synthetic victims whose ransom addresses are

unique to individual victims (e.g., Cerber and Locky), the

addresses are not associated with any Bitcoin payments. As

such, there is no co-spending.
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Fig. 1: A schematic illustration for transactions involving the

Locky and Cerber clusters.

In order to observe co-spending, we develop a novel method

— making 0.001 bitcoins worth of micropayments to the ran-

som addresses of synthetic victims and observe the subsequent

flow of the bitcoins. We make micropayments only to seed

addresses of Locky and Cerber, because at the time we started

the analysis, we were unaware of any real victims of either

ransomware families.

Locky: We generated 28 synthetic victims. We made a

micropayment to each of the 28 seed ransom addresses.5

What appears to be the ransomware operator later co-spent

the ransom addresses with other wallet addresses, presumably

in an attempt to aggregate ransom payments. All these 28

ransom addresses lead to the construction of a single Locky

cluster with 7,093 addresses. In fact, if we had only made

one of the 28 micropayments, we would have discovered the

same cluster. In addition to the synthetic victims, we also

discover a ransom address that belongs to a real Locky victim

who paid 0.5 bitcoins of ransom, according to data we obtain

from proprietary sources. This ransom address belongs to the

same Locky cluster above, which validates our micropayment

approach. We show an illustration of Locky’s transaction graph

in Figure 1(i), where we discover Addresses 3 and 4 in

Locky’s cluster by making micropayments to Addresses 1 and

2.

Cerber: We generated 32 synthetic victims. Again, we made

a micropayment to each of the 32 ransom addresses. In each

case, after the ransom address received our micropayment,

what appears to be the ransomware operator moved our micro-

payment from the ransom address into a unique aggregation
address. The ransom address was subsequently not used in

any transactions. Also, it is never co-spent with any other

wallet addresses. The aggregation address is used in exactly

two transactions: (i) first receiving the micropayment from the

ransom address, and (ii) sending the micropayment somewhere

else by co-spending with other addresses, presumably to

aggregate the ransom payments collected. We cluster the ag-

gregation address to form Cerber’s cluster. Similar to Locky’s

5The timings of our micropayments, both for Locky and Cerber, do not
follow any fixed schedule.

TABLE I: Ransomware clusters.

Family Cluster ID Tmin Tmax Naddr Nseed

Cerber 1 2016-02-25 2017-08-31 8,526 32S
CoinVault 1 2012-11-03 2017-07-10 1,404 1R
CryptXXX 1 2016-05-11 2016-10-06 1,742 4R
CryptoDefense 1 2014-03-18 2014-08-15 1 1R∗

2 2014-02-28 2014-08-15 1 1R∗
CryptoLocker 1 2013-09-07 2017-07-10 968 1R

2 2016-03-07 2016-10-06 3,489 1R
CryptoWall 1 2015-11-24 2016-03-08 216 1R

2 2014-05-06 2014-09-13 10 2R
3 2015-01-14 2015-04-30 101 1R
4 2015-11-03 2015-12-04 42 1R
5 2014-04-29 2014-10-09 7 1R
6 2014-05-25 2014-08-05 1 1R

Dharma 1 2016-05-13 2017-06-29 274 1R
2 2017-01-23 2017-02-20 4 1R

Locky 1 2016-01-14 2017-06-02 7,093 1R 28S
Spora 1 2017-01-05 2017-08-26 2,126 1R

2 2017-01-18 2017-03-01 24 1R
WannaCry 1 2017-05-12 2017-07-24 1 1R∗

2 2017-03-31 2017-07-03 3 2R∗
3 2017-05-12 2017-06-20 1 1R∗
4 2017-05-12 2017-08-09 1 1R∗

case, if we had only made any one of the 32 micropayments to

Cerber, we would also have arrived at the same Cerber cluster.

As the ransom address and the corresponding aggregation

address are never co-spent for each of the 32 micropayments,

we cannot use the co-spending heuristic to cluster both types

addresses. However, for each of our synthetic victims, the

ransom address and the aggregation address were used exclu-

sively to receive and send ransom payments. It is reasonable

to assume that the ransomware operator is in control of both

addresses. As such, we decide to expand the original cluster to

also include the ransom addresses. We show an illustration of

Cerber’s transaction graph in Figure 1(ii), where aggregation

Addresses 8 and 9 are clustered with Addresses 10 and 11

(i.e., original cluster). Since Addresses 5 and 6 appear to be

exclusively used as an intermediary to receive and send ransom

payments to the aggregation addresses, they are potentially

under Cerber’s control. As a result, we expand the cluster to

include both addresses. In the rest of the paper, we always use

Cerber’s expanded cluster for analysis.

C. Clusters Identified

Using the seed ransom addresses that we obtained earlier,

we construct clusters of wallet addresses for the 8 families

in Section III-A and the 2 families in Section III-B. We

present the result in Table I, where each row corresponds

to a single cluster that we construct from one or multiple

seed ransom addresses. We show the first date a cluster first

received bitcoins as Tmin and the last date as Tmax, according

to our observation on August 31, 2017. The number of seed

ransom addresses is shown in the Nseed column; “R” denotes

addresses from real victims, and “S” denotes synthetic victims.

For example, Cluster 1 of Locky is constructed from one

ransom address from a real victim and 28 ransom addresses

from synthetic victims. By contrast, the two seed ransom

addresses from CryptoLocker victims each belong to Clusters
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TABLE II: Ransomware binaries in VirusTotal.

Family Seed Expansion Total

Cerber 77,131 119,508 196,639
CryptoLocker 46,645 4,581 51,226
CryptoDefense 6,682 17,247 23,929
WannaCry 9,230 0 9,230
Locky 6,115 9 6,124
Cryptowall 51 4,344 4,395
CryptXXX 802 81 883
Spora 1,154 587 1,741
CoinVault 22 0 22
Dharma 5 0 5

Total 147,837 146,357 294,194

1 and 2 respectively. We manually merge both clusters and

construct a single CryptoLocker cluster for later analysis.

The size of each cluster, in terms of the number of con-

stituent addresses is shown in the Naddr column. For some

families, such as Locky and Cerber (where we know each

victim is assigned a unique ransom address), a small number of

seed ransom addresses leads to the construction of clusters of

thousands of addresses. For other families, each seed ransom

address belongs to a cluster of size one. Examples include

WannaCry and CryptoDefense, in which the same ransom

addresses are known to be reused across victims and never co-

spent with any other addresses. These reused ransom addresses

are annotated with asterisks (*) in the table. As expected,

families that generate individual addresses for each victim,

such as Locky and Cerber, result in a larger number of

additional addresses being discovered by our clustering than

families that reused ransom addresses.

D. Limitations of Micropayments and Co-spending Heuristics

Not all micropayments resulted in subsequent bitcoin move-

ments. For the Sage ransomware (which is not included in

this study), we discovered two ransom addresses that real

victims reported, but to which they did not make ransom

payments. Similar to the case with synthetic victim, unpaid

ransom addresses, even from real victims, cannot help us

find the ransomware’s cluster, because they have not been

co-spent yet. To this end, we made micropayments to both

of the Sage ransom addresses. However, the bitcoins have

since remained in the addresses without being transferred to

other wallet addresses. As a result, we are unable to find

Sage’s cluster. In general, ransomware operators may ignore

micropayments, especially when the payment amount is below

some minimum threshold. In addition, micropayments may

even cause suspicion to the operators, although in our case

Cerber and Locky continued to process our micropayments (as

well as potential victim payments) throughout our analysis.

Furthermore, regardless of whether real victims made pay-

ments or we made micropayments, our clustering technique

only discovers addresses that co-spent with the seed ransom

addresses. It is possible that a ransomware operator may decide

to switch to a completely different wallet cluster after our

known victims, whether real or synthetic, have paid. Our

technique will thus miss the new cluster. Additionally, it is

also possible that a ransomware family may operate in the

affiliate model [11], where each affiliate may choose to receive

ransom payments in its own cluster that is disjoint from other

affiliates’ clusters. If the known payments are made to only a

subset of the affiliates, our technique will again miss clusters

of the other affiliates.

E. Coverage of Clusters

It is possible that we may not have discovered all clusters

of addresses used by a particular ransomware family. For

instance, a ransomware operator may have switched to a

different cluster of wallet addresses, or there exists multiple

operators for the same family, yet each operator uses a disjoint

cluster of addresses. To determine if we have potentially

missed clusters, we corroborate the timing of payment events

on the blockchain against the timing of two external indicators

of ransomware activity: relative number of searches according

to Google Trends [27], and discovery of new binaries on

VirusTotal [28]. Our assumption is that if, during some period,

we discover new binaries for a ransomware family and/or

observe relevant Google searches while we do not observing

any incoming bitcoins into the ransomware’s cluster, then we

may have missed payment clusters. To this end, we measure

the timing of the following three events:

Bitcoin inflow: We compute the total bitcoin amount in

inflows to a ransomware cluster per day. An inflow to a

ransomware cluster is a transaction that sends bitcoins from

addresses outside the cluster to addresses inside the cluster.

An inflow can come from multiple sources: e.g., real victims

and synthetic victims (both from us and potentially from

other researchers); or affiliates that pay for ransomware-as-

a-service [11]. Presumably, the presence of any inflows to the

cluster implies that the ransomware is actively in operation.

Google searches: Google Trends can produce an estimate for

the relative number of searches per week for any user-specified

search terms. For each ransomware family, we construct a

search query by concatenating the name of the family along

with the term “ransomware” and extract the relative number of

searches from Google Trends. We assume that if a ransomware

family is actively causing harm during some period, there

would be some number of related searches — for instance,

when victims look for help online.

Number of binaries on VirusTotal: The discovery of new

binaries for a given ransomware family suggests a likely active

ransomware operation, as new versions of the binary may be

released, or the binary may undergo repacking. However, it

is difficult to obtain binaries for a given ransomware family

using VirusTotal. Even though VirusTotal provides a tag for

each family, some of the tags are generic (e.g., W32/Ransom)

and have little indication if a binary is related to a particular

ransomware family.

To this end, we label a large dataset of ransomware binaries

with its family (e.g., Cerber), its variant (e.g., Cerber’s v2),

and the date of its first upload to VirusTotal. We can use

the dataset as a proxy to establish the timeline in which

each ransomware family is active, thereby corroborating with
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Fig. 2: A comparison of bitcoin inflows, binary discovery on VirusTotal, and Google searches for each ransomware family.

the timing of the ransom payments. (This labelled dataset

also allows us to download and execute binaries of specific

ransomware families, as we did in Section III.)

To build our dataset, we first sieve through all malware

samples collected by VirusTotal [28] with 38 high-confidence

YARA rules, which are Perl-based regular expressions often

used to identify malware samples belonging to a specific

family of malware. These rules have been crafted both by

us and third-party researchers [29]. We call this our seed
dataset: a high-confidence low-recall collection of binaries

belonging to ransomware families. Using these YARA rules

we identified 147,837 unique ransomware samples for ten

ransomware families as shown in Table II.

To improve our recall and capture additional ransomware

variants, we also collect a low-confidence dataset of malware

that has been tagged by anti-virus engines as ransomware,

either by generic tags (e.g., W32/Ransom), or family-specific

tags. We then use the VxClass [30] to compute code-structure

similarity scores based on BinDiff [31] across the binaries

of the seed and low-confidence datasets. Finally, we leverage

these similarity scores to cluster binaries into families. Specif-

ically, we represent the binaries from both datasets as nodes in

a graph, where two nodes are connected through an edge if the

binary similarity of the two is high (over a manually-selected

similarity of 0.9). We then identify the connected components

in the graph, and we discard all clusters that do not contain

seed binaries. After this expansion, the dataset was expanded

to over 294k binaries, as shown in Table II. The expansion

step was most effective for ransomware families with multiple

variants, such as Cerber [32].

We validate the cluster purity by manually looking at execu-

tion screenshots (see Section III), checking that all screenshots

belong to the same family. We also note that no generated

cluster includes seeds from more than one ransomware family.

By using this labelled dataset, we count the number of new

ransomware binaries as discovered on VirusTotal every day,

based on both the seed and the expanded set of binaries.

Result of comparison: Using the three events above, we

present this comparison in Figure 2, where the x-axis shows

the period of our study from November 3, 2012 to August

31, 2017.6 For each ransomware family on the y-axis, we

show three types of events. On the gray horizontal line that

corresponds to a ransomware family, we denote the daily

bitcoin inflow with colored bands. As the color temperature

increases from “cold” to “warm,” the daily bitcoin values of

inflows also increase. We have converted the bitcoin amounts

into US Dollars based on the USD-Bitcoin exchange rate

on the day the ransomware cluster received the bitcoins.

Overlaid on top of the colored bands are X’s that denote the

time when a seed ransom address received payments from

real or synthetic victims. Some of the X’s may appear to

overlap, as the payments may have occurred within a short

period of time. As the clusters are constructed based on seed

ransom addresses, by definition, the X’s must appear within the

colored bands. While the colored bands show inflows, the blue

circles immediately above the bands indicate the discovery of

new binaries on a given day for a ransomware family. The

size of each circle denotes the relative number of binaries

within the family. Finally, above the blue circles are the green

circle, the sizes of which denote the relative number of Google

searches.

This comparison offers a qualitative sanity check for both

our binary classification and address clustering. To facilitate a

quantitative comparison, we measure the overlap among three

types of events: a ransomware cluster receiving bitcoins (B),

VirusTotal detecting new binaries (V), and the ransomware

family appearing in Google Trends (G). Two events overlap

if both events occur in some 7-day period. We compute the

conditional probability for these three types of events. Given

a ransomware family, for instance, Pr[V ‖B] is the probability

of VirusTotal detecting at least a new binary (possibly due

to polymorphism) in a random week, given that the cluster

received some bitcoins during the same week. We show these

conditional probabilities in Table III. Cerber, in particular,

has the highest probability of overlap among all three events,

whereas CryptoWall has one of the lowest.

A low Pr[V ‖B] value, as is the case for CoinVault, Cryp-

toWall, and Dharma, suggests that we are likely missing

6We do not apply Filter 1 (Section IV-F) to bitcoin inflows in the figure. If a
given period has new binaries and/or Google searches but no bitcoin payments,
it is difficult to visually distinguish whether we are missing payment clusters,
or Filter 1 has removed the Bitcoin transactions.
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TABLE III: Conditional probabilities of a ransomware cluster

receiving bitcoins (B), VirusTotal detecting new binaries (V),

and the ransomware family appearing in Google Trends (G)

in any 7-day periods. All units are in percentages.

Family Pr[V ‖B] Pr[G‖B] Pr[B‖V ] Pr[B‖G]

Cerber 77.2 100.0 95.3 89.8
CoinVault 4.8 20.0 88.9 60.0
CryptXXX 56.5 91.3 81.3 44.7
CryptoDefense 87.5 87.5 4.8 4.8
CryptoLocker 63.0 100.0 19.0 25.5
CryptoWall 0.0 95.1 0.0 34.5
Dharma 1.8 51.8 100.0 67.4
Locky 94.3 98.1 50.5 57.8
Spora 76.7 100.0 95.8 71.4
WannaCry 75.0 68.8 92.3 42.3

binaries. This result is consistent with our binary classification

results in Table II where we only discovered 22 CoinVault

and 5 Dharma binaries (likely due to the lack of YARA

rules). However, the correlation between Google Trends and

payments (Pr[G‖B]) is higher for all these families. A low

Pr[B‖V ] or Pr[B‖G] implies that we might be missing clus-

ters; we expect that for a ransomware family, if we discover

new binaries and/or observe relevant Google searches, the

ransomware is likely to be receiving ransom payments from

victims. It is likely that we are missing most ransom payment

clusters for CryptoDefense, CryptoLocker, and CryptoWall.

We also appear to be missing some payment clusters for most

of the other families. This is likely caused by our limited

number of seed addresses and the amount of co-spending each

operator performs. However, it would be difficult to validate

whether we are actually missing binaries or payment clusters

absent ground-truth.

F. Filtering Transactions

As we alluded to in Section IV-A, an inflow of bitcoins to

a ransomware cluster does not necessarily mean a real victim

ransom payment. It could be, for instance, another researcher

paying a synthetic victim or a completely non-ransomware-

related CoinJoin transaction which our CoinJoin heuristics

have failed to detect. Our goal is to examine inflows that come

from potentially real victims and estimate the revenue that a

ransomware family generates from ransom payments. To this

end, we develop a number of inflow filters, which remove

transactions from the inflows that are potentially unrelated to

victims making ransom payments.

Filter 1: First, we create Filter 1, which identifies inflows that

are consistent with known ransom payment patterns. There

are two types of known patterns: (i) historically what ransom

amounts are paid by real victims [7], [6]; and (ii) our novel

method of identifying properties of the Bitcoin transaction

graph for such historical payments.

As an example for Pattern (i), we observe, from screen-

shots online and executing the ransomware itself, that Locky

demanded each victim pay a total ransom of 0.5n bitcoins (for

some integer n) [18], and that CryptXXX charged a ransom

of 1.2 bitcoins, 2.4 bitcoin, $500, or $1,000 per victim [33].

TABLE IV: An analysis of bitcoin inflows under different

filters. V1 offers a way to estimate the total revenue from

ransom payments for a given family.

Family V0 (k$) V1 (k$) V1
V0

(%) V2 (k$) V2
V0

(%) V3
V0

(%)

Cerber 7,702 7,678 99.7 3,990 51.8 51.7
CoinVault 198 20 10.3 18 9.3 1.3
CryptXXX 1,871 1,841 98.4 858 45.9 45.5
CryptoDefense 70 69 99.8 28 41.3 41.3
CryptoLocker 2,048 667 32.6 691 33.8 11.1
CryptoWall 1,214 244 20.2 529 43.6 9.2
Dharma 1,266 231 18.3 631 49.9 8.1
Locky 7,825 6,632 84.8 3,032 38.7 33.2
Spora 827 3 0.5 131 15.9 0.1
WannaCry 100 100 99.4 36 36.5 36.3

Using this pattern, if, for an inflow to a ransomware cluster,

the total amount of bitcoins or US Dollars sent is consistent

with the known ransom amounts above, we assume that the

inflow is likely to be a ransom payment. The output address in

the inflow is likely to be a ransom address; we call the output

address a likely ransom address. As an illustration, if Address

3 in Figure 1(i) receives some increments of 0.5 bitcoins, then

it is a likely ransom address for Potential Victim 1.

However, certain ransomware families do not have fixed

ransom amounts, so we look for Pattern (ii). This pattern

describes properties in the Bitcoin transaction graph that we

observe in real/synthetic victim payments. For instance, any

payments received by seed ransom addresses are potentially

victim payments, especially for ransomware families where a

single ransom address is used for multiple victims; inflows to

seed ransom addresses therefore satisfy Filter 1. On the other

hand, some families generate unique ransom addresses for

each victim. For these families, we analyze how bitcoins move

after known victims have paid. Using Cerber as an example,

we observe that, after a synthetic victim transfers bitcoins

into his ransom address, all the bitcoins are emptied into a

unique aggregation address, which subsequently transfers all

the bitcoins by co-spending with other wallet addresses.

We use Figure 1(ii) to illustrate how we use Pattern (ii) to

identify a potential Cerber ransom address. Suppose Address

10, an address in Cerber’s cluster, is used in two transactions:

once receiving all bitcoins from some Address 7 (not in

Cerber’s cluster yet), before subsequently sending the bitcoins

away by co-spending with other addresses. Suppose, further,

that Address 7 is never co-spent, and that it sends all the

received bitcoins into Address 10. Both of these observations

are consistent with how bitcoins flow for all our synthetic

victim payments. As such, we say that Address 10 is a likely

aggregation address, and Address 7 is a likely ransom address

to which some Potential Victim 2 made a ransom payment.

We include Address 7 in the expanded cluster of Cerber. In

general, our method of filtering by Pattern (ii) is not restricted

to Cerber and can be applied to other ransomware families that

have special properties in their Bitcoin transaction graphs.

We show the results of filtering in Table IV. For each

family’s cluster, we first apply Filter 0 as a baseline, which

does not filter any inflows. Bitcoin amounts sent by any

Filter 0 inflows are denoted as V0, converted into US Dollars.
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Fig. 3: Monthly V1 values for each ransomware family.

We then apply Filter 1, and the resultant amounts of bitcoin

inflows are shown in the V1 column. Since we are summing

up inflow amounts that conform to known payment patterns,

V1 offers an estimate on each ransomware’s revenue from

ransom payments. We stress that V1 is an underestimate; per

our discussion in Section IV-E, an unknown number of wallet

addresses are likely to be missing from our clusters.

To show how much of the original inflows satisfies Filter

1, we calculate the ratio, V1

V0
. A larger ratio suggests a higher

coverage and that we can account for a higher portion of values

in the inflows as potential ransom revenue; for instance, 99.7%

of Cerber’s inflow values potentially consist of victim pay-

ments. In contrast, this ratio is low for certain families, likely

because we are unable to identify all known payment amounts

or Bitcoin graph properties. Spora victims, for example, can

choose to pay for one or multiple ransom “packages”. The

ransom amounts are not fixed for each victim. As expected,

V1 for Spora only includes payments by the real victims we

found in public sources, rather than by potential victims that

we do not know about.

Filter 2: Another signal for an inflow to be a likely ransom

payment is that the inflow sends bitcoins from an exchange’s

cluster to a ransomware cluster. As described in Section II,

a ransom note typically suggests that the victim purchases

bitcoins from exchanges, presumably because a random victim

is unlikely to already possess bitcoins himself. Thus, we

assume that a victim is likely to first acquire bitcoins from an

exchange, before sending the bitcoins to his ransom address.

To this end, we develop Filter 2, which includes an inflow

transaction only if it sends bitcoins from a wallet address(es)

from a known exchange’s cluster. We check if a wallet

address belongs to an exchange, and what exchange, using

Chainalysis’ API.

Chainalysis is a proprietary online service that links clus-

ters of wallet addresses to the likely real-world identities. It

regularly transacts with known Bitcoin-related services, such

as exchanges, to discover and cluster wallet addresses used

by these services [5], while excluding CoinJoin transactions

using a proprietary heuristics-based algorithm.

We show the result as V2 in the table. The ratio of V2

V0

suggests how much of a ransomware family’s inflows is sent

from exchange clusters. For 6 of the 10 families, this ratio is

lower than V1

V0
; for the remaining 4 families, V2

V0
> V1

V0
, but

0% 10% 20% 30% 40% 50% 60%
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CryptoDefense

Locky

WannaCry

.

.

.

BTC-e.com
Bithumb.com
Coin.mx

Coinbase.com
Korbit.co.kr
LocalBitcoins.com

Misc
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Fig. 4: Exchanges that contributed to V1.

V2

V0
< 50%. The relatively low V2 values are likely because

Chainalysis does not have perfect coverage and is unable to

identify many of the exchange clusters.

To show the overlap between Filters 1 and 2, we apply

both filters to the inflows and compute V3. However, the recall

of V3 is likely too low to meaningfully estimate ransomware

revenue.

For the rest of the paper, we apply only Filter 1 due to the

likelihood that Filter 2 has poor recall because of incomplete

coverage of exchange addresses by Chainalysis. Moreover, the

paper will only consider Cerber, CryptXXX, CryptoDefense,

Locky, and WannaCry, as we can account for most of their

inflows as potential ransom payment, i.e. V1

V0
> 50%. We

leave as future work creating additional tracing and filtering

algorithms that can improve our accounting for the other

ransomware families.

V. PAYMENT ANALYSIS

Based on the methods we created in the prior sections,

we are able to estimate each ransomware family’s revenue

in Section V-A and characterize potential victim payments in

Sections V-B through V-D. Finally, we measure the potential

cash-out behaviors in Section V-E.

A. Estimating Revenue

The V1 column in Table IV shows the total revenue poten-

tially generated from ransom payments. To visualize the likely

revenue over time, we plot a stacked bar graph, Figure 3. In

total, we are able to trace $16,322,006 US Dollars in 19,750

likely victim ransom payments for 5 ransomware families over

22 months. This is probably a conservative estimate of total

victim ransom payments due to our incomplete coverage.

B. Payment Mechanisms

Some of the victims likely purchased bitcoins from ex-

changes before paying the ransom. We would like to determine

what these exchanges are and how much of the ransom came

from each exchange. For every inflow that satisfies Filter 1,

we identify the input wallet addresses and construct a cluster

using the co-spending heuristic; we call this cluster the source
cluster. We use Chainalysis’ API to determine the likely real-

world identity of the source cluster; it could be an exchange,

a non-exchange, or “Unknown,” in which case Chainalysis

has no information regarding the cluster’s identity. For each

ransomware family, we identify the top three exchanges that

sent the highest amount of inflows in US Dollars. Across
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Fig. 5: Inflows to Cerber and Locky that satisfy Filter 1.

the five ransomware families we study, the top exchanges

include BTC-e, Bithumb, Coin.mx, Coinbase, Korbit, and

LocalBitcoins. We label all other exchanges or real-world

entities as “Misc”. Figure 4 presents the breakdown of V1

values by exchanges, relative to the total V1 of each family.

We truncate the x-axis at 60% to highlight the distribution of

known exchanges.

Of the top exchanges, both Bithumb and Korbit require

users to purchase bitcoins in Korean Won. Also, both require

users to have Korean phone numbers upon account creation.

These requirements present hurdles to non-Korean users at-

tempting to use these exchanges. Both of these exchanges ac-

count for $2,619,709, or 34.1% of Cerber’s ransom payments,

likely paid for by victims in South Korea. The remaining four

exchanges, in contrast, do not have such geographic restriction;

international users can deposit money to these four exchanges

and purchase bitcoins.

C. Payment Dynamics

Once a victim acquires bitcoins, she typically sends the

bitcoins to a ransom address. For ransomware families that

generate a unique ransom address per victim, such as Cer-

ber and Locky, we can use the likely ransom addresses to

characterize the individual behaviors of potential victims. In

particular, we can estimate the number of paying victims by

counting the number of likely ransom addresses, as shown

in the bottom chart of Figure 5. The Locky cluster sees

the highest number of likely ransom addresses on March 18,

2016, when 198 victims are likely to have paid a ransom.

In the top chart, we plot the median inflow amount per

likely ransom address. Of particular note, Locky received a

median inflow amount of $4,137 on June 18, 2016 across two

likely ransom addresses: one received 4 bitcoins ($3,008) in

a single transaction, and the other received 7 bitcoins also in

a single transaction ($5,265). Unfortunately, we do not have

an explanation for these larger payments, but they make up a

tiny fraction of the payments.

In addition to using the median, we present the distribution

of inflow amounts per likely ransom address in Figure 6,
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Fig. 6: Distribution of likely ransom payments.

denominated in either US Dollars (left) or Bitcoin (right). In

particular, 50% of all Cerber’s ransom payments comes from

likely ransom addresses that receive at least $838 worth of

bitcoins. By contrast, 50% of all Locky’s ransom payments

are from likely ransom addresses that receive at least $1,715

worth of bitcoins. Overall, both charts suggest that a potential

Locky victim probably pays a higher ransom than a potential

Cerber victim. Note that the distribution of Locky’s bitcoin

inflow amounts is step-like, as Locky’s ransom amounts are

known to be increments of 0.5 bitcoins.

D. Payment Timing

For each likely ransom address, the inflow’s timestamp may

reveal when victims likely paid. Most of the likely ransom

addresses are each associated with only one inflow, which

suggests that a potential victim paid the ransom in a single

transaction. In fact, 95.4% of Cerber’s ransom payments and

98.3% of Locky’s ransom payments were paid for in this way.

We extract the timestamp from every single inflow transaction.

The remaining likely ransom addresses are each associated

with two or more inflows, likely because a victim did not fully

pay the ransom as he had not accounted for the transaction

fees; in this case, we extract the timestamp from the earliest

inflow per likely ransom address.

These timestamps show when victims potentially paid the

ransom, in terms of days of the week and hours of the day.

We show the distribution in Figure 7. For instance, 22.2% of

Locky’s ransome payments comes from inflows on Thursdays.

Also, 9.0% of Cerber’s ransom payments are made around

08:00 hours UTC. Of particular note is that a single peak hour

contributed most to Cerber’s ransom payments, while there

are two such peak hours for Locky. One possible explanation

is that Cerber’s paying victims were more concentrated in

a certain geographic region (hence the same timezone) than

Locky’s paying victims, although we cannot validate this

absent ground-truth. Furthermore, the least amounts of inflows

for both Cerber and Locky are observed around 23:00 hours

UTC. It is likely that most of the paying victims were located

in Asia based on the diurnal pattern [34].

E. Characterizing potential Cash Out

In addition to inflows, we examine the outflows from

ransomware clusters. An outflow is a transaction that transfers

bitcoins from a wallet address of a ransomware cluster to

an address of a non-ransomware cluster. Using Figure 1 as

an illustration, Address 4 sends an outflow transaction to an

exchange wallet address, while Address 11 sends an outflow to
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Fig. 7: Distribution of inflow amounts over a week (left) and

over a day (right) of ransom payments.

an unknown cluster. We observe an outflow when, for instance,

a ransomware operator moves bitcoins from her own cluster

to a Bitcoin exchange, presumably to convert her bitcoins

to fiat currency (i.e., US Dollars). Also, an outflow occurs

when an operator moves bitcoins into a mixer (recall from

Section II). After mixing, the operator will presumably transfer

her bitcoins from the mixer to an exchange for conversion

to fiat currency, although we are unable to track bitcoins

that have entered a mixer’s cluster. In general, whether the

operator sends the bitcoins from the ransomware’s cluster to

an exchange, a mixer, or some unknown clusters, we cannot

guarantee if and when the operator cashes out. Nonetheless,

outflows mark the beginning of a process that could potentially

lead to exchange for fiat currency.

To study outflows, we first compare the timings of outflows

against inflows. This comparison allows us to estimate the

duration in which ransomware operators are holding bitcoins

before potentially cashing out. To this end, we trace how

bitcoins flow from likely ransom addresses (i.e. inflows that

satisfy Filter 1) to outflow transactions. The bitcoins could

flow directly from a likely ransom address to an outflow

transaction. Alternatively, bitcoins may go through interme-

diate transactions, flowing from one wallet address of the

ransomware’s cluster to another wallet address of the same

cluster, before the bitcoins reach an outflow transaction. In

either case, we extract the timestamp when the likely ransom

address first receives bitcoins, and also the earliest timestamp

among the outflows (as the bitcoins may be split into multiple

outflows). In the median case, the bitcoins remained in Wan-

naCry’s cluster for 79.8 days, while for Cerber and Locky, the

median holding durations for Cerber and Locky are 5.3 and

1.6 days respectively.

Another insight we can gain from outflows is how ran-

somware operators potentially cash out the ransom bitcoins.

For each outflow transaction of a given ransomware family,

we look at the output wallet address(es), which, by definition,

should be in non-ransomware clusters. Using Chainalysis’

API, we obtain the real-world identities of these clusters, such

as exchanges, mixers, or “Unknown.” For each ransomware

family, we identify top three real-world entities that receive

the most US Dollars from the ransomware’s cluster. Across the

five ransomware families, the top entities overlap and include

BTC-e, CoinOne, and LocalBitcoins (all exchanges), along

with BitMixer and Bitcoin Fog (both mixers). We show their

distribution in Figure 8. Real-world entities that are not a part
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Fig. 8: Real-world entities that received bitcoins from ran-

somware’s outflows.

of the top ones are labelled as “Misc.”

Compared with Figure 4, Figure 8 shows a different set

of known exchanges. In particular, BTC-e (whose opera-

tor was arrestes and which is now defunct) is the biggest

known exchange responsible for the outflows of Locky and

CryptoDefense; $3,223,015 of Locky’s outflows entered BTC-

e’s cluster. If law enforcement agencies were able to obtain

BTC-e’s internal transaction records (which presumably map

Bitcoin wallet addresses to banking information), they could

potentially trace 41.0% of Locky’s outflow values to real-world

entities. A further difference is the use of Bitcoin mixers,

which we did not detect in source clusters for the inflows.

For example, $541,670 (6.8% of Cerber’s total outflows) was

sent from Cerber’s cluster to BitMixer.

VI. IMPACT ON INFECTED VICTIMS

In the previous two sections, we use the blockchain to

characterize the behaviors of victims who likely paid the ran-

som. However, it is difficult to infer the behaviors of victims

who did not pay, as the blockchain only records activities

of payments. We propose and implement a sinkholing-based

method to intercept the communication between an infected

machine and the ransomware’s command-and-control (C2)

server. Using Cerber as a case study, this section discusses how

we use our method to gather statistics on victims infected with

Cerber, along with the insights we draw from this data. We

choose to focus on one ransomware family, Cerber, because of

the manual effort required to reverse engineer how the malware

communicates with the ransomware operators.

We start by reverse engineering Cerber’s telemetry protocol.

Using this knowledge, we then intercept Cerber victims’

telemetry traffic, along with what this traffic reveals about

the impact on victims — for instance, how many victims are

infected and how long it takes for the encryption process to

complete.

A. Reverse Engineering Network Traffic

We start our reverse engineering process by executing two

binaries which our algorithm classified as Cerber on a bare

metal machine with Windows XP installed. We choose not

to use a VM to reduce the likelihood that the ransomware

samples might behave differently from those in the wild. The

host is not connected to the Internet. We capture all packets

that the machine sends out with TCPDump. Inside the host’s
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file system, we place documents that Cerber is known to

encrypt [11]. We also instrument the file system to log when

files are changed, so that we can track Cerber’s process of

encryption.

In each of the three executions of the same binary, it

consistently broadcasts a UDP packets to four different /24

subnets at port 6892. For each of the subnets, the binary sends

three types of packets. Before the binary encrypts any files, it

sends out the first type of UDP packets, which we shall call

Packets A. Each of these packets include a five-byte identifier

in the payload, which is referred to as the Partner ID by an

analysis report [11]. This ID is the constant when re-executing

the same binary, but it changes with a different binary. Within

five seconds of broadcasting Packets A to four subnets, the

binary starts encrypting our files, followed by the broadcast

of the second type of packets, which we call Packets B. The

payload of these packets includes the Partner ID and a 12-byte

identifier that changes across execution of the same binary,

which the report refers to as the Machine ID [11]. Within five

seconds of the termination of encryption, the binary broadcasts

the third type of packets, which we call Packets C, whose

payload includes the Machine ID. Afterwards, the ransom note

is displayed, from which we extract the ransom wallet address.

Finally, we re-image the host’s hard disk to prepare for the next

execution.

B. Analyzing Cerber’s Packets in the Wild

Broadcasting telemetry packets across different subnets ef-

fectively hides the IP address(es) of Cerber’s infrastructure,

but it has also created an opportunity for us to observe these

packets. By buying an IP address within the subnets, we can

capture the telemetry packets and analyze the behaviors of

Cerber binaries in the wild.

First, we need to determine what IP address to purchase.

In the last two weeks of January 2017, we executed 1,256

binaries that we classify as Cerber in sandboxes. These bi-

naries contacted 158 /24 subnets in total. We compute the

number of packets that each subnet was sent. The top two

subnets, based in Norway and Greece, were sent 111,361 and

110,595 packets respectively. Neither responded to our request

to purchase an IP address. The third subnet was sent 46,336

packets. It belongs to a Russian hosting provider, from which

we purchased a server at an IP address in the subnet and ran

TCPDump on the server between February 2 and 20, 2017.

Overall distribution of infection: In total, we received

88,240 UDP packets across 1,512 IP addresses. Of these

packets, 92.0% are Packets A, 4.7% are Packets B, and 3.2%

are Packets C. The relative under-representation of Packets B

and C could be due to the loss of UDP packets, as the prior

broadcast of Packets A could have filled up the queues along

the route, or it could be due to the duplication of Packets

A. Even though the Cerber binary in our own environment

sent out the same number of Packets A, B, and C, the exact

behavior of the ransomware in the wild could be different —

possibly due to a different version.
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Fig. 9: Number of infected IP addresses across countries and

ISP types.

The 1,512 IP addresses offer a lower-bound on the number

of infected hosts. There are two reasons why this number

is a lower-bound. First, the packets we captured came from

Cerber binaries that sent telemetry data to our choice of the

subnet. We cannot guarantee that all binaries in the wild would

broadcast to the subnet. Thus, an unknown number of infected

hosts are likely to be missing from our data. Second, multiple

infected hosts could be behind a NAT or may be assigned

the same IP address at different times.7 As such, we could be

underestimating the scale of infection.

We show the geographic distribution of infected IP ad-

dresses, along with the type of ISP for each IP address, in

Figure 9. We determine the country and ISP type of each IP

address using Maxmind [35]. As shown in the chart, South

Korea has the most number of infected IP addresses that sent

us the telemetry packets; 22.6% of all infected IP addresses are

from the country. IP addresses from residential ISPs contribute

to 74.5% of the infected IP addresses. ISPs that are labelled

as “hosting,” which are hosting service providers, account for

8.5% of the IP addresses.

Distribution of infected hosts: To distinguish between

different infected hosts with the same IP addresses, we use

the Machine IDs extracted from Packets B and C. Only 583

IP addresses (38.6%) reported Machine IDs.8 Among these IP

addresses, 412 of them (70.7%) were associated with exactly

one Machine ID, and 132 of them (22.6%) are each associated

with 2 to 10 Machine IDs. For the 412 IP addresses, residential

IP addresses account for 80.3% while hosting services account

for 9.0%. For the 132 IP addresses, 59.1% are residential and

23.5% are hosting services. At the tail end, one IP address

reported 1,162 different Machine IDs. This IP address belongs

to a major hosting service in the US (labelled as “hosting”

in Figure 9). On average, we received Packet B from this

hosting IP address with a new Machine ID every 22.6 minutes.

We are not sure if telemetry packets from this IP address are

from real victims or synthetic ones. In general, we do not

remove IP addresses from our analysis even if they appear

to be coming from synthetic victims. Absent ground truth,

we cannot distinguish IP addresses from sandboxes or from,

for instance, a commercial VPN provider that uses hosting

7It is unlikely that the same host is infected multiple times; we tried
executing the same Cerber binary the second time in our VM (Section VI-A),
but the repeated execution did not result in more telemetry packets.

8There are 25 Machine IDs, such that each of them was reported from two
IP addresses. Together, there are 18 such IP addresses. We suspect the infected
hosts were either mobile clients, or they experienced DHCP reassignment.
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Fig. 10: (a) A histogram that shows that number of infected

IP addresses per Cerber partners. (b) The time from observing

Packet A at a given IP address to observing Packet C at the

same IP address.

services and whose subscribers happen to be widely infected

with Cerber. This uncertainty highlights some of the challenges

of distinguishing real infections from sandbox traffic.

Distribution of partners: Based on our own execution of

Cerber’s two binaries in Section VI-A, it appears that the

Partner ID might be persistent across binaries. As Cerber is

known to operate in the affiliate model [11], it is likely that

a partner is an affiliate that distributes a particular binary in

exchange of a percentage of ransom revenue; the Partner ID

thus offers a possible insight on the number of infected IP

addresses for each affiliate.

We extract the Partner ID from Packets A or B for each

infected IP address and present the number of unique IP

addresses for each partner in Figure 10a. In particular, Partner

0 infected 253 distinct IP addresses while Partner 1 infected

162. We observe a total of 118 partners, but Partners 0 through

7 account for 51.5% of all infected IP addresses. Each of these

8 partners are associated with between 13 and 33 infected

countries across the world. Identifying major affiliates could

be useful for prioritizing which affiliates to investigate and

target for technical and law enforcement based interventions.

Duration of encryption: Recall, from Section VI-A, that

the Cerber binary sends Packets A before encrypting user

files, and when the encryption is complete, the binary sends

Packets C. The duration between Packets A and C allows us to

measure how long it takes for encryption of files to complete;

the shorter the duration, the smaller the window is between

infection and when the malware needs to be detected before

all files are encrypted.

In order to compute this duration, we first identify IP

addresses that are associated with exactly one Machine ID.

If an IP address is associated with multiple Machine IDs,

then there could be multiple Packets A and multiple Packets

C; it would be difficult to determine which Packets A-C

pair belongs in the same infection. Using IP addresses each

with a single Machine ID reduces this error, although what

appears to be a pair of Packets A and C could come from

different infections due to packet losses. Absent ground-truth,

we assume that Packets A and C, in this case, likely mark the

beginning and end of encryption for a single infection.

In total, 412 IP addresses are associated with a single

Machine ID, but we have received both Packets A and C from

only 182 of the IP addresses. For these 182 IP addresses, we

plot the distribution of the encryption duration in Figure 10b.

The median duration is 7.8 minutes. In other words, if a

victim finds that one of his file is encrypted, she has less

than 7.8 minutes to back up other documents before they are

all encrypted. Alternatively, if the victim uses software that

automatically detects ransomware encryption — for instance,

using techniques proposed by Kharaz et al [36] — then the

detection algorithm has less than 7.8 minutes to react.

VII. DISCUSSION

It is widely known that ransomware causes harm to many

people either through monetary losses or destruction of files.

This threat is challenging to measure, but an improved un-

derstanding of the ransomware ecosystem is a key first step

to identifying new and potentially more effective intervention

strategies. Based on our measurements, we propose a multi-

pronged strategy to improve our ability to measure and reduce

the harm caused by ransomware. In this section, we outline

our ideas and discuss looming hurdles, including ethical issues

that are unique to ransomware. A full investigation of our

suggestions will require significant future work.

Estimating conversion: One open question that remains

unanswered in this paper is conversion. Given an infection,

what is the probability that a victim might pay the ransom? The

telemetry data that we collected in Section VI could have been

used to estimate the conversion rate of Cerber, but it involves

ethical problems that caused us to decide against performing

this analysis.

Specifically, Cerber’s telemetry gives us indirect access

to individual victims’ payment record (or the lack thereof).

After the ransomware finishes the encryption, the ransom note

automatically appears on the victim’s desktop and asks the

victim to visit a set of ransom payment websites. The URLs

are in the form of http://id1.hostname/id2, where id1
is the hidden service ID shared across multiple infections (as

victims can make payments via Tor at http://id1/id2 as

well), and id2 concatenates the Partner ID and Machine ID,

along with an MD5-based checksum (which we discovered in

our own reverse engineering of the binary). To pay, the victim

visits one of the URLs and sees a webpage customized for the

victim. The webpage contains id2, a Bitcoin ransom address

unique to the victim, and the ransom amount. A five day

countdown is started when a victim visits the page for the first

time; afterwards, the ransom doubles (based on our experience

with synthetic victims). Our telemetry data’s Packets B contain

both the Partner IDs and Machine IDs, enabling us to compute

id2 and, in theorey, visit the victim’s payment URL to check

if and when the victim paid.

However, we did not conduct this analysis, since visiting the

URL might cause harm to victims. If we visit the URL before

the victim visits, the countdown would start immediately,
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which might cause the victim to have to pay double the ransom

amount. One strategy is to wait for several months after our

data collection in February 2017 before we visit the victims’

URLs. Regardless of how long we wait, we cannot guarantee

that all victims would have either visited the payment URLs or

decided to re-install their systems during this period. As such,

the risks of the analysis outweigh the benefit of estimating the

conversion rate.

Coverage limitations: Our measurement techniques provided

improved coverage over prior techniques, but it is still not

complete. One of the main limitations is that our transaction

filtering methods were not effective for some ransomware

families, such as those that had a dynamic pricing structure or

for which we did not know the ransom amount (e.g., Spora).

Another limitation was that, for ransomware campaigns where

we did not have a binary or that were no longer operating, we

could not generate synthetic victims and make micropayments.

We plan on exploring improved filtering techniques to cover

more families. We are also exploring OCR and NLP methods

for finding more reported payments from victims to improve

coverage of ransomware measurement.

We will also continue to investigate methods of tracing

additional cash-outs that traverse mixers or use other methods

of obfuscating flows of bitcoins. This is key to increasing the

risk of liquidating ransomware profits.

Intervention: Our measurement study indentified potential

intervention beyond improved ransomware detection and back-

ing up of files, such as increasing the difficulty and risk when

ransomware operators cash out their bitcoins. Our methods

of tracing ransomware payment assist in this objective; in-

deed BTC-e’s operator was arrested and the exchange was

closed [37].

Another potential intervention point is to disrupt a victim’s

ability to pay the ransom. During our analysis of Cerber, we

found that the hostname part of Cerber’s payment URL is

generated using a domain-generation algorithm (DGA). Based

on our analysis, the hostname is the prefix of the most recent

wallet address that receives and sends bitcoins from and to

w, another wallet address likely controlled by Cerber. This

DGA creates an opportunity for us to disrupt the payment

infrastructure. We could prevent victims from being able to

pay the ransom by using our own wallet addresses to send

bitcoins to w, which would have created new hostnames

to divert victim visits from Cerber’s payment infrastructure.

However, we chose not to conduct this intervention, since it

would have also prevented victims from recovering their files.

This introduces a unique ethical issue. We must consider

the impact on victims before taking down ransomware in-

frastructure. Whereas disrupting conventional malware reduces

the damage on victims, the effect could be the opposite for

ransomware. Any attempts to prevent ransom payment could

be risky. Herein lies a common ransomware dilemma: If every

victim did not pay or was prevented from paying, the scale

of the problem would likely decrease; however, this would

mean that some individuals would incur additional harm by

not being able to recover their files.

VIII. RELATED WORK

The initial Bitcoin tracing method that links together flows

with multiple input transactions was proposed in prior stud-

ies [38], [39], [5] and in the original paper proposing Bit-

coin [24]. However, this method is now prone to incorrectly

linking flows that use anonymization techniques, such as

CoinJoin [23], [40] and CoinSwap [41]. Moser and Bohme

[42] developed methods of detecting likely anonymized trans-

actions. We use Chainalysis’s platform, which uses all these

methods and additional proprietary techniques to detect and

remove anonymized transactions, to trace flows of bitcoins.

BitIodine is a Bitcoin forensic analysis tool which used

reported victim ransom payments to perform a payment anal-

ysis for a single ransomware family, CryptoLocker [7]. A

followup study by Liao Et. Al. [6] performed an expanded

analysis of CryptoLocker by discovering additional reported

victim ransom payments and further analyzing whether an

inflow is a likely victim payment (similar to our Filter 1).

Finally, researchers from FireEye performed an analysis of

the actual conversion rate of infections to paying victims for

TeslaCrypt [43]. The data source for the FireEye study was

not explicitly mentioned, but was likely the backend database

for TeslaCrypt that was either leaked or seized.

Intervention strategies include technical solutions, such as

detecting changes on the file system as a result of ransomware

infection [36] and analyzing network traffic [44]; or economic

solutions, such as disrupting the payment processors [45].

We use BinDiff [31] to identify similar malware binaries.

Other related methods include SigMal [46].

IX. CONCLUSION

Our study of the ransomware ecosystem illustrates that the

phenomenon of cybercriminals increasingly using Bitcoin for

payments produces an opportunity to gain key insights into the

financial inner workings of these operations. We have created

a set of measurement methodologies and used them to conduct

a detailed two year end-to-end examination of the ransomware

ecosystem. Our methods allowed us to track ransom payments

from the acquisition of bitcoins by victims, to the cash-out

of bitcoins by the ransomware operators. We were able to

conservatively estimate that the overall ecosystem revenue

for the past two years was over 16 million USD extorted

from on the order of 20,000 victims. Our ensuing analysis of

ransomware operators’ cash-out strategies indicated that BTC-

e was a key piece of support infrastructure that was used to

exchange millions of USD worth of ill-gotten bitcoins into fiat

currency. Our study also illuminates many open technical and

ethical issues to measuring and intervening on the ransomware

ecosystem.
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