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Abstract—The rapid adoption of heterogeneous computing
has driven the integration of Field Programmable Gate Arrays
(FPGAs) into cloud datacenters and flexible System-on-Chips
(SoCs). This paper shows that the integrated FPGA introduces
a new security vulnerability by enabling software-based power
side-channel attacks without physical proximity to a target
system. We first demonstrate that an on-chip power monitor
can be built on a modern FPGA using ring oscillators (ROs),
and characterize its ability to observe the power consumption
of other modules on the FPGA or the SoC. Then, we show
that the RO-based FPGA power monitor can be used for a
successful power analysis attack on an RSA cryptomodule on
the same FPGA. Additionally, we show that the FPGA-based
power monitor can observe the power consumption of a CPU on
the same SoC, and demonstrate that the FPGA-to-CPU power
side-channel attack can break timing-channel protection for an
RSA program running on a CPU. This work introduces and
demonstrates remote power side-channel attacks using an FPGA,
showing that the common assumption that power side-channel
attacks require specialized equipment and physical access to the
victim hardware is not true for systems with an integrated FPGA.

I. INTRODUCTION

As we increasingly rely on hardware acceleration to im-

prove the performance and energy efficiency of computing

systems, Field Programmable Gate Arrays (FPGAs) have

recently been widely adopted in large-scale datacenters. For

example, Amazon offers FPGA instances in its EC2 service,

allowing customers to rent FPGAs in its cloud computing

environment [1]. Microsoft heavily utilizes FPGAs in its

datacenters for various tasks ranging from web searches to

network crypto and machine learning [2]. Similarly, Baidu

also accelerates deep neural networks in its datacenters with

FPGAs [3]. Furthermore, hardware vendors such as Intel and

Xilinx have introduced heterogeneous System-on-Chip (SoC)

designs, which integrate both processing cores and FPGA

fabric in one silicon die. These FPGA-based SoCs will likely

to be utilized in mobile and embedded applications.

In this paper, we show that these integrated FPGAs in-

troduce a new security vulnerability that can be exploited

to perform power side-channel attacks in software, without

requiring physical access or proximity to the target sys-

tem. Power side-channel attacks infer confidential information

based on the data-dependent variations in a target system’s

power consumption [4]. In order to obtain power consumption

traces, traditional power analysis attacks require physical ac-

cess to the system; attackers insert a low-impedance resistor

in series with the power supply and use an oscilloscope to

measure the power consumption as the voltage drop across the

resistor. In this paper, we demonstrate that an on-chip power

monitor can be constructed using the programmable logic of

an FPGA, allowing us to measure dynamic power consumption

with sufficient resolution to enable power analysis attacks. In

essence, the integrated FPGA opens the door for remote power

analysis attacks.

This FPGA-based power side channel may be exploited

in a variety of system architectures that allows an untrusted

user to program a part of an FPGA. In cloud computing

infrastructures, many studies from both academia and industry

have proposed mechanisms to virtualize and share FPGAs

among multiple users so that multiple accelerators co-reside

on one physical FPGA [5]–[10]. Even in cloud platforms

where each FPGA is allocated to a single user, untrusted

user logic is co-resident with privileged control logic called

the ‘shell’ [11]. Similarly, in personal computing platforms,

an FPGA fabric can be shared among multiple programs,

including a potentially malicious application. In such a shared

FPGA platform, we show that an FPGA-to-FPGA attack,

where an attack circuit in one part of the FPGA steals a secret

used by another circuit on the same FPGA, is viable.

As a concrete example, we demonstrate a simple power

analysis (SPA) attack on an RSA accelerator on an FPGA. In

this example, we implement an RSA decryption engine and a

power monitor on one FPGA, but isolate both logically and

physically; there is no connection between the two modules

and they are implemented at physically different locations

on the FPGA. This is analogous to either two users or one

user and privileged control logic co-resident on one FPGA.

Our experiments show that the FPGA-based SPA can reliably

recover RSA private keys only with a small number of power

traces and without manual efforts; the power analysis can be

fully automated.

In addition to the attacks within an FPGA, we also study

attacks on an FPGA-CPU SoC. Surprisingly, we found that

an FPGA power monitor can not only detect the power

consumption of an FPGA but also the power consumption

of other components on an SoC, in particular a CPU. This

implies that various FPGA-to-CPU attacks are possible where

the malicious logic on an FPGA can monitor the power

consumption of software programs running on a CPU core.

Our experiments show that the FPGA power monitor can

indeed detect software operations on an ARM processing core.

The CPU power trace can also be used to enable timing
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attacks on software programs because the power consumption

reveals when internal program operations start and end even

when outputs are delayed. To illustrate the timing attack based

on the power monitor, we show how an RSA private key

can be recovered even when a secure modular exponentiation

function, which inserts delays to yield a constant execution

time, is used.

The following summarizes the main contributions of this

paper.

• This paper points out the power side channel vulnerability

that an integrated FPGA introduces. Unlike traditional

power analysis attacks, this new vulnerability is ex-

ploitable purely in software, opening the door for remote

attacks over the network.

• This paper provides a detailed study of the capabilities

of an FPGA-based power monitor circuit using ring

oscillators (ROs).

• This paper experimentally demonstrates multiple FPGA-

based power side-channel attacks, both FPGA-to-FPGA

and FPGA-to-CPU.

• This paper demonstrates that a power analysis attack can

be performed using another power monitor circuit based

delay lines, and discusses tradeoffs between ROs and

delay lines in the context of power side-channel attacks.

• This paper discusses potential countermeasures to prevent

FPGA-based power analysis attacks.

The rest of the paper is organized as follows. Section II

presents our threat model and the overview of the proposed

attack. Section III shows how an on-chip power monitor

can be built on an FPGA and experimentally evaluates the

RO-based power monitor. Section IV demonstrates a simple

power analysis (SPA) attack on an RSA accelerator on an

FPGA. Section V demonstrates attacks on software programs

running on a CPU. Section VI discusses other types of FPGA-

based power monitors, limitations of the proposed FPGA-

based power side channel, and potential countermeasures.

Section VII discusses related work, and Section VIII concludes

the paper.

II. OVERVIEW

In this section, we describe the threat model that we assume

for systems with an integrated FPGA and discuss how the

FPGA can be used to enable power side-channel attacks even

without physical access. Then, we further discuss potential

attacks that may be performed using the FPGA power side

channel.

A. Threat Model

There are two approaches to integrate FPGAs into modern

computing systems. In today’s datacenters, FPGAs and CPUs

are usually integrated as discrete components and are thus

implemented as separate chips on a board. The processor and

the FPGA communicate through an off-chip bus and may share

main memory (DRAM). Alternatively, FPGA fabric may be

integrated into a single SoC that includes other components

such as general-purpose cores and GPUs, as in Xilinx’s Zynq

Series or Intel’s SoC-FPGAs. These SoC architectures are

likely to be deployed for mobile and embedded systems thanks

to their smaller footprint and lower power consumption.

In this study, we consider the threats from an adversary

who can program a part of an integrated FPGA to implement

a circuit of his or her choice. The goal of the adversary is to

steal secret information from other parts of the FPGA or the

host system. We do not consider attacks on the availability

or the integrity of a system. We also assume that hardware

designs on an FPGA and software programs on the host system

themselves are not secret and may already be known to an

attacker. In that sense, we do not consider reverse-engineering

attacks on the hardware IP (Intellectual Property) on an FPGA.

We assume that the adversary does not have physical access

to the system and therefore cannot directly measure physical

properties such as power consumption.

In a typical FPGA design flow, a user specifies the logic that

he or she wants to implement on an FPGA using a hardware

description language (HDL) such as Verilog or VHDL. Then,

an FPGA synthesis tool such as Xilinx Vivado or Intel

Quartus translates this register-transfer level (RTL) code into

a bitstream that describes a concrete hardware implementation

on an FPGA. The FPGA tool allows users to specify design

constraints to control low-level implementation details such

as I/O pins, frequency, placement, routing, and others. We

assume that an adversary provides HDL code that is used to

generate a bitstream and control the programmable logic for a

part of an FPGA. We study both cases where the adversary is

allowed to use design constraints to specify low-level details

for placement and routing and where the adversary cannot use

the placement and routing constraints.

There are two types of attacks that we consider in our threat

model. In the first case, we consider an FPGA that is shared

among multiple users or processes for efficiency. For example,

in proposed datacenter architectures, a malicious user can rent

a virtual FPGA instance and configure programmable logic on

one part of an FPGA while another user rents another virtual

FPGA mapped to another part of the same physical FPGA [5]–

[10]. In today’s datacenter, the user logic and the operator’s

privileged ‘shell’ logic are both implemented on the FPGA

even when only one user is assigned per FPGA [11]. In a

shared FPGA, the malicious user may implement an attack cir-

cuit on one part of the FPGA with a goal to steal a secret from

a victim’s circuit on the same FPGA. We call this an FPGA-to-

FPGA attack and show the scenario in Figure 1a. We assume

that the shared FPGA has common security mechanisms to

ensure isolation between different users; the attack and victim

circuits are both logically partitioned (i.e. there is no illicit

connection between the two modules) [12] and physically

partitioned (i.e. with a ‘fence’ of unused configurable logic

blocks) [13].

In the second case, we consider FPGA-to-CPU attacks

where an attack circuit on the FPGA is used to extract a

secret on a CPU (or a GPU) on the same SoC. Here, we

assume an SoC architecture that contains both FPGA fabric

and traditional processing elements such as CPUs and GPUs
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Fig. 1. Threat models.

as shown in Figure 1b. The attack may also work for a discrete

FPGA that shares the same power supply with a CPU on

the system. Yet, we do not study the discrete FPGA case in

this paper. We assume that the system has proper protection

mechanisms to prevent direct accesses from an FPGA fabric

to the rest of a system that is used by another user or process.

B. FPGA-Based Power Side-Channel Attacks

Traditional power side-channel attacks require physical ac-

cess to the target system in order to measure the power con-

sumption. Under our threat model, such power side-channel

attacks through direct power measurements are not allowed.

Similarly, given access control and partitioning mechanisms,

an attacker cannot directly access confidential data that belong

to another user or process.

In this work, we propose to use an FPGA as a power monitor

to enable power side-channel attacks in software without

physical proximity to the target system. If programmable logic

on an FPGA can be used to implement a power monitor, it

allows an adversary who can program the FPGA to measure

the power consumption of other logic on an FPGA or programs

running on a CPU/GPU of the same SoC. Because an FPGA is

programmed by loading a bitstream in software, an adversary

who has permission to program at least a part of an FPGA

can perform power side-channel attacks remotely.

The following section discusses how a power monitor can be

realized on an FPGA using its programmability. Then, we will

demonstrate both FPGA-to-FPGA and FPGA-to-CPU attacks

in the following sections.

C. Attack Scenarios and Use Cases

The capability to monitor the power consumption using an

FPGA can be used in various attack scenarios or in potential

countermeasures. Here, we briefly discuss different attacks and

security mechanisms that can utilize the FPGA-based power

side channels.

Side-channel attack. The power consumption of a crypto-

graphic operation often depends on a secret key value. The

FPGA-based power monitor, with sufficient time and power

resolutions, can be used for traditional power side-channel

attacks to learn secrets used by other parts of the FPGA and

programs on a processing core on an SoC.

Covert-channel attack. It is relatively easy to create a

circuit on an FPGA or a program on a CPU that is designed

to intentionally control the level of switching activities, which

determine the power consumption. Having capabilities to both

control and monitor power consumption, an adversary can

create covert channels either between different modules on

an FPGA or from a CPU to an FPGA. The covert channel

can be used to bypass traditional access control mechanisms

to intentionally leak secrets.

Timing attack using the power side channel. The ex-

ecution time of a sensitive computation often depends on

the value of a secret due to data-dependent control flows

or microarchitectural behaviors such as cache hits or misses.

Under the threat model where an adversary can only observe

the timing of input/output operations, a natural countermeasure

against timing attacks is to delay outputs to hide their timing

variations. However, simply delaying an output consumes less

power compared to performing actual computations, and the

internal timing of the computation may still be reflected in its

power consumption trace. Therefore, the FPGA-based power

monitor may be used as a way to measure hidden timing

information and perform a timing side-channel attack.

Program identification. Different operations in a program

lead to different levels of power consumption. For example, a

floating-point operation may consume more power compared

to an integer operation. Cycles when a processor is stalled due

to a cache miss will consume less power compared to cycles

with active computations. As a result, the power consumption

trace may be used as a way to identify which program or

hardware accelerator is running on a system and lead to a

privacy concern. As an example, a recent study by Delimitrou

and Kozyrakis [14] shows that a program in the cloud com-

puting environment can be identified using microarchitecture

behaviors. A similar attack may be performed using the power

consumption trace.

Attack detection. The FPGA-based power monitor may

also be used to defend against attacks. For example, a recent

study [15] showed that a malicious user could perform a

denial-of-service attack on an FPGA by programming a mali-

cious power virus to trigger transient voltage emergencies not

detectable by traditional thermal sensors or slower integrated
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Fig. 2. A Ring Oscillator (RO) based on-chip power monitor design.

power monitors. An on-chip power monitor capable of sensing

nanosecond-scale transients can be used to detect and prevent

such a power-based DoS attack. Kim et al. [16] showed that

embedded power monitors can be used to detect malware in

mobile systems. In a similar manner, the FPGA-based power

monitor may be used to detect malicious or compromised

software based on the power signature or anomaly in power

consumption.

III. FPGA-BASED POWER MONITOR

In this section, we discuss how an on-chip power consump-

tion monitor can be built as software-programmed logic on a

modern FPGA. We first discuss the operating principles behind

on-chip power monitors, and then describe our implementation

of one such monitor and characterizes its performance.

A. Operating Principle

The power demanded by a CMOS circuit can be modeled

as the sum of the static and dynamic components of power

consumption. As power side-channel attacks often leverage

data-dependent changes in the power consumption, we only

focus on monitoring the dynamic power consumption, Pdyn.

For one CMOS cell, the average dynamic power consumption

can be modeled as the sum of charging and short-circuit power

consumption, Pdyn = Pchrg+Psc, where Pchrg = α∗f ∗CL∗
V 2
DD and Psc = α ∗ f ∗ VDD ∗ Ipeak ∗ tsc. α is the activity

factor, f is the clock frequency, VDD is the supply voltage, CL

is the load capacitance, Ipeak is the current peak caused by the

switching event, and tsc is the short-circuit time. The equations

clearly show that the dynamic power increases proportionally

with the activity of the circuit, α.

A power distribution network (PDN) converts and dis-

tributes power from the power supply to individual circuit

components. The goal of the PDN is to provide a clean voltage

supply resistant to varying current demands [17]. To maintain

a constant voltage, a PDN uses a voltage regulator to adjust

the amount of supplied current and uses decoupling capacitors

as a buffer to handle current variations. However, the voltage

regulator and the decoupling capacitors cannot completely

hide current variations, and high switching activities often lead

to transient voltage drops in the PDN of an FPGA [18]. In

other words, the voltage drop on the PDN reflects the power

consumption.

The PDN can be modeled as an equivalent RLC matrix.

Thus, the transient voltage drop seen by a circuit can be

approximated by the following equation.

Vdrop = IR+ L
di

dt
(1)

The voltage drop depends on both steady-state current

consumption (IR drop) as well as short transients ( didt drop)

caused by switching logic on the FPGA. In typical CMOS

circuits, combinational logic delays can be modeled to be

inversely proportional to the voltage supplied to each gate [18].

Therefore, a change in the combinational logic delay reflects

the voltage drop, which again reflects the power consumption

and the switching activity of the circuits.

This correlation between combinational logic delay and the

power consumption can be leveraged to build an on-chip power

monitor on an FPGA. In essence, we can program an FPGA

with a circuit that allows us to measure a combinational path

delay, and use the delay to estimate the power consumption of

other modules that share the PDN. In this work, we propose

to use ring oscillators (ROs) to build a voltmeter on an FPGA.

Previous studies have used ROs to detect voltage changes

due to physical attacks [19] and also showed their oscillation

frequency changes when there is a large amount of switching

activity on an FPGA [20]–[22]. Here, we show that the ROs

can also be used as a general-purpose voltmeter that can

distinguish different levels of switching activities.

As an alternative, a previous work has also proposed another

voltmeter design on an FPGA based on a delay line coupled

with a time-to-digital converter (TDC) [23]. Another paper

then demonstrated utilizing the delay line-based monitor to

characterize transient voltage fluctuations caused by switching

logic in FPGAs [24]. The delay-line based power monitor can

also be used for the power side-channel attacks on an FPGA,

as we later discuss in Section VI. In this study, we primarily

use the RO-based power monitor as it is more portable and

easier to implement across a wide range of FPGAs without

careful customizations.

B. RO-Based Power Monitor Design

A ring oscillator consists of an odd number of inverters

connected in series along with an AND gate such that the

output of the last inverter is combinationally fed back into

the input of the AND gate. The other input of the AND gate

is connected to an enable signal. The oscillation frequency
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of the RO is thus inversely proportional to the time that a

signal takes to propagate twice around the circuit. In addition

to voltage variations, the propagation delay is dependent on

process and temperature variations [20]. However, by reducing

the number of stages in the RO, one can both reduce the

temperature variation dependency [25], as well as increase the

resolution of the ring oscillator [21]. The oscillation frequency

can then be approximated by Equation 2, where k and f0 are

constants, and V (x, y, t) is the transient supply voltage at the

RO’s location.

fRO ≈ k ∗ V (x, y, t) + f0 (2)

The above equation suggests that the RO can be used as a

voltmeter if we can measure its frequency. To measure the

frequency of the RO, we construct the RO counter circuit

shown in 2a. Only one inverter stage is used in order to

reduce temperature dependency and improve resolution. The

output of the RO circuit is used to clock a counter that

increments every oscillation period. As the ring oscillator is

oscillating much faster than the system clock, the counter is

constructed as a chain of T-flip-flops (TFF) to eliminate slow

carry chains. Alongside the TFF counter, a second counter

is clocked by a reference clock running with the frequency

fRef . In our implementation, the FPGA system clock is used

as the reference clock. Both the RO circuit and the reference

counter are enabled at the same time. The RO is allowed

to run until the reference counter reaches a pre-determined

sampling cycle count CRef . Then, the RO is disabled and

the TFF counter CRO is read. The RO frequency can then

be calculated using Equation 3, where ε ∈ [0,
fRef

CRef
] is the

quantization error introduced by the phase difference between

the two clock pulses.

fRO = CRO ∗ fRef

CRef
+ ε (3)

There exists an inherent trade-off between time and power

resolution of the RO-based power monitor; distinguishing a

small difference in power consumption requires running ROs

long enough for that difference to show up as a sufficient

change in the oscillation count, but at the cost of reduced

time resolution. Furthermore, the sensitivity of the monitor

may also depend on the spatial proximity of the monitor to

switching logic [24].

C. RO-Based Power Monitor Characterization

Previous studies have characterized the performance of ROs

on FPGA fabric for non-security purposes [21], [25]–[27] and

demonstrated that the RO frequency can detect activities in

circuits around the oscillators [20], [21]. Studies have also

proposed using ROs as power monitors to detect physical tam-

pering and the presence of embedded hardware Trojans [19],

[22]. However, no work has explicitly studied the performance

of ROs in the context of power analysis attacks. For example,

it is not studied if ROs can be used as a way to detect a varying

level of circuit activities due to data dependencies, and if so

Fig. 3. RO placements on the FPGA fabric indicated by diamond marks.

enable
D Q

Qclk

Fig. 4. One instance of the power virus. Nets in the circuit switch with an
activity factor of either 1 or 0 depending on enable.

what the power and time resolutions can be. For such attacks, it

is also important to understand how the RO-based monitor’s

accuracy changes as a function of spatial proximity to the

target logic as today’s FPGA partitioning scheme will likely

put attack and victim circuits in different parts of an FPGA.

Here, we provide detailed experimental results to understand

the capabilities and limitations of the RO-based power monitor

on a modern FPGA.

Our experimental setup runs on a 28nm Zynq-7020 SoC

on a Zedboard, which integrates a hardened dual-core ARM

Cortex-A9 with an Artix-7 equivalent FPGA with 53,200

LUTs [28]. The power monitor circuit is instantiated on the

FPGA fabric. In order to obtain a higher power resolution with

a given sampling period, we create network of 20 RO circuits

and take the sum of all RO counters as the final power monitor

value, as shown in Figure 2b. In this experiment, the 20 ROs

are distributed throughout the FPGA fabric using placement

constraints shown in Figure 3 in order to average dependence

on spatial proximity to switching logic. We later show that

the placement and routing constraints are not necessary for

building an RO-based power monitor that is accurate enough

for successful power analysis attacks on RSA. The reference

clock runs at 100 MHz. Finally, a control program running on

the CPU receives the summed power monitor counter value via

pipe-like device files provided through Xillybus, which can be

accessed via FIFOs on the FPGA [29].

1) Experiment 1: Power Estimate: Our first experiment was

to characterize the frequency change of the ring oscillators to

a known change in switching activity. To do so, we created a

‘power virus’ that consists of one flip flop whose output is fed
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through an inverter followed by an AND gate and back into its

own input port, ensuring that the inverter and the AND gate

are instantiated as two separate LUTs as shown in Figure 4.

In this manner, the activity factor of each net in the circuit

can either be set to 1 or 0 via the enable signal, resulting in

the maximal and minimal dynamic power consumption for the

given circuit.

We then instantiated 16,000 instances of the power virus

on the FPGA fabric so as to cover the majority of the FPGA,

minimizing the response’s dependency on spatial proximity.

We then grouped 500 evenly-distributed instances of the power

virus together and tested 33 different power consumption

levels by turning on a varying number of the 32 power virus

groups. For each power level, we record 1,000,000 RO power

monitor samples using the sampling period of 1,001 cycles at

100 MHz. We then take the average of the 1,000,000 samples

as our steady-state RO frequency, which minimizes influence

due to di
dt transients.

The results from the experiment are shown in Figure 5.

The baseline average frequency across all 20 ROs, with no

additional switching activity, is 914.7MHz. A linear corre-

lation which very closely models the correlation between

switching activity and oscillation frequency can be constructed

as f(x) = −1800x + 9.147 ∗ 108 with an R-squared value

of 0.9966, where x is the number of power virus instances

actively switching. Using a post-implementation simulation of

the power virus circuit via Xilinx Power Estimator and setting

the activity factor of all nets to 1 provides a dynamic power

consumption of 0.721W for all 16,000 power virus instances.

Assuming that each power virus instance consumes the same

amount of power, we can compute a linear relationship be-

tween the power consumption and the RO frequency.

2) Experiment 2: Spatial Dependence: One common se-

curity mechanism to isolate sensitive logic is to use unused

CLBs as a ‘fence’ to isolate the sensitive logic from untrusted

logic [12], [13]. However, the fence of unused logic does not

prevent power side-channel attacks as the power distribution

network is still shared across an FPGA. In this experiment,

we characterize the frequency change of individual ROs with

respect to their spatial proximity to switching logic that

consumes power.

As in Experiment 1, we instantiate a network of 20 ROs
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Fig. 6. The RO frequency drop with varying RO locations. Row indices
correspond to the rows in Figure 3, increasing from bottom to top (i.e. higher
row indices are closer to power viruses). In each row, bars correspond to RO
instances from left to right in both the plot and the FPGA.

placed throughout the FPGA fabric. In this case, we in-

stantiate 6,400 instances of the power virus, and constrain

the placement of the power virus to the upper third region

(corresponding to clock regions X0Y2 and X1Y2 in Figure 3)

of the FPGA via a pblock constraint.

For each of the 20 ROs, we read the counter value for

1,000,000 samples using the sampling period of 1,001 cycles

at 100MHz with all 6,400 instances of the power viruses

off. We then measured the average RO counter value again

with all 6,400 power viruses on. To remove process variations

among RO instances, we calculated the percent change in the

oscillation frequency of each RO with and without the power

viruses running. The results are shown in Figure 6.

We observe that for ROs that were placed directly inside

the power virus’s pblock region (i.e. row 5), the oscillation

frequency changed by approximately 1.3 to 1.5 percent. ROs

placed at the other end of the FPGA fabric (i.e. row 1) showed

a frequency change between 0.9 and 1.1 percent, which is

smaller compared to closer ring oscillators but still significant.

Thus, while the spatial proximity to switching logic does

increase the RO sensitivity, physically separating logic by

unused CLBs does not eliminate information leakage through

the power side channel.

3) Experiment 3: Time Resolution: We now study the time

resolution, in terms of sampling frequency, achievable by RO-

based power monitors. It is clear that the maximum sampling

frequency must be smaller than the RO oscillation frequency.

However, the maximum sampling frequency for the RO-

based power monitor in practice depends on multiple factors

including the necessary precision for power measurements,

quantization errors, environmental noise, and others. There is

an inherent trade-off between the sampling frequency and the

accuracy of the RO-based power monitor; a lower sampling

frequency needs to be used for a higher accuracy.

The first source of inaccuracy comes from the inherent

quantization error as shown in Equation 3. The phase differ-

ence between the reference and RO clocks may affect the RO

count by 1. Also, the RO delay change over a sampling period

must be larger than one RO oscillation period in order to be

detected by an RO count. In that sense, the quantization error

is proportional to the inverse of the RO counter value CRO.
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Fig. 7. The percent decrease in the RO frequency and the coefficient of
variance as functions of a sampling period. Each line represents a different
number of active power virus instances.
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Fig. 8. The percent error in the RO frequency drop compared to the reference
case with a 1,000-cycle sampling period.

The quantization error linearly increases with the sampling

frequency as CRO increases linearly with the sampling period.

For a given sampling period, CRO increases as the oscil-

lation frequency fRO increases. Therefore, to minimize the

quantization error, we should use the fastest RO design. This

explains why our power monitor uses ROs with a single

inverter loop.

The second source of inaccuracy comes from environmental

noise. For example, the oscillation count is affected by thermal

noise. A system may also execute other programs, which

affects the power consumption. These environmental variations

will be better averaged out with a longer sampling period.

Given the trade-off, the sampling frequency that can be used

in practice depends on the voltage drop that the power monitor

needs to observe, which is again dependent on the power

consumed by the target logic as well as the spatial proximity

between the RO and the target. The sampling frequency needs

to be set so that the RO-based power monitor’s accuracy is

high enough to be able to detect the target voltage drop.

To experimentally evaluate the effect of sampling frequency

on the observed RO oscillation count, we instantiate the

same 16,000 power viruses as described in Experiment 1.

We then record a 100 millisecond power trace across 15

different sampling periods ranging from 10 cycles (10 MHz)

to 1,000 cycles (100 kHz) with the power viruses on and

the power viruses off. For each sampling period, we average

10,000 temporally evenly-distributed samples and calculate the

percent change in oscillation frequency caused by the power

viruses. We perform this analysis with power levels of 16,000,

8,000, 4,000, 2,000, and 1,000 instances of the power virus.

Figure 7 shows the average percent change in the oscillation

frequency caused by the power virus for each sampling period

compared to the nominal measurement across different levels

of switching activity. Additionally, the coefficient of variation

(CV = σ
μ ) is shown for each data point as an error bar.

Figure 8 shows the difference in percent frequency drop for

each sampling period compared to the 1,000 cycle sampling

period for the corresponding switching activity level, which

we take as our ‘correct’ result. We believe that this is a

reasonable comparison as with a 1,000 cycle sampling period,

the quantization error is negligible and environmental noise is

better averaged out.

For long sampling periods, the RO frequency decreases

roughly linearly with the number of power virus instances

increases, as expected from the results in Experiment 1.

However, for short sampling periods, this linear relationship

no longer holds. For example, with the sampling period of 10

cycles, the RO frequency decrease is greater when 4,000 power

viruses are on compared to when 8,000 power viruses are on.

We also observe that relative error tends to increase as the

sampling period decreases when comparing the RO frequency

change for each sampling period with the reference result with

the long period of 1,000 cycles. Similarly, the coefficient of

variation (CV) also tend to increase as the sampling period

decreases. These results suggest that shorter sampling periods

lead to less accurate and consistent results.

The experimental results also show that there is a trade-

off between the time resolution and the power consumption

that can be reliably detected by the RO-based power monitor.

In Figure 7, even relatively long sampling periods cannot

consistently detect the increased switching activity compared

to the baseline with no activity when only a small number

(1,000) of power viruses are used; for some sampling periods,

the results even show an increase of the oscillation frequency

when the power viruses are turned on. However, as the number

of power virus instances increases to 2,000, long sampling

periods show a consistent decrease in the oscillation frequency

compared to the baseline. For high levels of switching activity

(e.g. 16,000 power virus instances), even short sampling

periods are sufficient in detecting a large decrease in oscillation

frequency compared to the baseline. In the context of power

analysis attacks, our results show that the optimal sampling

period heavily depends on the amount of power consumed by

the target device. Reliably detecting a small amount of power

consumption requires the attacker to use a long sampling

period, while shorter sampling periods may be used when

targeting larger or more active circuits.

IV. FPGA-TO-FPGA POWER ANALYSIS ATTACK

In this section, we demonstrate one instance of the FPGA-

to-FPGA power side-channel attack using the RO-based power

monitor. More specifically, we demonstrate a simple power

analysis attack on an RSA cryptomodule that is implemented

on an FPGA.
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mod exp (M, d , N)
{

R = 1
S = M
f o r ( i = 0 t o n−1)
{

i f ( d mod 2 == 1)
R = R∗S mod N

S = S∗S mod N
d = d >> 1

}
re turn R

}

Listing 1. Pseudo-code for a square-and-multiply modular exponentiation.

A. Background: RSA Accelerators

The RSA algorithm, first publicly described by Rivest,

Shamir, and Adleman in 1978, still remains as one of the most

popular public-key cryptographic algorithms in use today [30].

RSA decryption rests on the computation of a large modular

exponentiation M = Cd mod N , where C is the ciphertext

message, d is the private key exponent, N is the RSA modulus,

and M is the decrypted plaintext. The security of RSA is

largely based on its key size, which is typically 1,024 to 4,096

bits.

However, computing such a large modular exponentiation is

computationally expensive due to the large operands involved.

Because the operands are too large for basic data types, per-

forming an RSA decryption on processors is often inefficient,

and thus many modern systems use dedicated cryptographic

accelerators to speed up the modular exponentiation.

One simple algorithm that many RSA accelerator designs

use is square-and-multiply, which decomposes the exponent d
into the sum of successive powers of 2 (i.e. binary notation).

Thus, the decryption can be computed as Equation 4, where

n is the length of the decryption exponent d and di is bit i
of d. This equation can then easily be implemented in both

hardware and software by following the algorithm presented

in Listing 1.

M =
n−1∏

i=0

(C2i)
di

mod N (4)

B. Hardware Implementation

To study if the RO-based power monitor is accurate and

fast enough to perform a power analysis attack in practice,

we implemented a 1,024-bit square-and-multiply circuit on

the FPGA fabric of a Zedboard. The RSA circuit implements

the algorithm as described in Listing 1. The circuit consists

of two dedicated modular multiplication modules, as well as

a state machine that iterates through each bit of the 1,024-

bit input exponent, starting at the least-significant bit. One

multiply module is dedicated to compute the square term

S = (S∗S)mod N , while the other module is used to compute

the multiplication R = (R∗S)mod N . However, if the current

least-significant bit of the iteratively-shifted exponent is 0, the

second multiplier instead computes R = (R∗1) mod N . Both

multipliers are synchronized to start computation at the same

cycle for each iteration of the loop.

The multipliers themselves are implemented following a

shift-and-add algorithm. Thus, the multiplicand is progres-

sively shifted one bit to the left for each bit of the multiplier.

If the corresponding bit of the multiplier is 1, the shifted

multiplicand is added to the product P . Furthermore, to ensure

that the product is always reduced to mod N , P , P −N , and

P − 2N are computed in each step, and the correctly reduced

result is used in the next step. The module returns the correct

modular multiplication result after all 1,024 bits of the input

multiplier value have been iterated through.

Thus, for a typical decryption, the cryptomodule will require

1, 0242 = 1, 048, 576 cycles to complete. Our implementation

runs at 20MHz on the relatively low-end and low-speed

FPGA fabric of the Zedboard. Thus, the module is capable

of computing one modular exponentiation every 52.4ms, or at

a throughput of 19.1 ops/sec, with each iteration of the square-

and-multiply loop taking 51.2 microseconds. The throughput

is comparable to modular exponentiation cores available on

the market [31]. In terms of resource utilization, the module

requires 15,561 LUTs and 12,843 FFs.

C. Simple Power Analysis (SPA) Attack

In the square-and-multiply circuit, if the current bit of

the exponent is 1, then both multipliers will be performing

sequences of additions, resulting in high switching activity

in the FFs and LUTs that store and compute the multiply’s

intermediate results. However, if the exponent bit is 0, then

only the squaring multiplier’s logic will switch, while the other

multiplier’s logic will be idle. Thus, we expect that the power

consumption will be different between an iteration with an

exponent bit of 1 and an iteration with an exponent bit of 0.

As a result, the RSA cryptomodule is vulnerable to a

Simple Power Analysis (SPA) attack [4]. While SPA has been

demonstrated on RSA numerous times since the technique’s

introduction by Kocher et al. in 1999, recording the requisite

power traces has always relied on both a form of physical

access to the victim device as well as additional monitoring

equipment (e.g. an oscilloscope). In fact, multiple countermea-

sures against SPA aim to detect the physical modifications

made to a device when recording power traces [19], [22], [32].

On the other hand, the RO-based power monitor on an FPGA

can be programmed in software and requires neither physical

access to the victim device nor additional hardware.

We instantiate the RSA cryptomodule on the Zedboard

alongside the RO-based power monitor in various configura-

tions. We consider three separate cases, ranging from least

to most restrictive from the attacker’s perspective: attacker-

defined place and route of the RO circuits (PR), physical

isolation between the power monitor and the RSA crypto-

module (ISO), and no user-defined constraints (NoPR). These

configurations are shown in Figures 3, 9a, and 9b, respectively.

Ten 1,024-bit private keys are generated using OpenSSL. All
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(a) Physical Isolation (ISO) (b) No Place and Route (NoPR)

Fig. 9. Spatial placement of RSA module (in red) and RO power monitors
(yellow diamonds) in two placement scenarios.
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Fig. 10. RSA power trace recorded with the RO-based power monitor. NOTE:
lower power monitor outputs (i.e. lower oscillation frequencies) correspond
to higher power consumption.

Fig. 11. A zoomed-in view of the RSA power trace showing 16 key bits.

three configurations use the same ten private keys in the RSA

cryptomodule. A control program running on the ARM core

can then instruct the RSA module to decrypt a message using

one of the ten keys by sending a command to the FPGA via

Xillybus.

The RO-based power monitor is enabled continuously and

its oscillation counts are read out by another process on the

ARM core at approximately 2 MHz. The RSA cryptomodule is

instructed to perform one modular exponentiation with one of

the private keys at a randomly-chosen time. The power monitor

trace is exported to a desktop computer and analyzed.

Figure 10 shows a raw power trace corresponding to one

full modular exponentiation in the PR configuration. Figure 11

presents a zoomed-in view on a portion of the same power

trace. The vertical bars delineate the boundary between suc-

cessive modular multiplications. From one raw power trace, it

is possible to visually identify the difference between one and

two switching modular multipliers, which correspond to a key

bit of 0 and 1, respectively. It is thus possible to perform a

SPA attack to recover the full 1,024-bit decryption key.

We automate the attack with a MATLAB script. As shown in

Equation 5, we observe that the recorded power consumption

is the sum of the dynamic power consumption of an RSA

module, the dynamic power consumption of other activities,

the constant static power consumption, and electronic noise,

which we consider to be all independent. To identify the sec-

tion of a power trace that corresponds to the RSA computation

(i.e. PRSA), we first record a power trace that only captures

background noise (i.e. Pother + Pstatic + Pnoise) when the

RSA module is idle. We then filter the trace through a low-

pass filter to remove high-frequency electronic noise. We can

then create a threshold that corresponds to the maximum and

minimum background power consumption.

Ptotal = PRSA + Pother + Pstatic + Pnoise (5)

Next, we perform the same low-pass filtering on a power

trace that includes an RSA computation. We can easily identify

the portion of the trace corresponding to the RSA computation

by observing the first and last samples that go beyond our

baseline power consumption threshold. Pstatic is subtracted

away from the power trace, leaving us with low-frequency

noise and PRSA. Then, we can divide the section of the

power trace corresponding to the RSA computation into 1,204

segments, one for each key bit, and simply classify each

segment as a 0 or 1 based on the average of the power

trace values over the segment. We found that this algorithm

is sufficient to recover most of the key bits accurately. The

accuracy can be further improved by performing the attack on

multiple traces for the same key and taking the majority vote

for each bit.

We could successfully recover all ten private keys across

the three configurations using the automated algorithm. Ta-

ble I summarizes the results, showing the average number of

incorrectly-guessed bits when only one trace is used and the

number of traces to fully recover each key correctly.

In the PR configuration, the attack could successfully re-

cover the vast majority of bits in one trace. The incorrect

guesses were often due to short spikes of low-frequency

switching noise, likely coming from background activities on

a CPU. To remove this noise, we used multiple traces for

each key and took the majority vote for each bit. In the PR

configuration, only 5 or fewer traces were required to fully

recover a key.

1Due to the additional noise added at the start and the end of computation
caused by large amounts of logic switching on and off, our attack missed the
very last bit (MSB) of these keys, but was able to fully recover the remaining
bits of the key.

2The median, as opposed to the mean, was used as the classification metric
in this case. Due to variations in automatic place and route, different metrics
yield higher bimodality (and thus easier classification) in power traces.

3The standard deviation, as opposed to the mean, was used as the classifi-
cation metric for the same reasons above.
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TABLE I
THE AVERAGE NUMBER OF BIT ERRORS WHEN ONE TRACE IS USED AND

THE TOTAL NUMBER OF TRACES TO RECOVER A FULL SECRET KEY UNDER

THREE RO CONFIGURATIONS: CONTROLLED PLACE AND ROUTE (PR),
PHYSICAL ISOLATION (ISO), AND NO CONSTRAINTS (NOPR).

Key ID
PR ISO NoPR

Error # Traces Error # Traces Error # Traces
1 3 3 81 27 30 6

2 3 3 178 27 33 61

3 49 3 23 5 30 5
4 7 3 37 8 6 3

5 16 31 44 3 67 18
6 40 4 32 5 76 22
7 49 5 5 3 43 8

8 2 5 30 5 148 221,2

9 2 3 1 3 91 173

10 18 5 1 3 49 7
Average 18.9 3.7 43.2 8.9 57.3 11.4

The ISO configuration represents the case when sensitive

logic is separated from potentially malicious logic using a

‘fence’ of CLBs as proposed by Huffmire et al. [13]. In

the same manner, we physically separated the power monitor

from the RSA cryptomodule using the pblock constraints.

Table I shows that the physical separation increases the average

number of bit errors compared to the PR configuration where

the ring oscillators are distributed across the FPGA. This

increase is expected as the sensitivity of the RO-based power

monitor decreases with spatial separation, as demonstrated in

Section III. However, all ten keys could still be recovered

correctly only using 8.9 traces on average, showing that

physical separation is not sufficient as a countermeasure.

In the NoPR configuration, we implement our attack logic

including the power monitor solely in RTL code without

using any design constraints. In this case, the ring oscillators

are arbitrarily placed by a design tool. The frequencies of

individual ring oscillators can also vary significantly as there is

no placement or routing constraint. Surprisingly, we found that

our attack can still recover all ten keys successfully only with

relatively minor increases in the number of traces compared to

the ISO configuration. This result shows that restricting user

interfaces to disallow low-level design constraints cannot fully

prevent the FPGA-based power analysis attack.

We believe that the RO-based power monitor still works

well even without controlled placement and routing for two

reasons: (1) power analysis attacks rely on relative changes

in the power consumption and RO counts, which makes

variations in individual ring oscillators unimportant, and (2)

the FPGA tools tend to place the LUTs belonging to one RO

closely, often in the same CLB, with consistent routing - so

the variations among individual ROs are often not significant.

D. Effects of Noise on SPA Attack

Our attacks demonstrate that an entire RSA key can be

recovered correctly with a small number of power traces when

the victim system is mainly running a single RSA computation

at a time. The power traces in our previous experiments

include the noise from other components on an FPGA such as

the Xillybus IP or attack logic as well as the Linux operating

system running on the CPU. The noise showed up as periodic

spikes in the power consumption. However, the magnitude and

the duration of these spikes were low enough to be removed

relatively simply using multiple power traces.

Here, we study the impact of more significant noise from

co-resident circuits on an FPGA or software on a CPU on

the effectiveness of the FPGA-based power analysis attacks.

For this purpose, we consider the case where a co-resident

FPGA circuit consumes a large amount of dynamic power,

using the power virus in Figure 4 to add significant dynamic

power consumption while an RSA computation is running. In

this experiment, we instantiate 8,192 instances of the power

virus next to the RSA cryptomodule on an FPGA. The power

viruses use 8,192 FFs and 16,384 LUTs. We also implement

the power monitor circuit with 20 ROs without any place

and route constraints (NoPR) on the FPGA. Compared to

the baseline case with no FPGA activity, enabling the power

viruses results in a 1.27% drop in the RO frequency observed

by the power monitor. Enabling the RSA module, with both

multipliers switching, alongside the power viruses results in

a 2.54% drop in the RO frequency. Because the power virus

has a high activity factor, the combined power consumption

of the 8,192 power virus instances is comparable to the power

consumption of both multipliers in the RSA module even

though the power viruses use less FPGA resources.

We first evaluate the impact of a large, but constant noise on

the effectiveness of our attack. Equation 5 suggests that the

additional power consumption will simply be superimposed

onto the RSA power signal. In other words, the oscillation

frequency of the ROs will simply be shifted down by a

constant factor, and our automated attack should not be

impeded when a constant noise is added to the power trace. We

experimentally tested this case by constantly enabling all 8,192

power virus instances and recording the power traces of the

RSA cryptomodule running with Key 1. The automated SPA

attack resulted in 32 bit errors on average with a single trace

and could fully recover the entire RSA key correctly using

5 traces. The result is comparable to the NoPR case without

the power virus (see Table I), showing that the constant noise

does not noticeably affect the power analysis attack.

In practical systems, the power consumption of an FPGA or

CPU task that adds noise is likely to change dynamically. We

model this case by dividing the 8,192 power virus instances

into 32 groups and dynamically changing the number of power

virus groups enabled at run-time. There are 32 power levels,

where each level corresponds to the power consumption from

additional 256 power virus instances. In our experiment, we

had a control process on the CPU randomly set the power

level to a value between 0 and 15 every 30 RO sampling

periods. The RO sampling frequency is 2MHz, so the number

of active power virus instances changes roughly at 67KHz with

variations from non-determinism in CPU load and CPU-FPGA

communication latency. We use 16 power levels, which corre-

sponds to a maximum of 4,096 enabled power virus instances,

because the power consumption of 4,096 power viruses is
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comparable to the power consumption of one multiplier unit

in the RSA module, which our power analysis attack aims to

detect in the power trace. The power trace is recorded using

the RO-based power meter in the NoPR configuration when

both the RSA module and the power viruses are active.

To deal with the significant random noise that changes

constantly, we modify our automated attack script to first

compute the average RO frequency over multiple power traces,

and then use the average to guess if each bit of an RSA

key is 0 or 1. The modified attack script could fully recover

the correct RSA key using 31 traces, compared to 5 traces

under constant noise. While the randomly changing noise

increased the number of traces required for a successful attack

by approximately six times, the experiment shows that random

noise can also be filtered out by using more traces.

When the magnitude of the random noise is increased even

more to use all 8,192 power viruses, we found that the added

noise introduced difficulty in automatically identifying the

start of the RSA decryption. Our script identifies a section

in the trace with a large increase in power consumption as an

RSA computation. Having a large number of power viruses

randomly enabled makes this identification process difficult

because many large spikes in power consumption appear in the

observed power trace. However, we believe that this scenario

represents an unlikely worst case in practice as applications

will often introduce bursty noise rather than adding large

power swings that change rapidly over a very long period of

time.

V. FPGA-TO-CPU ATTACK

Modern SoCs integrate many discrete components, such as

CPUs, DSPs, GPUs, crypto accelerators, and others into one

integrated circuit. SoCs offer a number of benefits over tradi-

tional discrete devices. As they integrate multiple specialized

accelerators over high bandwidth on-chip networks, SoCs en-

able smaller and more energy efficient systems. One downside

of traditional SoCs lies in the fact that developing multiple

configurations of SoCs to suit various applications incurs high

non-recurrent engineering (NRE) costs. The solution adopted

by both Intel and Xilinx is to integrate reconfigurable FPGA

fabric into an SoC.

In SoCs, it is common for modules on the same die to share

the same power supply. For example, in an SoC with CPUs

and FPGA fabric, both CPU and FPGA power supply rails

are often shared. This is the case for the Xilinx Zynq SoC on

the Zedboard that we use for experiments [33]. In this case,

it is reasonable to assume that switching activities from the

CPU or other modules on an SoC will cause a voltage drop

in the FPGA logic. In this section, we demonstrate that this is

indeed the case for the Zedboard by using our RO-based power

monitor. We leverage this FPGA-to-CPU power side-channel

to defeat a traditional timing-channel protection scheme that

delays outputs.
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Fig. 12. A power monitor trace from a CPU execution of strcmp, which
is shown by the increased power consumption between samples 23,000 and
59,000.

Fig. 13. A histogram of the estimated execution times from the power traces
of long and short program executions. The lines represent the actual execution
times from clock_gettime.

A. Measuring CPU Activity from the FPGA

We implement the RO-based power monitor on FPGA fabric

on the Zynq SoC with the placement shown in Figure 3. To

minimize the noise from other activities outside the CPU,

we do not instantiate any logic on the FPGA except for

the RO-based power monitor and the control logic (e.g. state

machines, Xillybus IP, FIFOs, etc.) necessary to communicate

with software on the ARM CPU.

On the dual-core ARM CPU, we run the Xillinux operating

system which is based upon Ubuntu LTS 12.04 for ARM [29].

We begin by implementing a simple program which defines an

8,000-character string and uses strcmp to compare the string

to itself. Figure 12 shows one power trace recorded using

a 13-cycle sampling period while running the program. The

program execution is clearly visible approximately between

samples 23,000 and 59,000.

In fact, the power trace shows more than just the strcmp
function executing. Using a system timer clock_gettime,

we find that the strcmp function call takes approximately

300 microseconds to execute. However, from our trace, we

observe that the CPU is busy for around 4 milliseconds,

suggesting that the power trace includes additional activities

in our test program such as program setup code, memory

allocation, copying text, etc. The results suggest that we can

observe both user-level program execution and privileged code

execution in the operating system.

To evaluate the accuracy of timing measurements through

the FPGA-based power trace, we also experimented with long
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and short strings as the inputs to the strcmp function. The

‘long’ function call took 1,013.769 μs to execute and the

‘short’ function call took 995.337 μs when measured with

clock_gettime. In this experiment, we insert a delay

before and after the call to strcmp, which creates periods

of low CPU activity. The delay allows us to differentiate the

strcmp function call from the rest of the program execution.

We recorded 30 power traces for the ‘long’ function call 30

traces for the ‘short’ function call.

Figure 13 shows the histogram of the estimated execution

times from the power traces. The histogram shows a clear shift

in the execution time between the ‘long’ function call and

the ‘short’ function call. In fact, the execution time difference

observed from the power traces is quite close to the difference

of 18.4 μs from clock_gettime. The standard deviation is

5.60 μs and 5.42 μs for the ‘long’ case and the ‘short’ case,

respectively. The result suggests that the FPGA power monitor

is able to distinguish changes in program execution time in

the order of a few microseconds, which we believe is accurate

enough to enable common timing side-channel attacks on CPU

processes [34].

However, the absolute execution time estimated from a

power trace does not completely agree with the system clock

time. In the ‘long’ case, the estimated execution time is 32.5

μs longer than the system clock time on average. In the ‘short’

case, the difference is 26.4 μs. Since the execution time from

the power trace is consistently longer than the system clock

time, we attribute the discrepancy to additional computations

related to system calls. While there is a discrepancy in the

absolute execution time, most timing side-channel attacks are

based on the relative time difference in program execution.

B. Attack against Timing-Channel Mitigation Techniques

In addition to traditional power side-channel attacks, an

adversary can use the capability to measure the internal

execution time of an application running on a CPU to perform

timing channel attacks. Here, we briefly discuss the intuition

of the timing attack through power side channels.

Timing channel attacks infer confidential information by

observing data-dependent timing variations from sources such

as caches [35], program execution [36], and network laten-

cies [34], [37]. Compared to power analysis attacks, these

timing attacks are easier to perform remotely as the timing of

external behaviors such as inputs and outputs may be observed

without direct physical access to the system.

For remote timing channel attacks, a common threat model

assumes that only external behaviors can be observed. As

a result, the timing channel can be eliminated if observable

results of a computation are forced to return only in constant

time intervals corresponding to the worst-case execution time.

For example, quantization (i.e. mitigating timing channels

by quantizing computations into constant-time chunks) was

proposed as a countermeasure against Brumley and Boneh’s

remote timing attack on RSA [34]. Similarly, multiple protec-

tion methods have been proposed that mitigate timing chan-

nels by ensuring that computations are observably constant-

time [38]–[41]. At a high level, such countermeasures wrap

computations in a timing mitigator that delays the return time

of the computation, reducing or removing the data-dependent

timing channel.

We note that the FPGA-based power side channel breaks

the basic assumption in the above timing-channel protection

schemes. As demonstrated by Figure 12, the execution time

of a program on a CPU can be remotely and fairly ac-

curately measured through the power side channel via the

power monitor on an FPGA. Thus, even if quantization-

based countermeasures eliminate externally observable timing

variations, the actual computation time can be obtained from

a power trace if the delays inserted by the timing mitigator

result in a different power consumption level compared to

the sensitive computation. In fact, timing mitigators typically

insert delays by simply stalling, which usually consumes less

power compared to the actual computation. Therefore, today’s

delay-based timing channel protection schemes are likely to

be vulnerable against power side-channel attacks.

C. Example Attack on an RSA

Here, we present a concrete attack example that shows

how the FPGA power side channel can be used to break the

delay-based timing mitigation techniques. We again consider a

square-and-multiply based implementation of RSA’s modular

exponentiation, as presented in Listing 1. In this case, we

assume a threat model reflected in Figure 1b. A user or system

process implements a constant-time version of the modular

exponentiation by ensuring that each iteration of the loop

executes in constant time. He or she does so by adding a

delay function such that each loop iteration executes at the

worst-case execution time. This delay-based scheme provides

more efficient and portable protection compared to the always-

multiply scheme, which always performs the multiply and

discards the result if unnecessary. The always-multiply scheme

consumes energy to perform unnecessary computations and

needs to ensure that a compiler does not optimize away the

multiply operations whose results are discarded.

The modular exponentiation is implemented on a CPU using

the square-and-multiply algorithm to operate on a 4,096-bit

key, with values being represented using the GNU Multiple

Precision library (gmp). The time for each iteration of the loop

requires approximately 460 microseconds if the corresponding

bit is set to 1 and 220 microseconds if the bit is 0. Thus, we

inserted a delay function to each iteration to ensures that each

iteration of the RSA loop (and thus the entire computation)

takes the longer execution time.

In this attack, we assume that an attack program is allowed

to run on a CPU and access its logic instantiated on the FPGA.

To perform a timing attack on the victim program (RSA), the

attack program constantly records the power monitor readings

from the FPGA, using the sampling period of 50 cycles.

While the power monitor is recording, the RSA modular

exponentiation starts execution as a separate process on the

CPU. Figure 14 shows a zoomed-in view of the power trace

on 32 iterations of the square-and-multiply loop. The first 16
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Fig. 14. A zoomed-in view of the power trace for constant-time modular
exponentiation in software.

bits (16 LSBs) of the secret key are all set to 0, while the next

16 bits are all set to 1. The power trace clearly shows that the

first half of the trace, corresponding to 16 bits of 0, has periods

where the power consumption is significantly lower (i.e. the

power monitor output is higher) than the latter half of the

power trace. These periods correspond to the delays inserted

for timing channel protection. On the other hand, periods with

low power consumption are much shorter in the second half of

the trace, suggesting that there no significant idle time. Thus,

an attacker can simply identify the corresponding key bit for

each iteration by looking at the trace even if the execution

time of the program is fixed.

VI. DISCUSSION

The very nature of FPGAs provides users with fine-grained

control over reconfigurable fabric. As heterogeneous FPGA-

based systems become more widely deployed in systems

ranging from cloud datacenters to mobile platforms, the se-

curity implication of allowing untrusted parties to remotely

implement custom circuits on an FPGA becomes more sig-

nificant. We demonstrate that the FPGA introduces a new

security vulnerability by allowing untrusted users to remotely

implement a power monitor that is capable of inferring the

level of dynamic switching activities. This power monitor

circuit can not only measure the power consumption of circuits

on the reconfigurable fabric, but also observe the power

consumption of other modules such as a CPU (or a GPU)

on a heterogeneous SoC device. While we explored a few

possible attacks enabled by these circuits, we believe that this

capability can be exploited in many potential security attacks

as discussed in Section II-C.

A. Alternative On-Chip Power Monitors

While we use ROs as the circuit in our power monitor due to

their simplicity and ease-of-implementation, there exist other

circuits that are sensitive to propagation delays. The other

prominent circuit is the delay line coupled with a TDC, as

discussed in Section III. Zick et al. originally proposed a delay-

line based voltage monitor with the intent to detect voltage-

attacks on FPGAs [23]. Gnad et al. further extended the delay

line TDC to characterize transient voltages on FPGAs [24],

showing that switching activities on an FPGA can cause a

visible signal in a delay line TDC.
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Fig. 15. A zoomed-in view of the RSA power trace captured using the delay-
line circuit for the same key bits shown in Figure 11.

At a high level, delay-line monitors operate based on the

same principle as RO-based monitors. However, instead of

measuring propagation delay via the oscillation frequency of a

RO, delay lines use a long chain of logic elements connected

in series. A signal (generally a clock signal) is passed through

the chain. After a fixed time period, the logical value of all

of the nets between each sequentially-connected logic element

is latched. The propagation delay, and thus transient voltage,

can be measured by observing how far along the chain the

signal propagates within the fixed period. In other words, the

power consumption can be estimated by observing where the

boundary between all 1 values and all 0 values is located as

in a thermometer code.

To understand the trade-offs between the RO-based power

monitor and the delay-line based power monitor, we imple-

mented a delay-line power monitor and tested its performance.

The logic elements in our power monitor consists of a chain

of CARRY4 primitive logic cells intended for use in carry-

lookahead adders [42]. This is so as to optimize the speed

of signal propagation between logic elements, increasing the

power resolution of our monitor. Each CARRY4 logic cell

contains four chained MUXCYs, which we use as our buffers.

We thus connect together a series of 32 CARRY4 logic cells

to obtain a chain of 128 buffers. A delayed clock signal

(generated from passing the clock through an initial series of

open latches) is fed into the delay line. At every clock cycle,

the net between each buffer is latched and read as our power

monitor reading. In this implementation, we can achieve a

sampling frequency of 100MHz on the Zedboard.

1) Attack on RSA: We repeated the same simple power

analysis (SPA) attack on the RSA modular exponentiation

circuit in Section IV by placing a delay line power monitor

on the FPGA fabric4. Using the delay line, we recorded a

power trace of a modular exponentiation. One representative

trace is shown in Figure 15. The results show that the remote

SPA attack is also possible with the delay-line based power

monitor.

2) Trade-off between ROs and Delay-Lines: While we

demonstrate that both ROs and delay lines can be used to

4For the experiment, we did not physically isolate the power monitor via
fences as our earlier experiments showed that physical isolation is ineffective
against power side-channel attacks.
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enable remote power side-channel attacks, there are certain

trade-offs that exist between the two designs.

Achievable Sampling Frequency. As discussed and eval-

uated in Section III, there exists a trade-off between the

RO-based power monitor’s measurement accuracy and the

sampling frequency that it can achieve. With short sampling

periods, quantization noise begins to significantly decrease the

measurement accuracy of the RO power monitor. In contrast,

the delay-line monitor can achieve sampling frequencies up to

the clock frequency supplied to the FPGA fabric without any

change in measurement accuracy. However, the resolution of

the delay line is fixed and cannot be dynamically adjusted.

Achievable Power Resolution. For simple power analysis

attacks on RSA, both power monitor designs provide sufficient

resolution to observe the changes in power consumption. In

the RO-based power monitor, the resolution can be improved

to some extent by increasing the sampling period. Over a long

period, even a small change in the propagation delay will

lead to a difference in the oscillation count. In that sense,

the RO count can be expressed as a linear function of the

level of power consumption as discussed Section III. In the

delay line, the smallest delay variation that can be detected

is determined by the propagation delay between two adjacent

buffers in the delay line, which is fixed. However, it is difficult

to state which design is more sensitive to voltage transients,

as the quantization error of a power monitor depends on its

implementation. A RO circuit with many inverters may yield

lower power resolution than a delay line with small wire delays

in-between buffers, while a poorly-routed delay line may yield

lower power resolution than a small RO circuit.

Robustness of Design and Implementation. One major

weakness of the delay-line power monitor lies in the complex-

ity of the implementation and the sensitivity of the measure-

ment to the exact placement and routing of the delay line on an

FPGA. In order for the delay line to work effectively, the logic

cells used for buffers and the wire lengths between buffers

must be the same in order to provide equivalent propagation

delays between each successive latch. Furthermore, the clock

skew to each latch along the delay line must be minimized

to ensure that all latches sample at the same time. In our

design, achieving such precise timing constraints requires the

exact placement and routing of each logic cell. Moreover, such

careful customization is likely necessary for each FPGA where

a delay line is implemented. On the other hand, the RO circuit

only requires simply two LUTs in a loop and can still be

used even if all ROs are not identical. As a result, the RO-

based power monitor is much easier to implement and port to

different FPGAs. An adversary can implement the RO-based

power monitor even when placement and routing constraints

cannot be used.

B. Limitations of FPGA-Based Power Side Channel

The cost of remotely measuring power consumption via on-

chip circuits is resolution. The FPGA-based power monitor

circuits cannot match the micro-volt and pico-second level

accuracy of high-resolution oscilloscopes utilized in traditional

power analysis attacks. It is not clear if FPGA-based power

monitors are accurate enough for attacks that require very

fine-grained resolution. Furthermore, while we observe that

the power consumption of a CPU is observable in an SoC

context, we cannot assume the same for systems utilizing

discrete CPUs and FPGAs. We believe that our work repre-

sents a starting point. Further studies will be needed to fully

understand the capabilities and the limitations of the FPGA-

based power side channel.

C. Countermeasures

Potential countermeasures to our attacks fit into one of two

categories: making the victim logic or process more resilient

to power side-channel attacks or making it more difficult for

untrusted users to construct power monitoring circuits on an

FPGA. While we believe that effective countermeasures can be

deployed for specific attack circuits and examples in this paper,

general protection against FPGA-based power side-channel

attacks needs further studies.

Countermeasures against traditional power analysis attacks

have been well-studied [43]. Multiple methods exist to either

hide the power signal by inserting random noise or adding

dummy operations or masking power consumption by random-

izing intermediate values. These countermeasures can also be

applied to circuits on an FPGA or software on a heterogeneous

SoC to make them more resilient against the FPGA-based

power side channels. However, these countermeasures often

come with overhead in performance and energy [44], which

physically-secure systems traditionally did not have to pay.

Some hardware countermeasures such as using dynamic logic

also cannot be implemented on typical FPGA devices.

An alternative countermeasure is for the system administra-

tor, such as a cloud-FPGA provider, to check an FPGA design

before placing the logic onto a physical FPGA, and disal-

low a malicious design with a FPGA-based power monitor.

For example, the RO-based power monitor may be detected

by analyzing a netlist for combinational loops. Preventing

users from specifically defining place-and-route constraints

may also be used to reduce the effectiveness of delay-line

power monitors. However, there also exist legitimate uses of

both combinational loops (e.g. ring-oscillator-based physically

unclonable functions that generate unique secret keys [45]) and

user-defined place-and-route for design optimizations (e.g. op-

timizing timing constraints for large carry chains). Performing

detailed analyses is also time-consuming on netlists and near-

impossible for encrypted bitstreams. Furthermore, attackers

may develop more clever circuits that can remotely measure

power consumption. Therefore, reliably detecting malicious

circuits while allowing legitimate use cases seems non-trivial.

VII. RELATED WORK

The power side-channel analysis attack is a widely studied

topic since the early work by Kocher et al. [4]. Many power

analysis attacks and countermeasures have appeared in litera-

ture [44]. We use previously proposed power analysis methods

to demonstrate attacks on FPGA-based systems. However, the
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traditional power analysis attacks assume physical access or

proximity to the victim system to measure power consumption.

In this paper, we demonstrate that the power analysis attack

on confidential data can be performed remotely in software

(i.e. without physical proximity) by programming an FPGA

to implement a power monitor circuit.

Concurrent studies to this work also demonstrate remote

side-channel attacks using an FPGA. Schellenberg et al. [46]

use a delay-line power monitor to perform a differential power

analysis attack (DPA) attack on a co-located AES module.

Ramesh et al. [47] manually route a long wire adjacent to a

victim AES module and use crosstalk to perform a DPA-like

attack. In contrast, our study shows attacks on RSA using

the RO-based power monitor, which can be built without

placement and routing constraints, in addition to the delay-

line monitor. We also provide a detailed characterization study

for the RO-based monitor to understand its capabilities and

limitations. In addition to the FPGA-to-FPGA attack, this

paper shows that an FPGA-to-CPU attack is also viable on

an SoC platform.

Alternative side-channels have been used to attack electronic

devices without directly probing or modifying the system.

Attackers can leverage electromagnetic, acoustic, or optical

emanations to steal confidential information from various

devices [48]–[51]. While these attacks do not require direct

physical access to a target, they do require physical proximity.

The remote attack in this paper can be performed in software

over the network even without physical proximity.

Ring oscillators on an FPGA have been studied as a way

to measure process, voltage, and temperature (PVT) variations

for non-security applications. For example, Ruething et al. [27]

and Franco et al. [25] characterize the temperature-dependency

of ROs in FPGAs while Yu et al. [26] examine process-

variation dependencies. Zick and Hayes [21] present a RO-

based circuit with the goal of quickly characterizing PVT

variations across devices. Finally, Barbareschi et al. [20]

characterize how design parameters, such as the number of

stages, affect RO frequencies.

The ROs on an FPGA have also been used in security

applications, but not for power analysis attacks. For example,

Physical Unclonable Functions (PUFs) can be implemented

using ROs to turn process variations into a unique fingerprint

or secret for each chip [52]. Masle and Luk [19] proposed us-

ing ROs to detect a power measurement attack by monitoring

a voltage variation triggered by a power measurement circuit

inserted in the FPGA’s power rail. Hoque [22] demonstrated

using ROs as power monitors in the context of identifying

hardware Trojans. Sun et al. [53] demonstrate that ROs can

act as FPGA-based covert-channel receivers by measuring

temperature-dependent frequency variations. In this paper, we

use and characterize the ROs on an FPGA in the context of

power side-channel attacks.

This paper also demonstrates that the delay line can be

used to build a power monitor on an FPGA and perform

a simple power analysis attack. Using delay lines as a way

to measure voltage transients was first proposed by Zick et

al. [23] and further characterized by Gnad et al. [24]. However,

these previous studies have not investigated the delay line in

the context of power side-channel attacks.

As FPGAs are recently adopted in cloud computing infras-

tructures, there is only a small body of work that specifically

studies remote attacks on cloud-based FPGAs. Gnad et al. [15]

demonstrate a remote availability attack on an FPGA by

inducing voltage emergencies by performing a large number of

synchronized switching activities on the FPGA. Their attack

aims to introduce faults in BRAM cells, resulting in a denial-

of-service attack. In contrast, this paper shows remote power

side-channel attacks on confidentiality.

VIII. CONCLUSION

This work challenges the long-standing assumption that

power analysis attacks require physical proximity to a system

and cannot be performed in software remotely. We show that

an on-chip power monitor can be implemented by program-

ming a modern FPGA in software and that it can measure the

power consumption of circuits on the FPGA and programs

running on the same SoC. In particular, we introduce a ring

oscillator based power monitor and provide detailed character-

ization of its performance. We demonstrate that the RO-based

power monitor can be implemented without place and route

constraints and used to successfully perform a power analysis

attack on an RSA cryptomodule even when the power monitor

and the RSA modules are physically separated to different

regions of the FPGA. Additionally, the power monitor can

observe the power consumption of programs on a CPU and

be used for attacks against a timing-channel mitigation coun-

termeasure. While this work introduces a new vulnerability

through FPGAs, the full capacity and limitations of the FPGA-

based power side channel as well as effective countermeasures

need to be further investigated in future work.
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