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Abstract—For the past two decades, the security community
has been fighting malicious programs for Windows-based operat-
ing systems. However, the recent surge in adoption of embedded
devices and the IoT revolution are rapidly changing the malware
landscape. Embedded devices are profoundly different than tradi-
tional personal computers. In fact, while personal computers run
predominantly on x86-flavored architectures, embedded systems
rely on a variety of different architectures. In turn, this aspect
causes a large number of these systems to run some variants
of the Linux operating system, pushing malicious actors to give
birth to “Linux malware.”

To the best of our knowledge, there is currently no comprehen-
sive study attempting to characterize, analyze, and understand
Linux malware. The majority of resources on the topic are
available as sparse reports often published as blog posts, while
the few systematic studies focused on the analysis of specific
families of malware (e.g., the Mirai botnet) mainly by looking
at their network-level behavior, thus leaving the main challenges
of analyzing Linux malware unaddressed.

This work constitutes the first step towards filling this gap.
After a systematic exploration of the challenges involved in
the process, we present the design and implementation details
of the first malware analysis pipeline specifically tailored for
Linux malware. We then present the results of the first large-
scale measurement study conducted on 10,548 malware samples
(collected over a time frame of one year) documenting detailed
statistics and insights that can help directing future work in the
area.

I. INTRODUCTION

The security community has been fighting malware for

over two decades. However, despite the significant effort

dedicated to this problem by both the academic and indus-

try communities, the automated analysis and detection of

malicious software remains an open problem. Historically,

the vast majority of malware was designed to target almost

exclusively personal computers running Microsoft’s Windows

operating system, mainly because of its very large market

share (currently estimated at 83% [1] for desktop computers).

Therefore, the security community has also been focusing

its effort on Windows-based malware—resulting in several

hundreds of papers and a vast knowledge base on how to

detect, analyze, and defend from different classes of malicious

programs.

However, the recent exponential growth in popularity of

embedded devices is causing the malware landscape to rapidly

change. Embedded devices have been in use in industrial

environments for many years, but it is only recently that they

started to permeate every aspect of our society, mainly (but

not only) driven by the so-called “Internet of Things” (IoT)

revolution. Companies producing these devices are in a con-

stant race to increase their market share, thus focusing mainly

on a short time-to-market combined with innovative features

to attract new users. Too often, this results in postponing

(if not simply ignoring) any security and privacy concerns.

With these premises, it does not come as a surprise that

the vast majority of these newly interconnected devices are

routinely found vulnerable to critical security issues, ranging

from Internet-facing insecure logins (e.g., easy-to-guess hard-

coded passwords, exposed telnet services, or accessible debug

interfaces), to unsafe default configurations and unpatched

software containing well-known security vulnerabilities.

Embedded devices are profoundly different from traditional

personal computers. For example, while personal computers

run predominantly on x86 architectures, embedded devices are

built upon a variety of other CPU architectures—and often

on hardware with limited resources. To support these new

systems, developers often adopt Unix-like operating systems,

with different flavors of Linux quickly gaining popularity in

this sector.

Not surprisingly, the astonishing number of poorly secured

devices that are now connected to the Internet has recently

attracted the attention of malware authors. However, with the

exception of few anecdotal proof-of-concept examples, the an-

tivirus industry had largely ignored malicious Linux programs,

and it is only by the end of 2014 that VirusTotal recognized

this as a growing concern for the security community [2].

Academia was even slower to react to this change, and to date

it has not given much attention to this emerging threat. In the

meantime, available resources are often limited to blog posts

(such as the excellent Malware Must Die [3]) that present the,

often manually performed, analysis of specific samples. One

of the few systematic works in this area is a recent study by

Antonakakis et al. [4] that focuses on the network behavior

of a specific malware family (the Mirai botnet). However,

no comprehensive study has been conducted to characterize,

analyze, and understand the characteristics of Linux-based

malware.

This work aims at filling this gap by presenting the first

large-scale empirical study conducted to characterize and un-

derstand Linux-based malware (for both embedded devices

and traditional personal computers). We first systematically

enumerate the challenges that arise when collecting and ana-

lyzing Linux samples. For example, we show how supporting

malware analysis for “common” architectures such as x86 and

ARM is often insufficient, and we explore several challenges

including the analysis of statically linked binaries, the prepa-

ration of a suitable execution environment, and the differential
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analysis of samples run with different privileges. We also detail

Linux-specific techniques that are used to implement different

aspects traditionally associated with malicious software, such

as anti-analysis tricks, packing and polymorphism, evasion,

and attempts to gain persistence on the infected machine. These

insights were uncovered thanks to an analysis pipeline we

specifically designed to analyze Linux-based malware and the

experiments we conducted with over 10K malicious samples.

Our results show that Linux malware is already a multi-faced

problem. While still not as complex as its Windows coun-

terpart, we were able to identify many interesting behaviors—

including the ability of certain samples to properly run in mul-

tiple operating systems, the use of privilege escalation exploits,

or the custom modification of the UPX packer adopted to

protect their code. We also found that a considerable fraction of

Linux malware interacts with other shell utilities and, despite

the lack of available malware analysis sandboxes, that some

samples already implement a wide range of VM-detections

approaches. Finally, we also performed a differential analysis

to study how the malware behavior changes when the same

sample is executed with or without root privileges.

In summary, this paper brings the following contributions:

• We document the design and implementation of several

tools we designed to support the analysis of Linux mal-

ware and we discuss the challenges involved when dealing

with this particular type of malicious files.

• We present the first large-scale empirical study conducted

on 10,548 Linux malware samples obtained over a period

of one year.

• We uncover and discuss a number of low-level Linux-

specific techniques employed by real-world malware and

we provide detailed statistics on the current usage.

We make the raw results of all our analyzed samples

available to the research community and we provide our entire

infrastructure as a free service to other researchers.

II. CHALLENGES

The analysis of generic (and potentially malicious) Linux

programs requires tackling a number of specific challenges.

This section presents a systematic exploration of the main

problems we encountered in our study.

A. Target Diversity

The first problem relates to the broad diversity of the

possible target environments. The general belief is that the

main challenge is about supporting different architectures (e.g.,

ARM or MIPS), but this is in fact only one aspect of a

much more complex problem. Malware analysis systems for

Windows, MacOS, or Android executables can rely on de-

tailed information about the underlying execution environment.

Linux-based malware can instead target a very diverse set of

targets, such as Internet routers, printers, surveillance cameras,

smart TVs, or medical devices. This greatly complicates their

analysis. In fact, without the proper information about the

target (unfortunately, program binaries do not specify where

they were supposed to run) it is very hard to properly configure

the right execution environment.

Computer Architectures. Linux is known to support tens

of different architectures. This requires analysts to prepare

different analysis sandboxes and port the different architecture-

specific analysis components to support each of them. In a re-

cent work covering the Mirai botnet [4], the authors supported

three architectures: MIPS 32-bit, ARM 32-bit, and x86 32-bit.

However, this covers a small fraction of the overall malware

landscape for Linux. For instance, these three architectures

together only cover about 32% of our dataset. Moreover, some

families (such as ARM) are particularly challenging to support

because of the large number of different CPU architectures they

contain.

Loaders and Libraries. The ELF file format allows a Linux

program to specify an arbitrary loader, which is responsible

to load and prepare the executable in memory. Unfortunately,

a copy of the requested loader may not be present in the

analysis environment, thus preventing the sample from starting

its execution. Moreover, dynamically linked binaries expect

their required libraries to be available in the target system:

once again, it is enough for a single library to be missing

to prevent the successful execution of the program. Contrary

to what one would expect, in the context of this work these

aspects affect a significant portion of our dataset. A common

example are Linux programs that are dynamically linked with

uClibc or musl, smaller and more performant alternatives to the

traditional glibc. Not only does an analysis environment need

to have these alternatives installed, but their corresponding

loaders are also required.

Operating System. This work focuses on Linux binaries.

However, and quite unexpectedly, it can be challenging to

discern ELF programs compiled for Linux from other ELF-

compatible operating systems, such as FreeBSD or Android.

The ELF headers include an “OS/ABI” field that, in principle,

should specify which operating system is required for the

program to run. In practice, this is rarely informative. For

example, ELF binaries for both Linux and Android specify a

generic “System V” OS/ABI. Moreover, current Linux kernels

seem to ignore this field, and it is possible for a binary

that specifies “FreeBSD” as its OS/ABI to be a valid Linux

program, a trick that was abused by one of the malware sample

we encountered in our experiments. Finally, while a binary

compiled for FreeBSD can be properly loaded and executed

under Linux, this is only the case for dynamically linked pro-

grams. In fact, the syscalls numbers and arguments for Linux

and FreeBSD do not generally match, and therefore statically

linked programs usually crash when they encounter such a

difference. These differences may also exist between different

versions of the Linux kernel, and custom modifications are

not too rare in the world of embedded devices. This has two

important consequences for our work: On the one hand, it

makes it hard to compile a dataset of Linux-based malware.

On the other hand, this also results in the fact that even well-

formed Linux binaries may not be guaranteed to run correctly
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in a generic Linux system.

B. Static Linking

When a binary is statically linked, all its library dependen-

cies are included in the resulting binary as part of the com-

pilation process. Static linking can offer several advantages,

including making the resulting binary more portable (as it is

going to execute correctly even when its dependencies are not

installed in the target environment) and making it harder to

reverse engineer (as it is difficult to identify which library

functions are used by the binary).

Static linking introduces also another, much less obvious

challenge for malware analysis. In fact, since these binaries

include all their libraries, the resulting application does not

rely on any external wrapper to execute system calls. Normal

programs do not call system calls directly, but invoke instead

higher level API functions (typically part of the libc) that

in turn wrap the communication with the kernel. Statically

linked binaries are more portable from a library dependency

point of view, but less portable as they may crash at runtime if

the kernel ABI is different from what they expected (and what

was provided by the—unfortunately unknown—target system).

C. Analysis Environment

An ideal analysis sandbox should emulate as closely as

possible the system in which the sample under analysis was

supposed to run. So far we have discussed challenges related

to setting up an environment with the correct architecture,

libraries, and operating system, but these only cover part

of the environment setup. Another important aspect is the

privileges the program should run with. Typically, malware

analysis sandboxes execute samples as a normal, unprivileged

user. Administration privileges would give the malware the

ability to tamper with the sandbox itself and would make the

instrumentation and observation of the program behavior much

more complex. Moreover, it is very uncommon for a Windows

sample to expect super-user privileges to work.

Unfortunately, Linux malware is often written with the

assumption (true for some classes of embedded targets) that

its code would run with root privileges. However, since these

details are rarely available to the analyst, it is difficult to

identify these samples in advance. We will discuss how we

deal with this problem by performing a differential analysis in

Section III.

D. Lack of Previous Studies

To the best of our knowledge, this is the first work that

attempts to perform a comprehensive analysis of the Linux

malware landscape. This mere fact introduces several addi-

tional challenges. First, it is not clear how to design and

implement an analysis pipeline specifically tailored for Linux

malware. In fact, analysis tools are tailored to the characteris-

tics of the existing malware samples. Unfortunately, the lack of

information on how Linux-based malware works complicated

the design of our pipeline. Which aspects should we focus on?

Which architectures do we need to support? A second problem

in this domain is the lack of a comprehensive dataset. One of

the few works looking at Linux-based malware focused only on

botnets, thus using honeypots to build a representative dataset.

Unfortunately, this approach would bias our study towards

those samples that propagate themselves on random targets.

III. ANALYSIS INFRASTRUCTURE

The task of designing and implementing an analysis infras-

tructure for Linux-based malware was complicated by the fact

that when we started our experiments we still knew very little

about how Linux malware worked and of which techniques

and components we would have needed to study its behavior.

For instance, we did not know a priori any of the challenges

we discussed in the previous section and we often had wrong

expectations about the prevalence of certain characteristics

(such as static linking or malformed file headers) or their

impact on our analysis strategy.

Despite our extensive experience in analyzing malicious

files for Windows and Android, we only had an anecdo-

tal knowledge of Linux-based malware that we obtained by

reading online reports describing manual analysis of specific

families. Therefore, the design and implementation of an

analysis pipeline became a trial-and-error process that we

tackled by following an incremental approach. Each analysis

task was implemented as an independent component, which

was integrated in an interactive framework responsible to

distribute the jobs execution among multiple parallel workers

and to provide a rich interface for human analysts to inspect

and visualize the data. As more samples were added to our

analysis environment every day, the system identified and

reported any anomaly in the results or any problem that was

encountered in the execution of existing modules (such as

new and unsupported architectures, errors that prevented a

sample from being correctly executed in our sandboxes, or

unexpected crashes in the adopted tools). Whenever a certain

issue became widespread enough to impact the successful

analysis of a considerable number of samples, we introduced

new analysis modules and designed new techniques to address

the problem. Our framework was also designed to keep track

of which version of each module was responsible for the

extraction of any given piece of information, thus allowing

us to dynamically update and improve each analysis routine

without the need to re-start each time the experiments from

scratch.

Our final analysis pipeline included a collection of exist-

ing state-of-the-art solutions (such as AVClass [5], IDA Pro,

radare2 [6], and Nucleus [7]) as well as completely new tools

we explicitly designed for this paper. Due to space limitations

we cannot present each component in details. Instead, in

the rest of this section we briefly summarize some of the

techniques we used in our experiments, organized in three

different groups: File and Metadata Analysis, Static Analysis,

and Dynamic Analysis components.

A. Data Collection

To retrieve data for our study we used the VirusTotal

intelligence API to fetch the reports of every ELF file submitted
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Fig. 1. Overview of our analysis pipeline.

between November 2016 and November 2017. Based on the

content of the reports, we downloaded 200 candidate samples

per day. Our selection criteria were designed to minimize non-

Linux binaries and to select at least one sample for each family

observed during the day. We also split our selection in two

groups: 140 samples taken from those with more than five AV

positive matches, and 60 samples with an AV score between

one and five.

B. File & Metadata Analysis

The first phase of our analysis focuses on the file itself.

Certain fields contained in the ELF file format are required

at runtime by the operating system, and therefore need to

provide reliable information about the architecture on which

the application is supposed to run and the type of code

(e.g., executable or shared object) contained in the file. We

implemented our custom parser for the ELF format because

the existing ones (as explained in Section V-A) were often

unable to cope with malformed fields, unexpected values, or

missing information.

We use the data extracted from each file for two purposes.

First, to filter out files that were not relevant for our analysis.

For instance, shared libraries, core dumps, corrupted files, or

executables designed for other operating systems (e.g., when

a sample imported an Android library). Second, we use the

information to identify any anomalous file structure that, while

not preventing the sample to run, could still be used as anti-

analysis routine and prevent existing tools to correctly process

the file (see Section V-A for more details about our findings).

Finally, as part of this first phase of our pipeline, we also

extract from the VirusTotal reports the AV labels for each

sample and fed them to the AVClass tool to obtain a normalized

name for the malware family. AVClass, recently proposed by

Sebastián et al. [5], implements a state-of-the-art technique to

normalize, remove generic tokens, and detect aliases among

a set of AV labels assigned to a malware sample. Therefore,

whenever it is able to output a name, it means that there was

a general consensus among different antivirus on the class

(family) the malware belongs to.

C. Static Analysis

Our static analysis phase includes two tasks: binary code

analysis and packing detection. The first task relied on a

number of custom IDA Pro scripts to extract several code

metrics—including the number of functions, their size and

cyclomatic complexity, their overall coverage (i.e., the fractions

of the .text section and PT_LOAD segments covered by the

recognized functions), the presence of overlapping instructions

and other assembly tricks, the direct invocation of system

calls, and the number of direct/indirect branch instructions. In

this phase we also computed aggregated metrics, such as the

distribution of opcodes, or a rolling entropy of the different

code and data sections. This information is used for statistical

purposes, but also integrated in other analysis components, for

instance to identify anti-analysis behaviors or packed samples.

The second task of the static analysis phase consists of

combining the information extracted so far from the ELF

headers and the binary code analysis to identify likely packed

applications (see Section V-E for more details). Binaries that

could be statically unpacked (e.g., in the common case of UPX)

were processed at this stage and the result fed back to be

statically analyzed again. Samples that we could not unpack

statically were marked in the database for a subsequent more

fine-grained dynamic attempt.

D. Dynamic Analysis

We performed two types of dynamic analysis in our study:

a five-minute execution inside an instrumented emulator, and

a custom packing analysis and unpacking attempt. For the

emulation, we implemented two types of dynamic sandboxes:

a KVM-based virtualized sandbox with hardware support for

x86 and x86-64 architectures, and a set of QEMU-based

emulated sandboxes for ARM 32-bit little-endian, MIPS 32-

bit big-endian, and PowerPC 32-bit. These five sandboxes

were nested inside an outer VM dedicated to dispatch each

sample depending on its architecture. Our system also main-

tained several snapshots of all VMs, each corresponding to a

different configurations to choose from (e.g., execution under

user or root accounts and glibc or uClibc setup). All VMs

were equipped with additional libraries, the list of which was

collected during the static analysis phase, as well as popular

loaders (such as the uClibc commonly used in embedded

systems).

For the instrumentation we relied on SystemTap [8] to

implement kernel probes (kprobes) and user probes (uprobes).

164



While, according to its documentation, SystemTap should be

supported on a variety of different architectures (such as x86,

x86-64, ARM, aarch64, MIPS, and PowerPC), in practice we

needed to patch its code to support ARM and MIPS with

o32 ABI. Our patches include fixes on syscall numbers, CPU

registers naming and offsets, and the routines required to

extract the syscall arguments from the stack. We designed our

SystemTap probes to collect every system call, along with its

arguments and return value, and the instruction pointer from

which the syscall was invoked. We also recompiled the glibc
to add uprobes designed to collect, when possible, additional

information on string and memory manipulation functions.

At the end of the execution, each sandbox returns a text

file containing the full trace of system calls and userspace

functions. This trace is then immediately parsed to identify

useful feedback information for the sandbox. For example, this

preliminary analysis can identify missing components (such as

libraries and loaders) or detect if a sample tested its user per-

missions or attempted to perform an action that failed because

of insufficient permissions. In this case, our system would

immediately repeat the execution of the sample, this time

with root privileges. As explained in Section V-D, we later

compare the two traces collected with different users as part of

our differential analysis to identify how the sample behavior

was affected by the privilege level. Finally, the preliminary

trace analysis can also report to the analyst any error that

prevented the sample to run in our system. As an example of

these warnings, we encountered a number of ARM samples

that crashed because of a four-byte misalignment between

the physical and virtual address of their LOAD segments.

These samples were probably designed to infect an ARM-

based system whose kernel would memory map segments by

considering their physical address, something that does not

happen in common desktop Linux distributions. We extended

our system with a component designed to identify these cases

by looking at the ELF headers and fix the data alignment before

passing them to the dynamic analysis stage.

To avoid hindering the execution and miss important code

paths, we gave samples partial network access, while mon-

itoring the traffic for signs of abuse. Although not an ideal

solution, a similar approach has been previously adopted in

other behavioral analysis experiments [4], [9] as it is the only

way to observe the full behavior of a sample.

Our system also record PCAP files of the network traffic,

due to space limitations we will not discuss their analysis

as this is the only aspect of Linux-based malware that was

already partially studied in previous works [4]. Finally, to

dynamically unpack unknown UPX variants we developed a

tool based on Unicorn [10]. The system emulates instructions

on multiple architectures and behaves like a tiny kernel that

exports the limited set of system calls used by UPX during

unpacking (supporting a combination of different system call

tables and system call ABIs). As we explain in Section V-E,

this approach allowed us to automatically unpack all but three

malware samples in our dataset.

TABLE I
DISTRIBUTION OF THE 10,548 DOWNLOADED SAMPLES ACROSS

ARCHITECTURES

Architecture Samples Percentage

X86-64 3018 28.61%
MIPS I 2120 20.10%
PowerPC 1569 14.87%
Motorola 68000 1216 11.53%
Sparc 1170 11.09%
Intel 80386 720 6.83%
ARM 32-bit 555 5.26%
Hitachi SH 130 1.23%
AArch64 (ARM 64-bit) 47 0.45%
others 3 0.03%

IV. DATASET

Our final dataset, after the filtering stage, consisted of 10,548

ELF executables, covering more than ten different architectures

(see Table I for a breakdown of the collected samples). Note

again how the distribution differs from other datasets collected

only by using honeypots: x86, ARM 32-bit, and MIPS 32-bit

covered 75% of the data used by Antonakakis et al. [4] on the

Mirai botnet, but only account for 32% of our samples.

We report detailed statistics about the distribution of samples

in our dataset in Appendix. Here we just want to focus on

their broad variety and on the large differences that exist

among all features we extracted in our database. For example,

our set of Linux-based malware vary considerably in size,

from a minimum of 134 bytes (a simple backdoor) to a

maximum of 14.8 megabytes (a botnet coded in Go). IDA

Pro was able to recognize (in dynamically linked binaries)

from a minimum of zero (in two samples) to a maximum of

5685 unique functions. Moreover, we extracted from the ELF

header of dynamically linked malware the symbols imported

from external libraries—which can give an idea of the most

commonly used functionalities. Most samples import between

10 and 100 symbols. Interestingly, there are more than 10% of

the samples that use malloc but never use free. And while

socket is one of the most common functions (confirming the

importance that interconnected devices have nowadays) less

than 50% of the binaries requests file-based routines (such as

fopen). Finally, entropy plays an important role to identify

potential packers or encrypted binary blobs. The vast majority

of the binaries in our dataset has entropy around six, a common

value for compiled but not packed code. However, one sample

had entropy of only 0.98, due to large blocks of null bytes

inserted in the data segment.

A. Malware Families

The AVClass tool was able to associate a family (108 in

total) to 83% of the samples in our dataset. As expected, bot-

nets, often dedicated to run DDoS attacks, dominate the Linux-

based malware landscape—accounting for 69% of our samples

spread over more than 25 families. One of the reasons for this

prevalence is that attackers often harvest poorly protected IoT

devices to join large remotely controlled botnets. This task is
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TABLE II
ELF HEADER MANIPULATION

Technique Samples Percentage

Segment header table pointing beyond file data 1 0.01%
Overlapping ELF header/segment 2 0.02%
Wrong string table index (e_shstrndx) 60 0.57%
Section header table pointing beyond file data 178 1.69%

Total Corrupted 211 2.00%

greatly simplified by the availability of online services like

Shodan [11] or scanning tools like ZMap [12] that can be

used to quickly locate possible targets. Moreover, while it may

be difficult to monetize the compromise of small embedded

devices that do not contain any relevant data, it is still easy to

combine their limited power to run large-scale denial of service

attacks. Another possible explanation for the large number of

botnet samples in our dataset is that the source code of some

of these malware family is publicly available—resulting in a

large number of variations and copycat software.

Despite their extreme popularity, botnets are not the only

form of Linux-based malware. In fact, our dataset contains also

thousands of samples belonging to other categories, including

backdoors, ransomware, cryptocurrency miners, bankers, tradi-

tional file infectors, privilege escalation tools, rootkits, mailers,

worms, RAT programs used in APT campaigns, and even CGI-

based binary webshells. While these malware dominates the

number of families in our dataset, many of them exist in a

single variant, thus resulting in a lower number of samples.

While we may discuss particular families when we present

our analysis results, in the rest of the paper we prefer to

aggregate figures by counting individual samples. This is

because even though samples in the same family may share

a common goal and overall structure, they can be very diverse

in the individual low-level techniques and tricks they employ

(e.g., to achieve persistence or obfuscate the program code).

We will return to this aspect of Linux malware and discuss its

implications in Section VI.

V. UNDER THE HOOD

In this section we present a detailed overview of a number

of interesting behaviors we have identified in Linux malware

and, when possible, we provide detailed statistics about the

prevalence of each of these aspects. Our goal is not to

differentiate between different classes of malware or different

malware families (i.e., to distinguish botnets from backdoors

from ransomware samples), but instead to focus on the tricks

and techniques commonly used by malware authors—such

as packing, obfuscation, process injection, persistence, and

evasion attempts. To date, this is the most comprehensive

discussion on the topic, and we hope that the insights we offer

will help to better understand how Linux-based malware works

and will serve as a reference for future research focused on

improving the analysis of this type of malware.

TABLE III
ELF SAMPLES THAT CANNOT BE PROPERLY PARSED BY KNOWN TOOLS

Program Errors on Malformed Samples

readelf 2.26.1 166 / 211
GDB 7.11.1 157 / 211
pyelftools 0.24 107 / 211
IDA Pro 7 - / 211

A. ELF headers Manipulation

The Executable and Linkable Format (ELF) is the standard

format used to store (among others) all Linux executables. The

format has a complex internal layout, and tampering with some

of its fields and structures provides attackers a first line of

defense against analysis tools.

Some fields, such as e_ident (which identifies the

type of file), e_type (which specifies the object type), or

e_machine (which contains the machine architecture), are

needed by the kernel even before the ELF file is loaded in

memory. Sections and segments are instead strictly dependent

on the source code and the compilation process, and are needed

respectively for linking and relocation purposes and to tell the

kernel how the binary must be loaded in memory for program

execution.

Our data shows that malware developers often tamper with

the ELF headers to fool the analyst or crash common analysis

tools. In particular, we identified two classes of modifications:

those that resulted in anomalous files (but that still follow the

ELF specifications), and those that produced invalid files—

which however can still be properly executed by the operating

system.

Anomalous ELF. The most common example in the first

category (5% of samples in our dataset) consists in removing

all information about the ELF sections. This is valid according

to the specifications (as sections information are not used at

runtime), but it is an uncommon case that is never generated

by traditional compilers. Another example of this category

consists of reporting false information about the executable.

For example, a Linux program can report a different operating

system ABI (e.g., FreeBSD) and still be executed correctly

by the kernel. Samples of the Mumblehard family report in

the header the fact that they require FreeBSD, but then test

the system call table at runtime to detect the actual operating

system and execute correctly under both FreeBSD and Linux.

For this reason, in our experiments we did not trust such

information and we always tried to execute a binary despite

the values contained in its identification field. If the required

ABI was indeed different, the program would crash at run-

time trying to execute invalid system calls—a case that was

recognized by our system to filter out non-Linux programs.

Invalid ELF. This category includes instead those samples

with malformed or corrupted sections information (2% of sam-

ples in our dataset), typically the result of an invalid e_shoff
(offset of the section header table), e_shnum (number of

entries in the section header table), or e_shentsize (size
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of section entries) fields in the ELF header. We also found

evidence of samples exploiting the ELF header file format

to create overlapping segments header. For instance, three

samples belonging to the Mumblehard family declared a single

segment starting from the 44th byte of the ELF header itself and

zeroed out any field unused at runtime. Table II summarizes

the most common ELF manipulation tricks we observed in our

dataset.

Impact on Userspace Tools. To measure the consequences

of the previously discussed transformations, in Table III we

report how popular tools (used to work with ELF files) react to

unusual or malformed files. This includes readelf (part of GNU

Binutils), pyelftools (a convenient Python library to parse and

analyze ELF files), GDB (the de-facto standard debugger on

Linux and many UNIX-like systems), and IDA Pro 7 (the latest

version, at the time of writing, of the most popular commercial

disassembler, decompiler, and reverse engineering tool).

Our results show that all tools are able to properly process

anomalous files, but unfortunately often result in errors when

dealing with invalid fields. For example, readelf complained

for the absence of a valid table on hundreds of sample, but

was able to complete the parsing of the remaining fields in

the ELF header. On the other side, pyelftools denies further

analysis if the section header table is corrupted, while it can

instead parse ELF files if the table is declared as empty.

Because of this poor management of erroneous conditions, for

our experiments we decided to write our own custom ELF

parser, which was specifically designed to work in presence of

unusual settings, inconsistencies, invalid values, or malformed

header information.

Despite its widespread use in the *nix world, GDB showed a

severe lack of resilience in dealing with corrupted information

coming from a malformed section header table. The presence

of an invalid value results in GDB not being able to recognize

the ELF binary and in its inability to start the program.

Finally, IDA Pro 7 was the only tool we used in our analysis

pipeline that was able to handle correctly the presence of any

corrupted section information or other fields that would not

affect the program execution.

B. Persistence

Persistence involves a configuration change of the infected

system such that the malicious executable will be able to

run regardless of possible reboot and power-off operations

performed on the underlying machine. This, along with the

ability to remain hidden, is one of the first objectives of

malicious code.

A broad and well-documented set of techniques exists for

malware authors to achieve persistence on Microsoft Windows

platforms. The vast majority of these techniques relies on the

modification of Registry keys to run software at boot, when

a user logs in, when certain events occurs, or to schedule

particular services. Linux-based malware needs to rely on

different strategies, which are so far more limited both in

number and in nature. We group the techniques that we

observed in our dataset in four categories, described next.

TABLE IV
ELF BINARIES ADOPTING PERSISTENCE STRATEGIES

Path Samples
w/o root w/ root

/etc/rc.d/rc.local - 1393
/etc/rc.conf - 1236
/etc/init.d/ - 210
/etc/rcX.d/ - 212
/etc/rc.local - 11
systemd service - 2

˜/.bashrc 19 8
˜/.bash_profile 18 8
X desktop autostart 3 1

/etc/cron.hourly/ - 70
/etc/crontab - 70
/etc/cron.daily/ - 26
crontab utility 6 6

File replacement - 110
File infection 5 26

Total 1644 (21.10%)

Subsystems Initialization. This appears to be the most com-

mon approach adopted by malware authors and takes advantage

of the well known Linux init system. Table IV shows that

more than 1000 samples attempted to modify the system rc
script (executed at the end of each run-level). Instead, 210

samples added themselves under the /etc/init.d/ folder

and then created soft-links to directories holding run-level

configurations. Overall, we found 212 binaries displacing links

from /etc/rc1.d to /etc.rc5.d, with 16 of them using

the less common run-levels dedicated to machine halt and

reboot operations. Note how malicious programs still largely

rely on the System-V init system and only two samples in

our dataset supported more recent initialization technologies

(e.g., systemd). More important, this type of persistence only

works if the running process has privileged permissions. If

the user executing the ELF is not root or a user under

privileged policies, it is usually impossible to modify services

and initialization configurations.

Time-based Execution. This technique is the second choice

commonly used by malware and relies on the presence of cron,

the time-based job scheduler for Unix systems. Malicious ELF

files try to modify, with success when running under adequate

higher privileges, cron configuration files to get scheduled ex-

ecution at a fixed time interval. As for subsystem initialization,

time-based persistence will not work if the malware is launched

by unprivileged users unless the sample invokes the system

utility crontab (a SUID program specifically designed to mod-

ify configuration files stored under /var/spool/cron/).

File Infection and Replacement. Another approach for mal-

ware to maintain a foothold in the system is by replacing

(or infecting) applications that already exist in the target.

This includes both a traditional virus-like behavior (where the

malware locates and infect other ELF files without a strategy)

as well as more targeted approaches that subvert the original

functionalities of specific system tools.
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TABLE V
ELF PROGRAMS RENAMING THE PROCESS

Process name Samples Percentage

sshd 406 5.21%
telnetd 33 0.42%
cron 31 0.40%
sh 14 0.18%
busybox 11 0.14%
other tools 22 0.28%

empty 2034 26.11%

other * 973 12.49%
random 618 7.93%

Total 4091 52.50%

* Names not representing system utilities

Our dynamically analysis reports allow us to observe infec-

tion and replacement of system and user files. Examples in this

category are samples in the family EbolaChan, which inject

their code at the beginning of the ls tool and append the origi-

nal code after the malicious data. Another example are samples

of the RST, Sickabs and Diesel families, which still use a 20

years old ELF infections techniques [13]. The first group limits

the infection to other ELF files located in the current working

directory, while the second adopts a system-wide infection

that also targets binaries in the /bin/ folder. Interestingly,

samples of this family were first observed in 2001, according

to a Sophos report they were still widespread in 2008 [14], and

our study shows that they are still surprisingly active today. A

different approach is taken by samples in the Gates family,

which fully replace system tools in /bin/ or /usr/bin/
folders (e.g., ps and netstat) after creating a backup copy

of the original code in /usr/bin/dpkgd/.

User Files Alteration. As shown in the middle part of

Table IV, very few samples modify configuration files in the

user home directory such as shell configurations. Malware

writers adopting this method can ensure persistence at user

level, but other Linux users, beside the infected one, will not

be affected by this persistence mechanism. While the most

common, changes to the shell configuration are not the only

form of per-user persistency. Few samples (such as those in

the Handofthief family) that target desktop Linux installations,

modified instead the .desktop startup files used by the

windows manager.

Table IV reports a summary of the amount of samples using

each technique. Surprisingly, only 21% of our ELF files imple-

mented at least one persistence strategy. However, samples that

do try to be persistent often try multiple techniques in a row

to reach their objective. As an example, in our experiments

we noticed that user files alteration was a common fallback

mechanism when the sample failed to achieve system-wide

persistency.

C. Deception

Stealthy malware may try to hide their nature by assuming

names that look genuine and innocuous at a first glance, with

the objective of tricking the user to open an apparently benign

TABLE VI
ELF SAMPLES GETTING PRIVILEGES ERRORS OR

PROBING IDENTITIES

Motivation Samples Percentage

EPERM error 986 12.65%
EACCES error 716 9.19%

Query user identity * 1609 20.65%

Query group identity * 877 11.26%

Total 2637 33.84%

* Also include checks on effective and real identity

TABLE VII
BEHAVIORAL DIFFERENCES BETWEEN USER/ROOT ANALYSIS

Different behavior Samples Percentage

Execute privileged shell command 579 21.96%
Drop a file into a protected directory 426 16.15%
Achieve system-wide persistence 259 9.82%
Tamper with Sandbox 61 2.31%
Delete a protected file 47 1.78%
Run ptrace request on another process 10 0.38%

program, or avoid showing unusual names in the list of running

processes.

Overall, we noted that this behavior, already common on

Windows operating systems, is also widespread on Linux-

based malware. Table V shows that over 50% of the samples

assumed different names once in memory, and also reports

the top benign application that are impersonated. In total

we counted more than 4K samples invoking the system call

prctl with request PR_SET_NAME, or simply modifying

the first command line argument of the program (the program

name). Out of those, 11% adopted names taken from common

utilities. For example, samples belonging to the Gafgyt family

often disguise as sshd or telnetd. It is also interesting to

discuss the difference between the two renaming techniques.

The first (based on the prctl call) results in a different

process name listed in /proc/<PID>/status (and used by

tools like pstree), while the second modifies the information

reported in /proc/<PID>/cmdline (used by ps). Quite

strangely, none of the malware in our dataset combined the

two techniques (and therefore could all be easily detected by

looking for name inconsistencies).

The remaining 88% of the samples either adopted an empty

name, a name of a fictitious (but not existing) file, or a random-

looking name often seeded by a combination of the current

time and the process PID. This last behavior, implemented by

some of the Mirai samples, results in the fact that the malicious

process assumes a different name at every execution.

D. Required Privileges

Our tests show that the distinction between administrator

(root) and normal user is very important for Linux-based

malware. First, malicious samples can perform different actions

and show a different behavior when they are executed with

super-user privileges. Second, especially when targeting low-
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end embedded systems or IoT devices, malware may even be

designed to run as root—and thus fail to execute if analyzed

with more limited privileges.
Therefore, we first executed every sample with normal user

privileges. If, during the execution, we detected any attempt

to retrieve the user or group identities (which could be used

by the program to decide the malware’s next actions) or to

access any resource that returned a EPERM or EACCES errors,

we repeated the analysis by running the sample with root
privileges. This was the case for 2637 samples (25% of the

dataset) and in 89% of them we detected differences in the

sample behavior extracted from the two execution traces.
Table VII presents a list of behaviors that were executed

when running as root but were not observed when running

as a normal user. Among these, privileged shell commands

and operations on files are predominant, with malware using

elevated privileges to create or delete files in protected folders.

For instance, samples of the Flooder and IoTReaper families

hide their traces by deleting all log files in /var/log,

while samples of the Gafgyt family only delete last login

and logout information (/var/log/wtmp). Moreover, in few

cases malware running as root were able to tamper with the

sandboxed execution: we found binaries that, upon detection

of the emulated execution environment, would kill the SSH

daemon or even delete the entire file system.
We now look in more details at two specific actions that are

determined by the execution privileges: privileges escalation

exploits and interaction with the OS kernel.

Privileges Escalation. On the one hand, one of the advantages

of using kernel probes for dynamic analysis is its ability to

trace functions in the OS kernel—making possible for us

to detect signs of successful exploitations. For example, by

monitoring commit_creds we can detect when a new set

of credentials has been installed on a running task. On the

other hand, the sandboxes built to host the execution of each

sample were deployed with up-to-date and fully-patched Linux

operating systems—which prevented binaries from exploiting

old vulnerabilities.
According to our trace analysis, there was no evidence

of samples that successfully elevated their privileges inside

our machines, or that had been able to perform privileged

actions under user credentials. Regarding older (and therefore

unsuccessful) exploits, we developed custom signatures to

identify the ten most common escalation attacks based on

known vulnerabilities in the Linux kernel1, for which an

exploitation proof-of-concept is available to the public. Our

tests revealed that CVE-2016-5195 was the most frequently

used vulnerability, with a total of 52 ELF programs that tried

to exploit it in our sandbox. We also detected five attempts to

exploit CVE-2015-1328, while the remaining eight checks did

not return any positive match.

Kernel Modules. System calls tracing allows our system to

track attempts to load or unload a kernel module, especially

1CVE-2017-7308, CVE-2017-6074, CVE-2017-5123, CVE-2017-1000112,
CVE-2016-9793, CVE-2016-8655, CVE-2016-5195, CVE-2016-0728, CVE-
2015-1328, CVE-2014-4699.

TABLE VIII
ELF PACKERS

Process name Samples Percentage

Vanilla UPX 189 1.79%
Custom UPX Variant 188 1.78%

- Different Magic 129
- Modified UPX strings 55
- Inserted junk bytes 126
- All of the previous 16

Mumblehard Packer 3 0.03%

when samples are executed with root privileges. Interestingly,

among the 2,637 malware samples we re-executed with root
privileges, only 15 successfully loaded a kernel module and

none of them performed an unload procedure. All these cases

involved the standard ip_tables.ko, necessary to setup IP

packet filter rules. We also identified 119 samples, belonging

to the Gates or Elknot families that attempted to load a custom

kernel module but failed as the corresponding .ko file was not

present during the analysis.2

E. Packing & Polymorphism

Runtime packing is at the same time one of the most com-

mon and one of the most sophisticated obfuscation techniques

adopted by malware writers. If properly implemented, it com-

pletely prevents any attempt to statically analyze the malware

code and it also considerably slows down an eventual manual

reverse engineering effort. While hundreds of commercial, free,

and underground packers exist for Microsoft Windows, things

are different in the Linux world: only a handful of ELF packers

have been proposed so far [15]–[17], and the vast majority

of them are proof-of-concept projects. The only exception is

UPX, a popular open source compression packer introduced in

1998 to reduce the size of benign executables, which is freely

available for many operating systems.

Automatic recognition and analysis of packers is a subtle

problem, and it has been the focus on many academic and

industrial studies [18]–[22]. For our experiment, we relied on

a set of heuristics based on the file segments entropy and on the

results of the static analysis phase (i.e., number of imported

symbols, percentage of code section correctly disassembled,

and total number of functions identified) to flag samples that

were likely packed. Moreover, since UPX-like variants seem

to dominate the scene, we decided to add to our pipeline a set

of custom analysis routines to identify possible UPX variants

and a generic multi-architecture unpacker that can retrieve the

original code of samples packed with these techniques.

UPX Variations. Vanilla UPX and its variants are by far the

most prevalent form of packing in our dataset. As shown in Ta-

ble VIII, out of 380 packed binaries only three did not belong

to this category. The table also highlights the modifications

made to the UPX format with the goal of breaking the standard

2This is a well-known problem affecting dynamic malware analysis systems,
as samples are collected and submitted in isolation and can thus miss external
components that were part of the same attack.
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TABLE IX
TOP TEN COMMON SHELL COMMANDS

EXECUTED

Shell command Samples Percentage

sh 400 5.13%
sed 243 3.12%
cp 223 2.86%
rm 216 2.77%
grep 214 2.75%
ps 131 1.68%
insmod 124 1.59%
chmod 113 1.45%
cat 93 1.19%
iptables 84 1.08%

UPX unpacking tool. This includes a modification to the magic

number (so that the file does not appear to be packed with UPX

anymore), the modification of UPX strings, and the insertion

of junk bytes (to break the UPX utility). However, all these

samples share the same underlying packing structure and the

same compression algorithm—showing that malware writers

simply applied “cosmetic” variations to the open source UPX

code.

Custom packers. Linux does not count on a large variety

of publicly available packers and UPX is usually the main

choice. However, we detected three samples (all belonging

to the Mumblehard family) that implemented some form of

custom packing, where a single unpacking routine is executed

before transferring the control to the unpacked program [23].

In one case, the malware started a separate process running

a perl interpreter and then used the main process to decrypt

instructions and feed them into the interpreter.

F. Process Interaction

This section covers the techniques used by Linux malware to

interact with child processes or other binaries already installed

or running in the system.

Multiple Processes. 25% of our samples consists of a single

process, 9% spawn a new process, 43% involves three pro-

cesses in total (largely due to the “double-fork” pattern used

to daemonize a program), while the remaining 23% created a

higher number of separate processes (up to 1684).

Among the samples that spawn multiple processes we find

many popular botnets such as Gafgyt, Tsunami, Mirai, and

XorDDos. For instance, Gafgyt creates a new process for every

attempt to connect to its command and control (C&C) server.

XorDDos, instead, creates parallel DDos attack processes.

Shell Commands. 13% of the samples we analyzed inside

our sandbox executed at least one external shell command.

In total, we registered the execution of 93 unique command-

line tools—the most prevalent of which are summarized in

Table IX. Commands such as sed, cp, and chmod are often

executed to achieve persistence on the target system, while

rm is used to unlink the sample itself or to delete the bash
history file. Several malware families also try to kill previous

infections of the same malware. Hijami, the counter-malware

TABLE X
TOP TEN PROC FILE SYSTEM ACCESSES BY

MALICIOUS SAMPLES

Path Samples Percentage

/proc/net/route 3368 43.22%
/proc/filesystems 649 8.33%
/proc/stat 515 6.61%
/proc/net/tcp 498 6.39%
/proc/meminfo 354 4.54%
/proc/net/dev 346 4.44%
/proc/<PID>/stat 320 4.11%
/proc/cmdline 278 3.57%
/proc/<PID>/cmdline 259 3.32%
/proc/cpuinfo 226 2.90%

to “vaccinate” Mirai, uses iptables to close and open network

ports, while Mirai tries to close vulnerable ports already used

to infect the system.

Process Injection An attacker may want to inject new code

into a running process to change its behavior, make the sample

more difficult to debug, or to hook interesting functions in

order to steal information.

Our system monitors three different techniques a process

can use to write to the memory of another program: 1)

a ptrace syscall that requests the PTRACE_POKETEXT,

PTRACE_POKEDATA, or PTRACE_POKEUSER functionali-

ties; 2) a PTRACE_ATTACH request followed by read/write

operations to /proc/<TARGET_PID>/mem; and 3) an in-

vocation to the process_vm_writev system call.

It is important to mention that the Linux kernel has been

hardened against ptrace calls in 2010. Since then it is

not possible to use ptrace on processes that are not direct

descendant of the tracer process, unless the unprivileged user is

granted the CAP_SYS_PTRACE capability. The same capabil-

ity is required to execute the process_vm_writev call, a

new system call introduced in 2012 with kernel 3.2 to directly

transfer data between the address spaces of two processes.

We found a sample performing injection by using the

first technique mentioned above. It injects a dynamic li-

brary in every active process that uses libc (but ex-

cludes gnome-session, dbus and pulseaudio). In

the injected payload the malware uses the libc function

__libc_dlopen_mode to load dynamic objects at run-

time. This function is similar to the well-known dlopen,

which is less preferable because implemented in libdl, not

already included in the libc. After the new code is mapped

in memory, the malware issues ptrace requests to backup

the registers values of the victim process, hijack the control

flow to execute its malicious behavior, and restore the original

execution context.

G. Information Gathering

Information gathering is an important step of malware

execution as the collected information can be used to detect

the presence of a sandbox, or to control the execution of the

sample. Data stored on the system can also be exfiltrated to a

remote location, as it often happens with programs controlled
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TABLE XI
TOP TEN SYSFS FILE SYSTEM ACCESSES BY MALICIOUS SAMPLES

Path Samples Percentage

/sys/devices/system/cpu/online 338 4.34%
/sys/devices/system/node/node0/meminfo 26 0.33%
/sys/module/x tables/initstate 22 0.28%
/sys/module/ip tables/initstate 22 0.28%
/sys/class/dmi/id/sys vendor 18 0.23%
/sys/class/dmi/id/product name 18 0.23%
/sys/class/net/<interface>tx queue len 9 0.12%
/sys/firmware/efi/systab 3 0.04%
/sys/devices/pci0000:00/<device> 3 0.04%
/sys/bus/usb/devices/<device> 2 0.03%

TABLE XII
TOP TEN ACCESSES ON /ETC/ BY MALICIOUS

SAMPLES

Path Samples Percentage

/etc/rc.d/rc.local 1393 17.88%
/etc/rc.conf 1236 15.86%
/etc/resolv.conf 641 8.23%
/etc/nsswitch.conf 453 5.81%
/etc/hosts 423 5.43%
/etc/passwd 244 3.13%
/etc/host.conf 201 2.58%
/etc/rc.local 170 2.18%
/etc/localtime 165 2.12%
/etc/cron.deny 101 1.30%

by a C&C server. In this section we look at which portions of

the file system are inspected by malware and discuss security-

relevant paths analysts should monitor when inspecting new

malware strains.

Proc and Sysfs File Systems. The proc and sysfs virtual

file systems contain, respectively, runtime system informa-

tion on processes, system and hardware configurations, and

information on the kernel subsystems, hardware devices, and

kernel drivers. We divide the type of information collected

by malware samples in three macro categories: system con-

figuration, processes information, and network configuration.

The network category is the most common in our dataset with

more than 3000 samples, as shown in Table X, which accessed

/proc/net/route (system routing table) to get the list

of active network interfaces with their relative configuration.

Additional information is extracted from /proc/net/tcp
(active TCP sockets) and /proc/net/dev (sent and re-

ceived packets). Moreover, 111 samples in our dataset read

/proc/net/arp to retrieve the system ARP table. For the

sysfs counterpart, reported in Table XI, we found accesses

to /sys/class/net/ to get the transmission queue length,

a relevant information for DDoS attacks.

The system configuration category is the second most com-

mon, with hundreds of samples that extracted the amount of

installed memory, the number of available CPU cores, and

other CPU characteristics. The files used for sandbox detection

and evasion also fall into this category (see Subsection V-H)

as well as the lists of USB and PCI connected devices.

This category also includes accesses to /proc/cmdline to

TABLE XIII
ELF PROGRAMS SHOWING EVASIVE FEATURES

Type of evasion Samples Percentage

Sandbox detection 19 0.24%

Processes enumeration * 259 3.32%
Anti-debugging 63 0.81%
Anti-execution 3 0.04%
Stalling code 0 -

* Not used for evasion but candidate behavior

TABLE XIV
FILE SYSTEM PATHS LEADING TO SANDBOX DETECTION

Path Detected Environments #

/sys/class/dmi/id/product name VMware/VirtualBox 18
/sys/class/dmi/id/sys vendor QEMU 18
/proc/cpuinfo CPU model/hypervisor flag 1
/proc/sysinfo KVM 1
/proc/scsi/scsi VMware/VirtualBox 1
/proc/vz and /proc/bc OpenVZ container 1
/proc/xen/capabilities XEN hypervisor 1
/proc/<PID>/mountinfo chroot jail 1

retrieve the name of the running kernel image.

Another common type of information gathering focuses

on processes enumeration. This is used to prevent multiple

executions of the same malware (e.g., by the Mirai family),

or to identify other relevant programs running on the target

machine. As reported in Table IX, we found 131 samples

executing the shell command ps, used as a fast interface to

get the list of running processes. For example, 67 samples of

the BitcoinMiner family invoke ps and then try to kill other

crypto-miner processes that may interfere with their malicious

activity.

Configuration Files. System configuration files are contained

in the /etc/ folder. As reported in Table XII, configuration

files required to achieve persistence are the ones accessed more

often. Network-related configuration files also appear to be

popular, with /etc/resolv.conf (the DNS resolver) or

/etc/hosts (the mapping between hosts and IP addresses).

Among the top entries we also find /etc/passwd (list of

registered accounts). For instance, Flooder samples use it to

check for the presence of a backdoor account on the system.

If not found, they add a new user by directly writing to

/etc/passwd and /etc/shadow.

H. Evasion

The purpose of evasion is to hide the malicious behavior and

remain undetected as long as possible. This typically requires

the sample to detect the presence of analysis tools, or to distin-

guish whether it is running within an analysis environment or

on a real target device. We now present more details about the

different evasion techniques, whose prevalence in our dataset

is summarized in Table XIII.

Sandbox Detection. Our string comparison instrumentation

detected a number of programs that attempted to detect the

presence of a sandbox by comparing different pieces of
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information extracted from the system with strings such as

“VMware” or “QEMU.” Table XIV reports the files where

the information was collected. Ten samples who tested the

sys_vendor file were able to detect our analysis environ-

ment when executed with root privileges (as we restricted

the permissions to files exposing the motherboard DMI zone

information reported by the kernel). We also identified sam-

ples attempting to detect chroot()-based jails (by com-

paring /proc/1/mountinfo with /proc/<malware
PID>/mountinfo), OpenVZ containers [24], and even one

binary (from the Handofthief family) trying to evade IBM

mainframes and IBM’s virtualization technology. It is also in-

teresting to note how some samples simply decide to exit when

they detect they are running in a virtual environment, while

other adopt a more aggressive (but less stealthy) approach,

such as trying to delete the entire file system.

Processes Enumeration. It is common in Windows to evade

analysis by verifying the presence of a particular set of

processes, or inspecting the goodness and authenticity of

companion processes that live on the system. We investigated

whether Linux malware samples already employ similar tech-

niques and found 259 samples that perform a full scan of

the /proc/<PID> directories. However, none of the samples

appeared to perform these scans for evasive purposes but

instead to test if the machine was already infected or to identify

target processes to kill (as we explain in Section V-F).

Anti-Debugging. The most common anti-debugging technique

is based on the ptrace system call that provides to debuggers

the ability to “attach” to a target process to programmati-

cally inspect and interact with it. As a given process can

only have at most one debugger attached to it, one com-

mon evasion technique used by malware consists of invoking

the ptrace system call with flags PTRACE_TRACEME or

PTRACE_ATTACH on themselves to detect if another debugger

is already attached or prevent it to do so while the sample

is running. We found 63 samples employing this mechanism.

We also identified one sample checking the presence of the

LD_PRELOAD environment variable, which is often used to

override functions in dynamically loaded libraries (with the

goal of dynamically instrumenting their execution).

It is important to note that the tracing system we use

in our sandbox is based on kernel probes (as described in

section III-D), and it cannot be detected or tampered with by

using anti-debugging techniques.

Anti-Execution. Our experiments detected samples belonging

to the DnsAmp malware family that did not manifest any

behavior, except from comparing their own file name with

a hardcoded string. A closer look at these samples showed

that the malware authors used this trick as an evasive solu-

tion, as many malware collection infrastructures and analysis

sandboxes often rename the files before their analysis.

Stalling Code. Windows malware is known to often employ

stalling code that, as the name suggests, is a technique used to

delay the execution of the malicious behavior – assuming an

analysis sandbox would only run each sample for few minutes.

TABLE XV
TOP 20 LIBRARIES INCLUDED BY DYNAMICALLY LINKED EXECUTABLES

Library Percentage Library Percentage

glibc 74.21% libscotch 1.23%
uclibc 24.24% libtinfo 0.75%
libgcc 9.74% libgmp 0.75%
libstdc++ 7.12% libmicrohttpd 0.64%
libz 5.24% libkrb5 0.64%
libcurl 3.64% libcomerr 0.64%
libssl 2.35% libperl 0.59%
libxml2 1.44% libhwloc 0.59%
libjansson 1.39% libedit 0.54%
libncurses 1.28% libopencl 0.54%

We investigated whether Linux malware is already using

simple variants of this technique by scanning our execution

traces for samples using time- or sleep-related functions. We

found that 64% of the binaries we analyzed make use of the

nanosleep system call, with values ranging from less than

a second to higher than three hours. However, none of them

appear to use these delays to stall their execution (in fact, our

traces contained clear signs of their behavior), but rather to

coordinate child processes or network communications.

I. Libraries

There are two main ways an executable can make use

of libraries. In the first (and more common) case, the exe-

cutable is dynamically linked and external libraries are loaded

at run-time, permitting code reuse and localized upgrades.

Conversely, an executable that is statically linked includes

the object files of its libraries as part of its executable file—

removing any external dependency of the application and thus

making it more portable.

More than 80% of the samples we analyzed are statically

linked. Nevertheless, we note that only 24% of these samples

have been stripped from their symbols, with the remaining

ones often including even functions and variables names used

by developers. Similarly for dynamically linked samples in our

dataset, only 33% of them are stripped. We find this trend very

interesting as apparently malware developers lack motivation

to obfuscate their code against manual analysis—which is

in sharp contrast with the complexity of evasive Windows

malware.

Common Libraries. Table XV lists the dynamic libraries that

are most often imported by malware samples in our dataset.

This lists shows two important aspects. First, that while the

GNU C library (glibc) is (expectedly) the most requested

library, we found that 24% of samples link against smaller

implementations like uClibc, often used in embedded systems.

It is also interesting to see how almost 10% of the dataset links

against libgcc, a library used by the GCC compiler to handle

arithmetic operations that the target processor cannot perform

directly (e.g., floating-point and fixed-point operations). This

library is rarely used in the context of desktop environments,

but it is often used in embedded devices with architectures that

do not support floating point operations. The second interesting

aspect is that, while in total we identified more than 200
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different libraries, the distribution has a very long tail and it

drops very steeply. For instance, the tenth most popular library

is only used by 1% of the samples.

VI. INTRA-FAMILY VARIETY

In the previous section we described several characteristics

of Linux-based malware. For each of them, we presented

the number of samples instead of the count of families that

exhibited a given trait. This is because we noted that samples

belonging to the same family often had very different charac-

teristics, probably due to the availability of the source codes

for several classes of Linux malware.

As an example of this variety, we want to discuss the case

of a popular malware family, Tsunami, for which we have

743 samples in our dataset. Those samples are compiled for

nine different architectures, the most common being x86-64,

and the rarest being Hitachi SuperH. In total, 86% of them

are statically linked and 13% are stripped. Dynamically linked

Tsunami samples rely on different loaders, and their entropy

varies from 1.85 to 7.99. Out of the 19 samples with higher

entropy, one is packed with vanilla UPX while the other 18

use modified versions of the same algorithm.

This variability is not limited to static features. For instance,

looking at our dynamic traces we noted the use of different

persistence techniques with some samples only relying on

user-level approached and other using run-level scripts or cron
jobs for system-wide persistence. Concerning unprivileged and

privileged execution, only 15% of the Tsunami samples we

analyzed in our sandboxes tested the user privileges or got

privileges-related errors. Differences arise even in terms of

evasion: 17 samples contain code to evade the sandbox while

all the others did not include evasive functionalities.

VII. RELATED WORK

In the past two decades the security community has focused

almost exclusively on fighting malware targeting Microsoft

Windows. As a result, hundreds of papers have described

techniques to analyze PE binaries [25]–[28], detecting ongoing

threats [27], [29], [30], and preventing possible infection at-

tempts [31]–[33] on Windows operating systems. The commu-

nity also developed many analysis tools for dissecting threats

related to the Windows environment, ranging from dynamic

analysis solutions [34]–[37] to dissectors for file formats used

as attack vectors [38]–[40].

With the exception of mobile malware, non-Windows ma-

licious software did not receive the same level of atten-

tion. While the hacking community developed—almost two

decades ago—interesting techniques to implement malicious

ELF files [13], [41]–[44], rootkits [45], [46], and tools to

dissect them [47]–[49], none of them has seen vast adoption.

In fact, the security industry has only recently started looking

at ELF files—mainly driven by newsworthy cases like the

Mirai botnet [50] and Shellshock [51]. Many blog posts and

papers were published for the analysis and dissection of spe-

cific families [52]–[57], but these investigations were mainly

conducted by manual reverse engineering. Recent research by

Shazhad et al. [58] and by Bai et al. [59] extracts static features

from ELF binaries to train a classifier for malware detection.

Unfortunately, these works are not comprehensive, do not take

into account different architectures, or are easily evaded by

stripping a binary or by using packing.

Researchers have also started to explore dynamic analysis

for non-Windows malware only very recently. The few solu-

tions that are available at the moment support a limited number

of platforms or provide very limited analysis capabilities. For

example, Limon [60] is an analysis sandbox based on strace
(and thus easily detectable), and it only supports the analysis

of x86-flavored binaries. Sysdig [61] and PayloadSecurity [62]

are affected by similar issues and they also only work for

x86 binaries. Detux [63], instead, supports four different

architectures (i.e., x86, x86-64, ARM, and MIPS). However,

it only performs a very basic analysis by running readelf
and provides network dumps. Cuckoo sandbox [64] is another

available tool that supports the analysis of Linux samples.

However, the Cuckoo project only provides the external orches-

tration analysis framework, while the preparation of the various

sandbox images is left to the user. Last, in November 2017

VirusTotal announced the integration of the Tencent HABO

sandbox solution, which reportedly is able to analyze also

Linux-based malware [9]. Unfortunately, there is no public

report on how the system works and it currently works only

for x86 binaries.

One of the first systematic studies of IoT malware was done

by Pa et al. [65]. In their paper, they present a Telnet honeypot

to measure the current attack trends as well as the first sandbox

environment based on Qemu and OpenWRT called IoTBOX

for analyzing IoT malware. They showed the issue of IoT

devices exposing Telnet online and they collected few families

actively targeting this service. Similarly, Antonakakis et al. [4]

studied in detail a specific Linux malware family, the Mirai

botnet. They measure systematically the evolution and growth

of the botnet mainly from the network point of view. These

works are invaluable to the community, but only look at limited

aspects of the entire picture: the samples network behavior.

We believe that our work can complement these efforts and

provide a clearer overview of how Linux malware actually

works. Moreover, the datasets used in these previous studies

are not representative of the overall Linux malware, since they

were collected via telnet-based honeypots.

VIII. CONCLUSIONS

This paper presents the first comprehensive study of Linux-

based malware. We document the design and implementation

of the first analysis pipeline specifically tailored for Linux

malware, and we discuss the results of the first large-scale em-

pirical study on how Linux malware implements its malicious

behavior. While the complexity of current Linux malware is

not very high, we have identified a number of samples already

adopting techniques borrowed from their Windows counter-

parts. We believe these insights can be the foundation for more

systematic future works in the area, which is, unfortunately,

bound to have an ever-increasing importance.
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