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Abstract—We present AI2, the first sound and scalable ana-
lyzer for deep neural networks. Based on overapproximation,
AI2 can automatically prove safety properties (e.g., robustness)
of realistic neural networks (e.g., convolutional neural networks).

The key insight behind AI2 is to phrase reasoning about safety
and robustness of neural networks in terms of classic abstract
interpretation, enabling us to leverage decades of advances in
that area. Concretely, we introduce abstract transformers that
capture the behavior of fully connected and convolutional neural
network layers with rectified linear unit activations (ReLU), as
well as max pooling layers. This allows us to handle real-world
neural networks, which are often built out of those types of layers.

We present a complete implementation of AI2 together with
an extensive evaluation on 20 neural networks. Our results
demonstrate that: (i) AI2 is precise enough to prove useful
specifications (e.g., robustness), (ii) AI2 can be used to certify
the effectiveness of state-of-the-art defenses for neural networks,
(iii) AI2 is significantly faster than existing analyzers based on
symbolic analysis, which often take hours to verify simple fully
connected networks, and (iv) AI2 can handle deep convolutional
networks, which are beyond the reach of existing methods.

Index Terms—Reliable Machine Learning, Robustness, Neural
Networks, Abstract Interpretation

I. INTRODUCTION

Recent years have shown a wide adoption of deep neural

networks in safety-critical applications, including self-driving

cars [2], malware detection [44], and aircraft collision avoi-

dance detection [21]. This adoption can be attributed to the

near-human accuracy obtained by these models [21], [23].

Despite their success, a fundamental challenge remains:

to ensure that machine learning systems, and deep neural

networks in particular, behave as intended. This challenge

has become critical in light of recent research [40] showing

that even highly accurate neural networks are vulnerable

to adversarial examples. Adversarial examples are typically

obtained by slightly perturbing an input that is correctly

classified by the network, such that the network misclassifies

the perturbed input. Various kinds of perturbations have been

shown to successfully generate adversarial examples (e.g., [3],

[12], [14], [15], [17], [18], [29], [30], [32], [38], [41]). Fig. 1

illustrates two attacks, FGSM and brightening, against a digit

classifier. For each attack, Fig. 1 shows an input in the Original

column, the perturbed input in the Perturbed column, and the

pixels that were changed in the Diff column. Brightened pixels

∗Rice University, work done while at ETH Zurich.

Attack Original Perturbed Diff

FGSM [12], ε = 0.3

Brightening, δ = 0.085

Fig. 1: Attacks applied to MNIST images [25].

are marked in yellow and darkened pixels are marked in pur-

ple. The FGSM [12] attack perturbs an image by adding to it

a particular noise vector multiplied by a small number ε (in

Fig. 1, ε = 0.3). The brightening attack (e.g., [32]) perturbs

an image by changing all pixels above the threshold 1− δ to

the brightest possible value (in Fig. 1, δ = 0.085).

Adversarial examples can be especially problematic when

safety-critical systems rely on neural networks. For instance,

it has been shown that attacks can be executed physically

(e.g., [9], [24]) and against neural networks accessible only as

a black box (e.g., [12], [40], [43]). To mitigate these issues,

recent research has focused on reasoning about neural network

robustness, and in particular on local robustness. Local robus-

tness (or robustness, for short) requires that all samples in the

neighborhood of a given input are classified with the same

label [31]. Many works have focused on designing defenses
that increase robustness by using modified procedures for

training the network (e.g., [12], [15], [27], [31], [42]). Others

have developed approaches that can show non-robustness by

underapproximating neural network behaviors [1] or methods

that decide robustness of small fully connected feedforward

networks [21]. However, no existing sound analyzer handles

convolutional networks, one of the most popular architectures.

Key Challenge: Scalability and Precision. The main chal-

lenge facing sound analysis of neural networks is scaling to

large classifiers while maintaining a precision that suffices

to prove useful properties. The analyzer must consider all

possible outputs of the network over a prohibitively large set

of inputs, processed by a vast number of intermediate neurons.

For instance, consider the image of the digit 8 in Fig. 1 and

suppose we would like to prove that no matter how we brighten

the value of pixels with intensity above 1−0.085, the network

will still classify the image as 8 (in this example we have

84 such pixels, shown in yellow). Assuming 64-bit floating

3

2018 IEEE Symposium on Security and Privacy

© 2018, Timon Gehr. Under license to IEEE.
DOI 10.1109/SP.2018.00058



B
ri

g
h

te
n
(0
.0
85
,

) A1

C
o

nv
o

lu
ti

o
n

al
#

A2

M
ax

P
o

o
li

n
g
#

A3

F
u

ll
y

C
o

n
n

ec
te

d
#

A4

Fig. 2: A high-level illustration of how AI2 checks that all

perturbed inputs are classified the same way. AI2 first creates

an abstract element A1 capturing all perturbed images. (Here,

we use a 2-bounded set of zonotopes.) It then propagates A1

through the abstract transformer of each layer, obtaining new

shapes. Finally, it verifies that all points in A4 correspond to

outputs with the same classification.

point numbers are used to express pixel intensity, we obtain

more than 101154 possible perturbed images. Thus, proving

the property by running a network exhaustively on all possible

input images and checking if all of them are classified as 8 is

infeasible. To avoid this state space explosion, current methods

(e.g., [18], [21], [34]) symbolically encode the network as

a logical formula and then check robustness properties with

a constraint solver. However, such solutions do not scale to

larger (e.g., convolutional) networks, which usually involve

many intermediate computations.

Key Concept: Abstract Interpretation for AI. The key

insight of our work is to address the above challenge by lever-

aging the classic framework of abstract interpretation (e.g., [6],

[7]), a theory which dictates how to obtain sound, computable,

and precise finite approximations of potentially infinite sets of

behaviors. Concretely, we leverage numerical abstract domains

– a particularly good match, as AI systems tend to heavily

manipulate numerical quantities. By showing how to apply

abstract interpretation to reason about AI safety, we enable one

to leverage decades of research and any future advancements

in that area (e.g., in numerical domains [39]). With abstract

interpretation, a neural network computation is overapproxi-

mated using an abstract domain. An abstract domain consists

of logical formulas that capture certain shapes (e.g., zonotopes,

a restricted form of polyhedra). For example, in Fig. 2, the

green zonotope A1 overapproximates the set of blue points

(each point represents an image). Of course, sometimes, due

to abstraction, a shape may also contain points that will not

occur in any concrete execution (e.g., the red points in A2).

The AI2 Analyzer. Based on this insight, we developed

a system called AI2 (Abstract Interpretation for Artificial
Intelligence)1. AI2 is the first scalable analyzer that hand-

les common network layer types, including fully connected

and convolutional layers with rectified linear unit activations

(ReLU) and max pooling layers.

To illustrate the operation of AI2, consider the example in

1AI2 is available at: http://ai2.ethz.ch

Fig. 2, where we have a neural network, an image of the

digit 8 and a set of perturbations: brightening with parameter

0.085. Our goal is to prove that the neural network classifies

all perturbed images as 8. AI2 takes the image of the digit

8 and the perturbation type and creates an abstract element

A1 that captures all perturbed images. In particular, we can

capture the entire set of brightening perturbations exactly with

a single zonotope. However, in general, this step may result in

an abstract element that contains additional inputs (that is, red

points). In the second step, A1 is automatically propagated

through the layers of the network. Since layers work on

concrete values and not abstract elements, this propagation

requires us to define abstract layers (marked with #) that

compute the effects of the layers on abstract elements. The

abstract layers are commonly called the abstract transformers
of the layers. Defining sound and precise, yet scalable abstract

transformers is key to the success of an analysis based on

abstract interpretation. We define abstract transformers for all

three layer types shown in Fig. 2.

At the end of the analysis, the abstract output A4 is

an overapproximation of all possible concrete outputs. This

enables AI2 to verify safety properties such as robustness

(e.g., are all images classified as 8?) directly on A4. In fact,

with a single abstract run, AI2 was able to prove that a

convolutional neural network classifies all of the considered

perturbed images as 8.

We evaluated AI2 on important tasks such as verifying

robustness and comparing neural networks defenses. For ex-

ample, for the perturbed image of the digit 0 in Fig. 1, we

showed that while a non-defended neural network classified

the FGSM perturbation with ε = 0.3 as 9, this attack is

provably eliminated when using a neural network trained with

the defense of [27]. In fact, AI2 proved that the FGSM attack

is unable to generate adversarial examples from this image for

any ε between 0 and 0.3.

Main Contributions. Our main contributions are:

• A sound and scalable method for analysis of deep neural

networks based on abstract interpretation (Section IV).

• AI2, an end-to-end analyzer, extensively evaluated on

feed-forward and convolutional networks (computing

with 53 000 neurons), far exceeding capabilities of current

systems (Section VI).

• An application of AI2 to evaluate provable robustness of

neural network defenses (Section VII).

II. REPRESENTING NEURAL NETWORKS AS

CONDITIONAL AFFINE TRANSFORMATIONS

In this section, we provide background on feedforward and

convolutional neural networks and show how to transform

them into a representation amenable to abstract interpretation.

This representation helps us simplify the construction and

description of our analyzer, which we discuss in later sections.

We use the following notation: for a vector x ∈ R
n, xi denotes

its ith entry, and for a matrix W ∈ R
n×m, Wi denotes its ith

row and Wi,j denotes the entry in its ith row and jth column.
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f (x ) ::= W · x+ b

| case E1 : f1(x), . . . , case Ek : fk(x)

| f(f ′(x))

E ::= E ∧ E | xi ≥ xj | xi ≥ 0 | xi < 0

Fig. 3: Definition of CAT functions.

CAT Functions. We express the neural network as a com-

position of conditional affine transformations (CAT), which

are affine transformations guarded by logical constraints. The

class of CAT functions, shown in Fig. 3, consists of functions

f : Rm → R
n for m,n ∈ N and is defined recursively. Any

affine transformation f(x) = W · x + b is a CAT function,

for a matrix W and a vector b. Given sequences of conditions

E1, . . . , Ek and CAT functions f1, . . . , fk, we write:

f(x) = case E1 : f1(x), . . . , case Ek : fk(x).

This is also a CAT function, which returnsx fi(x) for the

first Ei satisfied by x. The conditions are conjunctions of

constraints of the form xi ≥ xj , xi ≥ 0 and xi < 0. Finally,

any composition of CAT functions is a CAT function. We often

write f ′′ ◦ f ′ to denote the CAT function f(x) = f ′′(f ′(x)).

Layers. Neural networks are often organized as a sequence

of layers, such that the output of one layer is the input of the

next layer. Layers consist of neurons, performing the same

function but with different parameters. The output of a layer

is formed by stacking the outputs of the neurons into a vector

or three-dimensional array. We will define the functionality in

terms of entire layers instead of in terms of individual neurons.

Reshaping of Inputs. Layers often take three-dimensional

inputs (e.g., colored images). Such inputs are transformed into

vectors by reshaping. A three-dimensional array x ∈ R
m×n×r

can be reshaped to xv ∈ R
m·n·r in a canonical way, first by

depth, then by column, finally by row. That is, given x:

xv = (x1,1,1 . . . x1,1,r x1,2,1 . . . x1,2,r . . . xm,n,1 . . . xm,n,r)
T .

Activation Function. Typically, layers in a neural network

perform a linear transformation followed by a non-linear

activation function. We focus on the commonly used rectified

linear unit (ReLU) activation function, which for x ∈ R is

defined as ReLU(x) = max(0, x), and for a vector x ∈ R
m

as ReLU(x)=(ReLU(x1), . . . ,ReLU(xm)).

ReLU to CAT. We can express the ReLU activation function

as ReLU = ReLUn ◦ . . . ◦ReLU1 where ReLUi processes the

ith entry of the input x and is given by:

ReLUi(x) = case (xi ≥ 0) : x,
case (xi < 0) : Ii←0 · x.

Ii←0 is the identity matrix with the ith row replaced by zeros.

Fully Connected (FC) Layer. An FC layer takes a vector

of size m (the m outputs of the previous layer), and passes

it to n neurons, each computing a function based on the

neuron’s weights and bias, one weight for each component

of the input. Formally, an FC layer with n neurons is a

function FCW,b : R
m → R

n parameterized by a weight matrix

W ∈ R
n×m and a bias b ∈ R

n. For x ∈ R
m, we have:

FCW,b(x) = ReLU(W · x+ b).

Fig. 4a shows an FC layer computation for x = (2, 3, 1).

Convolutional Layer. A convolutional layer is defined by

a series of t filters F p,q = (F p,q
1 , .., F p,q

t ), parameterized by

the same p and q, where p ≤ m and q ≤ n. A filter F p,q
i

is a function parameterized by a three-dimensional array of

weights W ∈ R
p×q×r and a bias b ∈ R. A filter takes a

three-dimensional array and returns a two-dimensional array:

F p,q
i : Rm×n×r → R

(m−p+1)×(n−q+1).

The entries of the output y for a given input x are given by:

yi,j = ReLU(
p∑

i′=1

q∑
j′=1

r∑
k′=1

Wi′,j′,k′ ·x(i+i′−1),(j+j′−1),k′ +b).

Intuitively, this matrix is computed by sliding the filter along

the height and width of the input three-dimensional array, each

time reading a slice of size p×q×r, computing its dot product

with W (resulting in a real number), adding b, and applying

ReLU. The function ConvF , corresponding to a convolutional

layer with t filters, has the following type:

ConvF : Rm×n×r → R
(m−p+1)×(n−q+1)×t.

As expected, the function ConvF returns a three-dimensional

array of depth t, which stacks the outputs produced by each

filter. Fig. 4b illustrates a computation of a convolutional layer

with a single filter. For example:

y1,1,1 = ReLU((1 · 0 + 0 · 4 + (−1) · (−1) + 2 · 0) + 1) = 2.

Here, the input is a three-dimensional array in R
4×4×1. As

the input depth is 1, the depth of the filter’s weights is also 1.

The output depth is 1 because the layer has one filter.

Convolutional Layer to CAT. For a convolutional layer

ConvF , we define a matrix WF whose entries are those of the

weight matrices for each filter (replicated to simulate sliding),

and a bias b
F

consisting of copies of the filters’ biases. We

then treat the convolutional layer ConvF like the equivalent

FC
WF ,b

F . We provide formal definitions of WF and b
F

in

Appendix A. Here, we provide an intuitive illustration of the

translation on the example in Fig. 4b. Consider the first entry

y1,1 = 2 of y in Fig. 4b:

y1,1=ReLU(W1,1·x1,1+W1,2·x1,2+W2,1·x2,1+W2,2·x2,2+b).

When x is reshaped to a vector xv , the four entries

x1,1, x1,2, x2,1 and x2,2 will be found in xv
1, x

v
2, x

v
5 and xv

6 ,

respectively. Similarly, when y is reshaped to yv , the entry

y1,1 will be found in yv1 . Thus, to obtain yv1 = y1,1, we define

the first row in WF such that its 1st, 2nd, 5th, and 6th entries

are W1,1, W1,2, W2,1 and W2,2. The other entries are zeros.
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2
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1
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y

max( 0 1 2 -4 ) = 2

max( 3 -2 0 1 ) = 3

max( 2 -3 -1 5 ) = 5

max( 0 1 2 3 ) = 3

(c) Max pooling layer MaxPool2,2

Fig. 4: One example computation for each of the three layer types supported by AI2.

We also define the first entry of the bias to be b. For similar

reasons, to obtain yv2 = y1,2, we define the second row in WF

such that its 2nd, 3rd, 6th, and 7th entries are W1,1, W1,2, W2,1

and W2,2 (also b2 = b). By following this transformation, we

obtain the matrix WF ∈ R
9 × R

16 and the bias b
F ∈ R

9:

WF = b
F
=⎛

⎜⎜⎜⎜⎝

1 0 0 0 −1 2 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 −1 2 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 −1 2 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 −1 2 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 −1 2 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 −1 2 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 −1 2 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 −1 2 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

1
1
1
1
1
1
1
1
1

⎞
⎟⎟⎠

To aid understanding, we show the entries from W that appear

in the resulting matrix WF in bold.

Max Pooling (MP) Layer. An MP layer takes a three-

dimensional array x ∈ R
m×n×r and reduces the height m of

x by a factor of p and the width n of x by a factor of q (for p
and q dividing m and n). Depth is kept as-is. Neurons take as

input disjoint subrectangles of x of size p× q and return the

maximal value in their subrectangle. Formally, the MP layer

is a function MaxPoolp,q : R
m×n×r → R

m
p ×n

q×r that for an

input x returns the three-dimensional array y given by:

yi,j,k = max({xi′,j′,k | p · (i− 1) < i′ ≤ p · i
q · (j − 1) < j′ ≤ q · j}).

Fig. 4c illustrates the max pooling computation for p = 2,

q = 2 and r = 1. For example, here we have:

y1,1,1 = max({x1,1,1, x1,2,1, x2,1,1, x2,2,1}) = 2.

Max Pooling to CAT. Let MaxPool′p,q : R
m·n·r → R

m
p ·nq ·r

be the function that is obtained from MaxPoolp,q by reshaping

its input and output: MaxPool′p,q(x
v) = MaxPoolp,q(x)

v . To

represent max pooling as a CAT function, we define a series

of CAT functions whose composition is MaxPool′p,q:

MaxPool′p,q = fm
p ·nq ·r ◦ . . . ◦ f1 ◦ fMP.

0

xv

1

3

-2

2

-4

0
...

fMP

0

xMP

1

2

-4

3

-2

0
...

f1

2

3

-2

0

1

2

-3
...

f2

2

3

2

-3

-1

5

0
...

f3

2

3

2

0

1

2

3

f4
2

yv

3

5

3

Fig. 5: The operation of the transformed max pooling layer.

The first function is fMP(xv) = WMP · xv , which reorders

its input vector xv to a vector xMP in which the values

of each max pooling subrectangle of x are adjacent. The

remaining functions execute standard max pooling. Concretely,

the function fi ∈ {f1, . . . , fm
p ·nq ·r} executes max pooling

on the ith subrectangle by selecting the maximal value and

removing the other values. We provide formal definitions of

the CAT functions fMP and fi in Appendix A. Here, we

illustrate them on the example from Fig. 4c, where r = 1.

The CAT computation for this example is shown in Fig. 5.

The computation begins from the input vector xv , which is

the reshaping of x from Fig. 4c. The values of the first 2× 2
subrectangle in x (namely, 0, 1, 2 and −4) are separated in

xv by values from another subrectangle (3 and −2). To make

them contiguous, we reorder xv using a permutation matrix

WMP, yielding xMP. In our example, WMP is:

WMP=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

One entry in each row of WMP is 1, all other entries are zeros.
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If row i has entry j set to 1, then the j th value of xv is moved

to the ith entry of xMP. For example, we placed a one in the

fifth column of the third row of WMP to move the value xv
5

to entry 3 of the output vector.

Next, for each i ∈ {1, . . . , m
p · n

q }, the function fi takes

as input a vector whose values at the indices between i and

i+ p · q − 1 are those of the ith subrectangle of x̄ in Fig. 4c.

It then replaces those p · q values by their maximum:

fi(x) = (x1, . . ., xi−1, xk, xi+p·q, . . . , xm·n−(p·q−1)·(i−1)),

where the index k ∈ {i, . . . , i + p · q − 1} is such that

xk is maximal. For k given, fi can be written as a CAT

function: fi(x) = W (i,k) · x, where the rows of the matrix

W (i,k) ∈ R
(m·n−(p·q−1)·i)×(m·n−(p·q−1)·(i−1)) are given by

the following sequence of standard basis vectors:

e1, . . . , ei−1, ek, ei+p·q, . . . , em·n−(p·q−1)·(i−1).

For example, in Fig. 5, f1(x
MP) = W (1,3) · xMP deletes 0, 1

and −4. Then it moves the value 2 to the first component,

and the values at indices 5, . . . , 16 to components 2, . . . , 13.

Overall, W (1,3) is given by:

W (1,3)=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

As, in general, k is not known in advance, we need to write

fi as a CAT function with a different case for each possible

index k of the maximal value in x. For example, in Fig. 5:

f1(x) =

case (x1 ≥ x2) ∧ (x1 ≥ x3) ∧ (x1 ≥ x4) : W (1,1) · x,
case (x2 ≥ x1) ∧ (x2 ≥ x3) ∧ (x2 ≥ x4) : W (1,2) · x,
case (x3 ≥ x1) ∧ (x3 ≥ x2) ∧ (x3 ≥ x4) : W (1,3) · x,
case (x4 ≥ x1) ∧ (x4 ≥ x2) ∧ (x4 ≥ x3) : W (1,4) · x.

In our example, the vector xMP in Fig. 5 satisfies the third

condition, and therefore f1(x
MP) = W (1,3) · xMP. Taking into

account all four subrectangles, we obtain:

MaxPool′2,2 = f4 ◦ f3 ◦ f2 ◦ f1 ◦ fMP.

In summary, each function fi replaces p·q components of their

input by the maximum value among them, suitably moving

other values. For xv in Fig. 5:

MaxPool′2,2(x
v) = W (4,7) ·W (3,6) ·W (2,2) ·W (1,3) ·WMP ·xv.

Network Architectures. Two popular architectures of neural

networks are fully connected feedforward (FNN) and convo-

lutional (CNN). An FNN is a sequence of fully connected

layers, while a CNN [19] consists of all previously described

layer types: convolutional, max pooling, and fully connected.

−1 1 2 3

1

2

3

4

x1

x2

(a)

−3 −2 −1 1 2 3

1

2

3
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Fig. 6: (a) Abstracting four points with a polyhedron (gray),

zonotope (green), and box (blue). (b) The points and abstracti-

ons resulting from the affine transformer.

III. BACKGROUND: ABSTRACT INTERPRETATION

We now provide a short introduction to Abstract Interpre-

tation (AI). AI enables one to prove program properties on a

set of inputs without actually running the program. Formally,

given a function f : Rm → R
n, a set of inputs X ⊆ R

m,

and a property C ⊆ R
n, the goal is to determine whether the

property holds, that is, whether ∀x ∈ X. f(x) ∈ C.

Fig. 6 shows a CAT function f : R2 → R
2 that is defined

as f(x) =
(
2 −1
0 1

) ·x and four input points for the function f ,

given as X = {(0, 1), (1, 1), (1, 3), (2, 2)}. Let the property be

C = {(y1, y2) ∈ R
2 | y1 ≥ −2}, which holds in this example.

To reason about all inputs simultaneously, we lift the definition

of f to be over a set of inputs X rather than a single input:

Tf : P(Rm)→ P(Rn), Tf (X) = {f(x) | x ∈ X}.

The function Tf is called the concrete transformer of f .

With Tf , our goal is to determine whether Tf (X) ⊆ C for

a given input set X . Because the set X can be very large

(or infinite), we cannot enumerate all points in X to com-

pute Tf (X). Instead, AI overapproximates sets with abstract

elements (drawn from some abstract domain A) and then

defines a function, called an abstract transformer of f , which

works with these abstract elements and overapproximates the

effect of Tf . Then, the property C can be checked on the

resulting abstract element returned by the abstract transformer.

Naturally, because AI employs overapproximation, it is sound,

but may be imprecise (i.e., may fail to prove the property when

it holds). Next, we explain the ingredients of AI in more detail.

Abstract Domains. Abstract domains consist of shapes

expressible as a set of logical constraints. A few popular

numerical abstract domains are: Box (i.e., Interval), Zonotope,

and Polyhedra. These domains provide different precision

versus scalability trade-offs (e.g., Box’s abstract transformers

are significantly faster than Polyhedra’s abstract transformers,

but polyhedra are significantly more precise than boxes). The

Box domain consists of boxes, captured by a set of constraints

of the form a ≤ xi ≤ b, for a, b ∈ R∪{−∞,+∞} and a ≤ b.
A box B contains all points which satisfy all constraints in B.

In our example, X can be abstracted by the following box:

B = {0 ≤ x1 ≤ 2, 1 ≤ x2 ≤ 3}.

7



Note that B is not very precise since it includes 9 integer

points (along with other points), whereas X has only 4 points.

The Zonotope domain [10] consists of zonotopes. A zono-

tope is a center-symmetric convex closed polyhedron Z ⊆ R
n

that can be represented as an affine function:

z : [a1, b1]× [a2, b2]× · · · × [am, bm]→ R
n.

In other words, z has the form z(ε) = M · ε+ b where ε is a

vector of error terms satisfying interval constraints εi ∈ [ai, bi]
for 1 ≤ i ≤ m. The bias vector b captures the center of the

zonotope, while the matrix M captures the boundaries of the

zonotope around b. A zonotope z represents all vectors in the

image of z (i.e., z[[a1,1 ] × · · · × [am, bm]]). In our example,

X can be abstracted by the zonotope z : [−1, 1]3 → R
2:

z(ε1, ε2, ε3) = (1 + 0.5 · ε1 + 0.5 · ε2, 2 + 0.5 · ε1 + 0.5 · ε3).

Zonotope is a more precise domain than Box: for our example,

z includes only 7 integer points.

The Polyhedra [8] domain consists of convex closed po-

lyhedra, where a polyhedron is captured by a set of linear

constraints of the form A · x ≤ b, for some matrix A and a

vector b. A polyhedron C contains all points which satisfy the

constraints in C. In our example, X can be abstracted by the

following polyhedron:

C = {x2 ≤ 2 · x1 + 1, x2 ≤ 4− x1, x2 ≥ 1, x2 ≥ x1}.

Polyhedra is a more precise domain than Zonotope: for our

example, C includes only 5 integer points.

To conclude, abstract elements (from an abstract domain)

represent large, potentially infinite sets. There are various

abstract domains, providing different levels of precision and

scalability.

Abstract Transformers. To compute the effect of a function

on an abstract element, AI uses the concept of an ab-
stract transformer. Given the (lifted) concrete transformer

Tf : P(Rm)→ P(Rn) of a function f : Rm → R
n, an abstract

transformer of Tf is a function over abstract domains, denoted

by T#
f : Am → An. The superscripts denote the number of

components of the represented vectors. For example, elements

in Am represent sets of vectors of dimension m. This also

determines which variables can appear in the constraints

associated with an abstract element. For example, elements

in Am constrain the values of the variables x1, . . . , xm.

Abstract transformers have to be sound. To define sound-

ness, we introduce two functions: the abstraction function α
and the concretization function γ. An abstraction function

αm : P(Rm) → Am maps a set of vectors to an abstract

element in Am that overapproximates it. For example, in the

Box domain:

α2({(0, 1), (1, 1), (1, 3), (2, 2)}) = {0 ≤ x1 ≤ 2, 1 ≤ x2 ≤ 3}.

A concretization function γm : Am → P(Rm) does the

opposite: it maps an abstract element to the set of concrete

vectors that it represents. For example, for Box:

γ2({0 ≤ x1 ≤ 2, 1 ≤ x2 ≤ 3}) = {(0, 1), (0, 2), (0, 3),
(1, 1), (1, 2), (1, 3),
(2, 1), (2, 2), (2, 3), . . .}.

This only shows the 9 vectors with integer components. We

can now define soundness. An abstract transformer T#
f is

sound if for all a ∈ Am, we have Tf (γ
m(a)) ⊆ γn(T#

f (a)),
where Tf is the concrete transformer. That is, an abstract

transformer has to overapproximate the effect of a concrete

transformer. For example, the transformers illustrated in Fig. 6

are sound. For instance, if we apply the Box transformer on the

box in Fig. 6a, it will produce the box in Fig. 6b. The box in

Fig. 6b includes all points that f could compute in principle

when given any point included in the concretization of the

box in Fig. 6a. Analogous properties hold for the Zonotope

and Polyhedra transformers. It is also important that abstract

transformers are precise. That is, the abstract output should

include as few points as possible. For example, as we can

see in Fig. 6b, the output produced by the Box transformer

is less precise (it is larger) than the output produced by the

Zonotope transformer, which in turn is less precise than the

output produced by the Polyhedra transformer.

Property Verification. After obtaining the (abstract) output,

we can check various properties of interest on the result. In

general, an abstract output a = T#
f (X) proves a property

Tf (X) ⊆ C if γn(a) ⊆ C. If the abstract output proves a

property, we know that the property holds for all possible

concrete values. However, the property may hold even if it

cannot be proven with a given abstract domain. For example, in

Fig. 6b, for all concrete points, the property C = {(y1, y2) ∈
R

2 | y1 ≥ −2} holds. However, with the Box domain, the

abstract output violates C, which means that the Box domain

is not precise enough to prove the property. In contrast, the

Zonotope and Polyhedra domains are precise enough to prove

the property.

In summary, to apply AI successfully, we need to: (a) find a

suitable abstract domain, and (b) define abstract transformers

that are sound and as precise as possible. In the next section,

we introduce abstract transformers for neural networks that

are parameterized by the numerical abstract domain. This

means that we can explore the precision-scalability trade-off

by plugging in different abstract domains.

IV. AI2: AI FOR NEURAL NETWORKS

In this section we present AI2, an abstract interpretation

framework for sound analysis of neural networks. We begin by

defining abstract transformers for the different kinds of neural

network layers. Using these transformers, we then show how

to prove robustness properties of neural networks.

A. Abstract Interpretation for CAT Functions

In this section, we show how to overapproximate CAT

functions with AI. We illustrate the method on the example in
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Fig. 7: Illustration of how AI2 overapproximates neural network states. Blue circles show the concrete values, while green

zonotopes show the abstract elements. The gray box shows the steps in one application of the ReLU transformer (ReLU1).

Fig. 7, which shows a simple network that manipulates two-

dimensional vectors using a single fully connected layer of the

form f(x) = ReLU2

(
ReLU1

((
2 −1
0 1

) · x)). Recall that

ReLUi(x) = case (xi ≥ 0) : x,
case (xi < 0) : Ii←0 · x,

where Ii←0 is the identity matrix with the ith row replaced

by the zero vector. We overapproximate the network behavior

on an abstract input. The input can be obtained directly (see

Sec. IV-B) or by abstracting a set of concrete inputs to an

abstract element (using the abstraction function α). For our

example, we use the concrete inputs (the blue points) from

Fig 6. Those concrete inputs are abstracted to the green

zonotope z0 : [−1, 1]3 → R
2, given as:

z0(ε1, ε2, ε3) = (1 + 0.5 · ε1 + 0.5 · ε2, 2 + 0.5 · ε1 + 0.5 · ε3).
Due to abstraction, more (spurious) points may be added. In

this example, except the blue points, the entire area of the

zonotope is spurious. We then apply abstract transformers

to the abstract input. Note that, if a function f can be

written as f = f ′′ ◦ f ′, the concrete transformer for f is

Tf = Tf ′′ ◦ Tf ′ . Similarly, given abstract transformers T#
f ′

and T#
f ′′ , an abstract transformer for f is T#

f ′′ ◦ T#
f ′ . When

a neural network N = f ′� ◦ · · · ◦ f ′1 is a composition of

multiple CAT functions f ′i of the shape f ′i(x) = W · x+ b or

fi(x) = case E1 : f1(x), . . . , case Ek : fk(x), we only have

to define abstract transformers for these two kinds of functions.

We then obtain the abstract transformer T#
N = T#

f ′
�
◦ · · · ◦T#

f ′
1
.

Abstracting Affine Functions. To abstract functions of the

form f(x) = W · x + b, we assume that the underlying ab-

stract domain supports the operator Aff that overapproximates

such functions. We note that for Zonotope and Polyhedra,

this operation is supported and exact. Fig. 7 demonstrates

Aff as the first step taken for overapproximating the effect

of the fully connected layer. Here, the resulting zonotope

z1 : [−1, 1]3 → R
2 is:

z1(ε1, ε2, ε3) =
(2 · (1 + 0.5 · ε1 + 0.5 · ε2)− (2 + 0.5 · ε1 + 0.5 · ε3),

2 + 0.5 · ε1 + 0.5 · ε3) =
(0.5 · ε1 + ε2 − 0.5 · ε3, 2 + 0.5 · ε1 + 0.5 · ε3).

Abstracting Case Functions. To abstract functions of the

form f(x) = case E1 : f1(x), . . . , case Ek : fk(x), we first

split the abstract element a into the different cases (each

defined by one of the expressions Ei), resulting in k abstract

elements a1, . . . , ak. We then compute the result of T#
fi
(ai)

for each ai. Finally, we unify the results to a single abstract

element. To split and unify, we assume two standard operators

for abstract domains: (1) meet with a conjunction of linear

constraints and (2) join. The meet (�) operator is an abstract

transformer for set intersection: for an inequality expression

E from Fig. 3, γn(a) ∩ {x ∈ R
n | x |= E} ⊆ γn(a � E).

The join (
) operator is an abstract transformer for set union:

γn(a1) ∪ γn(a2) ⊆ γn(a1 
 a2). We further assume that

the abstract domain contains an element ⊥, which satisfies

γn(⊥) = {}, ⊥ � E = ⊥ and a 
 ⊥ = a for a ∈ A.

For our example in Fig. 7, abstract interpretation continues

on z1 using the meet and join operators. To compute the effect

of ReLU1, z1 is split into two zonotopes z2 = z1 � (x1 ≥ 0)
and z3 = z1� (x1 < 0). One way to compute a meet between

a zonotope and a linear constraint is to modify the intervals

of the error terms (see [11]). In our example, the resulting

zonotopes are z2 : [−1, 1] × [0, 1] × [−1, 1] → R
2 such that

z2(ε) = z1(ε) and z3 : [−1, 1]× [−1, 0]× [−1, 1]→ R
2 such

that z3(ε) = z1(ε) for ε̄ common to their respective domains.

Note that both z2 and z3 contain small spurious areas, because

the intersections of the respective linear constraints with z1 are

not zonotopes. Therefore, they cannot be captured exactly by

the domain. Here, the meet operator � overapproximates set

intersection ∩ to get a sound, but not perfectly precise, result.

Then, the two cases of ReLU1 are processed separately. We

apply the abstract transformer of f1(x) = x to z2 and we

apply the abstract transformer of f2(x) = I0←0 · x to z3. The

resulting zonotopes are z4 = z2 and z5 : [−1, 1]2 → R
2 such

that z5(ε1, ε3) = (0, 2+0.5·ε1+0.5·ε3). These are then joined

to obtain a single zonotope z6. Since z5 is contained in z4,

we get z6 = z4 (of course, this need not always be the case).

Then, z6 is passed to ReLU2. Because z6�(x1 < 0) = ⊥, this

results in z7 = z6. Finally, γ2(z7) is our overapproximation of

the network outputs for our initial set of points. The abstract

element z7 is a finite representation of this infinite set.

9



For f(x) = W · x+ b, T#
f (a) = Aff(a,W, b).

For f(x) = case E1 : f1(x), . . . , case Ek : fk(y),

T#
f (a) =

⊔
1≤i≤k

fi
#(a � Ei).

For f(x) = f2(f1(x)), T
#
f (a) = T#

f2
(T#

f1
(a)).

Fig. 8: Abstract transformers for CAT functions.

In summary, we define abstract transformers for every kind

of CAT function (summarized in Fig. 8). These definitions

are general and are compatible with any abstract domain A
which has a minimum element ⊥ and supports (1) a meet

operator between an abstract element and a conjunction of

linear constraints, (2) a join operator between two abstract

elements, and (3) an affine transformer. We assume that

the operations are sound. We note that these operations are

standard or definable with standard operations. By definition

of the abstract transformers, we get soundness:

Theorem 1. For any CAT function f with transformer
Tf : P(Rm)→ P(Rn) and any abstract input a ∈ Am,

Tf (γ
m(a)) ⊆ γn(T#

f (a)).

Theorem 1 is the key to sound neural network analysis with

our abstract transformers, as we explain in the next section.

B. Neural Network Analysis with AI

In this section, we explain how to leverage AI with our ab-

stract transformers to prove properties of neural networks. We

focus on robustness properties below, however, the framework

can be applied to reason about any safety property.

For robustness, we aim to determine if for a (possibly un-

bounded) set of inputs, the outputs of a neural network satisfy

a given condition. A robustness property for a neural network

N : Rm → R
n is a pair (X,C) ∈ P(Rm)×P(Rn) consisting

of a robustness region X and a robustness condition C. We

say that the neural network N satisfies a robustness property

(X,C) if N(x) ∈ C for all x ∈ X .

Local Robustness. This is a property (X,CL) where X is

a robustness region and CL contains the outputs that describe

the same label L:

CL =

{
y ∈ R

n

∣∣∣∣∣ argmax
i∈{1,...,n}

(yi) = L

}
.

For example, Fig. 7 shows a neural network and a robustness

property (X,C2) for X = {(0, 1), (1, 1), (1, 3), (2, 2)} and

C2 = {y | argmax(y1, y2) = 2}. In this example, (X,C2)
holds. Typically, we will want to check that there is some
label L for which (X,CL) holds.

We now explain how our abstract transformers can be used

to prove a given robustness property (X,C).

Robustness Proofs using AI. Assume we are given a neural

network N : Rm → R
n, a robustness property (X,C) and

an abstract domain A (supporting 
, � with a conjunction of

linear constraints, Aff, and ⊥) with an abstraction function α
and a concretization function γ. Further assume that N can

be written as a CAT function. Denote by T#
N the abstract

transformer of N , as defined in Fig. 8. Then, the following

condition is sufficient to prove that N satisfies (X,C):

γn(T#
N (αm(X))) ⊆ C.

This follows from Theorem 1 and the properties of α and γ.

Note that there may be abstract domains A that are not precise

enough to prove that N satisfies (X,C), even if N in fact

satisfies (X,C). On the other hand, if we are able to show

that some abstract domain A proves that N satisfies (X,C),
we know that it holds.

Proving Containment. To prove the property (X,C) given

the result a = T#
N (αm(X)) of abstract interpretation, we

need to be able to show γn(a) ⊆ C. There is a general

method if C is given by a CNF formula
∧

i

∨
j li,j where

all literals li,j are linear constraints: we show that the negated

formula
∨

i

∧
j ¬li,j is inconsistent with the abstract element

a by checking that a �
(∧

j ¬li,j
)
= ⊥ for all i.

For our example in Fig. 7, the goal is to check that all inputs

are classified as 2. We can represent C using the formula

y2 ≥ y1. Its negation is y2 < y1, and it suffices to show that

no point in the concretization of the abstract output satisfies

this negated constraint. As indeed z7 � (y2 < y1) = ⊥, the

property is successfully verified. However, note that we would

not be able to prove some other true properties, such as y1 ≥ 0.

This property holds for all concrete outputs, but some points

in the concretization of the output z7 do not satisfy it.

V. IMPLEMENTATION OF AI2

The AI2 framework is implemented in the D programming

language and supports any neural network composed of fully

connected, convolutional, and max pooling layers.

Properties. AI2 supports properties (X,C) where X is speci-

fied by a zonotope and C by a conjunction of linear constraints

over the output vector’s components. In our experiments, we

illustrate the specification of local robustness properties where

the region X is defined by a box or a line, both of which are

precisely captured by a zonotope.

Abstract Domains. The AI2 system is fully integrated with

all abstract domains supported by Apron [20], a popular

library for numerical abstract domains, including: Box [7],

Zonotope [10], and Polyhedra [8].

Bounded Powerset. We also implemented bounded powerset

domains (disjunctive abstractions [33], [36]), which can be

instantiated with any of the above abstract domains. An ab-

stract element in the powerset domain P(A) of an underlying

abstract domain A is a set of abstract elements from A, con-

cretizing to the union of the concretizations of the individual

elements (i.e., γ(A) =
⋃

a∈A γ(a) for A ∈ P(A)).
The powerset domain can implement a precise join operator

using standard set union (potentially pruning redundant ele-

ments). However, since the increased precision can become
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prohibitively costly if many join operations are performed,

the bounded powerset domain limits the number of abstract

elements in a set to N (for some constant N ).

We implemented bounded powerset domains on top of stan-

dard powerset domains using a greedy heuristic that repeatedly

replaces two abstract elements in a set by their join, until the

number of abstract elements in the set is below the bound N .

For joining, AI2 heuristically selects two abstract elements that

minimize the distance between the centers of their bounding

boxes. In our experiments, we denote by ZonotopeN or

ZN the bounded powerset domain with bound N ≥ 2 and

underlying abstract domain Zonotope.

VI. EVALUATION OF AI2

In this section, we present our empirical evaluation of AI2.

Before discussing the results in detail, we summarize our three

most important findings:

• AI2 can prove useful robustness properties for convo-

lutional networks with 53 000 neurons and large fully

connected feedforward networks with 1 800 neurons.

• AI2 benefits from more precise abstract domains: Zono-

tope enables AI2 to prove substantially more properties

over Box. Further, ZonotopeN , with N ≥ 2, can prove

stronger robustness properties than Zonotope alone.

• AI2 scales better than the SMT-based Reluplex [21]: AI2

is able to verify robustness properties on large networks

with ≥ 1200 neurons within few minutes, while Reluplex

takes hours to verify the same properties.

In the following, we first describe our experimental setup.

Then, we present and discuss our results.

A. Experimental Setup

We now describe the datasets, neural networks, and robus-

tness properties used in our experiments.

Datasets. We used two popular datasets: MNIST [25] and

CIFAR-10 [22] (referred to as CIFAR from now on). MNIST

consists of 60 000 grayscale images of handwritten digits,

whose resolution is 28 × 28 pixels. The images show white

digits on a black background.

CIFAR consists of 60 000 colored photographs with 3 color

channels, whose resolution is 32× 32 pixels. The images are

partitioned into 10 different classes (e.g., airplane or bird).

Each photograph has a different background (unlike MNIST).

Neural Networks. We trained convolutional and fully con-

nected feedforward networks on both datasets. All networks

were trained using accelerated gradient descent with at least

50 epochs of batch size 128. The training completed when

each network had a test set accuracy of at least 0.9.

For the convolutional networks, we used the LeNet ar-

chitecture [26], which consists of the following sequence

of layers: 2 convolutional, 1 max pooling, 2 convoluti-

onal, 1 max pooling, and 3 fully connected layers. We

write np×q to denote a convolutional layer with n filters

of size p × q, and m to denote a fully connected layer

with m neurons. The hidden layers of the MNIST net-

work are 83×3, 83×3, 143×3, 143×3, 50, 50, 10, and those of the

CIFAR network are 243×3, 243×3, 323×3, 323×3, 100, 100, 10.

The max pooling layers of both networks have a size of 2×2.

We trained our networks using an open-source implementa-

tion [37].

We used 7 different architectures of fully connected feed-

forward networks (FNNs). We write l× n to denote the FNN

architecture with l layers, each consisting of n neurons. Note

that this determines the network’s size; e.g., a 4× 50 network

has 200 neurons. For each dataset, MNIST and CIFAR, we

trained FNNs with the following architectures: 3×20, 6×20,

3× 50, 3× 100, 6× 100, 6× 200, and 9× 200.

Robustness Properties. In our experiments, we consider

local robustness properties (X,CL) where the region X cap-

tures changes to lighting conditions. This type of property is

inspired by the work of [32], where adversarial examples were

found by brightening the pixels of an image.

Formally, we consider robustness regions Sx,δ that are

parameterized by an input x ∈ R
m and a robustness bound

δ ∈ [0, 1]. The robustness region is defined as:

Sx,δ = {x′ ∈ R
m | ∀i ∈ [1,m]. 1−δ ≤ xi ≤ x′i ≤ 1∨x′i = xi}.

For example, the robustness region for x = (0.6, 0.85, 0.9)
and bound δ = 0.2 is given by the set:

{(0.6, x, x′) ∈ R
3 | x ∈ [0.85, 1], x′ ∈ [0.9, 1]}.

Note that increasing the bound δ increases the region’s size.

In our experiments, we used AI2 to check whether all inputs

in a given region Sx,δ are classified to the label assigned to x.

We consider 6 different robustness bounds δ, which are drawn

from the set Δ = {0.001, 0.005, 0.025, 0.045, 0.065, 0.085}.
We remark that our robustness properties are stronger than

those considered in [32]. This is because, in a given robustness

region Sx,δ , each pixel of the image x is brightened indepen-

dently of the other pixels. We remark that this is useful to

capture scenarios where only part of the image is brightened

(e.g., due to shadowing).

Other perturbations. Note that AI2 is not limited to cer-

tifying robustness against such brightening perturbations. In

general, AI2 can be used whenever the set of perturbed

inputs can be overapproximated with a set of zonotopes in

a precise way (i.e., without adding too many inputs that do

not capture actual perturbations to the robustness region). For

example, the inputs perturbed by an �∞ attack [3] are captured

exactly by a single zonotope. Further, rotations and translations

have low-dimensional parameter spaces, and therefore can be

overapproximated by a set of zonotopes in a precise way.

Benchmarks. We selected 10 images from each dataset.

Then, we specified a robustness property for each image and

each robustness bound in Δ, resulting in 60 properties per

dataset. We ran AI2 to check whether each neural network

satisfies the robustness properties for the respective dataset.

We compared the results using different abstract domains,
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Fig. 9: Verified properties by AI2 on the MNIST and CIFAR convolutional networks for each bound δ ∈ Δ (x-axis).

including Box, Zonotope, and ZonotopeN with N ranging

between 2 and 128.

We ran all experiments on an Ubuntu 16.04.3 LTS server

with two Intel Xeon E5-2690 processors and 512GB of

memory. To compare AI2 to existing solutions, we also ran

the FNN benchmarks with Reluplex [21]. We did not run

convolutional benchmarks with Reluplex as it currently does

not support convolutional networks.

B. Discussion of Results

In the following, we first present our results for convoluti-

onal networks. Then, we present experiments with different

abstract domains and discuss how the domain’s precision

affects AI2’s ability to verify robustness. We also plot AI2’s

running times for different abstract domains to investigate

the trade-off between precision and scalability. Finally, we

compare AI2 to Reluplex.

Proving Robustness of Convolutional Networks. We start

with our results for convolutional networks. AI2 terminated

within 1.5 minutes when verifying properties on the MNIST

network and within 1 hour when verifying the CIFAR network.

In Fig. 9, we show the fraction of robustness properties

verified by AI2 for each robustness bound. We plot separate

bars for Box and Zonotope to illustrate the effect of the

domain’s precision on AI2’s ability to verify robustness.

For both networks, AI2 verified all robustness properties for

the smallest bound 0.001 and it verified at least one property

for the largest bound 0.085. This demonstrates that AI2 can

verify properties of convolutional networks with rather wide

robustness regions. Further, the number of verified properties

converges to zero as the robustness bound increases. This

is expected, as larger robustness regions are more likely to

contain adversarial examples.

In Fig. 9a, we observe that Zonotope proves significantly

more properties than Box. For example, Box fails to prove

any robustness properties with bounds at least 0.025, while

Zonotope proves 80% of the properties with bounds 0.025
and 0.045. This indicates that Box is often imprecise and fails

to prove properties that the network satisfies.
Similarly, Fig. 9b shows that Zonotope proves more robust-

ness properties than Box also for the CIFAR convolutional net-

work. The difference between these two domains is, however,

less significant than that observed for the MNIST network. For

example, both Box and Zonotope prove the same properties

for bounds 0.065 and 0.085.

Precision of Different Abstract Domains. Next, we demon-

strate that more precise abstract domains enable AI2 to prove

stronger robustness properties. In this experiment, we consider

our 9 × 200 MNIST and CIFAR networks, which are our

largest fully connected feedforward networks. We evaluate the

Box, Zonotope, and the ZonotopeN domains for exponentially

increasing bounds of N between 2 and 64. We do not report

results for the Polyhedra domain, which takes several days to

terminate for our smallest networks.
In Fig. 10, we show the fraction of verified robustness

properties as a function of the abstract domain used by AI2.

We plot a separate line for each robustness bound. All runs of

AI2 in this experiment completed within 1 hour.
The graphs show that Zonotope proves more robustness

properties than Box. For the MNIST network, Box proves 11
out of all 60 robustness properties (across all 6 bounds), failing

to prove any robustness properties with bounds above 0.005.

In contrast, Zonotope proves 43 out of the 60 properties and

proves at least 50% of the properties across the 6 robustness

bounds. For the CIFAR network, Box proves 25 out of the 60
properties while Zonotope proves 35.
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Fig. 10: Verified properties as a function of the abstract domain used by AI2 for the 9× 200 network. Each point represents

the fraction of robustness properties for a given bound (as specified in the legend) verified by a given abstract domain (x-axis).

Box Zono Z2 Z4 Z8 Z16 Z32 Z64

0.01s

0.10s

1s

10s

100s

500s

Time (seconds)

3x20 6x20

3x50 3x100

6x100 6x200

9x200

Fig. 11: Average running time of AI2 when proving robustness

properties on MNIST networks as a function of the abstract

domain used by AI2 (x-axis). Axes are scaled logarithmically.

The data also demonstrates that bounded sets of zonotopes

further improve AI2’s ability to prove robustness properties.

For the MNIST network, Zonotope64 proves more robustness

properties than Zonotope for all 4 bounds for which Zonotope

fails to prove at least one property (i.e., for bounds δ ≥ 0.025).

For the CIFAR network, Zonotope64 proves more properties

than Zonotope for 4 out of the 5 the bounds. The only

exception is the bound 0.085, where Zonotope64 and Zonotope

prove the same set of properties.

Trade-off between Precision and Scalability. In Fig. 11,

we plot the running time of AI2 as a function of the abstract

domain. Each point in the graph represents the average running

time of AI2 when proving a robustness property for a given

MNIST network (as indicated in the legend). We use a log-log

plot to better visualize the trade-off in time.

The data shows that AI2 can efficiently verify robustness

of large networks. AI2 terminates within a few minutes for

all MNIST FNNs and all considered domains. Further, we

observe that AI2 takes less than 10 seconds on average to

verify a property with the Zonotope domain.

As expected, the graph demonstrates that more precise

domains increase AI2’s running time. More importantly, AI2’s

running time is polynomial in the bound N of ZonotopeN ,

which allows one to adjust AI2’s precision by increasing N .

Comparison to Reluplex. The current state-of-the-art system

for verifying properties of neural networks is Reluplex [21].

Reluplex supports FNNs with ReLU activation functions, and

its analysis is sound and complete. Reluplex would eventually

either verify a given property or return a counterexample.

To compare the performance of Reluplex and AI2, we ran

both systems on all MNIST FNN benchmarks. We ran AI2

using Zonotope and Zonotope64. For both Reluplex and AI2,

we set a 1 hour timeout for verifying a single property.

Fig. 12 presents our results: Fig. 12a plots the average

running time of Reluplex and AI2 and Fig. 12b shows the

fraction of robustness properties verified by the systems. The

data shows that Reluplex can analyze FNNs with at most 600
neurons efficiently, typically within a few minutes. Overall,

both system verified roughly the same set of properties.

However, Reluplex crashed during verification of some of the

properties. This explains why AI2 was able to prove slightly
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Fig. 12: Comparing the performance of AI2 to Reluplex. Each point is an average of the results for all 60 robustness properties

for the MNIST networks. Each point in (a) represents the average time to completion, regardless of the result of the computation.

While not shown, the result of the computation could be a failure to verify, timeout, crash, or discovery of a counterexample.

Each point in (b) represents the fraction of the 60 robustness properties that were verified.

more properties than Reluplex on the smaller FNNs.

For large networks with more than 600 neurons, the running

time of Reluplex increases significantly and its analysis often

times out. In contrast, AI2 analyzes the large networks within

a few minutes and verifies substantially more robustness

properties than Reluplex. For example, Zonotope64 proves

57 out of the 60 properties on the 6 × 200 network, while

Reluplex proves 3. Further, Zonotope64 proves 45 out of the

60 properties on the largest 9× 200 network, while Reluplex

proves none. We remark that while Reluplex did not verify

any property on the largest 9 × 200 network, it did disprove

some of the properties and returned counterexamples.

We also ran Reluplex without a predefined timeout to

investigate how long it would take to verify properties on the

large networks. To this end, we ran Reluplex on properties that

AI2 successfully verified. We observed that Reluplex often

took more than 24 hours to terminate. Overall, our results

indicate that Reluplex does not scale to larger FNNs whereas

AI2 succeeds on these networks.

VII. COMPARING DEFENSES WITH AI2

In this section, we illustrate a practical application of AI2:

evaluating and comparing neural network defenses. A defense

is an algorithm whose goal is to reduce the effectiveness of

a certain attack against a specific network, for example, by

retraining the network with an altered loss function. Since the

discovery of adversarial examples, many works have sugge-

sted different kinds of defenses to mitigate this phenomenon

(e.g., [12], [27], [42]). A natural metric to compare defenses

is the average “size” of the robustness region on some test set.

Intuitively, the greater this size is, the more robust the defense.

We compared three state-of-the-art defenses:

• GSS [12] extends the loss with a regularization term

encoding the fast gradient sign method (FGSM) attack.

• Ensemble [42] is similar to GSS, but includes regulari-

zation terms from attacks on other models.

• MMSTV [27] adds, during training, a perturbation layer

before the input layer which applies the FGSMk attack.

FGSMk is a multi-step variant of FGSM, also known as

projected gradient descent.

All these defenses attempt to reduce the effectiveness of the

FGSM attack [12]. This attack consists of taking a network N
and an input x and computing a vector ρN,x in the input space

along which an adversarial example is likely to be found. An

adversarial input a is then generated by taking a step ε along

this vector: a = x+ ε · ρN,x.

We define a new kind of robustness region, called line, that

captures resilience with respect to the FGSM attack. The line

robustness region captures all points from x to x + δ · ρN,x

for some robustness bound δ:

LN,x,δ = {x+ ε · ρN,x | ε ∈ [0, δ]}.
This robustness region is a zonotope and can thus be precisely

captured by AI2.

We compared the three state-of-the-art defenses on the

MNIST convolutional network described in Section VI; we

call this the Original network. We trained the Original network

with each of the defenses, which resulted in 3 additional

networks: GSS, Ensemble, and MMSTV. We used 40 epochs

for GSS, 12 epochs for Ensemble, and 10 000 training steps

for MMSTV using their published frameworks.
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Original, GSS, Ensemble, and MMSTV networks. The boxes

represent the δ for the middle 50% of the images, whereas

the whiskers represent the minimum and maximum δ. The

inner-lines are the averages.

We conducted 20 experiments. In each experiment, we

randomly selected an image x and computed ρN,x. Then, for

each network, our goal was to find the largest bound δ for

which AI2 proves the region LN,x,δ robust. To approximate

the largest robustness bound, we ran binary search to depth 6
and ran AI2 with the Zonotope domain for each candidate

bound δ. We refer to the largest robustness bound verified by

AI2 as the verified bound.

The average verified bounds for the Original, GSS, Ensem-

ble, and MMSTV networks are 0.026, 0.031, 0.042, and 0.209,

respectively. Fig. 13 shows a box-and-whisker plot which

demonstrates the distribution of the verified bounds for the

four networks. The bottom and top of each whisker show the

minimum and maximum verified bounds discovered during

the 20 experiments. The bottom and top of each whisker’s

box show the first and third quartiles of the verified bounds.

Our results indicate that MMSTV provides a significant

increase in provable robustness against the FGSM attack.

In all 20 experiments, the verified bound for the MMSTV

network was larger than those found for the Original, GSS,

and Ensemble networks. We observe that GSS and Ensemble

defend the network in a way that makes it only slightly more

provably robust, consistent with observations that these styles

of defense are insufficient [16], [27].

VIII. RELATED WORK

In this section, we survey the works closely related to ours.

Adversarial Examples. [40] showed that neural networks are

vulnerable to small perturbations on inputs. Since then, many

works have focused on constructing adversarial examples.

For example, [30] showed how to find adversarial examples

without starting from a test point, [41] generated adversarial

examples using random perturbations, [35] demonstrated that

even intermediate layers are not robust, and [14] generated

adversarial examples for malware classification. Other works

presented ways to construct adversarial examples during the

training phase, thereby increasing the network robustness (see

[3], [12], [15], [17], [29], [38]). [1] formalized the notion of

robustness in neural networks and defined metrics to evaluate

the robustness of a neural network. [32] illustrated how to

systematically generate adversarial examples that cover all

neurons in the network.

Neural Network Analysis. Many works have studied the ro-

bustness of networks. [34] presented an abstraction-refinement

approach for FNNs. However, this was shown successful for a

network with only 6 neurons. [37] introduced a bounded model

checking technique to verify safety of a neural network for

the Cart Pole system. [18] showed a verification framework,

based on an SMT solver, which verified the robustness with

respect to a certain set of functions that can manipulate the

input and are minimal (a notion which they define). However,

it is unclear how one can obtain such a set. [21] extended the

simplex algorithm to verify properties of FNNs with ReLU.

Robustness Analysis of Programs. Many works deal with

robustness analysis of programs (e.g., [4], [5], [13], [28]).

[28] considered a definition of robustness that is similar to

the one in our work, and [5] used a combination of abstract

interpretation and SMT-based methods to prove robustness of

programs. The programs considered in this literature tend to

be small but have complex constructs such as loops and array

operations. In contrast, neural networks (which are our focus)

are closer to circuits, in that they lack high-level language

features but are potentially massive in size.

IX. CONCLUSION AND FUTURE WORK

We presented AI2, the first system able to certify convolu-

tional and large fully connected networks. The key insight

behind AI2 is to phrase the problem of analyzing neural

networks in the classic framework of abstract interpretation.

To this end, we defined abstract transformers that capture the

behavior of common neural network layers and presented a

bounded powerset domain that enables a trade-off between

precision and scalability. Our experimental results showed that

AI2 can effectively handle neural networks that are beyond the

reach of existing methods.

We believe AI2 and the approach behind it is a promising

step towards ensuring the safety and robustness of AI systems.

Currently, we are extending AI2 with additional abstract trans-

formers to support more neural network features. We are also

building a library for modeling common perturbations, such as

rotations, smoothing, and erosion. We believe these extensions

would further improve AI2’s applicability and foster future

research in AI safety.

15



REFERENCES

[1] Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vy-
tiniotis, Aditya V. Nori, and Antonio Criminisi. Measuring neural net
robustness with constraints. In Proceedings of the 30th International
Conference on Neural Information Processing Systems (NIPS), pages
2621–2629, 2016.

[2] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Fir-
ner, Beat Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort,
Urs Muller, Jiakai Zhang, Xin Zhang, Jake Zhao, and Karol Zieba. End
to end learning for self-driving cars. CoRR, abs/1604.07316, 2016.

[3] Nicholas Carlini and David A. Wagner. Towards evaluating the robus-
tness of neural networks. In 2017 IEEE Symposium on Security and
Privacy (SP), pages 39–57, 2017.

[4] Swarat Chaudhuri, Sumit Gulwani, and Roberto Lublinerman. Con-
tinuity analysis of programs. In Proceedings of the 37th Annual ACM
Symposium on Principles of Programming Languages (POPL), pages
57–70, 2010.

[5] Swarat Chaudhuri, Sumit Gulwani, Roberto Lublinerman, and Sara
Navidpour. Proving programs robust. In Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on Foundations
of software engineering (ESEC/FSE), pages 102–112. ACM, 2011.

[6] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal
of Logic and Computation, 2(4):511–547, 1992.

[7] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction or approx-
imation of fixpoints. In Proceedings of the 4th ACM Symposium on
Principles of Programming Languages (POPL), pages 238–252, 1977.

[8] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear
restraints among variables of a program. In Proceedings of the 5th
ACM Symposium on Principles of Programming Languages (POPL),
pages 84–96, 1978.

[9] Ivan Evtimov, Kevin Eykholt, Earlence Fernandes, Tadayoshi Kohno,
Bo Li, Atul Prakash, Amir Rahmati, and Dawn Song. Robust physical-
world attacks on machine learning models. CoRR, abs/1707.08945,
2017.

[10] Khalil Ghorbal, Eric Goubault, and Sylvie Putot. The zonotope abstract
domain taylor1+. In Proceedings of the 21st International Conference
on Computer Aided Verification (CAV), pages 627–633, 2009.

[11] Khalil Ghorbal, Eric Goubault, and Sylvie Putot. A logical product
approach to zonotope intersection. In Proceedings of the 22Nd Interna-
tional Conference on Computer Aided Verification (CAV), 2010.

[12] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and harnessing adversarial examples. CoRR, abs/1412.6572, 2014.

[13] Eric Goubault and Sylvie Putot. Robustness analysis of finite precision
implementations. In Programming Languages and Systems - 11th Asian
Symposium (APLAS), pages 50–57, 2013.

[14] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes,
and Patrick D. McDaniel. Adversarial perturbations against deep neural
networks for malware classification. CoRR, abs/1606.04435, 2016.

[15] Shixiang Gu and Luca Rigazio. Towards deep neural network architec-
tures robust to adversarial examples. CoRR, abs/1412.5068, 2014.

[16] Warren He, James Wei, Xinyun Chen, Nicholas Carlini, and Dawn
Song. Adversarial example defense: Ensembles of weak defenses are
not strong. In USENIX (WOOT 17). USENIX Association, 2017.

[17] Ruitong Huang, Bing Xu, Dale Schuurmans, and Csaba Szepesvári.
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APPENDIX

A. CAT function representations of the Convolutional Layer and the Max Pooling Layer

In this section, we provide the formal definitions of the matrices and vectors used to represent the convolutional layer and

the max pooling layer as CAT functions.

Convolutional Layer. Recall that for filters W k ∈ R
p×q×r, bk ∈ R for 1 ≤ k ≤ t, we have

ConvF (x) : R
n×m×r → R

(m−p+1)×(n−q+1)×t

ConvF (x)i,j,k = ReLU(
p∑

i′=1

q∑
j′=1

r∑
k′=1

W k
i′,j′,k′ · x(i+i′−1),(j+j′−1),k′ + bk),

for 1 ≤ i ≤ m− p+1, 1 ≤ j ≤ n− q+1 and 1 ≤ k ≤ t. Reshaping both the input and the output vector such that they have

only one index, we obtain

Conv′F (x) : R
n·m·r → R

(m−p+1)·(n−q+1)·t

Conv′F (x)(n−q+1)·t·(i−1)+t·(j−1)+k = ReLU(
p∑

i′=1

q∑
j′=1

r∑
k′=1

W k
i′,j′,k′ · xn·r·(i+i′−2)+r·(j+j′−2)+k′ + bk),

for 1 ≤ i ≤ m − p + 1, 1 ≤ j ≤ n − q + 1 and 1 ≤ k ≤ t. The function Conv′F is ReLU after an affine transformation,

therefore there is a matrix WF ∈ R
((m−p+1)·(n−q+1)·t)×(n·m·r) and a vector b

F ∈ R
(m−p+1)·(n−q+1)·t such that

ConvF (x)
v = Conv′F (x

v) = ReLU(WF · xv + bF ) = FC
WF ,b

F (x).

The entries of WF and b
F

are obtained by equating

FC(el)(n−q+1)·t·(i−1)+t·(j−1)+k = ReLU(WF
(n−q+1)·t·(i−1)+t·(j−1)+k,l + bF(n−q+1)·t·(i−1)+t·(j−1)+k) with

Conv′F (el)(n−q+1)·t·(i−1)+t·(j−1)+k = ReLU(
p∑

i′=1

q∑
j′=1

r∑
k′=1

W k
i′,j′,k′ · [l = n · r · (i+ i′ − 2) + r · (j + j′ − 2) + k′] + bk),

for standard basis vectors el with (el)i = [l = i] for 1 ≤ l ≤ n and 1 ≤ i ≤ n ·m · r. This way, we obtain

WF
(n−q+1)·t·(i−1)+t·(j−1)+k,l =

p∑
i′=1

q∑
j′=1

r∑
k′=1

W k
i′,j′,k′ · [l = n · r · (i+ i′ − 2) + r · (j + j′ − 2) + k′] and

bF(n−q+1)·t·(i−1)+t·(j−1)+k = bk,

for 1 ≤ i ≤ m− p+ 1, 1 ≤ j ≤ n− q + 1 and 1 ≤ k ≤ t. Note that here, [ϕ] is an Iverson bracket, which is equal to 1 if ϕ
holds and equal to 0 otherwise.

Max Pooling Layer. Recall that MaxPoolp,q : R
m×n×r → R

m
p ×n

q×r partitions the input vector into disjoint blocks of size

p × q × 1 and replaces each block by its maximum value. Furthermore, MaxPool′p,q : R
m·n·r → R

m
p ·nq ·r is obtained from

MaxPoolp,q by reshaping both the input and output: MaxPool′p,q(x
v) = MaxPoolp,q(x)

v . We will represent MaxPool′p,q as a

composition of CAT functions,

MaxPool′p,q = fm
p ·nq ·r ◦ . . . ◦ f1 ◦ fMP.

Here, fMP rearranges the input vector such that values from the same block are adjacent. Values from different blocks are

brought into the same order as the output from each block appears in the output vector.

Note that ((i − 1) mod p) + 1, (j − 1) mod q) + 1, 1) are the indices of input value xi,j,k within its respective block and(⌊
i−1
p

⌋
+ 1,

⌊
j−1
q

⌋
+ 1, k

)
are the indices of the unique value in the output vector whose value depends on xi,j,k. Recall that

the permutation matrix M representing a permutation π is given by Mπ(i) = ei.

The CAT function fMP is a linear transformation fMP(xv) = WMP · xv where the permutation matrix WMP is given by

WMP

r·p·q·(n
q � i−1

p �+� j−1
q �)+p·q·(k−1)+q·((i−1) mod p)+((j−1) mod q)+1

= en·r·(i−1)+r·(j−1)+k,

for 1 ≤ i ≤ m, 1 ≤ j ≤ n and 1 ≤ k ≤ r.
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For each 1 ≤ i ≤ m
p · n

p · r, the CAT function fi selects the maximum value from a (p · q)-segment starting from the ith

component of the input vector. The function fi consists of a sequence of cases, one for each of the p · q possible indices of

the maximal value in the segment:

fi(x) = case (xi ≥ xi+1) ∧ . . . ∧ (xi ≥ xi+p·q−1) : W (i,i) · x,
case (xi+1 ≥ xi) ∧ . . . ∧ (xi+1 ≥ xi+p·q−1) : W (i,i+1) · x,

...

case (xi+p·q−1 ≥ xi) ∧ . . . ∧ (xi+p·q−1 ≥ xi+p·q−2) : W (i,i+p·q−1) · x.

The matrix W (i,k) ∈ R
(m·n·r−(p·q−1)·i)×(m·n·r−(p·q−1)·(i−1)) replaces the segment xi, . . . , xi+p·q−1 of the input vector x by

the value xk and is given by

W
(i,k)
j =

⎧⎨
⎩

ej , if 1 ≤ j ≤ i− 1
ek, if j = i
ej+p·q−1, if i+ 1 ≤ j ≤ m · n · r − (p · q − 1) · i

.
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