
PIR with compressed queries and amortized query processing

Sebastian Angel�†, Hao Chen‡, Kim Laine‡, and Srinath Setty‡

�The University of Texas at Austin †New York University ‡Microsoft Research

Abstract

Private information retrieval (PIR) is a key building block in

many privacy-preserving systems. Unfortunately, existing con-

structions remain very expensive. This paper introduces two

techniques that make the computational variant of PIR (CPIR)

more efficient in practice. The first technique targets a recent

class of CPU-efficient CPIR protocols where the query sent by

the client contains a number of ciphertexts proportional to the

size of the database. We show how to compresses this query,

achieving size reductions of up to 274×.

The second technique is a new data encoding called proba-

bilistic batch codes (PBCs). We use PBCs to build a multi-query

PIR scheme that allows the server to amortize its computational

cost when processing a batch of requests from the same client.

This technique achieves up to 40× speedup over processing

queries one at a time, and is significantly more efficient than

related encodings. We apply our techniques to the Pung private

communication system, which relies on a custom multi-query

CPIR protocol for its privacy guarantees. By porting our tech-

niques to Pung, we find that we can simultaneously reduce

network costs by 36× and increase throughput by 3×.

1 Introduction

A key cryptographic building block in recent privacy-preserving

systems is private information retrieval (PIR) [33]. Exam-

ples include anonymous and metadata-private communica-

tion [11, 58, 63], privacy-preserving media streaming [8, 49],

ad delivery [47], friend discovery [18], and subscriptions [31].

PIR allows a client to download an element (e.g., movie,

friend record) from a database held by an untrusted server (e.g.,

streaming service, social network) without revealing to the

server which element was downloaded. While powerful, PIR is

very expensive—and unfortunately this expense is fundamental:

PIR schemes force the server to operate on all elements in the

database to answer a single query [33]. After all, if the server

could omit an element when answering a query it would learn

that the omitted element is of no interest to the client.

We are interested in the computational variant of PIR

(CPIR) [57], which is desirable since it relies only on cryp-

tographic hardness assumptions and can be used even when the

database is operated by a single organization (we discuss alter-

natives in Section 2.1). Unfortunately, the costs of existing CPIR

constructions [8, 21, 24, 39, 56, 57, 60, 72] are so significant

that existing CPIR-backed systems must settle with supporting

small databases with fewer than 100K entries [8, 11, 47, 49].

In this paper we discuss two orthogonal but complemen-

tary contributions that make CPIR more efficient in practice.

The first is the introduction of SealPIR, a new CPIR library

that extends the most computationally-efficient CPIR protocol,

XPIR [8], with a new query compression technique that reduces

network costs (§3). Specifically, a query in XPIR (and its base

protocol [72]), consists of a vector of n ciphertexts, where n

is the number of elements in the server’s database. Stern [72]

showed that it is possible to reduce the number of ciphertexts to

d d
√

n for any positive integer d, thereby making network costs

sublinear in the size of the database. The downside of Stern’s

approach is that it comes at an exponential increase in the size

of the response (§3.4). As we show in our evaluation, values

of d > 3 in XPIR lead to responses that are so large that they

outweigh any reduction in query size (§7.1).

SealPIR adopts a fundamentally different approach. Instead

of creating a query vector, SealPIR has the client send a single

ciphertext containing an encoding of the index of the desired

element. The server then executes a new oblivious expansion

procedure that extracts the corresponding n-ciphertext vector

from the single ciphertext, without leaking any information

about the client’s index, and without increasing the size of the

response (§3.3). The server can then proceed with the XPIR

protocol on the extracted vector as before.

In terms of concrete savings over XPIR, SealPIR results in

queries that are 274× smaller and are 16.4× less expensive for

the client to construct. However, SealPIR introduces between

11% and 24% CPU overhead to the server (over XPIR) to obliv-

iously expand queries. We think this is an excellent trade-off

since XPIR’s protocol is embarrassingly parallel and one can

regain the lost throughput by employing additional servers. Fur-

thermore, reducing communication overhead makes PIR usable

in settings where clients have limited bandwidth, such as mobile

devices or wired connections with data limits [7].

Our second contribution is a new technique to amortize the

server’s CPU cost when processing multiple queries from the

same client. This technique is a relaxation of batch codes [52],

a data encoding that was originally proposed for this purpose.

In practice, most batch code constructions target a different

domain—providing load balancing and availability guarantees

to distributed storage [67, 69] and network switches [77]; using

these constructions to amortize the processing of a batch of PIR

queries is not worthwhile since they introduce high network

costs while yielding only modest CPU speedups (§4.1).

Our encoding, called probabilistic batch codes (PBC), ad-

dresses this issue at the expense of introducing a small prob-

ability of failure (§4.2). In the context of multi-query PIR, a

failure simply means that a client only gets some (not all) of her

queries answered in a single interaction. While the implications

of a failure depend on the application, we argue that in many

cases this is not an issue (§5). Moreover, the failure probability

of our constructions is low—about 1 in a trillion multi-queries

would be affected.

The key idea behind our PBC construction is a simple new

technique called reverse hashing (§4.3). This technique flips

962

2018 IEEE Symposium on Security and Privacy

© 2018, Sebastian Angel. Under license to IEEE.
DOI 10.1109/SP.2018.00062

the way that hashing (e.g., multi-choice [64], cuckoo [66]) is

typically used in distributed systems to achieve load balancing:

instead of executing the hashing algorithm during data place-

ment, it is executed during data retrieval. Like batch codes,

PBCs amortize CPU costs when processing a batch of queries.

Unlike batch codes, PBCs are more network-efficient: they in-

troduce orders of magnitude less network overhead (§7.3).

We demonstrate the benefits of our techniques through an ex-

perimental evaluation of several deployments that include well-

provisioned, bandwidth-limited, and geo-distributed clients

on databases of up to four million entries. We also integrate

SealPIR and PBCs into a recent private communication sys-

tem [11] that uses multi-query CPIR for its privacy guarantees.

In summary, the contributions of this work are:

• SealPIR, a CPIR library that reduces network costs through

a new oblivious query expansion procedure (§3).

• The design of PBCs, a new probabilistic data encoding use-

ful for building multi-query PIR protocols that amortize

computational costs (§4).

• The implementation and evaluation of SealPIR and PBC on

a variety of settings (§7), including porting these techniques

to the Pung communication system (§7.4).

Despite these advances, there remains a large performance

gap between CPIR implementations and widespread adoption.

Nevertheless, we hope that this work can usher a way forward.

2 Background and related work

We begin by giving some background on PIR and existing multi-

query proposals that relate to our work.

2.1 Private information retrieval (PIR)

Chor et al. [33] introduce private information retrieval (PIR) to

answer the following questions: can a client retrieve an element

from a database managed by an untrusted server (or set of

servers) without the server learning which element was retrieved

by the client? And can this be done more efficiently than simply

having the client download the entire database? Chor et al.’s

affirmative response inspired two lines of work: information

theoretic PIR (IT-PIR) and computational PIR (CPIR).1

In IT-PIR schemes [15, 33, 36, 37, 46] the database is

replicated across several non-colluding servers. The client is-

sues a query to each server and combines the responses from

all of the servers locally. IT-PIR schemes have two benefits.

First, the servers’ computation is relatively inexpensive (an

XOR for each entry in the database). Second, the privacy

guarantees are information-theoretic, meaning that they hold

against computationally-unbounded adversaries and avoid cryp-

tographic hardness assumptions. However, basing systems on

IT-PIR poses a significant deployment challenge since it can be

difficult to enforce the non-collusion assumption in practice.

On the other hand, CPIR protocols [8, 21, 24, 27, 39, 45,

56, 57, 59, 60, 78] can be used with a database controlled by

a single administrative domain (e.g., a company), under cryp-

tographic hardness assumptions. The drawback is that they

are more expensive than IT-PIR protocols as they require the

1Also known as multi-database PIR (IT-PIR) and single-database PIR (CPIR).

database operator to perform costly cryptographic operations

on each database element. Fortunately, there is a long line of

work to improve the resource overheads of CPIR (see [8, 56]

for the state-of-the-art), and recent work [8] proposes a con-

struction that achieves, for the first time, plausible (although

still high) computational costs. Unfortunately, this construction

has high network costs that scale unfavorably with the size of

the database. We discuss this protocol in Section 3.

Regardless of which PIR variant a system implements, the

concrete costs remain high. As a result, it is hard for systems to

support large databases or handle many requests. While support-

ing large databases remains out of reach—although Section 3

makes progress on this—supporting a batch of queries is the

focus of existing proposals. We discuss them next.

2.2 Existing multi-query PIR schemes

Given PIR’s high costs, it is desirable to amortize the servicing

of many requests. Such scenarios include databases that process

a batch of requests from the same user (e.g., Email, group chat,

bulletin boards). The most general approach to achieve this goal

is to use a batch code [52, 67, 69]. In a batch code, the database

is encoded such that the server (or servers) can respond to any k

requests (from the same user) more cheaply (computationally)

than running k parallel instances of PIR. The trade-off is that

batch codes require more network resources (than the k parallel

instances). In practice, this network overhead is onerous; we

discuss this further in Section 4.1.

Other existing proposals tailor the amortization to particular

PIR protocols or particular applications, as we discuss next.

Amortization for particular protocols. Beimel et al. [16] de-

scribe two query amortization techniques. The first is based

on the observation that queries in many PIR schemes consist

of a vector of entries, and answering these queries is equiva-

lent to computing a matrix-vector product (where the product

could be over ciphertexts instead of plaintexts, or it could be

an XOR operation). By aggregating multiple queries—even

from different users—the server’s work can be expressed as a

product of two matrices. As a result, subcubic matrix multi-

plication algorithms (e.g., [34, 73]) provide amortization over

multiple matrix-vector multiplication instances. This approach

is further studied by Lueks and Goldberg [62] in the context of

Goldberg’s IT-PIR scheme [46].

The second proposal described by Beimel et al. [16] is

to preprocess the database in certain IT-PIR schemes to re-

duce the cost of future queries. Since this works well, re-

cent projects [19, 26] employ an analogous approach in CPIR

schemes. However, making the preprocessed database acces-

sible by more than one client under these schemes requires

cryptographic primitives that are currently too inefficient to be

implemented (virtual black-box obfuscation [14] heuristically

instantiated from indistinguishability obfuscation [43]).

Several works [36, 48, 50, 51] extend specific PIR schemes to

achieve CPU or network amortization. Related to CPIR, Groth

et al. [48] extend Gentry and Ramzan’s [45] scheme to retrieve

k elements at lower amortized network cost by having the client

compute k discrete logarithms (with tractable but expensive

parameters) on the server’s answer. This results in low network

963

1: function SETUP(DB)

2: Represent DB in an amenable format (see [8, §3.2])

3:

4: function QUERY(pk, idx, n)

5: for i = 0 to n− 1 do

6: ci ← Enc(pk, i == idx? 1 : 0)

7: return q ← {c0, . . . , cn−1}

8:

9: function ANSWER(q = {c0, . . . , cn−1}, DB)

10: for i = 0 to n− 1 do

11: ai ← DBi · ci // plaintext-ciphertext multiplication

12: return a ← Σn−1
i=0 ai // homomorphic addition

13:

14: function EXTRACT(sk, a)

15: return Dec(sk, a)

FIGURE 1—CPIR protocol from Stern [72] and XPIR [8] on a database

DB of n elements. This protocol requires an additively homomorphic

cryptosystem with algorithms (KeyGen, Enc, Dec), where (pk, sk) is

the public and secret key pair generated using KeyGen. We omit the

details of all optimizations. The client runs the QUERY and EXTRACT

procedures, and the server runs the SETUP and ANSWER procedures.

Each element in DB is assumed to fit inside a single ciphertext. Oth-

erwise, each element can be split into � smaller chunks, and Lines 11

and 12 can be performed on each chunk individually; in this case

ANSWER would return � ciphertexts instead of one.

costs, but Gentry and Ramzan’s scheme is computationally

expensive (tens of minutes to process a single PIR query, based

on our estimates); Groth et al.’s extension compounds this issue.

Amortization for particular apps. Popcorn [49] pipelines the

processing of queries in IT-PIR to amortize disk I/O, which is

a bottleneck for databases with very large files such as movies.

Pung [11] hybridizes an existing batch code due to Ishai et

al. [52] with a probabilistic protocol that exploits the setting of

online communication where users can coordinate a priori (e.g.,

chat, e-mail). This enables Pung to amortize CPU costs with

less network expense than traditional batch codes.

In contrast with the above, our multi-query scheme is ag-

nostic to the particular PIR protocol or application being used.

Compared to batch codes [52], our technique has weaker prop-

erties (sufficient for many applications) but is significantly more

efficient. Compared to Pung’s technique, our approach is more

efficient and application-independent (§4.2).

3 SealPIR: An efficient CPIR library

Our starting point for SealPIR is XPIR [8], a recent construction

that improves on Stern’s CPIR scheme [72]. We give a rough

sketch of the protocol in Figure 1. The key idea in XPIR is

to perform the encryption and homomorphic operations using

a lattice-based cryptosystem (the authors use BV [22]), and

preprocess the database in a way that reduces the cost of the op-

erations in Lines 11 and 12 in Figure 1. To our knowledge, this

makes XPIR the only CPIR scheme that is usable in practice.

A major drawback of XPIR is network costs. In particular,

the query sent by the client is large: in the basic scheme, it

contains one ciphertext (encrypting 0 or 1) for each entry in an

n-element database. Furthermore, lattice-based cryptosystems

operation CPU cost (ms) noise growth

addition 0.002 additive

plaintext multiplication 0.141 multiplicative�

multiplication 1.514 multiplicative

substitution 0.279 additive

FIGURE 2—Cost of operations in SEAL [4]. The parameters used are

given in Section 7. Every operation increases the noise in a ciphertext.

Once the noise passes a threshold, the ciphertext cannot be decrypted.

For a given computation, parameters must be chosen to accommodate

the expected noise. �While plaintext multiplication yields a multiplica-

tive increase in the noise, the factor is always 1 (i.e., no noise growth)

in EXPAND because it is based on the number of non-zero coefficients

in the plaintext [28, §6.2].

have a high expansion factor, F, which is the size ratio between

a ciphertext and the largest plaintext that can be encrypted; for

recommended security parameters, F ≥ 6.4 [10, 28].

To improve network costs, Stern [72] describes a way to

represent the query using d d
√

n ciphertexts (instead of n) for any

positive integer d. Unfortunately, this increases the response size

exponentially from 1 to Fd−1 ciphertexts (Section 3.4 explains

this). If the goal is to minimize network costs, a value of d = 2

or 3 is optimal in XPIR for the databases that we evaluate (§7.1).

As a result, even with this technique, the query vector is made

up of hundreds or thousands of ciphertexts.

3.1 Compressing queries

At a high level, our goal is to realize the following picture:

the client sends one ciphertext containing an encryption of its

desired index i to the server, and the server inexpensively eval-

uates a function EXPAND that outputs n ciphertexts containing

an encryption of 0 or 1 (where the ith ciphertext encrypts 1 and

others encrypt 0). The server can then use these n ciphertexts as

a query and execute the protocol as before (Figure 1, Line 9).

A straw man approach to construct EXPAND is to create a

Boolean circuit that computes the following function: “if the

index encrypted by the client is i return 1, else return 0”. The

server then evaluates this circuit on the client’s ciphertext using

a fully homomorphic encryption (FHE) scheme (e.g., BV [22],

BGV [20], FV [40]) passing in values of i ∈ [0, n− 1] to obtain

the n ciphertexts. Unfortunately, this approach is impractical.

First, the client must send log(n) ciphertexts as the query (one

for each bit of its index since the server evaluates a Boolean

circuit). Second, the Boolean circuit is concretely large (thou-

sands of gates) and expensive to evaluate. Finally, the server

must evaluate this circuit for each of the n possible indices.

Instead, we propose a new algorithm to implement EXPAND.

It relies on FHE, but perhaps surprisingly, it does not require

encrypting each bit of the index individually, working with

Boolean gates, or performing any homomorphic multiplications.

This last point is critical for performance, since homomorphic

multiplications are expensive and require using larger secu-

rity parameters (Figure 2). We note that the cryptosystem used

by XPIR (BV [22]) is an FHE scheme, so we could imple-

ment EXPAND using that. However, we choose to implement all

of SealPIR using the SEAL homomorphic library [4]—based

on the Fan-Vercauteren (FV) [40] cryptosystem—instead. We

964

make this choice for pragmatic reasons: EXPAND requires the

implementation of a new homomorphic operation, and SEAL al-

ready implements many of the necessary building blocks. Below

we give some background on FV.

Fan-Vercauteren FHE cryptosystem (FV). In FV, plaintexts

are polynomials of degree at most N with integer coefficients

modulo t. Specifically, the polynomials are from the quotient

ring Rt = Zt[x]/(x
N + 1), where N is a power of 2, and t is the

plaintext modulus that determines how much data can be packed

into a single FV plaintext. In Section 6 we discuss how regular

binary data, for example a movie, is encoded in an FV plaintext,

and what these polynomials actually look like in practice.

Ciphertexts in FV consist of two polynomials, each of which

is in Rq = Zq[x]/(x
N + 1). Here q is the coefficient modulus

that affects how much noise a ciphertext can contain, and the

security of the cryptosystem. When a plaintext is encrypted, the

corresponding ciphertext contains noise. As operations such

as addition or multiplication are performed, the noise of the

output ciphertext grows based on the noise of the operands and

the operation being performed (Figure 2 gives the noise growth

of several operations). Once the noise passes a threshold, the

ciphertext cannot be decrypted. The noise growth of operations

depends heavily on t, so t should be kept small. However, lower

t means that more FV plaintexts are needed to represent the

binary data (movie, etc.). Larger q supports more noise, but

results in lower security [28]. The expansion factor is F =
2 log(q)/ log(t). We discuss concrete parameters in Section 7.

In addition to the standard operations of a cryptosystem (key

generation, encryption, decryption), FV also supports homo-

morphic addition, multiplication, and relinearization (which is

performed after multiplications to keep the number of polyno-

mials in the ciphertext at two); for our purposes we care about

the following operations.

• Addition: Given ciphertexts c1 and c2, which encrypt FV

plaintexts p1(x), p2(x), the operation c1 + c2 results in a

ciphertext that encrypts their sum, p1(x) + p2(x).

• Plaintext multiplication: Given a ciphertext c that encrypts

p1(x), and given a plaintext p2(x), the operation p2(x) · c

results in a ciphertext that encrypts p1(x) · p2(x).

• Substitution: Given a ciphertext c that encrypts plaintext

p(x) and an odd integer k, the operation Sub(c, k) returns

an encryption of p(xk). For instance if c encrypts p(x) =
7+x2 +2x3, then Sub(c, 3) returns an encryption of p(x3) =

7 + (x3)
2
+ 2(x3)

3
= 7 + x6 + 2x9.

Our implementation of the substitution operation is based on

the plaintext slot permutation technique discussed by Gentry et

al. [44, §4.2]. Fortunately, substitution requires only a subset of

the operations needed by the arbitrary permutations that Gentry

et al. consider, so we can implement it very efficiently, as shown

in the last row of Figure 2. We give a detailed description of

substitution in Appendix A.1.

3.2 Encoding the index

A client who wishes to retrieve the ith element from the server’s

database using SealPIR generates an FV plaintext that encodes

this index. The client does so by representing i ∈ [0, n− 1] as

the monomial xi ∈ Rt. The client then encrypts this plaintext

to obtain query = Enc(xi), which is then sent to the server. We

later discuss how to handle larger databases for which the index

cannot be represented by a single FV plaintext (§3.5).

3.3 Expanding queries obliviously

To explain how the server expands query = Enc(xi) into a

vector of n ciphertexts where the ith ciphertext is Enc(1) and all

other are Enc(0), we first give a description for n = 2.

As discussed in the previous section, the server receives

query = Enc(xi), with i ∈ {0, 1} in this case (since n = 2) as

the client’s desired index. The server first expands query into

two ciphertexts c0 = query and c1 = query · x−1:

c0 =

{
Enc(1) if i = 0

Enc(x) if i = 1

c1 =

{
Enc(xi · x−1) = Enc(x−1) if i = 0

Enc(xi · x−1) = Enc(1) if i = 1

The server computes c′j = cj + Sub(cj, N + 1) for j ∈ {0, 1}.
Since operations in Rt are defined modulo xN + 1, a substitution

with N + 1 transforms the plaintext encrypted by c0 and c1 from

p(x) to p(−x).2 Specifically, we have:

c′0 =

{
Enc(1) + Enc(1) = Enc(2) if i = 0

Enc(x) + Enc(−x) = Enc(0) if i = 1

c′1 =

{
Enc(x−1) + Enc(−x−1) = Enc(0) if i = 0

Enc(1) + Enc(1) = Enc(2) if i = 1

Finally, assuming t is odd, we can compute the multiplicative

inverse of 2 in Zt, say α, encode it as the monomial α ∈ Rt,

and compute oj = α · c′j . It is the case that o0 and o1 contain the

desired output of EXPAND: oi encrypts 1, and o1−i encrypts 0.

We can generalize this approach to any power of 2 as long

as n ≤ N. In cases where n is not a power of 2, we can run the

algorithm for the next power of 2, and take the first n output

ciphertexts as the client’s query. Figure 3 gives the generalized

algorithm, and Figure 4 depicts an example for a database of 4

elements. We prove the correctness of EXPAND in Appendix A.2,

and bound its noise growth in Appendix A.3.

3.4 Reducing the cost of expansion

One issue with EXPAND is that despite each operation being

inexpensive (Figure 2), O(n) operations are needed to extract the

n-entry query vector. This is undesirable, since EXPAND could

end up being almost as expensive to the server as computing

the answer to a query (see Figure 1, Line 9). We show how to

reduce this cost by having the client send multiple ciphertexts.

Stern [72] proposes the following modification to the protocol

in Figure 1. Instead of structuring the database DB as an n-entry

vector (where each entry is an element), the server structures

the database as a
√

n × √n matrix M: each cell in M is a

different element in DB. The client sends 2 query vectors, vrow

2Observe that xN + 1 ≡ 0 (mod xN + 1) and xN+1 ≡ −x (mod xN + 1).

965

1: function EXPAND(query = Enc(xi))
2: find smallest m = 2� such that m ≥ n

3: ciphertexts ← [query]
4: // each outer loop iteration doubles the number of ciphertexts,

5: // and only one ciphertext ever encrypts a non-zero polynomial

6: for j = 0 to �− 1 do

7: for k = 0 to 2j − 1 do

8: c0 ← ciphertexts[k]

9: c1 ← c0 · x−2j

10: c′k ← c0 + Sub(c0, N/2j + 1)
11: c′

k+2j ← c1 + Sub(c1, N/2j + 1)

12: ciphtertexts ← [c′0, . . . , c′
2j+1

−1
]

13: // ciphertext at position j encrypts m and all others encrypt 0

14: inverse ← m−1 (mod t)
15: for j = 0 to n− 1 do

16: oj ← ciphertexts[j] · inverse

17: return output ← [o0, . . . , on−1]

FIGURE 3—Procedure that expands a single ciphertext query that

encodes an index i into a vector of n ciphertexts, where the ith entry

is an encryption of 1, and all other entries are encryptions of 0. We

introduce a new group operation Sub (see text for details). Plaintexts

are in the polynomial quotient ring Zt[x]/(X
N + 1). N ≥ n is a power

of 2, and n is the number of elements in the server’s database.

and vcol, each of size
√

n . The vector vrow has the encryption of

1 at position r, while vcol has the encryption of 1 at position c

(where M[r, c] is the client’s desired element). The server, upon

receiving vrow and vcol, computes the following matrix-vector

product: Ac = M · vcol, where each multiplication is between

a plaintext and ciphertexts, and additions are on ciphertexts.

Observe that Ac is a vector containing the encryptions of the

entries in column c of M.

The server then performs a similar step using Ac and vrow.

There is, however, one technical challenge: each entry in Ac

is a ciphertext, so it is too big to fit inside another ciphertext

(recall that the largest plaintext that can fit in a ciphertext has

size |ciphertext|/F). To address this, the server splits elements

in Ac into F chunks, so Ac can be thought of as a
√

n by F

matrix. The server can now repeat the process as before on the

transpose of this matrix: it computes AT
c · vrow, to yield a vector

of F ciphertexts, which it sends to the client. The client then

decrypts all F ciphertexts and combines the result to obtain

Enc(M[r, c]). The client can then decrypt Enc(M[r, c]) to obtain

M[r, c]—the desired element in DB. This scheme generalizes

by structuring the database as a d-dimensional hypercube and

having the client send d query vectors of size d
√

n. The server

then returns Fd−1 ciphertexts as the response.

We use the above scheme to reduce the computational cost of

EXPAND (in contrast, Stern and XPIR use the above technique to

reduce network costs by reducing the size of the query vector).

Instead of encoding one index, the client encodes d indices (on

different ciphertexts), one for each dimension of the database.

The server then calls EXPAND on each of the d ciphertexts, and

extracts a d
√

n-entry vector from each. The server uses the above

scheme with the extracted d vectors, which results in the CPU

costs of EXPAND being O(d d
√

n). Of course, this approach has

the downside that the PIR response gets larger because of the

initial plaintext (encodes index 2): x2
x0 x1 x2 x3

Expand (j = 0)

Expand (j = 1)

inverse

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0

0 0 1 0

FIGURE 4—Example of EXPAND’s effect on the FV plaintexts during

each iteration of the outer loop. Each array represents the coefficients

of the corresponding polynomial. Note that the server only sees the

ciphertexts (not depicted). This example assumes a database with 4

elements, and a query retrieving the third item.

cryptosystem’s expansion factor (F). Specifically, the network

cost is d ciphertexts to encode the indices, and Fd−1 ciphertexts

to encode the response. The good news is that for small values

of d (2 or 3), this results in major computational savings while

still reducing network costs by orders of magnitude over XPIR.

3.5 Handling larger databases

As we discuss in Section 3.3, the size of the query vector that

EXPAND can generate is bounded by N. Based on recommended

security parameters [10, 28], N is typically 2048 or 4096 (larger

N improves security but reduces performance). So how can one

index into databases with more than N elements?

We propose two solutions. First, the client sends multiple

ciphertexts and the server expands them and concatenates the

results. For instance, if N is 2048, the database has 4000 ele-

ments, and the client wishes to get the element at index 2050,

the client sends 2 ciphertexts: the first encrypts 0 and the second

encrypts x2. The server expands both ciphertexts into 2048-entry

vectors and concatenates them to get a 4096-entry vector where

the entry at index 2050 encrypts 1, and all others encrypt 0. The

server then uses the first 4000 entries as the query vector.

A more efficient solution is to represent the database as a

d-dimensional hypercube as we discuss in Section 3.4. This

allows the client to send d ciphertexts to index a database of

size Nd. For d = 2 and N = 4096, two ciphertexts are sufficient

to index 16.7 million entries. One can also use a combination of

these solutions. For example, given a database with 230 entries,

SealPIR uses d = 2 (so the database is a 215 × 215 matrix), and

represents the index for each dimension using 215/4096 = 8

ciphertexts. The server expands these 8 ciphertexts and con-

catenates them to obtain a vector of 215 entries. In total, this

approach requires the client to send 16 ciphertexts as the query

(8 per dimension), and receive F ≈ 7 ciphertexts as the re-

sponse (d = 3 would lead to 3 ciphertexts as the query, but F2

ciphertexts as the response).

In short, the query communication complexity goes from

O(Nd d
√

n) in XPIR to O(Nd� d
√

n/N�) in SealPIR.

4 Amortizing computational costs in PIR

Answering a PIR query requires computation that is linear in

the size of the database, so a promising way to save computa-

966

tional resources is for the server to amortize costs by processing

a batch of queries. Batch codes [52] are a data encoding that,

among other applications, can be used to achieve this goal. In

particular, the server can use a batch code to encode its database

in a way that it can answer a batch of queries more cheaply

(computationally) than answering each query individually. Un-

fortunately, despite a large body of work on batch codes, we

find that most constructions do not focus on PIR amortiza-

tion. Instead, they target load balancing in distributed storage

systems [61, 67, 69] and network switches [77], which have

different requirements. Using these codes to amortize PIR query

processing would incur prohibitive network costs.

Our key observation is that certain guarantees of batch codes

are not necessary for many PIR-backed systems. Relaxing those

guarantees leads to constructions that are not only asymptoti-

cally better, but also concretely efficient—without compromis-

ing the functionality of our target system. Below we give a

description of batch codes, highlight the sources of overhead,

and then introduce our construction.

4.1 Batch codes and their cost

A (n, m, k, b)-batch code B takes as input a collection DB of n

elements, and produces a set of m codewords, C, distributed

among b buckets.3 Formally, B : DB → (C0, . . . , Cb−1), where

|Ci| is the number of codewords in bucket i, and the sum of

codewords across all buckets is m = Σb−1
i=0 |Ci| ≥ n. The goal of

these codes is two-fold. First, they ensure that any k elements

from DB can be retrieved from the b buckets by fetching at most

one codeword from each bucket. Second, they keep the number

of total codewords, m, lower than k · n.

Example. We describe a (4, 6, 2, 3)-batch code, specifically

the subcube batch code [52]. Let DB = {x1, x2, x3, x4}. For

the encoding, DB is split in half to produce 2 buckets, and

a third bucket is produced by XORing the entries in the first

two buckets: B(DB) = ({x1, x2}, {x3, x4}, {x1 ⊕ x3, x2 ⊕ x4}).
Observe that one can obtain any 2 elements in DB by querying

each bucket at most once. For example, to obtain x1 and x2, one

can get x1 from the first bucket, x4 from the second bucket, and

x2 ⊕ x4 from the third bucket; x2 = x4 ⊕ (x2 ⊕ x4).
This encoding is helpful for PIR because a client wishing

to retrieve 2 elements from DB can, instead of querying DB

twice, issue one query to each bucket. The server is in effect

computing over 3 “databases” with 2 elements each, which

results in 25% fewer operations.

Costs of PIR with batch codes. Figure 5 depicts the relation-

ship between the number of codewords (m) and the number of

buckets b, as a function of the database size (n) and the batch

size (k) for several constructions. In multi-query PIR, the client

issues one query to each of the b buckets, and therefore receives

b responses (§5). To answer these b queries, the server com-

putes over all m codewords exactly once; lower values of m

lead to less computation, and lower values of b lead to lower

network costs. Since m < k · n, the total computation done by

the server is lower than running k parallel instances of PIR. The

3We use different variable names (e.g., m and b) from the batch code literature

to avoid overloading variable names introduced in Section 3.

drawback is that existing batch codes produce many buckets

(see the third column in Figure 5). As a result, they introduce

significant network overhead over not using a batch code at all.

This makes batch codes unappealing in practice.

4.2 Probabilistic batch codes (PBC)

Batch codes have exciting properties, but existing constructions

offer an unattractive trade-off: they reduce computation but add

network overhead. We make this trade-off more appealing by

relaxing batch codes’ guarantees.

A probabilistic batch code (PBC) differs from a traditional

batch code in that it fails to be complete with probability p. That

is, there might be no way to recover a specific set of k elements

from a collection encoded with a PBC by retrieving exactly one

codeword from each bucket. The probability of encountering

one such set (when elements are uniformly chosen) is p. In the

example of Section 4.1, this would mean that under a PBC, a

client may be unable to retrieve both x1 and x2 by querying

buckets at most once (whereas a traditional batch code guar-

antees that this is always possible). In practice, this is seldom

an issue: our construction has parameters that result in roughly

1 in a trillion queries failing, which we think is a sufficiently

rare occurrence. Furthermore, as we discuss in Section 5, this

is an easy failure case to address in multi-query PIR since a

client learns whether or not it can get all of the elements before

issuing any queries.

Definition 1 (PBC). A (n, m, k, b, p)-PBC is given by three

polynomial-time algorithms (Encode, GenSchedule, Decode):

• (C0, . . . , Cb−1) ← Encode(DB): Given an n-element col-

lection DB, output a b-tuple of buckets, where b ≥ k, each

bucket contains zero or more codewords, and the total num-

ber of codewords across all buckets is m = Σb−1
i=0 |Ci| ≥ n.

• {σ,⊥} ← GenSchedule(I): Given a set of k indices I cor-

responding to the positions of elements in DB, output a

schedule σ : I → {{0, . . . , b− 1}+}k
. The schedule σ gives,

for each position i ∈ I, the index of one or more buckets

from which to retrieve a codeword that can be used to re-

construct element DB[i]. GenSchedule outputs ⊥ if it cannot

produce a schedule where each i ∈ I is associated with at

least one bucket, and where no buckets is used more than

once. This failure event occurs with probability p.

• element ← Decode(W): Given a set of codewords W, out-

put the corresponding element ∈ DB.

In the subsections ahead we describe an efficient PBC

construction. Our key idea is as follows. Batch codes

spread out elements such that retrieval requests are load bal-

anced among different buckets. Relatedly, many data struc-

tures and networking applications use different variants of

hashing—consistent [53], asymmetric [75], weighted [74],

multi-choice [13, 64], cuckoo [12, 66], and others [23, 38]—

to achieve a similar goal. While there is no obvious way to use

these hashing schemes to implement multi-query PIR directly,

we can do it indirectly: we first build a PBC from a simple

technique, which we call reverse hashing, and then use the PBC

to implement multi-query PIR (§5).

967

batch code codewords (m) buckets (b) probability of failure (p)

subcube (� ≥ 2) [52, §3.2] n · ((�+ 1)/�)log2(k) (�+ 1)log2(k)
0

combinatorial (
(

r

k−1

)
≤ n/(k − 1)) [67, §2.2] kn− (k − 1) ·

(
r

k−1

)
r 0

Balbuena graphs [69, §IV.A] 2(k3 − k · �n/(k3 − k)�) 2(k3 − k) 0

Pung hybrid� [11, §4.4] 4.5n 9k ≈ 2−20

3-way reverse cuckoo hashing (this work, §4.5) 3n 1.5k ≈ 2−40

FIGURE 5—Cost of existing batch codes and the probabilistic batch code (PBC) construction given in Section 4.5. n indicates the number of

elements in the database DB. k gives the number of elements that can be retrieved from DB by querying each bucket in β(DB) at most once, where

β is the batch code. Building a multi-query PIR scheme from any of the above constructions leads to computational costs to the server linear in m,

and network communication linear in b. We list batch codes that have explicit constructions and can amortize CPU costs for multi-query PIR.

Other batch codes have been proposed (e.g., [61, 70, 71, 76]) but they either have no known constructions, or they seek additional properties

(e.g., tolerate data erasures, optimize for the case where n = b, support multisets) that introduce structure or costs that makes them a poor fit for

multi-query PIR. �The scheme in Pung is neither a batch code nor a PBC since it relies on clients replicating the data to buckets (rather than the

server). It is, however, straightforward to port Pung’s allocation logic to construct a PBC.

�1, A�

h1(1)

h2(1)

�2, B�

h1(2)

h2(2)

�3, C�

h2(3)

h1(3)

1
A

1
A

2
B

1
A

2
B

3
C

FIGURE 6—Logic for two-choice hashing [13] when allocating three

key-value tuples to buckets: 〈1, A〉, 〈2, B〉, 〈3, C〉. Tuples are inserted

into the bucket least full. Arrows represent the choices for each tuple

based on different hashes of the tuple’s key (here we depict an opti-

mistic scenario). The red solid arrow indicates the chosen mapping.

4.3 Randomized load balancing

A common use case for (non-cryptographic) hash functions is to

build efficient data structures such as hash tables or dictionaries.

In a hash table, the insert procedure consists of computing one

or more hash functions on the key of the item being inserted.

Each application of a hash function returns an index into an

array of buckets in the hash table. The item is then placed into

one of these buckets following an allocation algorithm. For

example, in multi-choice hashing [13, 64], the item is placed in

the bucket least full among several candidate buckets. In Cuckoo

hashing [66], items may move around following the Cuckoo

hashing algorithm (we explain this algorithm in Section 4.5).

An ideal allocation results in items being assigned to buckets

such that all buckets have roughly the same number of items

(since this lowers the cost of lookup). In practice, there is load

imbalance where some buckets end up having more elements

than others; the extent of the imbalance depends on the alloca-

tion algorithm and the random choices that it makes. To look

up an item by its key, one computes the different hash functions

on the key to obtain the list of buckets in which the item could

have been placed. One then scans each of those buckets for the

desired item. An example of the insertion process for hashing

with two choices is given in Figure 6.

Abstract problem: balls and bins. In the above example,

hashing is used to solve an instance of the classic n balls and

b bins problem, which arises during insertion. The items to be

inserted into a hash table are the n balls, and the buckets in the

hash table are the b bins; using w hash functions to hash a key to

w candidate buckets approximates an independent and uniform

random assignment of a ball to w bins. The number of collisions

in a bucket is the load of a bin, and the highest load across all

bins is the max load. In the worst case, the max load is n/w (all

balls map to the same w candidate buckets), but there are much

smaller bounds that hold with high probability [13].

Interestingly, if we examine other scenarios abstracted by the

balls and bins problem, a pattern becomes clear: the allocation

algorithm is typically executed during data placement. In the

hash table example, the allocation algorithm determines where

to insert an element. In the context of a transport protocol [54],

the allocation algorithm dictates on which path to send a packet.

In the context of a job scheduler [65], the allocation algorithm

selects the server on which to run a task. The result is that the

load balancing effect is achieved at the time of “data placement”.

However, to build a PBC, we must do it at the time of “data

retrieval”. Reverse hashing achieves this.4

4.4 Reverse hashing

We start by introducing two principals: the producer and the

consumer. The producer holds a collection of n items where

each item is a key-value tuple. It is in charge of data placement:

taking each of the n elements and placing them into buckets

based on their keys following some allocation algorithm. The

consumer holds a set of k keys (k ≤ n), and is in charge of

data retrieval: it fetches items by their key from the buckets that

were populated by the producer. The goal is for the consumer to

get all k items by probing each bucket as few times as possible.

That is, the consumer has an instance of a k balls and b bins

problem, and its goal is to reduce the instance’s max load.

Note that the consumer is not inserting elements into buckets

(that is the job of the producer). Instead, the consumer is placing

“retrieval requests” into the buckets. The challenge is that any

clever allocation chosen by the consumer must be compatible

with the actions of the producer (who populates the buckets).

That is, if the consumer, after running its allocation algorithm

(e.g., multi-choice hashing) decides to retrieve items x1, x2,

and x3, from buckets 2, 3, and 7, it better be the case that

4Pung [11, §4.3] makes a similar observation but in a less general setting.

968

�2, ��

h1(2)

h2(2)

�3, ��

h2(3)

h1(3)

�1, A�

h1(1)

h2(1)

�2, B�

h1(2)

h2(2)

�3, C�

h2(3)

h1(3)

(a) consumer�s simulation

(b) producer�s allocation

2
�

2
�

3
�

1
A

1
A

1
A

2
B

2
B

1
A

1
A

2
B

3
C

2
B

1
A

3
C

FIGURE 7—Example of two-choice reverse hashing. (a) shows the

consumer’s simulation when inserting two tuples 〈2, �〉, 〈3, �〉. The �
indicates that the value is not known, so an arbitrary value is used. (b)

shows a modification to two-choice hashing where the producer stores

the tuple in all possible choices. This ensures that the final allocation

is always compatible with the consumer’s simulation.

the producer previously placed those elements in those exact

buckets. We describe how we guarantee compatibility below.

Protocol. The consumer starts by imagining that it is a pro-

ducer with a collection of k elements. In particular, the con-

sumer converts its k keys into k key-value tuples by assigning a

dummy value to each key (since it does not know actual values).

In this simulation, the consumer follows a specific allocation

algorithm (e.g., 2-choice hashing, cuckoo hashing) and popu-

lates the b buckets accordingly. The result is an allocation that

balances the load of the k elements among the b buckets (as we

discuss in Section 4.3). The consumer then ends its simulation

and uses the resulting allocation to fetch the k elements from

the buckets that were populated by the real producer.

Guaranteeing that the consumer’s allocation is compatible

with the producer’s actions is challenging. One reason is that

the consumer’s simulation is acting on k items whereas the

real producer is acting on n items. If the allocation algorithm

being used (by the consumer and the producer) is randomized

or depends on prior choices (this is the case with multi-choice

hashing schemes), the allocations will be different. For example,

observe that if a producer generates the allocation in Figure 6

it would not be compatible with the consumer’s simulation in

Figure 7(a) despite both entities using the same algorithm (since

the producer places the item under key “2” in the middle bucket,

but the consumer’s simulation maps it to the top bucket).

To guarantee compatibility we employ a simple solution:

the producer follows the same allocation algorithm as the con-

sumer’s simulation (e.g., 2-choice hashing) on its n elements but

stores the elements in all candidate buckets. That is, whenever

the algorithm chooses one among w candidate buckets to store

an element, the producer stores the element in all w buckets.

This ensures that regardless of which k elements are part of the

consumer’s simulation or which non-deterministic choices the

algorithm makes, the allocations are always compatible (Fig-

ure 7(b)). Of course this means that the producer is replicating

elements, which defeats the point of load balancing. However,

PBCs only need load balancing during data retrieval.

4.5 A PBC from reverse cuckoo hashing

We give a construction that uses Cuckoo hashing [66] to allocate

balls to bins. However, the same method can be used with other

algorithms (e.g., multi-choice Greedy [13], LocalSearch [55])

to obtain different parameters. We give a brief summary of

Cuckoo hashing’s allocation algorithm below.

Cuckoo hashing algorithm. Given n balls, b buckets, and w

independent hash functions h0, . . . , hw−1 that map a ball to a

random bucket, compute w candidate buckets for each ball by

applying the w hash functions. For each ball x, place x in any

empty candidate bucket. If none of the w candidate buckets

are empty, select one at random, remove the ball currently in

that bucket (xold), place x in the bucket, and re-insert xold. If

re-inserting xold causes another ball to be removed, this process

continues recursively for a maximum number of iterations.

Construction. Let H be an instance (producer, consumer) of

reverse hashing where the allocation algorithm is Cuckoo hash-

ing with w independent hash functions and b bins (we discuss

concrete values for w and b later in this section). We construct

a (n, m, k, b, p)-PBC as follows.

Encode(DB). Given a collection DB of n elements, follow H’s

producer algorithm to allocate the n elements to the b buckets

using the indices in DB as keys and the elements as values. This

results in m = wn total elements distributed (not necessarily

evenly) across the b buckets. Return the buckets.

GenSchedule(I). Given a set of indices I, follow H’s con-

sumer algorithm to allocate the k indices to the b buckets. Return

the mapping of indices to buckets. If more than one index maps

to the same bucket (i.e., if there are collisions), return⊥ instead.

Decode(W). Since Encode performs only replication, all

codewords are elements in DB and require no decoding. Fur-

thermore, σ, which is returned by GenSchedule, has only one

entry for each index. As a result, W contains only one codeword.

Decode returns that codeword.

Concrete parameters. Analyzing the exact failure probabil-

ity of Cuckoo hashing, and determining the constant factors,

remains an open problem (see [42] for recent progress). How-

ever, several works [29, 68] have estimated this probability

empirically for different parameter configurations. Following

the analysis in [29, §4.2], we choose w = 3 and b = 1.5k. In

this setting, the failure probability is estimated to be p ≈ 2−40

for k > 200 (for smaller k it is closer to 2−20). This means that,

assuming the mapping from indices to buckets is random, the

probability that GenSchedule(I) returns ⊥ for a set of indices

I chosen independently from the hash functions is p. Figure 5

compares this result with existing batch code constructions and

the scheme proposed in Pung [11, §4.4].

969

1: function SETUP(DB)

2: (C0, . . . , Cb−1)← Encode(DB)
3: for j = 0 to b− 1 do

4: SETUP(Cj) // See Fig. 1, Line 1

5:

6: function MULTIQUERY(pk, I, {|C0|, . . . , |Cb−1|})

7: σ ← GenSchedule(I)
8: if σ
= ⊥ then

9: // get an element for each bucket

10: // pick a random index if the bucket is not used in σ
11: for j = 0 to b− 1 do

12: idxj ← index for bucket j (based on σ and O)

13: qj ← QUERY(pk, idxj, |Cj|) // see Fig. 1, Line 4

14: return q ← (q0, . . . , qb−1)
15: else Deal with failure (see §5)

16:

17: function MULTIANSWER(q, (C0, . . . , Cb−1))
18: for j = 0 to b− 1 do

19: aj ← ANSWER(qj, Cj) // see Fig. 1, Line 9

20: return a ← (a0, . . . , ab−1)

21:

22: function MULTIEXTRACT(sk, a, I,σ)

23: // extract the codewords from the provided PIR answers into cw

24: for j = 0 to b− 1 do

25: cwj ← EXTRACT(sk, aj) // see Fig. 1, Line 14

26: // select codewords from cw that are relevant to each index in I

27: for i = 0 in k − 1 do

28: W ← codewords from cw (based on σ[Ii])
29: ei ← Decode(W)

30: return (e0, . . . , ek−1)

FIGURE 8—Multi-query CPIR protocol based on a CPIR protocol and

a PBC (Encode, GenSchedule, Decode). I is the set of k desired

indices and |Ci| is the size of bucket i. This protocol assumes a CPIR

scheme with the API given in Figure 1.

5 Multi-query PIR from PBCs

We give the pseudocode for a PBC-based multi-query PIR

scheme in Figure 8. At a high level, the server encodes its

database by calling the PBC’s Encode procedure. This produces

a set of buckets, each of which can be treated as an independent

database on which clients can perform PIR. A client who wishes

to retrieve elements at indices I = {i0, . . . , ik−1} can then lo-

cally call GenSchedule(I) to obtain a schedule σ. This schedule

states, for each index, the bucket from which to retrieve an el-

ement using PIR. Because of the semantics of GenSchedule

it is guaranteed that no bucket is queried more than once (or

σ = ⊥). As a result, the client can run one instance of PIR on

each bucket. However, a challenge is determining which index

to retrieve from each bucket: by assumption (of PIR) the client

knows the index in DB, but this has no relation to the index of

that same element in each bucket. To address this, we introduce

an oracleO that provides this information (we discuss it below).

If the client has nothing to retrieve from a given bucket, the

client simply queries a random index for that bucket.

Constructing the oracle O. There are several ways that the

client can construct O. The simplest solution is to obtain the

mapping from each index in DB to the corresponding indices

in each bucket. While this might sound unreasonable, observe

that PIR has an implicit assumption that the client knows the

index in DB of the desired element. The client could use the

same technique to obtain the corresponding w indices in B(DB).
For example, in the Pung communication system [11], clients

obtain this mapping in a succinct Bloom filter [17].

Another option is for the client to fetch elements in PIR not

by index but by a label using PIR-by-keywords [32]. Examples

of labels include the name or UUID of a movie, the index in the

original DB (in this case elements would need to be stored as

key-value tuples, where the key is the label). One last option is

for the clients to construct O directly. This requires the server

to share with clients its source of randomness (e.g., a PRF seed).

Clients can then simulate the server’s encoding procedure on a

database of n dummy elements (replicating each element into w

candidate buckets), which yields O. Furthermore, this process

is incremental for many hashing schemes: if a client has O for

an n-element database, it can construct O for a database with

n + 1 elements by simulating the insertion of the last element.

Malicious placement of elements. In cases where the server

is malicious—rather than semi-honest (or honest but curious)—

the server has full control over where to place elements. As a

result, the server could place specific elements at indices that

can never be retrieved together (i.e., at sets of indices where Gen-

Schedule returns ⊥). This opens the door to attacks where the

server selectively makes certain combinations of elements not

retrievable in hopes of observing a client’s reaction and breaking

the privacy guarantees. Note that a similar attack already exists

in the single-query PIR case: the server can selectively place

an incorrect element (or garbage) at a particular index and can

wait to see if a client complains or not (thereby learning that the

index that the client requested was one that contained garbage

or not). To address this style of “selective failure” attacks, addi-

tional mechanisms are needed. A common solution is to ensure

that a client’s reaction remains independent of whether or not

queries succeed. This guarantees that the attack does not violate

privacy. Instead, it violates availability, which a malicious server

could violate anyway by not answering queries.

Dealing with failures in the schedule. If the PBC being used

has p > 0, then it is possible that for a client’s choice of indices,

σ = ⊥. In this case, the client is unable to fetch all k elements

that it wishes to retrieve privately. However, notice that the

client learns of this fact before issuing any PIR query (see

Figure 8, Line 8). As a result, the client has a few options. First,

the client can adjust its set of indices (i.e., choose different

elements to retrieve). This is possible in applications where the

client needs to retrieve more than a batch of k items. Second,

the client can retrieve a subset of the elements. In a messaging

application, this would mean that the client would not retrieve

all unread messages. In many cases, this is acceptable since

messages may not be ephemeral so the client can try again at

a later time (presumably with a new set of indices). Lastly, the

client can fail silently. Which of these strategies is taken by a

client depends on the application. In any case, it is imperative

that the application’s failure-handling logic is designed to not

reveal information about a client’s indices.

970

6 Implementation

SealPIR implements XPIR’s protocol [8] atop the SEAL homo-

morphic encryption library [4] (version 2.3.0-4). This is around

2,000 lines of C++ and Rust. The most intricate component is

EXPAND (Figure 3) which requires the substitution homomor-

phic operation (§3.1). We implement this operation in SEAL

by porting the Galois group actions algorithm from Gentry et

al. [44, §4.2]. We discuss this in detail in Appendix A.1.

SealPIR exposes the API in Figure 1. A difference with XPIR

is that substitution requires auxiliary cryptographic material

to be generated by the client and be sent to the server (see

Appendix A.1). However, a client can reuse this material across

all of its requests and it is relatively small (2.9 MB per client).

Encoding elements as FV plaintexts. In SealPIR, an FV

plaintext is represented as an array of 64-bit integers, where

each integer is mod t. Each element in the array represents

a coefficient of the corresponding polynomial. We encode an

element e ∈ DB into an FV plaintexts p(x) by storing log(t)
bits of e into each coefficient of p(x). If elements are small, we

store many elements into a single FV plaintext (for example,

the first element is stored in the first 20 coefficients, etc.). This

reduces the total number of FV plaintexts in the database, and

consequently the computational costs of PIR.

Optimization to EXPAND. In FV, an encryption of 2�

(mod 2y), for y ≥ �, is equivalent to an encryption of 1

(mod 2y−�). Observe that in Lines 14–16 of Figure 3, EXPAND

multiplies the n ciphertexts by the inverse of m where m = 2�

(the goal of this multiplication is to ensure that all ciphertexts

encrypt either 0 or 1). Instead, we change the plaintext modulus

of the n ciphertexts from t = 2y to t′ = 2y−�, which allows

us to avoid the plaintext multiplications and the inversion, and

reduces the noise growth of EXPAND. The result is n − 1 ci-

phertexts encrypting 0, and one ciphertext encrypting 1, as we

expect. This optimization requires t to be divisible by m rather

than being an odd integer. One drawback is that the server must

represent the database using FV plaintexts defined with the

plaintext modulus t′ (rather than t). As a result, we can pack

fewer database elements into a single FV plaintext.

To set t′, we find the largest integer value of log(t′) for which

the following inequality holds:

log(t′) + �log(� d
√

nfv�)� ≤ log(t) (1)

nfv = �n/α�
α =
N log(t′)/β�

Here α is the number of elements of size β bits that can be

packed into a single FV plaintext, and nfv is the number of FV

plaintexts needed to represent n elements of size β.

Implementation of PBCs. We also implement mPIR, a multi-

query PIR library based on PBCs. mPIR implements 5 different

PBC constructions based on reverse hashing (§4.4) with dif-

ferent allocation algorithms (e.g., two-choice hashing, Cuckoo

hashing, the Hybrid allocation scheme in Pung [11]). This li-

brary works transparently on top of both XPIR and SealPIR,

and is written in 1,700 lines of Rust. It uses SHA-256 with

varying counters to implement the different hash functions.

7 Evaluation

Our evaluation answers four questions:

1. What are the concrete resource costs of SealPIR, and how

do they compare to XPIR?

2. What is the throughput and latency achieved by SealPIR

under different deployment scenarios?

3. What are the concrete benefits provided by PBCs, and how

do they compare to existing batch codes?

4. What is the impact of using SealPIR and mPIR on a repre-

sentative system?

Experimental setup. We run our experiments using Mi-

crosoft’s Azure instances in three data centers: West US, South

India, and West Europe. We run the PIR servers on H16 in-

stances (16-core 3.6 GHz Intel Xeon E5-2667 and 112 GB

RAM), and clients on F16s instances (16-core, 2.4 GHz Intel

Xeon E5-2673 and 32 GB RAM), all running Ubuntu 16.04. We

compile all our code with Rust’s nightly version 1.25. For XPIR,

we use the publicly available source code [9] and integrate it

into our testing framework using Rust wrappers. We report all

network costs measured at the application layer. We run each

experiment 10 times and report averages from those 10 trials.

Standard deviations are less than 10% of the reported means.

Parameters. We choose security parameters for FHE follow-

ing XPIR’s latest estimates [5], which are based on the analysis

and tools by Albrecht et al. [10]. We set the degree of cipher-

texts’ polynomials to 2048, and the size of the coefficients to

60 bits (N and q in Section 3). Specifically, SEAL uses a value

of q = 260 − 218 + 1, whereas XPIR uses q = 261 − i · 214 + 1,

for various values of i [6].

Each database element is 288 bytes. We choose this size since

the Pung communication system uses 288-byte messages (§7.4).

Unless otherwise stated, SealPIR uses a plaintext modulus

t=223. A larger t leads to lower network and computational

costs, but might cause noise to grow too much, preventing ci-

phertexts from decrypting successfully (we lower t in some

experiments to ensure that we can always decrypt the result).

For XPIR, we use α = 14, meaning that we pack α elements

into a single XPIR plaintext, thereby reducing the number of

elements stored in the database by a factor of α. For 288-byte el-

ements and our security parameters, setting α = 14 has roughly

the same effect as setting t = 223 in SealPIR (although our opti-

mization to EXPAND, which we discuss in Section 6, means that

SealPIR ultimately packs fewer elements together than XPIR).

7.1 Cost and performance of SealPIR

To evaluate SealPIR, we run a series of microbenchmarks to

measure: (i) the time to generate, expand, and answer a query;

(ii) the time to extract the response; and (iii) the time to prepro-

cess the database. We study several database sizes and repeat

the same experiment for XPIR using two different dimension

parameters d (§3.4). Figure 9 tabulates our results.

CPU costs. We find that the computational costs of query

generation are an order of magnitude lower under SealPIR

than under XPIR. This is because the client in SealPIR gener-

ates d ciphertexts as a query rather than d d
√

n ciphertexts as in

971

XPIR (d = 2) XPIR (d = 3) SealPIR (d = 2)

database size (n) 65,536 262,144 1,048,576 65,536 262,144 1,048,576 65,536 262,144 1,048,576

client CPU costs (ms)

QUERY 13.83 27.57 55.14 4.98 8.03 12.74 3.37 3.37 3.37

EXTRACT 0.34 0.29 0.30 2.47 2.49 2.57 1.37 1.39 1.69

server CPU costs (sec)

SETUP 0.15 0.57 2.27 0.15 0.58 2.32 0.23 1.04 4.26

EXPAND N/A N/A N/A N/A N/A N/A 0.05 0.11 0.23

ANSWER 0.21 0.63 2.12 0.27 0.78 2.52 0.13 0.5 2.01

network costs (KB)

query 4,384 8,768 17,536 1,632 2,560 4,064 64 64 64

answer 256 256 256 1,824 1,952 1,952 256 256 256

FIGURE 9—Microbenchmarks of CPU and network costs for XPIR and SealPIR under varying database sizes (n). Elements are of size 288 bytes.

XPIR (§3.4). When it comes to the server, SealPIR’s EXPAND

procedure introduces CPU overheads of 11% to 38% (over an-

swering a query vector directly). While this is high, it results in

significant network savings (which we discuss below). Further-

more, even with the overhead of EXPAND, the cost of answering

a query in SealPIR is comparable to XPIR.

We note that larger values of d lead to more computation

for the server for two reasons. First, structuring the database

as a d-dimensional hyperrectangle often requires padding the

database with dummy plaintexts to fit all dimensions. Second,

as we discuss in Section 3.4, the ciphertext expansion factor ef-

fectively increases the size of the elements by a factor of F after

processing each dimension, necessitating more computation.

Network costs. For network costs, SealPIR enjoys a signifi-

cant reduction owing to its query encoding and EXPAND proce-

dure (§3.3). For larger databases, the query size reductions over

XPIR are 274× when d = 2, and 63× when d = 3.

7.2 SealPIR’s response time and throughput

While microbenchmarks are useful for understanding how

SealPIR compares to XPIR, another important axis is under-

standing how these costs affect response time and throughput.

7.2.1 Response times

To measure response time, we run experiments where we de-

ploy a PIR server in Azure’s US West data center, and place a

PIR client under four deployment scenarios. We then measure

the time to retrieve a 288-byte element using SealPIR, XPIR,

and scp (i.e., secure copy command line tool). We use scp to

represent a client downloading the entire database (naive PIR).

Deployment scenarios

intra-DC: the client and the server are both in the US West data

center. The bandwidth between the two VMs is approximately

3.4 Gbps (measured using the iperf measurement tool). This

scenario is mostly pedagogical since it makes little sense to

use PIR inside two VMs in the same data center controlled by

the same operator. It gives an idea of the performance that PIR

schemes could achieve if network bandwidth were plentiful.

inter-DC: the client is placed in the South India data cen-

ter. The bandwidth between the two VMs is approximately

800 Mbps. This scenario represents clients who deploy their

applications in a data center (or well-provisioned proxy) that

they trust, and access content from an untrusted data center.

home network: the client is placed in the South India data

center. However, we use the tc traffic control utility to configure

the Linux kernel packet scheduler in both VMs to maintain a

20 Mbps send rate. We choose this number as it is slightly over

the mean download speed in the U.S. (18.7 Mbps) according

to Akamai’s latest connectivity report [1, §4]. This scenario is

optimistic to XPIR since it ignores the asymmetry present in

home networks where the uplink bandwidth is typically much

lower (meanwhile in XPIR, the queries are large). Nevertheless

it gives a rough estimate of a common PIR use case in which a

client accesses an element from their home machine.

mobile network: the client is placed in the South India data

center. We use tc to configure VMs to maintain a 10 Mbps send

rate. We choose this number as it approximates the average data

speed achieved by users across all U.S. carriers according to

OpenSignal’s 2017 State of Mobile Networks report [2] and

Akamai [1, §8]. As with the home network, this scenario is

optimistic (for XPIR) as it ignores the discrepancy between

download and upload speeds. It represents the use of PIR from

a mobile or data-limited device, which is a common deployment

for applications such as private communication (§7.4).

Results. Figure 10 depicts the results. At very high speeds

(intra-DC), naive PIR (scp) is currently the best option, which is

not surprising given the computational costs introduced by PIR.

In this regime, SealPIR is competitive with both instances of

XPIR, although our implementation falls behind on the largest

database size. The primary issue is that, for a database with

n = 222 elements, our optimization of EXPAND makes the plain-

text modulus very small (t′ = 212, see Equation 1 in Section 6).

This causes SealPIR to use many more plaintexts than XPIR.

For even larger databases, since we must use a higher dimen-

sion anyway (§3.5), the difference in the number of plaintexts

between XPIR and SealPIR (for the same d) becomes less

prominent until n is large enough that the second operand in

Equation 1 approaches log(t) again.

When it comes to lower network speeds, XPIR and SealPIR

significantly outperform scp. As bandwidth decreases (home,

mobile), SealPIR’s lower network consumption and competitive

CPU costs yield up to a 42% reduction in response time.

972

 0

 3

 6

 9

 12

216 218 220 222

intra-DC (3.4 Gbps)
re

sp
on

se
 ti

m
e

(s
ec

)

elements

 0

 4

 8

 12

 16

216 218 220 222

inter-DC (800 Mbps)

re
sp

on
se

 ti
m

e
(s

ec
)

elements

 0

 6

 12

 18

 24

216 218 220 222

home (20 Mbps)

re
sp

on
se

 ti
m

e
(s

ec
)

elements

 0

 16

 32

 48

 64

216 218 220 222

mobile (10 Mbps)

re
sp

on
se

 ti
m

e
(s

ec
)

elements

SealPIR
XPIR (d=2)
XPIR (d=3)

scp

FIGURE 10—Mean response time experienced by a client under different deployments (see text for a description of network conditions) with

different PIR schemes. When the network bandwidth is plentiful (intra-DC), downloading the entire database (scp) achieves the lowest response

time. However, when the network bandwidth is limited (home, mobile), SealPIR achieves the lowest response time.

 0

 30

 60

 90

 120

 0 100 200 300 400 500 600m
ea

n
re

sp
on

se
 ti

m
e

(s
ec

)

throughput (queries/min)

SealPIR
XPIR (d=2)
XPIR (d=3)

scp

FIGURE 11—Comparing throughput vs. mean response time under

SealPIR and XPIR (with d = 2 and d = 3) when using a database with

220 elements where each element is 288 bytes long. We find that XPIR

with d = 2 saturates at 9 requests/second whereas SealPIR saturates at

7 requests/second (a 23% reduction in throughput). When XPIR uses

d = 3, SealPIR achieves about 50% higher throughput.

7.2.2 Throughput

We deploy the PIR server in Azure’s US West data center, but

access it with an increasing number of concurrent PIR clients

deployed across the South India and EU West data centers.

We then measure the number of requests serviced per minute

at the server, and the request completion times at the clients.

Figure 11 depicts the results of running from 4 to 256 clients

each requesting one 288-byte element from a database with 220

entries. In our experiments, we ensure that the bottleneck is the

server’s CPU or WAN network connection, and not the clients

or some link between specific data centers.

We find that SealPIR achieves a 50% higher throughput than

XPIR with d = 3, but a 23% lower throughput than XPIR with

d = 2. Most of the difference can be attributed to EXPAND, but

we believe that with further engineering we can close this gap

(since SealPIR is comparable to XPIR according to microbench-

marks). Compared to naive PIR via scp, SealPIR and XPIR

achieve over 20× higher throughput since the primary bottle-

neck in naive PIR is network bandwidth and not CPU (which is

the bottleneck for both SealPIR and XPIR).

7.3 Benefits of PBCs

To understand how PBCs can improve throughput and what type

of network overhead they add, we repeat the microbenchmark

experiments of Section 7.1, but this time we use mPIR (with

Cuckoo hashing, see Section 4.5). To put the benefits and costs

in context, we also evaluate the multi-query PIR scheme of

Pung [11]. Pung’s protocol, like PBCs, is probabilistic and

improves over existing batch codes in terms of costs. In this

experiment we use SealPIR with t = 220 as the underlying PIR

library and change only the multi-query scheme being used.

Figure 12 gives the results. We find that mPIR does a better

job than Pung’s scheme at amortizing CPU costs across all

batch sizes. This is a direct effect of the Cuckoo PBC producing

fewer total codewords (see Figure 5), since computational costs

are proportional to the number of elements after encoding (m).

At k = 256 and 288-byte elements, mPIR achieves a 2.6×
reduction in CPU cost for the server when answering queries

over Pung’s scheme. Over running k parallel instances of PIR,

the per-request CPU cost of mPIR is 40.5× lower.

The difference in network costs between Pung’s scheme and

mPIR is more pronounced. This owes to Pung’s scheme build-

ing on the subcube batch code of Ishai et al. [52] which creates

a large number of buckets (see Figure 5); to preserve privacy,

clients must issue a PIR query to each bucket. In terms of con-

crete savings, mPIR is 6× more network efficient (upload and

download) than Pung’s scheme. Considering that mPIR also has

a lower failure probability (around 2−40, compared to Pung’s

2−20), this suggests that mPIR is an attractive replacement to

Pung’s multi-query protocol, offering improvements on all axes.

Observe that at k = 256, mPIR’s download costs are the same

as running k-parallel instances of PIR. This is counterintuitive

since mPIR results in 50% more answers (the extra answers are

dummies that hide which buckets are of interest to the client;

see Section 5). However, each answer in mPIR contains fewer

ciphertexts because of the interaction between SealPIR and

mPIR. In particular, mPIR encodes the 220-entry databases into

1.5k = 384 buckets, and replicates elements 3 times. Buckets

therefore have on average 213 elements. Recall from Section 3

that if d > 1, the number of ciphertexts in an answer depends on

the expansion factor F = 2 log(q)/ log(t′). Furthermore, Equa-

tion 1 (Section 6) shows that t′ is larger for smaller databases.

Indeed, for the original 220-entry database, t′ = 210 (F = 12),

whereas t′ = 215 for the average bucket (F = 8). Consequently,

for our choice of parameters, the total download communication

ends up being the same: 256 · 12 = 384 · 8 ciphertexts.5

5Similar benefits apply to Pung’s scheme when used with SealPIR: observe in

Figure 12 that as k goes from 16 to 64, the amortized answer size goes down.

973

single-query Pung’s multi-retrieval mPIR (Cuckoo hashing)

batch size (k) 1 16 64 256 16 64 256

client CPU costs (ms)

MultiQuery 3.07 29.03 28.50 28.58 6.45 5.26 4.92

MultiExtract 2.51 20.00 16.27 16.36 3.26 3.25 2.70

server CPU costs (sec)

MultiSetup 6.1 2.02 0.64 0.30 1.50 0.38 0.12

MultiAnswer 3.24 1.37 0.49 0.21 0.69 0.23 0.08

network costs (KB)

query 64 577 577 577 96 96 96

answer 384 2,885 2,308 2,308 480 480 384

FIGURE 12—Per-request (amortized) CPU and network costs of two multi-query PIR schemes on a database consisting of 220 elements, with

varying batch sizes. The schemes are Pung’s multi-retrieval protocol and mPIR, which is based on PBCs (Cuckoo variant). The second column

gives the cost of retrieving a single element (no amortization). The underlying PIR library is SealPIR with t = 220 and elements are 288 bytes.

Note that this parity in download cost is not true in general;

it is a result of the particular parameters used in this case. In

fact, because of Equation 1 (§6), we can even achieve lower

amortized download costs. Without EXPAND’s optimization,

this would not be the case: in some sense, the optimization

introduces communication overhead to fetching elements from

databases with many entries and mPIR amortizes that overhead.

As an aside, Equation 1 does not affect upload costs; these costs

increase by 50% since the client is sending 50% more queries.

7.4 Case study: Pung with SealPIR and mPIR

To evaluate the end-to-end benefits that SealPIR and mPIR

provide to actual applications, we modify the available imple-

mentation of Pung [3]. Pung is a messaging service that allows

users to exchange messages in rounds without leaking any meta-

data (who they are talking to, how often, or when). We choose

Pung because it uses XPIR to achieve its privacy guarantees,

and because it also relies on multi-query PIR to allow clients

to receive multiple messages simultaneously. Consequently, we

can switch Pung’s PIR engine from XPIR to SealPIR, and we

can replace Pung’s custom multi-query PIR scheme with mPIR.

Experiment. We have clients send one message and retrieve k

messages (this models clients engaging in group conversations).

We run the system in a close-loop and advance rounds as soon as

all clients have sent and retrieved the messages. To experiment

with many clients we employ the same simulation technique

used in Pung: we have 32 real clients accessing the server,

and simulate additional clients by pre-populating the server’s

database with random messages.

Figure 13 shows the throughput in messages per minute

that Pung achieves with mPIR and SealPIR (“Pung+MS”).

Pung+MS yields better performance than the existing Pung

code base for all batch sizes greater than 1. There are three rea-

sons for this. First, Pung’s multi-retrieval produces 50% more

codewords than mPIR, and therefore has to do more processing.

Second, Pung’s multi-retrieval produces 7× more buckets than

mPIR. This forces Pung to run XPIR on many small databases

that contain an average of 500 to 8,000 elements (depending on

the batch size), which exacerbates XPIR’s fixed costs.

Last, even though SealPIR incurs additional CPU costs than

0

10 K

20 K

30 K

40 K

1 16 64 256
th

ro
ug

hp
ut

 (
m

es
sa

ge
s/

m
in

)

message batch size (k)

Pung
Pung+S

Pung+M
Pung+MS

FIGURE 13—Throughput of Pung on one server with 256K users,

each retrieving k 288 byte messages per round. The label “Pung” in-

dicates the implementation as given in [3], with updated parameters

(§7). “Pung+S” is a version of Pung that uses SealPIR with t = 220;

“Pung+M” is a version of Pung that uses mPIR; and “Pung+MS” is a

version of Pung that uses both mPIR and SealPIR.

0

 500

 1000

 1500

1 16 64 256to
ta

l n
et

w
or

k
co

st
 (

M
B

)

message batch size (k)

Pung
Pung+S

Pung+M
Pung+MS

FIGURE 14—Per-user total network cost (upload and download) of

a Pung deployment with 256K users. Each user retrieves k 288-byte

messages. See Figure 13 for an explanation of the legend.

XPIR (d = 2) on large databases as we show in Section 7.1 (this

is also why Pung has higher throughput than Pung-MS when

the batch size is 1), SealPIR is slightly faster when the database

is small (see the column with 65,536 elements in Figure 9).

Ultimately, we find that if clients retrieve k = 64 messages, the

throughput of Pung+MS is 3.1× higher than that of Pung.

When it comes to network costs, the benefits of SealPIR and

mPIR are considerable. Figure 14 depicts the total network cost

incurred by a single client for one round of the Pung protocol.

We find that the compressed queries and fewer buckets result in

savings of over 36×. In particular, the per-client communication

costs are cut down to 7.7 MB per round for k = 16 (versus

279 MB in the original Pung implementation).

974

8 Discussion

SealPIR significantly reduces the network cost of XPIR, while

introducing modest computational overheads. However, there

are several opportunities to reduce CPU costs further. Observe

that in EXPAND and Stern’s protocol, when the database dimen-

sion (d) is greater than 1 (see Section 3.4) the computation

consists of several matrix-vector products. We can therefore

implement the optimization described by Beimel et al. [16]

where multiple queries (from potentially different users) are

aggregated to form a matrix; the server can then use a subcubic

matrix multiplication algorithm to compute the result (§2.2).

Another area of potential improvement is in the design of

PBCs. As we show in our evaluation, PBCs built from reverse

hashing reduce costs over existing methods, but so far we have

only studied allocation strategies that are typically used for on-

line load balancing (i.e., balls arrive one at a time). We could

also consider strategies that optimize for the offline setting in

which all balls are available at the same time (which is the case

in PBCs). In this setting, the allocation process can be phrased

in terms of orienting the edges of undirected graphs in order

to obtain directed graphs with minimum in-degree [25]. Opti-

mal solutions for this problem can be computed in polynomial

time [30], and linear time approximations also exist [25, 35, 41].

Acknowledgments

We thank Esha Ghosh, Trinabh Gupta, Jay Lorch, Michael

Walfish, and Sergey Yekhanin for their helpful feedback. We

thank Peter Rindal for sharing his estimates of Cuckoo hashing’s

failure probability. Sebastian Angel was supported by NSF grant

CNS-1514422 and AFOSR grant FA9550-15-1-0302.

Appendix

A Query expansion

A.1 Substitution operator

We now give details on how the substitution operator is imple-

mented. Let Φi be the i-th cyclotomic polynomial.6 As we dis-

cuss in Section 3.1, we pick Φi = xN +1, where N is a power of

two (hence i = 2N). Recall from that same section that FV plain-

texts are polynomials in the ring Rt = Zt[x]/Φi(x), and cipher-

texts are two polynomials, each in the ring Rq = Zq[x]/Φi(x).
The secret key sk is a randomly sampled polynomial in R2.

Let p(x) be the plaintext encrypted by ciphertext c = (c0, c1).
Our goal is to substitute in p(x) every instance of x with xk for

some integer k, by operating directly on c. Gentry et al. [44,

§4.2] show that if k ∈ Z
∗
i (i.e., k is odd so that it is coprime

with i), performing the substitution directly on the ciphertext

polynomials (c0, c1) and the secret key achieves this goal.

Specifically, let c(k) be the result of replacing every instance

of x in the ciphertext polynomials c0 and c1 with xk. Similarly,

let sk(k) be the result of replacing every instance of x in the

secret key sk with xk. The result of decrypting c(k) with sk(k) is

therefore p(xk)—which is exactly what we want.

One issue with the above is that EXPAND (Figure 3) uses the

6The i-th cyclotomic polynomial is the unique irreducible polynomial with

integer coefficients that is a factor of xi − 1 but not of xj − 1 for any j < i.

output ciphertext after substitution, c(k), and adds it to the input

ciphertext c in each iteration of the inner loop (see Lines 10 and

11). This operation is not well defined since both ciphertexts are

encrypted under different keys (substitution essentially changes

the key under which the ciphertext is encrypted). To address

this, we perform an operation called key switching [20], which

allows us to transform an encryption of c(k) under some public

key associated with sk(k), to an encryption of c(k) under some

public key associated with the original key sk (which is the key

under which c is also defined).

Note that the server needs some auxiliary information in order

to perform key switching. In particular, the server needs a key-

switching matrix showing how to go from sk(k) to sk (see [44,

Appendix D] for details), which the client must generate. Since

in EXPAND substitution is called for different values of k (notice

that in Line 10 and 11 in Figure 3 the value of k depends on j),

the client must provide a key-switching matrix for each of them.

However, this only needs to be done once and it depends only

on the size of the database.

The above allows the server to compute EXPAND: the server

first does the substitution followed by the appropriate key

switch, and finally performs the addition in the inner loop.

A.2 Correctness of query expansion

Below we prove that EXPAND (Figure 3) correctly expands one

ciphertext into a vector of n ciphertexts with the desired contents.

The following theorem makes this formal.

Theorem 1. Let N be a power of 2, N ≥ n, and query = Enc(xi)
be the client’s encoding of index i. The n output ciphertexts

o0, . . . , on−1 of EXPAND(query) satisfy, for all 0 ≤ k ≤ n− 1:

ok =

{
Enc(1) if i = k

Enc(0) otherwise

Proof. It suffices to prove the case for n = 2�. For j =
{0, 1, . . . , � − 1}, we claim that after the jth iteration of the

outer loop, we have ciphertexts = [c′0, . . . , c′
2j+1−1

] such that

ciphertexts[k] =

{
Enc(2j+1xi−k) if i ≡ k (mod 2j+1)

Enc(0) otherwise

We prove the claim by induction on j. The base case j = 0 is

explained in the main text of Section 3.3. Suppose the claim is

true for some j ≥ 0. Then in the next iteration, we compute an

array ciphertexts′.

For the first half of the array, i.e., 0 ≤ k < 2j+1, we have

ciphertexts′[k] = ciphertexts[k] + Sub(ciphertexts[k], N/2j+1 +
1). If i �= k (mod 2j+1), then ciphertexts′[k] is an en-

cryption of 0; otherwise, there is an integer r such that

i − k = 2j+1 · r, and Sub(ciphertexts[k], N/2j+1 + 1) =

Enc(2j+1x(N/2j+1+1)(2j+1r)) = Enc(2j+1(−1)
r
xi−k). Hence, if

r is odd, then ciphertexts′[k] is an encryption of 0; otherwise,

ciphertexts′[k] is an encryption of 2j+2xi−k. So the claim follows

because r is even if and only if i ≡ k (mod 2j+2).
We now prove the claim for the second half of the ar-

ray ciphertexts′. The only interesting case is i ≡ k − 2j+1

975

(mod 2j+1). In this case, we see that ciphertexts′[k] is again

Enc(2j+1(−1)
(i−k)/2j+1

xi−k). So the same argument applies.

Finally, with the above claim we show that after the outer

loop in EXPAND, we have an array of 2� ciphertexts such that:

ciphertexts[k] =

{
Enc(2�xi−k) if i ≡ k (mod 2�)

Enc(0) otherwise

However, note that i < n = 2�, so i ≡ k (mod 2�) implies

i = k. Hence ciphertexts[k] is either an encryption of 0 or an

encryption of 2�. To obtain an encryption of 0 or 1, we multiply

ciphertexts[k] by the inverse of 2� modulo t in the last step

(Figure 3, Line 14).

A.3 Noise growth of query expansion

One advantage of our query expansion technique over the straw

man FHE solution given in Section 3.1 (besides the one men-

tioned in that section) is that our approach has much smaller

noise growth. We bound the noise growth of EXPAND (Figure 3)

in the theorem below. Before stating the theorem, we give some

background on noise. See the SEAL manual [28] for a more

detailed explanation. We have that the noise of the addition of

two ciphertexts is the sum of their individual noises. Plain mul-

tiplication by a monomial xj (for some j) with coefficient 1 does

not change the noise, and plain multiplication by a constant α
multiplies the noise by α. Substitution adds a constant additive

term Bsub to the noise, which depends on the FV parameters.

Theorem 2. Let vout be the output noise of EXPAND, and vin be

the input noise. Let t denote the plaintext modulus in EXPAND,

and let k = �log(n)�. We have that

vout ≤ t · (2k(vin + 2Bsub))

Proof. Let vi be the noise after the ith iteration in EXPAND (set-

ting v0 = vin). Then vi = 2(vi−1 + Bsub). Carrying out the sum,

we get

vk = 2kv0 + 2(2k − 1)Bsub < 2k(v0 + 2Bsub)

Since inverse ≤ t, the final plain multiplication results in

vout ≤ tvk. This completes the proof.

B Cost of PBC variants

We have implemented five PBCs with different allocation al-

gorithms using reverse hashing. Our goal is to show that all of

them admit efficient encoding and decoding procedures. For

the purpose of building a multi-query PIR scheme, we wish

to select a PBC variant that reduces the number of codewords

(m) and buckets (b). Our hypothesis is that PBCs that produce

low values of m and b result in more expensive encoding and

schedule generation procedures.

To test this hypothesis we create a collection with 131K

elements, each of which is 1 KB, and encode the collection

with the different PBCs for a batch size of k = 64. We then

measure the time to encode, decode, and generate a schedule.

We also experiment with other element and collections sizes

and find that while the absolute costs vary, they are still small

PBC scheme Encode GenSchedule Decode

k-way replication 22.5 ms 5.8 μs 0.1 μs

sharding 52.1 ms 112.8 μs 0.3 μs

2-choice hashing 103.6 ms 212.9 μs 0.2 μs

Pung Hybrid 101.8 ms 42.3 μs 1.2 μs

Cuckoo hashing 154.1 ms 319.2 μs 0.15 μs

FIGURE 15—Cost of operations for five PBCs implemented as part of

mPIR. The collection size (n) is 524,288 and the batch size (k) is 64.

Each element in the collection is 288 bytes. k-way replication simply

replicates the n balls into k-bins during the producer’s allocation, and

picks a different bin for the k balls during the consumer’s simulation.

Sharding maps balls to a single bin during the producer’s allocation,

and the consumer uses a hash function during simulation (this variant

has a high failure rate which we improve by replicating buckets).

(considering Encode is a one-time operation), and the relative

costs are consistent.

Figure 15 lists the CPU time taken by various operations for

all the variants we have implemented. Our hypothesis holds to

an extent: all the variants that are based on replication (for the

producer) and hashing (for the consumer) follow our prediction.

The source of costs for schedule generation corresponds to the

time taken to find a solution to a k balls, b bins, and w choices

problem. The different allocation strategies approximate the

optimal solution, and among them, Cuckoo hashing yields the

best approximation by recursively relocating elements when

there are collisions (§4.5). Encoding performance, on the other

hand, is based on the number and the cost of the memory copies,

since encoding is a simple repetition code.

Our hypothesis does not hold for the PBC variant that cor-

responds to a port of Pung’s Hybrid multi-retrieval protocol.

The reason is that this variant is partially based on the subcube

batch code of Ishai et al. [52], for which the final position of

each input element is statically determined and does not require

computing a hash function (unlike our hashing variants). This

allows computing a schedule by consulting a lookup table.

Finally, as mentioned above, our goal with this experiment

was to confirm that all PBCs have reasonably efficient encoding,

decoding, and schedule generation procedures. As such, our

evaluation (§7) focuses only on the Cuckoo variant since it

yields the most efficient parameters, and the second lowest

failure probability (k-way replication never fails, but has a very

high value of m).

References

[1] Akamai state of the internet connectivity report.

https://www.akamai.com/fr/fr/multimedia/

documents/state-of-the-internet/q1-2017-state-

of-the-internet-connectivity-report.pdf, May 2017.

[2] Opensignal state of mobile networks: Usa.

https://opensignal.com/reports-

data/national/data-2017-08-usa/report.pdf, Aug.

2017.

[3] Pung: Unobservable communication over fully untrusted

infrastructure. https://github.com/pung-project/pung,

Sept. 2017.

[4] Simple encrypted arithmetic library — SEAL.

https://sealcrypto.org, 2017.

976

[5] XPIR: NFLLWE security estimator.

https://github.com/XPIR-team/XPIR/blob/master/

crypto/NFLLWESecurityEstimator/

NFLLWESecurityEstimator-README, June 2017.

[6] XPIR NFLParams. https://github.com/XPIR-

team/XPIR/blob/master/crypto/NFLParams.cpp, June

2017.

[7] Internet providers with data caps.

https://broadbandnow.com/internet-providers-

with-data-caps, Jan. 2018.

[8] C. Aguilar-Melchor, J. Barrier, L. Fousse, and M.-O. Killijian.

XPIR: Private information retrieval for everyone. In Proceedings

of the Privacy Enhancing Technologies Symposium (PETS), July

2016.

[9] C. Aguilar-Melchor, J. Barrier, L. Fousse, and M.-O. Killijian.

XPIR: Private information retrieval for everyone.

https://github.com/xpir-team/xpir/, 2016.

[10] M. R. Albrecht, R. Player, and S. Scott. On the concrete

hardness of learning with errors. Journal of Mathematical

Cryptology, 9(3), Oct. 2015.

[11] S. Angel and S. Setty. Unobservable communication over fully

untrusted infrastructure. In Proceedings of the USENIX

Symposium on Operating Systems Design and Implementation

(OSDI), Nov. 2016.

[12] Y. Arbitman, M. Naor, and G. Segev. Backyard cuckoo hashing:

Constant worst-case operations with a succinct representation.

In Proceedings of the IEEE Symposium on Foundations of

Computer Science (FOCS), Oct. 2010.

[13] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced

allocations. In Proceedings of the ACM Symposium on Theory of

Computing (STOC), May 1994.

[14] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai,

S. P. Vadhan, and K. Yang. On the (im)possibility of obfuscating

programs. Journal of the ACM, 59(2), 2012.

[15] A. Beimel, Y. Ishai, E. Kushilevitz, and J.-F. Raymond. Breaking

the O(n1/(2k−1)) barrier for information-theoretic private

information retrieval. In Proceedings of the IEEE Symposium on

Foundations of Computer Science (FOCS), Nov. 2002.

[16] A. Beimel, Y. Ishai, and T. Malkin. Reducing the servers

computation in private information retrieval: PIR with

preprocessing. In Proceedings of the International Cryptology

Conference (CRYPTO), Aug. 2000.

[17] B. H. Bloom. Space/time trade-offs in hash coding with

allowable errors. Communications of the ACM, 13(7), July 1970.

[18] N. Borisov, G. Danezis, and I. Goldberg. DP5: A private

presence service. In Proceedings of the Privacy Enhancing

Technologies Symposium (PETS), June 2015.

[19] E. Boyle, Y. Ishai, R. Pass, and M. Wootters. Can we access a

database both locally and privately? In Proceedings of the

Theory of Cryptography Conference (TCC), Nov. 2017.

[20] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully

homomorphic encryption without bootstrapping. In Proceedings

of the Innovations in Theoretical Computer Science (ITCS)

Conference, Jan. 2012.

[21] Z. Brakerski and V. Vaikuntanathan. Efficient fully

homomorphic encryption from (standard) LWE. In Proceedings

of the IEEE Symposium on Foundations of Computer Science

(FOCS), Oct. 2011.

[22] Z. Brakerski and V. Vaikuntanathan. Fully homomorphic

encryption from Ring-LWE and security for key dependent

messages. In Proceedings of the International Cryptology

Conference (CRYPTO), Aug. 2011.

[23] A. D. Breslow, D. P. Zhang, J. L. Greathouse, N. Jayasena, and

D. M. Tullsen. Horton tables: Fast hash tables for in-memory

data-intensive computing. In Proceedings of the USENIX

Annual Technical Conference (ATC), June 2016.

[24] C. Cachin, S. Micali, and M. Stadler. Computationally private

information retrieval with polylogarithmic communication. In

Proceedings of the International Conference on the Theory and

Applications of Cryptographic Techniques (EUROCRYPT), May

1999.

[25] J. A. Cain, P. Sanders, and N. Wormald. The random graph

threshold for k-orientability and a fast algorithm for optimal

multiple-choice allocation. In Proceedings of the ACM-SIAM

Symposium on Discrete Algorithms (SODA), Jan. 2007.

[26] R. Canetti, J. Holmgren, and S. Richelson. Towards doubly

efficient private information retrieval. In Proceedings of the

Theory of Cryptography Conference (TCC), Nov. 2017.

[27] Y.-C. Chang. Single database private information retrieval with

logarithmic communication. In Proceedings of the Australasian

Conference on Information Security and Privacy, July 2004.

[28] H. Chen, K. Han, Z. Huang, A. Jalali, and K. Laine. Simple

encrypted arithmetic library v2.3.0.

https://https://www.microsoft.com/en-

us/research/publication/simple-encrypted-

arithmetic-library-v2-3-0/, Dec. 2017.

[29] H. Chen, K. Laine, and P. Rindal. Fast private set intersection

from homomorphic encryption. In Proceedings of the ACM

Conference on Computer and Communications Security (CCS),

Oct. 2017.

[30] L. T. Chen and D. Rotem. Optimal reponse time retrieval of

replicated data. In Proceedings of the ACM Symposium on

Principles of Database Systems (PODS), May 1994.

[31] R. Cheng, W. Scott, B. Parno, I. Zhang, A. Krishnamurthy, and

T. Anderson. Talek: a private publish-subscribe protocol.

Technical Report UW-CSE-16-11-01, University of Washington

Computer Science and Engineering, Nov. 2016.

[32] B. Chor, N. Gilboa, and M. Naor. Private information retrieval

by keywords. Cryptology ePrint Archive, Report 1998/003, Feb.

1998. https://eprint.iacr.org/1998/003.

[33] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private

information retrieval. In Proceedings of the IEEE Symposium on

Foundations of Computer Science (FOCS), Oct. 1995.

[34] D. Coppersmith and S. Winograd. Matrix multiplication via

arithmetic progressions. In Proceedings of the ACM Symposium

on Theory of Computing (STOC), May 1987.

[35] A. Czumaj and V. Stemann. Randomized allocation processes.

In Proceedings of the IEEE Symposium on Foundations of

Computer Science (FOCS), Oct. 1997.

[36] D. Demmler, A. Herzberg, and T. Schneider. RAID-PIR:

Practical multi-server PIR. In Proceedings of the ACM Cloud

Computing Security Workshop (CCSW), Nov. 2014.

[37] C. Devet, I. Goldberg, and N. Heninger. Optimally robust

private information retrieval. In Proceedings of the USENIX

Security Symposium, Aug. 2012.

[38] M. Dietzfelbinger and F. Meyer auf der Heide. A new universal

class of hash functions and dynamic hashing in real time. In

Proceedings of the International Colloquium on Automata,

Languages and Programming (ICALP), July 1990.

[39] C. Dong and L. Chen. A fast single server private information

retrieval protocol with low communication cost. In Proceedings

of the European Symposium on Research in Computer Security

(ESORICS), Sept. 2014.

[40] J. Fan and F. Vercauteren. Somewhat practical fully

977

homomorphic encryption. Cryptology ePrint Archive, Report

2012/144, Mar. 2012.

https://eprint.iacr.org/2012/144.pdf.

[41] D. Fernholz and V. Ramachandran. The k-orientability

thresholds for Gn,p. In Proceedings of the ACM-SIAM

Symposium on Discrete Algorithms (SODA), Jan. 2007.

[42] A. Frieze, P. Melsted, and M. Mitzenmacher. An analysis of

random-walk cuckoo hashing. SIAM Journal on Computing,

40(2), Mar. 2011.

[43] S. Garg, E. Miles, P. Mukherjee, A. Sahai, A. Srinivasan, and

M. Zhandry. Secure obfuscation in a weak multilinear map

model. In Proceedings of the Theory of Cryptography

Conference (TCC), Oct. 2016.

[44] C. Gentry, S. Halevi, and N. P. Smart. Fully homomorphic

encryption with polylog overhead. In Proceedings of the

International Conference on the Theory and Applications of

Cryptographic Techniques (EUROCRYPT), Apr. 2012.

[45] C. Gentry and Z. Ramzan. Single-database private information

retrieval with constant communication rate. In Proceedings of

the International Colloquium on Automata, Languages and

Programming (ICALP), July 2005.

[46] I. Goldberg. Improving the robustness of private information

retrieval. In Proceedings of the IEEE Symposium on Security

and Privacy (S&P), May 2007.

[47] M. Green, W. Ladd, and I. Miers. A protocol for privately

reporting ad impressions at scale. In Proceedings of the ACM

Conference on Computer and Communications Security (CCS),

Oct. 2016.

[48] J. Groth, A. Kiayias, and H. Lipmaa. Multi-query

computationally-private information retrieval with constant

communication rate. In Proceedings of the International

Conference on Practice and Theory in Public Key Cryptography

(PKC), May 2010.

[49] T. Gupta, N. Crooks, W. Mulhern, S. Setty, L. Alvisi, and

M. Walfish. Scalable and private media consumption with

Popcorn. In Proceedings of the USENIX Symposium on

Networked Systems Design and Implementation (NSDI), Mar.

2016.

[50] R. Henry. Polynomial batch codes for efficient IT-PIR. In

Proceedings of the Privacy Enhancing Technologies Symposium

(PETS), July 2016.

[51] R. Henry, Y. Huang, and I. Goldberg. One (block) size fits all:

PIR and SPIR with variable-length records via multi-block

queries. In Proceedings of the Network and Distributed System

Security Symposium (NDSS), Feb. 2013.

[52] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Batch codes

and their applications. In Proceedings of the ACM Symposium

on Theory of Computing (STOC), June 2004.

[53] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine,

and D. Lewin. Consistent hashing and random trees: distributed

caching protocols for relieving hot spots on the world wide web.

In Proceedings of the ACM Symposium on Theory of Computing

(STOC), May 1997.

[54] P. Key, L. Massoulié, and D. Towsley. Path selection and

multipath congestion control. In Proceedings of the IEEE

International Conference on Computer Communications

(INFOCOM), May 2007.

[55] M. Khosla. Balls into bins made faster. In Proceedings of the

European Symposium on Algorithms (ESA), Sept. 2013.

[56] A. Kiayias, N. Leonardos, H. Lipmaa, K. Pavlyk, and Q. Tang.

Optimal rate private information retrieval from homomorphic

encryption. In Proceedings of the Privacy Enhancing

Technologies Symposium (PETS), July 2015.

[57] E. Kushilevitz and R. Ostrovsky. Replication is not needed:

Single database, computationally-private information retrieval.

In Proceedings of the IEEE Symposium on Foundations of

Computer Science (FOCS), Oct. 1997.

[58] A. Kwon, D. Lazar, S. Devadas, and B. Ford. Riffle: An efficient

communication system with strong anonymity. In Proceedings

of the Privacy Enhancing Technologies Symposium (PETS), July

2016.

[59] H. Lipmaa. First CPIR protocol with data-dependent

computation. In Proceedings of the International Conference on

Information, Security and Cryptology (ICISC), Dec. 2009.

[60] H. Lipmaa and K. Pavlyk. A simpler rate-optimal CPIR protocol.

In Proceedings of the International Financial Cryptography

Conference, Apr. 2017.

[61] H. Lipmaa and V. Skachek. Linear batch codes. In Proceedings

of the International Castle Meeting on Coding Theory and

Applications, Sept. 2014.

[62] W. Lueks and I. Goldberg. Sublinear scaling for multi-client

private information retrieval. In Proceedings of the International

Financial Cryptography and Data Security Conference, Jan.

2015.

[63] P. Mittal, F. Olumofin, C. Troncoso, N. Borisov, and I. Goldberg.

PIR-Tor: Scalable anonymous communication using private

information retrieval. In Proceedings of the USENIX Security

Symposium, Aug. 2011.

[64] M. Mitzenmacher. The power of two choices in randomized load

balancing. IEEE Transactions on Parallel and Distributed

Systems, 12(10), Oct. 2001.

[65] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. Sparrow:

Distributed, low latency scheduling. In Proceedings of the ACM

Symposium on Operating Systems Principles (SOSP), Nov. 2013.

[66] R. Pagh and F. F. Rodler. Cuckoo hashing. In Proceedings of the

European Symposium on Algorithms (ESA), Aug. 2001.

[67] M. B. Paterson, D. R. Stinson, and R. Wei. Combinatorial batch

codes. Advances in Mathematics of Communications (AMC),

3(1), Feb. 2009.

[68] B. Pinkas, T. Schneider, and M. Zohner. Scalable private set

intersection based on OT extension. ACM Transactions on

Privacy and Security, 21(2), Jan. 2018.

[69] A. S. Rawat, Z. Song, A. G. Dimakis, and A. Gál. Batch codes

through dense graphs without short cycles. IEEE Transactions

on Information Theory, 62(4), Apr. 2016.

[70] N. Silberstein. Fractional repetition and erasure batch codes. In

Proceedings of the International Castle Meeting on Coding

Theory and Applications, Sept. 2014.

[71] N. Silberstein and T. Etzion. Optimal fractional repetittion codes

and fractional repetition batch codes. In Proceedings of the

IEEE International Symposium on Information Theory (ISIT),

June 2015.

[72] J. P. Stern. A new and efficient all-or-nothing disclosure of

secrets protocol. In International Conference on the Theory and

Application of Cryptology and Information Security

(ASIACRYPT), Oct. 1998.

[73] V. Strassen. Gaussian elimination is not optimal. Numerische

Mathematik, 13(4), Aug. 1969.

[74] K. Talwar and U. Wieder. Balanced allocations: the weighted

case. In Proceedings of the ACM Symposium on Theory of

Computing (STOC), June 2007.

[75] B. Vöcking. How asymmetry helps load balancing. Journal of

the ACM, 50(4), 2003.

[76] Z. Wang, H. M. Kiah, and Y. Cassuto. Optimal binary switch

978

codes with small query size. In Proceedings of the IEEE

International Symposium on Information Theory (ISIT), June

2015.

[77] Z. Wang, O. Shaked, Y. Cassuto, and J. Bruck. Codes for

network switches. In Proceedings of the IEEE International

Symposium on Information Theory (ISIT), July 2013.

[78] X. Yi, M. G. Kaosar, R. Paulet, and E. Bertino. Single-database

private information retrieval from fully homomorphic encryption.

IEEE Transactions on Knowledge and Data Engineering, 25(5),

May 2013.

979

