
PrivKV: Key-Value Data Collection with Local
Differential Privacy

Qingqing Ye ∗ †, Haibo Hu †, Xiaofeng Meng ∗, Huadi Zheng †

∗School of Information, Renmin University of China
{yeqq, xfmeng}@ruc.edu.cn

†Department of Electronic and Information Engineering, Hong Kong Polytechnic University
haibo.hu@polyu.edu.hk, huadi.zheng@connect.polyu.hk

Abstract—Local differential privacy (LDP), where each user
perturbs her data locally before sending to an untrusted data
collector, is a new and promising technique for privacy-preserving
distributed data collection. The advantage of LDP is to enable
the collector to obtain accurate statistical estimation on sensitive
user data (e.g., location and app usage) without accessing them.
However, existing work on LDP is limited to simple data types,
such as categorical, numerical, and set-valued data. To the best
of our knowledge, there is no existing LDP work on key-value
data, which is an extremely popular NoSQL data model and
the generalized form of set-valued and numerical data. In this
paper, we study this problem of frequency and mean estimation
on key-value data by first designing a baseline approach PrivKV
within the same “perturbation-calibration” paradigm as existing
LDP techniques. To address the poor estimation accuracy due
to the clueless perturbation of users, we then propose two iter-
ative solutions PrivKVM and PrivKVM+ that can gradually
improve the estimation results through a series of iterations.
An optimization strategy is also presented to reduce network
latency and increase estimation accuracy by introducing virtual
iterations in the collector side without user involvement. We
verify the correctness and effectiveness of these solutions through
theoretical analysis and extensive experimental results.

I. INTRODUCTION

With the prevalence of big data analytics, service providers
become increasingly enthusiastic in collecting and analyzing
usage data to improve their services. For instance, Amazon
reportedly logs customers’ browsing history to predict product
sales and manage inventory to avoid backorders [2]. However,
the collection of user data comes at the price of privacy risks,
not only for users but also for service providers who are
vulnerable to internal and external data breaches. As an answer
to privacy-preserving data collection, local differential privacy
(LDP) [11], [15], [17] has been proposed to perturb data at
the user side before being collected. Due to its strong privacy
guarantee inherited from differential privacy and decentralized
nature without the need of a trusted party, it has been adopted
in mainstream systems for usage data collection, including
Apple [1], Google [21] and Microsoft [14].

Existing work on LDP focuses on collecting basic statistics
from simple data types, such as frequency estimation over
categorical [21] or set values [33], and mean estimation over
numerical values [31]. To the best of our knowledge, no
existing work has focused on key-value data model, which
is an extremely popular NoSQL data model and a generalized
form of set-valued and numerical data. Key-value data are

pervasive in big data analytics, and the following two examples
show its potential applications.

• Video ads performance analysis. Advertisers are keen
to know whether their video ads are attractive to their
potential customers. As such, they would like to collect
ads viewership data from users in the form of key-value
pairs where the key is the ads identifier and the value is
the time a user has watched this video ads.

• Mobile app activity analysis. Smartphone manufactures
and third-party apps need to collect daily usage data of
mobile apps for a variety of purposes such as optimizing
battery and memory management algorithms and iden-
tifying daily active users (DAU). These usage data are
in the form of key-value pairs where the key is the app
identifier and the value is the time or frequency this app
appears in the foreground.

In both cases, users are reluctant to provide these usage
data, which could disclose their interests, daily activities and
other personal particulars.

In this paper, we take the first step on key-value data col-
lection mechanisms that can satisfy local differential privacy.
More specifically, we aim at collecting two most fundamental
statistics of key-value pairs — frequency of keys and mean
of values. There is a naive solution that first divides all key-
value pairs into a key set and a value set, and then applies
existing LDP methods for categorical data (e.g., RAPPOR [21]
or k-RR [24]) to each key, and existing LDP methods for
numerical data (e.g., Harmony [31] or MeanEst [17]) to
each value. However, this solution does not work as keys
and values are correlated. For example, let key-value pairs
{〈Cancer, 0.6〉, 〈HIV, 0.9〉, 〈Fever, 0.08〉} denote diseases
and their diagnostic values. If the key Cancer is perturbed into
Fever, then its value 0.6 should be perturbed accordingly in
the value domain of Fever, otherwise the perturbed key-value
pair would be meaningless.

To address this challenge, we propose PrivKV that par-
tially retains the key-value correlation to improve the accuracy
of statistics while still achieving local differential privacy. To
further improve the accuracy, we propose PrivKVM and
PrivKVM+ that execute PrivKV in multiple iterations.
Since the input of each iteration comes from the result of
the last iteration, the same privacy budget can be better

TABLE I
DIFFERENCE OF THE PROPOSED SOLUTIONS

Solution Features Application Scenarios

PrivKV
lowest comm. cost
with one iteration

non-iterative (e.g.,
no downlink channel)

PrivKVM
high accuracy with multiple

and fixed iterations
sufficient and fixed
comm. bandwidth

PrivKVM+ balanced between accuracy
and comm. bandwidth

flexible comm.
bandwidth

utilized to perturb data according to LDP while approaching
the true statistics. To further reduce the network latency, we
also propose an optimization strategy for the data collector to
execute virtual PrivKV iterations without user involvement.
To summarize, our technical contributions are three-folded.

• We formulate the problem of privacy-preserving key-
value data collection for frequency and mean estimation
in local setting and design an efficient sanitized mecha-
nism called local perturbation protocol (LPP) to perturb
the key-value pair.

• We build three LPP-based solutions, namely PrivKV ,
PrivKVM and PrivKVM+, that satisfy ε-LDP. We
theoretically demonstrate the guarantee of convergence
and unbiasedness with multiple iterations.

• We present an optimization strategy for the data collector
to execute virtual PrivKV iterations, which substantially
reduces the network latency and improves the accuracy.

Table I summarizes the difference of our solutions and their
application scenarios. The remainder of this paper is organized
as follows. Section II reviews the related literature. Section III
formulates the problem with preliminary background on LDP.
Section IV presents a baseline approach PrivKV . Section V
proposes the iterative solutions PrivKVM and PrivKVM+

and elaborates on theoretical analysis on privacy and accuracy.
Section VI introduces the virtual iteration strategy. Section VII
presents an extensive set of experimental results. Finally,
section VIII concludes this paper.

II. RELATED WORK

The notion of differential privacy was first introduced by
Dwork in [18]. So far, most existing works focus on the
centralized setting, i.e., they assume a trusted central data
collector that possesses all the genuine values [20], [27]. As for
the local setting, i.e., scenarios without such a collector, Duchi
et al. [15] systematically investigate the framework of local
differential privacy (LDP) and show an upper bound under
LDP based on information theory.

Since then many LDP techniques are proposed for frequency
estimation over categorical data. Erlingsson et al. [21] propose
RAPPOR, which is the first LDP technique for frequency esti-
mation in real-world applications. The key idea is to transform
a sensitive string into a Bloom filter [8] and then apply the
randomized response (RR) method [42] to perturb it. A follow-
up method proposed by Fanti et al. [22] extends RAPPOR to
more complex statistics without explicit dictionary knowledge.
As RR only targets at binary variables, Kairouz et al. [24],
[25] introduce an extremal mechanism k-RR to categorical

attributes with arbitrary number of possible values. Kairouz et
al. [23] present O-RR and O-RAPPOR by combining cohort-
based hashing with k-RR and RAPPOR, respectively. In order
to reduce the communication cost, Bassily et al. [5] design an
efficient protocol SHist, which produces a succinct histogram
representation of the input data. Based on a generalized form
of RAPPOR and SHist, Wang et al. [39] present a framework
of choosing optimal parameters for better estimation accuracy.
Wang et al. [41] give theoretical analysis on RR and Laplace
mechanism, and prove that the former outperforms the latter
in terms of the mean square error. Avent et al. [4] propose a
hybrid model of centralized and local differential privacy. Our
work is on frequency and mean estimation for key-value data
with LDP. It is related to these existing methods as we need
to handle both categorical (key) and numerical (value) data in
a correlated manner.

Other works use frequency estimation as a primitive to
protect data privacy in other domains. For private spatial
data aggregation, Chen et al. [10] propose a framework to
learn user distribution which can satisfy users’ personalized
privacy requirements and Kim et al. [26] use LDP to protect
indoor positioning data. Some works focus on data analysis in
aspects of mobile crowdsensing [36], weighted histogram [38]
and frequent itemset mining [40]. For practical heavy hitters
estimation, Bassily et al. [6] give solutions to keep time, space
and communication complexity minimal, and Bun et al. [9]
propose to strengthen lower bounds on error by incorporating
the failure probability. Qin et al. propose LDPMiner [33] to
obtain heavy hitters over set-valued data and LDPGen [34]
to generate synthetic social graph, both of which split the
LDP procedure into two phases. For private learning problem,
Smith et al. [37] theoretically analyze the interactive and
non-interactive LDP. Besides, some works aim to release
multidimensional data [12], [35], [43]. For privacy-preserving
system architecture, Prio [13] assumes at least one trusted
server in a multi-server setup, whereas Prochlo [7] can support
various levels of trust.

As a relevant problem to this paper, mean estimation over
numerical data with LDP has also been studied in the litera-
ture. Duchi et al. propose MeanEst [16], [17], which incurs
high computation and space complexity. To address this, an
improved method Harmony is proposed by Nguyên et al. [31],
in which for any numerical input it only gives a binary output
according to a certain probability. It has also been shown that
Harmony can achieve higher accuracy. Further, Akter et al. [3]
present a personalized version of Harmony to meet individual’s
privacy requirements. Ding et al. [14] propose mechanisms to
continuously collect telemetry data.

III. PRELIMINARIES AND PROBLEM DEFINITION

A. Local Differential Privacy

Centralized differential privacy [19], [30] assumes a trusted
data collector that does not steal or leak data owners’ private
information. However, in many real-world applications, this
assumption does not hold, especially as data are now consid-
ered the core assets of businesses. To this end, local differential

privacy (LDP) [15] is proposed for the setting where no one
else can get access to the original data except the data owners
themselves. In LDP, each data owner locally perturbs her data
using a randomized mechanism, and then sends the sanitized
version to the untrusted data collector.

Formally, let D denote the whole database. M is a random-
ized algorithm that takes a data tuple t as input and outputs t∗.
ε-local differential privacy (or ε-LDP) is defined on M and a
privacy budget ε > 0 as follows.

Definition 1 (ε-local differential privacy). A randomized
algorithm M satisfies ε-local differential privacy, if and only
if for any two input tuples t, t′ ∈ D and for any output t∗, the
following inequality always holds.

Pr[M(t) = t∗] ≤ eε × Pr[M(t′) = t∗].

Intuitively ε-LDP means that by observing the output t∗, the
data collector cannot infer whether the input tuple is t or t′

with high confidence (controlled by ε), which is different from
the centralized differential privacy defined on two neighboring
datasets that only differ in one record.

As with centralized differential privacy, LDP also has the
nice property of sequential composition [29], which guarantees
the overall LDP for a sequence of algorithms, each of which
satisfies LDP.

Theorem 3.1: (Sequential Composition). Given c random-
ized algorithms Mi(1 ≤ i ≤ c), each providing εi-local
differential privacy. Then the sequence of algorithms Mi(1 ≤
i ≤ c) collectively provides (Σεi)-local differential privacy.

According to sequential composition, given a privacy budget
ε, we can partition it into multiple portions and each portion
of budget can be used by one randomized algorithm to
collect useful information from the original data. This lays
the foundation of our proposed iterative solution, which will
be discussed in Section V.

B. Randomized Response

Randomized response (RR) [42] is a technique developed
for the interviewees in a survey to give random answer to a
sensitive boolean question so that they can achieve plausible
deniability. Specifically, each interviewee gives the genuine
answer with probability p and gives the opposite answer with
probability 1− p.

RR has been the predominant perturbation mechanism for
LDP. To adapt RR to satisfy ε-LDP, we set p as follows:

p =
eε

1 + eε

Note that the percentage of “true” (denoted as f) directly
obtained from all perturbed answers is biased. To correct this,
the data collector needs to calibrate it and reports f ′:

f ′ =
p− 1 + f

2p− 1

Many state-of-the-art LDP solutions, such as RAPPOR [21]
and SHist [5], use RR as the building block and convert input
data to a binary form.

TABLE II
NOTATIONS

Symbol Description
U the set of users
n the number of users, n = |U|
ui the i-th user in U
K the set of keys
d the number of keys, d = |K|
Si the set of KV pairs possessed by ui

li the number of KV pairs in Si, li = |Si|
〈kj , vj〉 the j-th KV pair in Si

fk the frequency of key k
mk the mean of all values with key k

C. Problem Definition

This paper studies the problem of distributed data aggre-
gation over key-value data in the context of LDP. Without
loss of generality, let the universe consist of a set of users
U = {u1, u2, ..., un}, and a set of keys K = {1, 2, ..., d}
whose value domain V is the continuous domain [−1, 1].
The i-th user ui possesses li key-value (KV) pairs Si =
{〈kj , vj〉|1 ≤ j ≤ li, kj ∈ K, vj ∈ V}. The main notations
are listed in Table II.

An untrusted data collector needs to estimate some statistics
of these key-value data from all users. In this paper, we
focus on two fundamental estimations: frequency and mean
estimation.

• Frequency estimation. The frequency of key k, fk, is
defined as the portion of users who possess a KV pair
whose key is k. Formally for any key k,

fk =
|{ui|∃〈k, v〉 ∈ Si}|

n
(1)

• Mean estimation. The mean of key k, mk, is defined as
the mean of all values in KV pairs whose key is k, or
formally:

mk =

∑
i

∑
j:kj=k vj

n · fk (2)

IV. PRIVKV: A BASELINE APPROACH

In this section, we present our baseline approach PrivKV
for distributed key-value data aggregation with LDP. PrivKV
protects key-value data by applying perturbation to keys and
values while almost retaining the true frequencies and means.
In the following, we will start with a naive protocol that per-
turbs the keys only. We then show its security flaw and remedy
it by a synchronous key and value perturbation protocol LPP
that leads to a working PrivKV solution.

A. A Flawed Key Perturbation Protocol

As both frequency and mean are associated with a key, a
naive approach is to perturb the keys using the classic RR.
As such, the first step is to convert the user’s KV pair set Si

to its canonical form S′
i, which contains the full set of keys.

Fig. 1 shows this conversion. For 〈k, v〉 ∈ Si, we convert it
to 〈1, v〉 in S′

i; for a KV pair that does not exist, 〈0, 0〉, an
empty KV pair, is added to S′

i. All KV pairs are sorted in
ascending order of keys. The canonical form guarantees each

�������	 �����	 ����
���	 �����	 �������	 �������	

���������	
�� d

�����������	��������
���	�����������	�����������	��iS

�
iS

Fig. 1. Conversion of user’s set of KV pairs

user possesses the same number of KV pairs so that any key
can be represented by its index in the key universe. It also
addresses the issue of information loss in [33] where each
user can only have a fixed number of KV pairs, and all others
must be truncated.

Now that all keys are binary after the conversion, we can
directly apply RR to perturb them. Specifically, we change the
key “1” (resp. “0”) to “0” (resp. “1”) with a certain probability
so that the data collector cannot determine whether a user has
that KV pair or not. The change on values is based on the
perturbation results of keys, which have the following four
cases:

• 1 → 1: A KV pair exists before and after the pertur-
bation. In this case, the value should be retained, i.e.,
〈1, v〉 → 〈1, v〉.

• 1 → 0: A KV pair disappears after the perturbation. In
this case, we simply set the value to be zero to hide the
trace of key perturbation, i.e., 〈1, v〉 → 〈0, 0〉. Note that
this change does not affect the mean estimation of that
key.

• 0 → 0: A KV pair does not exist before or after
the perturbation. In this case, the whole KV pair is
unchanged, i.e., 〈0, 0〉 → 〈0, 0〉.

• 0 → 1: A new KV pair appears after the perturbation. In
this case, we need to assign a value to it. Since the user
has no apriori knowledge about the distribution of true
values, the value is randomly drawn from the domain of
[−1, 1].

The flaw of this naive protocol lies in the fourth case
where a random value is assigned. First, as the data collector
receives more true values, she is able to distinguish a true value
(case 1) from an assigned one (case 4) with high confidence,
particularly when the distribution of true values significantly
deviates from the uniform distribution of [−1, 1]. Second, a
uniform distribution of [−1, 1] leads to a mean of 0, which
affects the mean estimation of that key.

B. Local Perturbation Protocol: A Remedy

A remedy to the naive protocol is to avoid using an assigned
value directly — any value is perturbed no matter whether it
is a real value or an assigned one.

Numerical value perturbation with LDP for mean estima-
tion has been studied by Nguyên et al. [31]. They propose
Harmony, whose key idea is to discretize a numerical value
to a binary one and then perturb it using RR to satisfy ε-LDP.
Algorithm 1 shows the major steps: discretization, perturbation
and calibration. After discretization (Line 3), the value can
only be 1 or −1, which is suitable to apply RR to perturb it

Algorithm 1 Decomposition of Harmony
Input: User ui’s set of values V ∈ [−1, 1]d

Privacy budget ε
Output: Perturbed set of values V ∗
Procedure:

1: Let V ∗ = 〈0, 0, ..., 0〉
2: Sample j uniformly at random from [d], let v = Vj

3: Discretization:

v∗ =

{
1 w.p. 1+v

2

−1 w.p. 1−v
2

4: Perturbation:

v∗ =

{
v∗ w.p. eε

1+eε

−v∗ w.p. 1
1+eε

5: Calibration:
v∗ = v∗ · e

ε + 1

eε − 1
· d

6: V ∗
j = v∗

7: return V ∗

Algorithm 2 Value Perturbation Primitive
Input: Value v of a KV pair

Privacy budget ε
Output: V PP (v, ε) is the perturbed value v∗
Procedure:

1: Discretization:

v∗ =

{
1 w.p. 1+v

2

−1 w.p. 1−v
2

2: Perturbation:

v∗ =

{
v∗ w.p. eε

1+eε

−v∗ w.p. 1
1+eε

3: return v∗

(Line 4). As the perturbation causes the mean estimation to
be biased, the perturbed value must be calibrated before being
sent to the data collector (Line 5).

We adapt Harmony to serve as our value perturbation
primitive, as shown in Algorithm 2. The main changes are
three-folded. First, we shift the calibration step to the data
collector to alleviate the computational cost of a user. In
addition, each perturbed value in Harmony is simply scaled
d times to counterbalance the effect of sampling, which may
also cause bias. To address this, in our setting, the collector
precisely counts the sample keys and sums their values to
derive the mean. Third, we further add a conditional correc-
tion after calibration to remove outliers caused by Harmony.
Specifically, if N users participate in a value perturbation (i.e.,
they all have the same key), after calibration both counts of
1 and −1 should still be in the range of [0, N]. As such, we
correct any count less than 0 to 0, and any count greater than
N to N . This correction, though possibly making the mean
estimation biased, can improve its accuracy, especially for a
small privacy budget.

By combining the above key perturbation protocol and the
value perturbation primitive, we have the Local Perturbation
Protocol (LPP) for a user. The pseudo-code is described in
Algorithm 3. It takes as inputs the set of KV pairs of a user Si,
the set of all different keys K, and the privacy budgets ε1 and
ε2 for key and value perturbation, and returns a perturbed KV
pair with its index. In order to reduce the communication cost

Algorithm 3 Local Perturbation Protocol (LPP)
Input: User ui’s set of KV pairs Si

The set of keys K
Privacy budgets ε1 and ε2

Output: LPP (Si,K, ε1, ε2) is the perturbed KV pair
〈kj , v∗〉 of the j-th key

Procedure:

1: d = |K|
2: Sample j uniformly at random from [d]
3: if kj exists in the key set of Si then
4: v∗ = V PP (vj , ε2)
5: Perturbs 〈kj , v∗〉 as:

〈kj , v∗〉 =
{
〈1, v∗〉 w.p. eε1

1+eε1

〈0, 0〉 w.p. 1
1+eε1

6: else
7: Randomly draw a value m̃ ∈ [−1, 1]
8: v∗ = V PP (m̃, ε2)
9: Perturbs 〈kj , v∗〉 as:

〈kj , v∗〉 =
{
〈0, 0〉 w.p. eε1

1+eε1

〈1, v∗〉 w.p. 1
1+eε1

10: return j and 〈kj , v∗〉

from O(d) to O(1), we adopt the same sampling approach as
in [5] to select only the j-th KV pair 〈kj , vj〉 for reporting
(Line 2).1 If the user has this KV pair, she first perturbs
vj into v∗ using the value perturbation primitive (Line 4),
then converts the pair 〈kj , v∗〉 into canonical form 〈1, v∗〉,
and finally perturbs it to 〈1, v∗〉 (resp. 〈0, 0〉) with probability
eε1

1+eε1 (resp. 1
1+eε1) (Line 5). The perturbation is similar if the

user does not have this KV pair, except that the new value m̃ is
first drawn from the domain of [−1, 1] before being perturbed
(Lines 7-9). For LPP, the change of values is based on the
perturbation results of keys. As such, the correlation between
keys and values can be well retained.

The following theorem shows LPP satisfies (ε1 + ε2)-LDP.
Theorem 4.1: With privacy budget ε = ε1 + ε2, the local

perturbation protocol satisfies ε-LDP.

PROOF. See Appendix A.

C. PrivKV : Putting Things Together

Algorithm 4 describes the complete PrivKV solution for
frequency and mean estimation, which consists of user-side
perturbation and collector-side calibration.

Each user perturbs her set of KV pairs through LPP, and
then sends a sanitized version of the sample KV pair to the
data collector (Line 2). Upon receiving all users’ perturbed
KV pairs, the collector calculates and calibrates the frequency
of each key (Lines 5-6). Mean estimation is slightly more
complicated — the collector counts the number of 1’s and
−1’s in the set of values for each key and then calibrates them
(Lines 7-9). As aforementioned, the most significant difference
from Harmony is the extra correction step in Line 10. We
treat any count greater than N or less than 0 as outliers and

1Technically we can sample more than one KV pair. However, besides the
increasing complexity, the overall estimation accuracy can drop with more
KV pairs as each KV pair costs certain privacy budget for perturbation. As
such, we use one sample as in [5] throughout this paper.

Algorithm 4 PrivKV
Input: All users’ sets of KV pairs S = {S1, ..., Sn}

The set of keys K
Privacy budgets ε1 and ε2

Output: Frequency vector f∗
Mean vector m∗

Procedure:

1: //User-side perturbation
2: Each user perturbs her set and sends the index j and 〈kj , v∗〉 =

LPP (Si,K, ε1, ε2) to data collector
3: //Collector-side calibration
4: for each key k ∈ K do
5: Collector calculates frequency f∗

k
6: Collector calibrates the frequency as:

f∗
k =

p− 1 + f∗
k

2p− 1
,where p =

eε1

eε1 + 1

7: Collector counts 1 and −1 in the set of values:

n′
1 = Count(1), n′

2 = Count(−1)

8: N = n′
1 + n′

2
9: Collector calibrates the counts as:

n∗
1 =

p− 1

2p− 1
·N +

n′
1

2p− 1

n∗
2 =

p− 1

2p− 1
·N +

n′
2

2p− 1
,where p =

eε2

eε2 + 1

10: Clip n∗
1 and n∗

2 to [0, N]

11: Collector calculates mean m∗
k =

n∗
1−n∗

2
N

12: return f∗ and m∗

correct them to N and 0, respectively. An enhanced correction
scheme based on apriori knowledge will be presented in the
next section. By correcting outliers, PrivKV improves the
estimation accuracy, especially for a small privacy budget.

V. PrivKVM : AN ITERATIVE SOLUTION

PrivKV guarantees LDP at the cost of poor assignment of
a new value, which is randomly drawn from [−1, 1]. As such,
it may suffer from low accuracy and instability. In this section,
we propose to iterate PrivKV multiple times to assign new
value in almost the same distribution as the real values. This
leads to two advanced protocols, namely PrivKVM and
PrivKVM+.

A. An Iterative Model

Fig. 2 illustrates an iterative PrivKV execution model
where the discretized estimated mean2 of the previous iteration
v∗ becomes the assigned value of this iteration so that the
mean estimation can gradually approach the ground truth (as
the loop 2© 3© 5© 6© shows). Theorem 5.1 below proves that by
using this discretized estimated mean instead of a randomly
assigned value from [−1, 1], the mean estimation becomes
unbiased.

2To protect m̃ from being disclosed to users in step 6©, the data collector
does not send it back directly to them. Instead, in the r-th iteration each user
just receives a fresh and independently sampled value v∗, which is essentially
a discretized copy of m̃. It is either 1 or −1 with probabilities 1+m̃

2
and

1−m̃
2

, respectively. Since these two probabilities are only known to the data
collector, no user can infer m̃ unless a large number of users collude and
share their received 1’s and −1’s. In such extreme cases, protecting m̃ is no
longer necessary as these users can derive it by themselves.

����
���	

����
�����	

�����v 	
�������	

v*
��k'��v' 	

������ 	

�����v 	

�����

����������

Frequency

Mean

�
�
���������������

����������m�

m���������� �����!�"��#

��$��%����� !��!��#����!����������!��%�����%���
 m�v�& '����(

Fig. 2. An Iterative execution model for PrivKV

Theorem 5.1: Let mk be the true mean of all values in KV
pairs with key k, and mk

∗ be the estimated mean by PrivKV
(Algorithm 4) when assigning v∗ = discretization(m̃k) to
new values, where m̃k is an approximation of mk. Then,
E[m∗

k] = mk.

PROOF. With key perturbation, values are changed accord-
ingly based on the four cases in section IV-A. For key k, let
m̄k be the mean of all values after key perturbation, in which
we suppose there are n1 instances of 〈1, v〉 → 〈1, v〉 and n2

instances of 〈0, 0〉 → 〈1, v∗〉. Note that
∑n1

i=1

∑
j:kj=k vj =

n1 ·mk. Thus we have:

E[m̄k] = E[

∑n1

i=1

∑
j:kj=k vj +

∑n2

i=1 v
∗

n1 + n2
]

=
n1mk + n2(

1+m̃
2 − 1−m̃

2)

n1 + n2

=
n1mk + n2mk

n1 + n2
= mk

In VPP, for any value v, it will change to v̄ accordingly after
key perturbation, and let v̂ be the value after discretization, and
m̂k be the mean of all v̂. Thus we have:

E[v̂j] = 1 · 1 + v̄j
2

+ (−1) · 1− v̄j
2

= v̄j

E[m̂k] = E[
1

n1 + n2

∑
i

∑
j:kj=k

v̂j]

=
1

n1 + n2

∑
i

∑
j:kj=k

E[v̂j]

=
1

n1 + n2

∑
i

∑
j:kj=k

v̄j = E[m̄k]

Let n̂1 and n̂2 be the counts of 1 and −1 in the value
set after discretization, and n′

1 and n′
2 be the counts after

perturbation. According to RR, we have:

E[n′
1] = n̂1 · p+ n̂2 · (1− p)

E[n′
2] = n̂2 · p+ n̂1 · (1− p)

where p = eε

eε+1 with privacy budget ε.

After value perturbation, the counts n′
1 and n′

2 will be
calibrated to n∗

1 and n∗
2, respectively.

n∗
1 =

(p− 1)(n′
1 + n′

2) + n′
1

2p− 1

n∗
2 =

(p− 1)(n′
1 + n′

2) + n′
2

2p− 1

Therefore, the expected mean is:

E[m∗
k] = E[

n∗
1 − n∗

2

n1 + n2
] = E[

n′
1 − n′

2

(2p− 1)(n1 + n2)
]

=
E[n′

1]− E[n′
2]

(2p− 1)(n1 + n2)
=

(n̂1 − n̂2)(2p− 1)

(2p− 1)(n1 + n2)

=
n̂1 − n̂2

n̂1 + n̂2
= E[m̂k] = E[m̄k] = mk

In this iterative model, an enhanced scheme for outliers
correction based on apriori knowledge can also be devised
(as the loop 5© 7© in Fig. 2 shows). Specifically, data collector
records the estimated means of previous iterations. In subse-
quent iterations, all emerging outliers will be replaced by these
recorded means. This correction scheme also helps to improve
the accuracy of the iterative model.

B. PrivKVM

The iterative model immediately leads to PrivKVM ,
whose details are shown in Algorithm 5. It takes as inputs
all users’ sets of KV pairs S, the set of keys K, privacy
budget ε and the number of iterations c. Privacy budget ε
is divided into {ε11, ..., ε1c, ε21, ..., ε2c} for c iterations by
a privacy budget allocation (PBA) strategy (Line 1). In the
first iteration, it invokes PrivKV to calculate the frequency
f (1) and mean m(1).3 Then the data collector uses m(1)

to randomly discretize v∗ (as shown in the discretization
step of Algorithm 2) for each user to use in the second
iteration (Line 3). In each subsequent r-th iteration, it invokes
PrivKV ′, a modified PrivKV algorithm that takes in ε1r,
ε2r, and one more parameter v∗. v∗ is needed in the local
perturbation protocol and for a non-existent key its value must
be randomly discretized with parameter m̃ (see Line 8 of
Algorithm 3). In PrivKVM , this discretization is performed
by the data collector based on the returned values from users in

3Here we use superscripts to denote which iterations the estimated results
are calculated from.

Algorithm 5 PrivKVM: Iterative PrivKV
Input: All users’ sets of KV pairs S = {S1, ..., Sn}

The set of keys K
Privacy budget ε
Number of iterations c

Output: Frequency vector f (1)

Mean vector m(c)

Procedure:

1: Allocate privacy budget:

{ε11, ..., ε1c, ε21, ..., ε2c} ← PBA(ε, c)

2: Calculate frequency and mean in the first iteration:

f (1),m(1) = PrivKV (S,K, ε11, ε21)

3: Collector sends back v∗ = discretization(m(1)) to each user
4: for r = 2 to c do
5: Calculate mean: m(r) = PrivKV ′(S,K, ε1r, ε2r,v∗)
6: Collector sends back v∗ = discretization(m(r)) to each user
7: return f (1) and m(c)

the previous iteration (Lines 5-6). Since frequency estimation
does not rely on the results of last iteration, it is carried out
only in the first iteration.

The PBA strategy for PrivKVM is designed as follows.
We first divide the total privacy budget ε equally for perturbing
keys and values, i.e., ε1 = ε2 = ε/2. For frequency estimation,
since only one iteration is needed, we allocate the privacy
budget of ε1 only to the first iteration. That is, ε11 = ε1 and
ε12, ..., ε1c = 0. For mean estimation, we allocate the privacy
budget of ε2 equally to each iteration. That is, ε21 = ε22 =
... = ε2c = ε2/c.

The extension of PrivKVM to multidimensional data is
straightforward. If the key is a multidimensional point, we
can simply flatten the key universe to one-dimensional. If
the value is a multidimensional point, we can treat each
dimension as an independent value dimension and perform
value perturbation separately. Note that by doing this we
will not lose the correlation between different dimensions as
PrivKVM well retains the correlation between the key and
each value dimension.

Further, PrivKVM can be applied to some other statistics
of values, such as the median and percentile. We take the
median estimation as an example, and the percentile statistics
can be extended in a similar way. According to the property of
median, it separates a higher half of a probability distribution
from a lower half. Since a frequency histogram is essentially a
discrete form of the probability distribution, the median can be
estimated by dividing the histogram into two halves, each with
the same area. To calculate the area, we can use the bar shape
of each bin (i.e., we assume the values in each bin follow a
uniform distribution). To improve the estimation accuracy and
rely less on the uniform assumption, we can further generalize
this idea by using multiple bins in the frequency histogram.
To enable this, we just need to slightly modify the steps
of discretization and pertubation in the value perturbation
primitive (Algorithm 2) to expand the perturbed set of values
accordingly.

It is noteworthy that the iterative version of PrivKVM
is more suitable for data collection of archive or historical

data than real-time data, as multiple iterations increase the
response time of data collection. Nonetheless, PrivKVM can
still handle key-value data changes between iterations, as long
as the key or value distribution is not changing.

C. Privacy and Accuracy Analysis

The following two theorems establish the privacy and ac-
curacy guarantee of PrivKVM , respectively. Theorem 5.2
proves that PrivKVM satisfies ε-LDP, and since the proof
is similar to that of Theorem 4.1, we omit it here. Theorem
5.3 proves that the difference between the true mean and the
expectation of the estimated mean converges to zero. Based
on the unbiasedness by Theorem 5.1, PrivKVM guarantees
the convergence with multiple iterations.

Theorem 5.2: PrivKVM satisfies ε-LDP.
Theorem 5.3: Let mk be the true mean of values in KV pairs

whose key is k, and E[m
(c)
k] be the expectation of the esti-

mated mean returned from the c-th iteration of PrivKVM .
lim
c→∞ |mk − E[m

(c)
k]| = 0.

PROOF. Assuming that a sequence of privacy budgets
ε11, ..., ε1c (ε1 =

∑c
r=1 ε1r) are allocated to 1, ..., c-th iteration

for key perturbation. We expose c intermediate variables
p1, ..., pc for brevity, where pr = eε1r

1+eε1r (1 ≤ r ≤ c).
Let fk denote the real frequency of key k. Hence, after the

conversion of KV pairs, we have p(k =“1”) = fk among all
n users. Note that after key perturbation in the r-th iteration,
the above frequency will be updated to f ′

k:

f ′
k = fkpr + (1− fk)(1− pr) = 2fkpr − fk − pr + 1

In the first iteration, suppose the initialized approximated
mean is m̃k, thus we have:

E[m
(1)
k] =

(1− fk)(1− p1)n · m̃k + fkp1n ·mk

f ′
kn

=
(fkp1 − fk − p1 + 1) · m̃k + fkp1 ·mk

2fkp1 − fk − p1 + 1

Then, the mean returned from the r-th iteration is based on
that from the (r − 1)-th iteration.

E[m
(r)
k] =

(fkpr − fk − pr + 1) · E[m(r−1)
k] + fkpr ·mk

2fkpr − fk − pr + 1

Thus we have:

|mk − E[m
(c)
k]| = fkpc − fk − pc + 1

2fkpc − fk − pc + 1
|mk − E[m

(c−1)
k]|

=
c∏

r=c−1

fkpr − fk − pr + 1

2fkpr − fk − pr + 1
|mk − E[m

(c−2)
k]|

=
c∏

r=1

fkpr − fk − pr + 1

2fkpr − fk − pr + 1
|mk − m̃k|

Note that |mk − m̃k| is a constant and we have pr ≥ 0.5

with εr ≥ 0. If fk = 0, then m
(1)
k = 0, which results in |mk−

m
(c)
k | = 0. For fk ∈ (0, 1], it is obvious that fkpr−fk−pr+1

2fkpr−fk−pr+1 ∈
[0, 1). Hence we have:

lim
c→∞ |mk − E[m

(c)
k]| = 0

Algorithm 6 PrivKVM+: Adaptive PrivKVM

Input: All users’ sets of KV pairs S = {S1, ..., Sn}
The set of keys K
Privacy budget ε
Communication cost of one iteration A0

Output: Frequency vector f∗
Mean vector m∗

Procedure:

1: Allocate privacy budget: {ε1, ε2} ← PBAt(ε)
2: Initialize m̃ = 1, v∗ = discretization(m̃)
3: f∗,m∗ = PrivKV ′(S,K, ε1, ε2,v∗)
4: Calculate the bias: F ∗ = A0 − 1

|K|
∑

k∈K |m∗
k − m̃k|

5: while F ∗ < 0 do
6: Collector sends v∗ = discretization(m∗) to each user
7: m̃ = m∗
8: {ε1, ε2} ← PBAt(ε− ε1 − ε2)
9: m∗ = PrivKV ′(S,K, ε1, ε2,v∗)

10: F ∗ = A0 − 1
|K|

∑
k∈K |m∗

k − m̃k|
11: return f∗ and m∗

Theorem 5.3 provides the guarantee of convergence, regard-
less of the initialized mean in the first iteration. Further, the
following theorem proves the worst case accuracy guarantee
of PrivKVM , in terms of the maximum difference between
the true mean and any estimated mean, is bounded. The proof
is similar to the one in [31].

Theorem 5.4: For any key k ∈ K and |K| = d, let mk be
the true mean of all n values in KV pairs whose key is k, and
m∗

k be the estimated mean by PrivKVM . With at least 1−β
probability,

max
k∈K

|mk −m∗
k| = O

(√
d · log(d/β)

ε
√
n

)

D. PrivKVM+: An Adaptive Variant

PrivKVM needs the number of iterations c to be deter-
mined in advance. However, in many real-world applications,
the optimal c is difficult to obtain. Ideally, to achieve the
highest estimation accuracy, c should approach infinite to
make the best use of estimated means in previous iterations.
Unfortunately, this does not take account of other costs in
practice, such as the communication overhead and the execu-
tion time. In this section, we present an adaptive PrivKVM
protocol, namely PrivKVM+, that determines c adaptively
by considering these costs.

Specifically, for the r-th iteration, we define a cost function
F (r) which consists of the accuracy cost F1(r) and the
communication cost F2(r)

4:

F (r) = F1(r) + F2(r) (3)

For F1(r), we model it using the average of the absolute
error of mean among all keys. That is,

F1(r) =
1

d

∑
k∈K

|mk −m
(r)
k | (4)

4As the execution time is dominated by the communication bandwidth,
we merge the cost of execution time into communication cost for ease of
presentation.

For F2(r), since the communication cost of each iteration
is a constant A0, we have:

F2(r) = A0 · r (5)

Intuitively, as r increases, F1(r) decreases less and less sig-
nificantly according to Theorem 5.3, while F2(r) increases at
a constant rate A0. Therefore, F (r) reaches a global minimum
when the decrement of F1(r) can no longer compensate the
increase of A0. Formally, r is the first iteration that satisfies

F (r)− F (r − 1) = A0 − 1

d

∑
k∈K

|m(r)
k −m

(r−1)
k | ≥ 0 (6)

Here we assume m
(r)
k is always closer to mk than m

(r−1)
k ,

i.e., |mk − m
(r)
k | < |mk − m

(r−1)
k |. In essence, Eq. 6

provides a termination condition for PrivKVM+ that is easy
to implement — only the estimated means of this and last
iterations are involved on the right hand side of the equation.
If it becomes larger than or equal to 0, PrivKVM+ will be
terminated.

Algorithm 6 shows the detailed pseudo-code of
PrivKVM+, which does not need the number of iterations
c as an input as opposed to PrivKVM . It first allocates
the privacy budget using a different strategy PBAt from
the one used in PrivKVM where c is known in advance
(Line 1). PBAt uses an “exponential decay” strategy that
dynamically allocates 1

t portion of the remaining privacy
budget to the current iteration. In general, t could be any
value larger than 1. The smaller t is, the larger privacy budget
is allocated to the current iteration and thus the estimation
converges faster. Nonetheless, if t is too close to 1, the
convergence might be premature as most privacy budget is
wasted in the early iterations where the estimated mean is too
inaccurate for the next iterations. The termination condition,
F ∗ = F (r) − F (r − 1) ≥ 0 is calculated in Line 4 (for the
first iteration) and Line 10 (for subsequent iterations), and
tested in Line 5 before a new iteration.

VI. VIRTUAL ITERATIONS: AN OPTIMIZATION ON
LATENCY AND ACCURACY

In this section, we propose an optimization strategy that
executes “real” PrivKVM or PrivKVM+ on selective
iterations and other iterations are only executed “virtually”
by the collector. By virtual iterations, the collector can di-
rectly predict the estimated mean without user involvement. It
has two advantages. First, it effectively reduces the network
transmission overhead between the user and the collector, and
therefore improves the latency. Second, since virtual iterations
do not cost any privacy budget, real iterations can be allocated
more of it, and therefore improves the estimation accuracy.
Algorithm 7 shows how c − 1 iterations can be virtually
executed by the collector and returns a predicated estimated
mean vector m(c) after the first iteration is really executed
with estimated frequency vector f and mean vector m(1) (Line
2). The prediction takes two steps. For each key k, the collector
calculates an intermediate variable θ based on frequency f and
privacy budget ε that is allocated to the first iteration (Line 4).

Algorithm 7 Executing Virtual Iterations
Input: All users’ sets of KV pairs S = {S1, ..., Sn}

The set of keys K
Privacy budget ε
Number of iterations to execute c

Output: Frequency vector f
Mean vector m(c)

Procedure:

1: Initialize m̃ = 1, v∗ = discretization(m̃)
2: Calculate the frequency and mean:

f ,m(1) = PrivKV ′(S,K, ε/2, ε/2,v∗)

3: for each key k ∈ K do
4: Collector calculates θ = fkp−fk−p+1

2fkp−fk−p+1
, where p = eε/2

1+eε/2

5: Collector predicts m
(c)
k = m̃k +

(m
(1)
k

−m̃k)(1−θc)

1−θ

6: return f and m(c)

Then the collector can predict the estimated mean for the c-th
iteration m

(c)
k (Line 5).

The following theorem proves the correctness of Algo-
rithm 7.

Theorem 6.1: For any key k, let m̃k be the initial mean
and m

(1)
k be the estimated mean of the first iteration with

privacy budget ε. The expectation of the estimated mean of

the c-th iteration E[m
(c)
k] = m̃k +

(E[m
(1)
k]−m̃k)(1−θc)

1−θ , where
θ = fkp−fk−p+1

2fkp−fk−p+1 and p = eε

eε+1 .

PROOF. We first show the following lemma on the ratio of
bias in two consecutive iterations r and r + 1.

Lemma 6.2: For a key k, let E[m
(r−1)
k], E[m

(r)
k] and

E[m
(r+1)
k] be the expectation of the estimated means of three

consecutive iterations. The privacy budget εr and εr+1 are
allocated to r-th and (r + 1)-th iterations, respectively. Then

the ratio of bias in these two iterations |E[m(r+1)
k]−E[m

(r)
k]|

|E[m(r)
k]−E[m

(r−1)
k]| =

(fkpr−fk−pr+1)·pr+1

(2fkpr+1−fk−pr+1+1)·pr
, where pr = eεr

1+eεr , pr+1 = eεr+1

1+eεr+1

and fk is the real frequency of key k.5

PROOF. According to the proof of Theorem 5.3, we have:

E[m
(r)
k] =

(fkpr − fk − pr + 1) · E[m(r−1)
k] + fkpr ·mk

2fkpr − fk − pr + 1

|mk − E[m
(r)
k]|

|mk − E[m
(r−1)
k]|

=
fkpr − fk − pr + 1

2fkpr − fk − pr + 1

Thus we express the bias as follows:

|E[m(r)
k]− E[m

(r−1)
k]| = fkpr · |mk − E[m

(r−1)
k]|

2fkpr − fk − pr + 1

|E[m(r+1)
k]− E[m

(r)
k]| = fkpr+1 · |mk − E[m

(r)
k]|

2fkpr+1 − fk − pr+1 + 1

5In practice, we substitute fk with the estimated frequency f∗
k .

Therefore, the ratio of bias can be derived as:

|E[m(r+1)
k]− E[m

(r)
k]|

|E[m(r)
k]− E[m

(r−1)
k]|

=
fkpr+1 · |mk − E[m

(r)
k]|

fkpr · |mk − E[m
(r−1)
k]|

· 2fkpr − fk − pr + 1

2fkpr+1 − fk − pr+1 + 1

=
(fkpr − fk − pr + 1) · pr+1

(2fkpr+1 − fk − pr+1 + 1) · pr
According to Lemma 6.2, when given the same privacy

budget ε, p is a constant. So for any three means returned from

two consecutive iterations, |E[m(r+1)
k]−E[m

(r)
k]|

|E[m(r)
k]−E[m

(r−1)
k]| =

fkp−fk−p+1
2fkp−fk−p+1 .

Let θ denote this ratio.
Then we have the following geometric progression:

{E[m(r+1)
k]−E[m

(r)
k]} and its general formula can be written

as:
E[m

(r+1)
k]− E[m

(r)
k] = (E[m

(1)
k]− m̃k) · θr

Thus we have:

E[m
(1)
k]− m̃k = (E[m

(1)
k]− m̃k) · θ0

E[m
(2)
k]− E[m

(1)
k] = (E[m

(1)
k]− m̃k) · θ1

E[m
(3)
k]− E[m

(2)
k] = (E[m

(1)
k]− m̃k) · θ2

...

E[m
(c)
k]− E[m

(c−1)
k] = (E[m

(1)
k]− m̃k) · θc−1

By summing up the above equations, we have:

E[m
(c)
k] = m̃k +

(E[m
(1)
k]− m̃k)(1− θc)

1− θ

This completes the proof.

Note that the accuracy gain by virtual iterations heavily
depends on that of the first iteration. However, if the latter
is given only a small privacy budget, e.g., ε = 0.05, the over-
whelmed noise introduced in the first iteration could further
accumulate through the virtual iterations. As will be shown
in the performance evaluation, this optimization strategy can
work well unless for small privacy budgets.

VII. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of our pro-
posed solutions. To have a fair comparison with existing LDP
techniques that can only handle either categorical (key) or
numerical (value) data, we adapt them to the context of key-
value data as much as we can. For frequency estimation on
keys, we apply the same sampling technique used in LPP
to RAPPOR [21], k-RR [24] and SHist [5], i.e., each user
randomly selects one key in the key universe, and perturbs
it by either RAPPOR, k-RR or SHist if this key exists in her
key set, or skips it otherwise. For mean estimation, we replace
value perturbation primitive (Algorithm 2) in PrivKVM with
Harmony [31] and MeanEst [17], which lead to PrivKVM-
Harmony and PrivKVM-MeanEst. They are then compared
with PrivKVM .

0.05 0.1 0.2 0.4 0.8 1.6 3.2
-3

-2

-1

0

1

2

3

Lo
g(

M
SE

)

Privacy Budget

 PrivKVM-MeanEst
 PrivKVM-Harmony
 PrivKVM

(a) GAUSS

0.05 0.1 0.2 0.4 0.8 1.6 3.2
-3

-2

-1

0

1

2

3

Lo
g(

M
SE

)

Privacy Budget

 PrivKVM-MeanEst
 PrivKVM-Harmony
 PrivKVM

(b) PLAW

0.05 0.1 0.2 0.4 0.8 1.6 3.2
-3

-2

-1

0

1

2

3

Lo
g(

M
SE

)

Privacy Budget

 PrivKVM-MeanEst
 PrivKVM-Harmony
 PrivKVM

(c) LNR

0.05 0.1 0.2 0.4 0.8 1.6 3.2
-3

-2

-1

0

1

2

3

Lo
g(

M
SE

)

Privacy Budget

 PrivKVM-MeanEst
 PrivKVM-Harmony
 PrivKVM

(d) AppData

0.05 0.1 0.2 0.4 0.8 1.6 3.2-3

-2

-1

0

1

2

3

Lo
g(

M
SE

)

Privacy Budget

 PrivKVM-MeanEst
 PrivKVM-Harmony
 PrivKVM

(e) TalkingData

0.05 0.1 0.2 0.4 0.8 1.6 3.2
-3

-2

-1

0

1

2

3

Lo
g(

M
SE

)

Privacy Budget

 PrivKVM-MeanEst
 PrivKVM-Harmony
 PrivKVM

(f) JData

Fig. 3. Results of mean estimation, varying privacy budget

We implement all methods in Java and conduct experiments
on a desktop computer with Intel Core i5-3470 3.20 GHz CPU,
32G RAM running Windows 7 operating system. The testing
key-value datasets consist of both synthetic and real ones, and
their value domains are all normalized to [−1, 1].

Parameter settings. For RAPPOR [21], we set its param-
eters as system default setting, i.e., set the bloom filter size
h to 64, the number of hash functions to 2 and the number
of cohorts to 16. The values of three probabilities f , p and q
totally depend on the given privacy budget. For SHist [5], as
larger error bound requires more computation resources, we
set it to 0.8, which is the largest value we can support within
our computing power.

Datasets. We conduct the experiments over six datasets and
their parameters are summarized in Table III, including the
average and the variance of frequencies and means. The first
three are synthetic datasets, whose keys and values follow a
gaussian, a power-law and a linear distribution, respectively.
The other three are real key-value datasets, obtained from
public data sources.

• AppData app usage data. This dataset is collected by
a leading mobile data service provider 6. It contains app
usage data of 2,006,631 devices and 1,134 apps. Each
device is associated with a list of installed apps and the

6The name is anonymous as we have a non-disclosure agreement with this
company.

total use time of each app in the quarter of Oct. 2017 to
Dec. 2017. We treat each app as a key and its use time
as the value.

• TalkingData mobile events7. This dataset is collected
from TalkingData SDK which is integrated with many
mobile apps. It contains 60,822 devices and 306 cat-
egories of apps. There are 32,473,067 events in this
dataset, each presenting the category of apps from a
certain device gets access to TalkingData SDK. Suppose
instead of collecting individual events which is privacy-
intrusive, TalkingData collects the frequencies of different
events from each device by LDP. In this regard, each
category is a key, and its value denotes the number of
events of this category.

• JData shopping records8. This dataset is collected from
JD.COM, which contains 50,601,736 sales records in
2016. It records the list of product brands each user has
ever purchased. There are 105,180 users and 442 brands
in total. We treat each brand as a key, and its value
denotes the number of times this user has purchased any
product of that brand.

TABLE III
DATASETS

Datasets Distributions Users Keys Avg.(f) Var.(f) Avg.(m) Var.(m)
GAUSS gaussian 106 100 0.3000 0.0401 0.0207 0.3080
PLAW power-law 106 100 0.1384 0.0167 -0.0723 0.0656
LNR linear 106 1000 0.4003 0.0005 0.0010 0.3330

AppData – 2006631 1134 0.0013 0.0002 -0.0010 0.0002
TalkingData – 60822 306 0.0693 0.0255 -0.6780 0.2480

JData – 105180 442 0.0251 0.0065 -0.6410 0.2690

To measure the accuracy of the estimated frequency and
mean, we use the following two metrics that are widely used
in the literature.

• Relative Error (RE) [28]. It measures the relative error
of estimated frequencies with respect to real frequencies
of all keys. Specifically, for key k ∈ K, let fk and f∗

k

denote real and estimated frequency, respectively.

RE = Statk∈K
|fk − f∗

k |
fk

, (7)

where Stat is a statistical function such as median
(default), top 10%, 20%, 30% and 40% percentile, and
top 100-th.

• Mean Square Error (MSE) [31]. It measures the abso-
lute error of estimated means with respect to real means
of all keys. Specifically, for k ∈ K, let mk and m∗

k denote
real and estimated means of all values whose key is k,
and d = |K|.

MSE =
1

d

∑
k∈K

(mk −m∗
k)

2 (8)

As the absolute MSE value is small, we use logarithm of
MSE, i.e., Log(MSE), in the sequel.

7https://www.kaggle.com/c/talkingdata-mobile-user-demographics
8http://www.datafountain.cn/#/competitions/247/data-intro

0.0

0.2

0.4

0.6

0.8

1.0

R
E

Accuracy Ranking of Keys

 k-RR
 RAPPOR
 SHist
 PrivKVM

Top50%Top40%Top30%Top20%Top10%

(a) PLAW, ε = 0.1

0.0

0.2

0.4

0.6

0.8

1.0

R
E

Accuracy Ranking of Keys

 k-RR
 RAPPOR
 SHist
 PrivKVM

Top50%Top40%Top30%Top20%Top10%

(b) PLAW, ε = 0.2

0.0

0.2

0.4

0.6

0.8

1.0

R
E

Accuracy Ranking of Keys

 k-RR
 RAPPOR
 SHist
 PrivKVM

Top50%Top40%Top30%Top20%Top10%

(c) PLAW, ε = 0.4

0.0

0.2

0.4

0.6

0.8

1.0

Top20%Top10%

R
E

Accuracy Ranking of Keys

 k-RR
 RAPPOR
 SHist
 PrivKVM

Top40%Top30% Top50%

(d) PLAW, ε = 0.8

Top20 Top40 Top60 Top80 Top100
0.0

0.2

0.4

0.6

0.8

1.0

Top1

R
E

Accuracy Ranking of Keys

 k-RR
 RAPPOR
 SHist
 PrivKVM

(e) AppData, ε = 0.1

Top20 Top40 Top60 Top80 Top100
0.0

0.2

0.4

0.6

0.8

1.0

Top1

R
E

Accuracy Ranking of Keys

 k-RR
 RAPPOR
 SHist
 PrivKVM

(f) AppData, ε = 0.2

Top20 Top40 Top60 Top80 Top100
0.0

0.2

0.4

0.6

0.8

1.0

Top1

R
E

Accuracy Ranking of Keys

 k-RR
 RAPPOR
 SHist
 PrivKVM

(g) AppData, ε = 0.4

Top20 Top40 Top60 Top80 Top100
0.0

0.2

0.4

0.6

0.8

1.0

Top1

R
E

Accuracy Ranking of Keys

 k-RR
 RAPPOR
 SHist
 PrivKVM

(h) AppData, ε = 0.8

Fig. 4. Results of frequency estimation, varying privacy budget

A. Overall Results
Fig. 3 shows the mean estimation accuracy of the three

competitive methods, with five virtual iterations enabled after
the first real iteration. Overall, PrivKVM is more accurate
than the other two, especially for cases with small privacy
budgets and real datasets. The former is because small privacy
budget leads to heavy perturbation, thus causing more outliers.
The latter is because outliers are more frequent in real datasets
where KV pairs are very sparse. Eventually, these outliers
would be corrected by PrivKVM . In terms of the absolute
MSE, the latter four are worse than GAUSS and PLAW, as the
numbers of samples in the latter four are less than the former.

For frequency estimation, Fig. 4 shows the results of
PrivKVM comparing with RAPPOR, k-RR and SHist as
the privacy budget increases from 0.1 to 0.8. Due to space
limitation, only the results of PLAW and AppData are shown.
For PLAW, we measure and plot the RE for the top 10%, 20%,
30%, 40% and 50% percentile, where PrivKVM always
outperforms the other three methods. For AppData, since its
sampling datasets are sparse, many keys have very noisy and
not meaningful frequency estimation. As such, we only mea-
sure and plot the RE for the top 100 keys. Nonetheless, similar
observation is made that PrivKVM always outperforms the
other three methods.

To compare the end-to-end bandwidth cost, we show the
number of transferred bits between a user and the data
collector for AppData in Table IV.

TABLE IV
COMPARISON ON END-TO-END BANDWIDTH COST

Method k-RR
&Harmony

SHist
&Harmony

RAPPOR
&MeanEst PrivKV PrivKVM

(c=10)
Cost 17 bits 18 bits 1166 bits 17 bits 323 bits

B. Scalability
In this subsection, we evaluate the scalability of

PrivKVM , i.e., how the size of user or key space affects the

accuracy of frequency and mean estimation. For comparison
purpose, we also show the results of k-RR and PrivKVM-
Harmony.

First, we investigate the effect of user size. We select six
subsets of GAUSS of different sizes and plot the RE and
MSE in Fig. 5. PrivKVM outperforms the other methods for
both frequency and mean estimation. The gain improves with
increasing user sizes due to the law of large numbers. When
this size reaches 106, the accuracy is high enough (RE ≤ 0.5
and Log(MSE) ≤ −0.5) for most data collection tasks.

We then investigate the effect of key space size. We select
six subsets of LNR of different number of keys and plot the
RE and MSE in Fig. 6. With increasing sizes of key space,
although PrivKVM always outperforms the other methods,
both frequency and mean estimation become less accurate.
This is because the number of samples for each key decreases
as the user size is fixed to 106. To compensate for the accuracy
loss, we can choose to use a larger user size.

C. Key-value Correlation

As aforementioned, naive solutions such as k-
RR&Harmony which uses k-RR and Harmony to perturb
keys and values respectively do not work well as they fail
to consider the correlation between keys and values. As
a comparison, we evaluate how PrivKVM retains this
correlation in this subsection.

We use Pearson correlation coefficient [32] as the metric
and test it over PLAW and LNR. Fig. 7 plots the coeffi-
cient of real data, and that perturbed by PrivKVM and k-
RR&Harmony, respectively. With increasing privacy budget,
the correlation coefficient of PrivKVM gradually approaches
the real one, whereas that of k-RR&Harmony is always close
to zero, which indicates its inability to capture the key-value
correlation.

To further illustrate how well the key-value correlation is
retained across keys with different frequencies, we plot in
Fig. 8 3D illustrations of the estimated mean across keys

0.0

0.2

0.4

0.6

0.8

1.0

R
E

of Users(×104)

 RE(k-RR)
 RE(PrivKVM)

30 100 300 1000103 -1.0

-0.5

0.0

0.5

1.0

 MSE(PrivKVM-Harmony)
 MSE(PrivKVM)

Lo
g(

M
SE

)

(a) GAUSS, ε = 0.1

0.0

0.2

0.4

0.6

0.8

1.0

R
E

of Users(×104)

 RE(k-RR)
 RE(PrivKVM)

30 100 300 1000103
-1.0

-0.5

0.0

0.5

1.0

 MSE(PrivKVM-Harmony)
 MSE(PrivKVM)

Lo
g(

M
SE

)

(b) GAUSS, ε = 0.2

0.0

0.2

0.4

0.6

0.8

1.0

R
E

of Users(×104)

 RE(k-RR)
 RE(PrivKVM)

-1.0

-0.5

0.0

0.5

1.0

 MSE(PrivKVM-Harmony)
 MSE(PrivKVM)

Lo
g(

M
SE

)

30 100 300 1000103

(c) GAUSS, ε = 0.4

0.0

0.2

0.4

0.6

0.8

1.0

R
E

of Users(×104)

 RE(k-RR)
 RE(PrivKVM)

30 100 300 1000103
-1.0

-0.5

0.0

0.5

1.0

 MSE(PrivKVM-Harmony)
 MSE(PrivKVM)

Lo
g(

M
SE

)

(d) GAUSS, ε = 0.8

Fig. 5. Results of frequency and mean estimation, varying user size

0.0

0.2

0.4

0.6

0.8

1.0

R
E

of Keys
300 1000 3000 1000010030

 RE(k-RR)
 RE(PrivKVM)

-1.0

-0.5

0.0

0.5

1.0

Lo
g(

M
SE

)

 MSE(PrivKVM-Harmony)
 MSE(PrivKVM)

(a) LNR, ε = 0.1

0.0

0.2

0.4

0.6

0.8

1.0

R
E

of Keys

 RE(k-RR)
 RE(PrivKVM)

300 1000 3000 1000010030
-1.0

-0.5

0.0

0.5

1.0

 MSE(PrivKVM-Harmony)
 MSE(PrivKVM)

Lo
g(

M
SE

)

(b) LNR, ε = 0.2

0.0

0.2

0.4

0.6

0.8

1.0

R
E

of Keys

 RE(k-RR)
 RE(PrivKVM)

300 1000 3000 1000010030
-1.0

-0.5

0.0

0.5

1.0

 MSE(PrivKVM-Harmony)
 MSE(PrivKVM)

Lo
g(

M
SE

)

(c) LNR, ε = 0.4

0.0

0.2

0.4

0.6

0.8

1.0

R
E

of Keys

 RE(k-RR)
 RE(PrivKVM)

100003000100030010030
-1.0

-0.5

0.0

0.5

1.0

 MSE(PrivKVM-Harmony)
 MSE(PrivKVM)

Lo
g(

M
SE

)

(d) LNR, ε = 0.8

Fig. 6. Results of frequency and mean estimation, varying key space

0.05 0.1 0.2 0.4 0.8 1.6 3.2
-0.6

-0.3

0.0

0.3

C
or

re
la

tio
n

Privacy Budget

 Real coefficient
 PrivKVM
 k-RR&Harmony

(a) PLAW

0.05 0.1 0.2 0.4 0.8 1.6 3.2
-0.5

0.0

0.5

1.0

C
or

re
la

tio
n

Privacy Budget

 Real coefficient
 PrivKVM
 k-RR&Harmony

(b) LNR

Fig. 7. Pearson correlation coefficient, varying privacy budget

in the GAUSS distribution under different privacy budgets.
We observe that the estimated means of PrivKVM follow
a very similar distribution as the real mean, especially for
those keys with high frequency (i.e., key id close to 50). The
tail of the distribution (i.e., key id far away from 50) has
a larger deviation due to the smaller sample size of keys.
On the contrary, the estimated means of k-RR&Harmony
completely deviate from the true distribution, which is a
consequence of its inability to retain the correlation between
keys and values.

D. Impact of Iterations

In this subsection, we evaluate the impact of iterations in
PrivKVM on the accuracy of mean estimation. Fig. 9 shows
the results over GAUSS and PLAW. For each privacy budget,
we try 10 PrivKVM runs with the number of iterations vary-
ing from 1 to 10. We observe that in both synthetic datasets,
Log(MSE) decreases as the iteration number increases and
it converges to a certain value. This value is completely due
to the value perturbation as Theorem 5.3 tells us the absolute
error between the expected and real mean would converge to
zero.

As a comparison, we also plot the impact on PrivKVM-
Harmony and PrivKVM-MeanEst in Fig. 10. We only show
the results of PLAW due to space limitation. While the trend

(a) GAUSS, PrivKVM (b) GAUSS, k-RR&Harmony

Fig. 8. 3D illustration of estimated mean across different keys and privacy
budgets

of PrivKVM-Harmony is similar to PrivKVM , PrivKVM-
MeanEst stays almost flat because it is only applicable to
the case where the universe consists of just a few keys.
PrivKVM outperforms the other two especially for small
and medium privacy budgets. This is because PrivKVM has
the built-in capability to correct outliers to reasonable values
when large noises are added. This correction becomes more
accurate through iterations. In case of larger budgets, this
advantage is less eminent with fewer outliers.

E. Impact of Cost Function

Fig. 11 plots the total cost of PrivKVM (3 and 6 iter-
ations) and PrivKVM+ over GAUSS and PLAW based on
two different cost functions in Eq. 3. Here the parameter t
of strategy PBAt (Algorithm 6) is set to be 2. The commu-
nication cost of each iteration A0 is set to be 0.2 and 0.02,
respectively. We observe that when the accuracy cost is small
(A0 = 0.2), the total cost of PrivKVM -6 is higher than
PrivKVM -3 and the situation is reversed when the accuracy
cost is large (A0 = 0.02). On the other hand, PrivKVM+

always achieves the lowest cost by finding the most suitable
iteration number to minimize the overall cost. Specifically, for
A0 = 0.2, PrivKVM+ terminates at the second or third
iteration for different privacy budget, while for A0 = 0.02, it
terminates at the fourth or fifth iteration.

� � � � � � � 	
 ��
��
�

��
�

�
�

�
�

��
��

�
��

�

��������������!

�ε"�
��� �ε"�
��� �ε"�
��� �ε"�
������
�ε"�
	��� �ε"�
��� �ε"�
�

(a) GAUSS

� � � � � � � 	
 ��
��
�

�
�

�
�

��
��

�
��

�

��������������!

�ε"�
��� �ε"�
��� �ε"�
��� �ε"�
������
�ε"�
	��� �ε"�
��� �ε"�
�

(b) PLAW

Fig. 9. Error convergence of PrivKVM

1 2 3 4 5 6 7 8 9 10
-0.5

0.0

0.5

1.0

Lo
g(

M
SE

)

of Iterations

PrivKVM-MeanEst
PrivKVM-Harmony
PrivKVM

(a) PLAW, ε = 0.1

1 2 3 4 5 6 7 8 9 10
-0.5

0.0

0.5

1.0

Lo
g(

M
SE

)

of Iterations

PrivKVM-MeanEst
PrivKVM-Harmony
PrivKVM

(b) PLAW, ε = 0.2

1 2 3 4 5 6 7 8 9 10
-0.5

0.0

0.5

1.0

Lo
g(

M
SE

)

of Iterations

PrivKVM-MeanEst
PrivKVM-Harmony
PrivKVM

(c) PLAW, ε = 0.4

1 2 3 4 5 6 7 8 9 10
-0.5

0.0

0.5

1.0

Lo
g(

M
SE

)

of Iterations

PrivKVM-MeanEst
PrivKVM-Harmony
PrivKVM

(d) PLAW, ε = 0.8

Fig. 10. Results of mean estimation, varying iteration number

F. Impact of Virtual Iteration Optimization

In this subsection, we evaluate PrivKVM with and with-
out the virtual iteration optimization. They are denoted by
PrivKVM and PrivKVM -noV I , respectively. For the for-
mer, we set c, the number of iterations to execute, to 6,
which means 5 virtual iterations will be executed after the
first real iteration that involves the user. To be fair to the
latter, we also set its iteration number to 6. Fig. 12 shows
the results over GAUSS and PLAW. We observe that when
the privacy budget is extremely small, PrivKVM returns
very inaccurate result. This is because the effect of virtual
iterations heavily depends on the accuracy of the first real
iteration, which is bad when the budget is too small. When
the budget increases, the accuracy of PrivKVM improves
so rapidly that it outperforms PrivKVM -noV I very soon.
This phenomenon is consistent with our analysis in Section
VI and shows that virtual iterations can amplify the effect of
real iterations, whether it is a good or bad one.

VIII. CONCLUSION

This paper proposes a decentralized privacy-preserving
mechanism for frequency and mean estimation on key-
value data based on local differential privacy. The building
block is the local perturbation protocol, based on which
we develop three solutions, namely, PrivKV , PrivKVM

0.05 0.1 0.2 0.4 0.8 1.6 3.2
0.4

0.8

1.2

1.6

2.0

To
ta

l C
os

t

Privacy Budget

 PrivKVM-6
 PrivKVM-3
 PrivKVM+

(a) GAUSS, A0 = 0.2

0.05 0.1 0.2 0.4 0.8 1.6 3.2
0.2

0.4

0.6

0.8

1.0

To
ta

l C
os

t

Privacy Budget

 PrivKVM-6
 PrivKVM-3
 PrivKVM+

(b) GAUSS, A0 = 0.02

0.05 0.1 0.2 0.4 0.8 1.6 3.2
1.4

1.6

1.8

2.0

2.2

2.4

2.6

To
ta

l C
os

t

Privacy Budget

 PrivKVM-6
 PrivKVM-3
 PrivKVM+

(c) PLAW, A0 = 0.2

0.05 0.1 0.2 0.4 0.8 1.6 3.2
0.8

1.0

1.2

1.4

1.6

1.8

To
ta

l C
os

t

Privacy Budget

 PrivKVM-6
 PrivKVM-3
 PrivKVM+

(d) PLAW, A0 = 0.02

Fig. 11. Results of total cost, varying cost function

0.05 0.1 0.2 0.4 0.8 1.6 3.2
-3

-2

-1

0

1

Lo
g(

M
SE

)

Privacy Budget

 PrivKVM
 PrivKVM-noVI

(a) GAUSS

0.05 0.1 0.2 0.4 0.8 1.6 3.2
-3

-2

-1

0

1

Lo
g(

M
SE

)
Privacy Budget

 PrivKVM
 PrivKVM-noVI

(b) PLAW

Fig. 12. Results of mean estimation, with and without virtual iteration

and PrivKVM+. An optimization strategy that enables the
data collector to execute virtual iterations is also presented.
Through theoretical and empirical analysis, we show our
solutions are effective and robust in terms of accuracy or total
cost under various system parameter settings.

As for future work, we plan to study more aggregate
statistics on key-value data, such as maximum and mini-
mum estimation. We also plan to explore LDP for privacy-
preserving mining tasks (e.g., finding the gradient descent or
k-means clustering), and extend this work to queries with
relational dependencies (e.g., natural join) and to unknown
key spaces.

ACKNOWLEDGMENT

This work was supported by National Natural Science Foun-
dation of China (Grant No: 91646203, 61532010, 61532016,
61572413 and U1636205), the National Key Research and
Development Program of China (Grant No: 2016YFB1000602
and 2016YFB1000603), the Research Grants Council, Hong
Kong SAR, China (Grant No: 12200914, 15238116, and
C1008-16G), and research grants from PolyU Start-up Fund
and Huawei Technologies. (Corresponding author: Xiaofeng
Meng)

REFERENCES

[1] Apple’s ‘differential privacy’ is about collecting your data — but not
your data. Wired, Jun 13, 2016.

[2] Turning big data into big money: How amazon is leveraging big data.
Linkedin, May 2, 2017.

[3] M. Akter and T. Hashem. Computing aggregates over numeric data
with personalized local differential privacy. In ACISP, pages 249–260.
Springer, 2017.

[4] B. Avent, A. Korolova, D. Zeber, T. Hovden, and B. Livshits. Blender:
Enabling local search with a hybrid differential privacy model. In
USENIX Security Symposium, pages 747–764, 2017.

[5] R. Bassily and A. Smith. Local, private, efficient protocols for succinct
histograms. In STOC, pages 127–135. ACM, 2015.

[6] R. Bassily, U. Stemmer, A. G. Thakurta, et al. Practical locally private
heavy hitters. In NIPS, pages 2285–2293, 2017.

[7] A. Bittau, U. Erlingsson, P. Maniatis, I. Mironov, A. Raghunathan,
D. Lie, M. Rudominer, U. Kode, J. Tinnes, and B. Seefeld. Prochlo:
Strong privacy for analytics in the crowd. In SOSP, pages 441–459.
ACM, 2017.

[8] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422–426, 1970.

[9] M. Bun, J. Nelson, and U. Stemmer. Heavy hitters and the structure of
local privacy. In PODS, pages 435–447. ACM, 2018.

[10] R. Chen, H. Li, A. Qin, S. P. Kasiviswanathan, and H. Jin. Private
spatial data aggregation in the local setting. In ICDE, pages 289–300.
IEEE, 2016.

[11] G. Cormode, S. Jha, T. Kulkarni, N. Li, D. Srivastava, and T. Wang.
Privacy at scale: Local differential privacy in practice. In SIGMOD,
pages 1655–1658. ACM, 2018.

[12] G. Cormode, T. Kulkarni, and D. Srivastava. Marginal release under
local differential privacy. In SIGMOD, pages 131–146. ACM, 2018.

[13] H. Corrigan-Gibbs and D. Boneh. Prio: Private, robust, and scalable
computation of aggregate statistics. In NSDI, pages 259–282, 2017.

[14] B. Ding, J. Kulkarni, and S. Yekhanin. Collecting telemetry data
privately. In NIPS, pages 3574–3583, 2017.

[15] J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Local privacy and
statistical minimax rates. In FOCS, pages 429–438. IEEE, 2013.

[16] J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Local privacy, data
processing inequalities, and statistical minimax rates. arXiv:1302.3203,
2013.

[17] J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Privacy aware learning.
Journal of the ACM, 61(6):1–57, 2014.

[18] C. Dwork. Differential privacy. In ICALP, pages 1–12. Springer, 2006.
[19] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to

sensitivity in private data analysis. In TCC, pages 265–284. Springer,
2006.

[20] C. Dwork, A. Roth, et al. The algorithmic foundations of differential
privacy. Foundations and Trends in Theoretical Computer Science, 9(3–
4):211–407, 2014.

[21] Ú. Erlingsson, V. Pihur, and A. Korolova. Rappor: Randomized
aggregatable privacy-preserving ordinal response. In CCS, pages 1054–
1067. ACM, 2014.

[22] G. Fanti, V. Pihur, and Ú. Erlingsson. Building a rappor with the un-
known: Privacy-preserving learning of associations and data dictionaries.
PoPETS, 2016(3):41–61, 2016.

[23] P. Kairouz, K. Bonawitz, and D. Ramage. Discrete distribution estima-
tion under local privacy. In ICML, pages 2436–2444. ACM, 2016.

[24] P. Kairouz, S. Oh, and P. Viswanath. Extremal mechanisms for local
differential privacy. In NIPS, pages 2879–2887, 2014.

[25] P. Kairouz, S. Oh, and P. Viswanath. Extremal mechanisms for local
differential privacy. Journal of Machine Learning Research, 17(17):1–
51, 2016.

[26] J. W. Kim, D.-H. Kim, and B. Jang. Application of local differential
privacy to collection of indoor positioning data. IEEE Access, pages
4276–4286, 2018.

[27] N. Li, M. Lyu, D. Su, and W. Yang. Differential privacy: From theory to
practice. Synthesis Lectures on Information Security, Privacy, & Trust,
8(4):1–138, 2016.

[28] N. Li, W. Qardaji, D. Su, and J. Cao. Privbasis: Frequent itemset mining
with differential privacy. PVLDB, 5(11):1340–1351, 2012.

[29] F. McSherry. Privacy integrated queries: an extensible platform for
privacy-preserving data analysis. In SIGMOD, pages 19–30. ACM, 2009.

[30] F. McSherry and K. Talwar. Mechanism design via differential privacy.
In FOCS, pages 94–103. IEEE, 2007.

[31] T. T. Nguyên, X. Xiao, Y. Yang, S. C. Hui, H. Shin, and J. Shin.
Collecting and analyzing data from smart device users with local
differential privacy. arXiv:1606.05053, 2016.

[32] K. Pearson. Note on regression and inheritance in the case of two
parents. Proceedings of the Royal Society of London, 58:240–242, 1895.

[33] Z. Qin, Y. Yang, T. Yu, I. Khalil, X. Xiao, and K. Ren. Heavy hitter
estimation over set-valued data with local differential privacy. In CCS,
pages 192–203. ACM, 2016.

[34] Z. Qin, T. Yu, Y. Yang, I. Khalil, X. Xiao, and K. Ren. Generating
synthetic decentralized social graphs with local differential privacy. In
CCS, pages 425–438. ACM, 2017.

[35] X. Ren, C.-M. Yu, W. Yu, S. Yang, X. Yang, J. A. McCann, and S. Y.
Philip. Lopub: High-dimensional crowdsourced data publication with
local differential privacy. IEEE Transactions on Information Forensics
and Security, 2018.

[36] Y. Sei and A. Ohsuga. Differential private data collection and analysis
based on randomized multiple dummies for untrusted mobile crowd-
sensing. IEEE Transactions on Information Forensics and Security,
12(4):926–939, 2017.

[37] A. Smith, A. Thakurta, and J. Upadhyay. Is interaction necessary for
distributed private learning? In S&P, pages 58–77. IEEE, 2017.

[38] S. Wang, L. Huang, P. Wang, H. Deng, H. Xu, and W. Yang. Private
weighted histogram aggregation in crowdsourcing. In WASA, pages 250–
261. Springer, 2016.

[39] T. Wang, J. Blocki, N. Li, and S. Jha. Locally differentially private
protocols for frequency estimation. In USENIX Security Symposium,
pages 729–745, 2017.

[40] T. Wang, N. Li, and S. Jha. Locally differentially private frequent itemset
mining. In S&P, pages 127–143. IEEE, 2018.

[41] Y. Wang, X. Wu, and D. Hu. Using randomized response for differential
privacy preserving data collection. In EDBT/ICDT Workshops, 2016.

[42] S. L. Warner. Randomized response: A survey technique for eliminating
evasive answer bias. Journal of the American Statistical Association,
60(309):63–69, 1965.

[43] X. Yang, T. Wang, X. Ren, and W. Yu. Copula-based multi-dimensional
crowdsourced data synthesis and release with local privacy. In GLOBE-
COM, pages 1–6. IEEE, 2017.

APPENDIX

A. Proof of Theorem 4.1
PROOF. (Theorem 4.1) For user ui, let 〈kj , v∗〉 be the

output of Algorithm 3. Let K∗ be the key set of canonical form
outputted by LPP, whose elements are all 0s except the j-th
one is kj . In the following, we focus on the case when kj = 1;
the case when kj = 0 can be analyzed in a similar manner.
The probability of observing K∗ given key set of its original
canonical form K is denoted as Pr(K∗|K). For LDP condition
to hold, the ratio of two such conditional probabilities with
distinct key sets K1 and K2, needs to be bounded by exp(ε1),
where the j-th keys are denoted as k1 and k2, respectively.

Pr(K∗|K1)

Pr(K∗|K2)
=

1/d · Pr(kj |K1)

1/d · Pr(kj |K2)

≤ 1/d · Pr(kj = 1|k1 = 1)

1/d · Pr(kj = 1|k2 = 0)

= (
eε1

1 + eε1
)

/
(

1

1 + eε1
)

= eε1

Thus the perturbation on keys in LPP satisfies ε1-LDP.
For value perturbation, we consider two kinds of possible

outputs: empty and non-empty KV pair. As for non-empty one,
let V ∗ be the value set of canonical form outputted by LPP,
whose elements are 0s except the j-th one is v∗. Similarly,

in the following, we focus on the case when v∗ = 1. With
two distinct value sets V1 and V2, where the j-th values are
denoted as v1 and v2 respectively, the following ratio needs
to be bounded by exp(ε2).

Pr(V ∗|V1)

Pr(V ∗|V2)
=

1/d · Pr(v∗|V1)

1/d · Pr(v∗|V2)

=
1+v1

2 · eε2

1+eε2 + 1−v1
2 · 1

1+eε2

1+v2
2 · eε2

1+eε2 + 1−v2
2 · 1

1+eε2

≤ maxv1
{v1(eε2 − 1) + eε2 + 1}

minv2{v2(eε2 − 1) + eε2 + 1}
= eε2

As for the output of an empty KV pair, it is quite straightfor-
ward as follows:

Pr(V ∗|V1)

Pr(V ∗|V2)
=

1/d · Pr(v∗ = 0|V1)

1/d · Pr(v∗ = 0|V2)

≤ 1/d · Pr(v∗ = 0|v1 = 0)

1/d · Pr(v∗ = 0|v2 �= 0)

= (
eε2

1 + eε2
)

/
(

1

1 + eε2
)

= eε2

Thus the perturbation on values in LPP satisfies ε2-LDP.
According to the sequential composition (Theorem 3.1), we

conclude that LPP satisfies ε-LDP, where ε = ε1 + ε2.

