
Differentially Private Model Publishing for Deep Learning

Lei Yu, Ling Liu, Calton Pu, Mehmet Emre Gursoy, Stacey Truex
School of Computer Science, College of Computing, Georgia Institute of Technology

Email: leiyu@gatech.edu, {ling.liu,calton.pu}@cc.gatech.edu, {memregursoy,staceytruex}@gatech.edu

Abstract—Deep learning techniques based on neural net-
works have shown significant success in a wide range of AI
tasks. Large-scale training datasets are one of the critical
factors for their success. However, when the training datasets
are crowdsourced from individuals and contain sensitive infor-
mation, the model parameters may encode private information
and bear the risks of privacy leakage. The recent growing
trend of the sharing and publishing of pre-trained models
further aggravates such privacy risks. To tackle this problem,
we propose a differentially private approach for training neural
networks. Our approach includes several new techniques for
optimizing both privacy loss and model accuracy. We employ
a generalization of differential privacy called concentrated
differential privacy(CDP), with both a formal and refined pri-
vacy loss analysis on two different data batching methods. We
implement a dynamic privacy budget allocator over the course
of training to improve model accuracy. Extensive experiments
demonstrate that our approach effectively improves privacy
loss accounting, training efficiency and model quality under a
given privacy budget.

Keywords-differential privacy; stochastic gradient descent;
deep learning; model publishing; privacy budget allocation

I. INTRODUCTION

In recent years, deep learning techniques based on artifi-
cial neural networks have dramatically advanced the state
of the art in a wide range of AI tasks such as speech
recognition, image classification, natural language process-
ing and game playing. Its success relies on three sources
of advancement: high-performance computing, large-scale
datasets, and the increasing number of open source deep
learning frameworks, such as TensorFlow, Caffe, and Torch.
Privacy Concerns in Deep Learning. However, recent
studies on membership attacks and model inversion attacks
have exposed potential privacy risks from a number of
dimensions. First, large-scale datasets are collected from
individuals via crowdsourcing platforms, containing private
information such as location, images, medical, and financial
data of the users. The users usually do not have any control
over how their data is being used or shared once collected.
Second, deep neural networks have a large number of
hidden layers, leading to a large effective capacity that could
be sufficient for encoding the details of some individual’s
data into model parameters or even memorizing the entire
dataset [44]. It has been shown that individual information
can be effectively extracted from neural networks [21], [36].
Therefore, there are severe privacy concerns accompanied

with the broad deployment of deep learning applications and
deep learning as a service .

On the other hand, the publishing and sharing of trained
deep learning models has been gaining growing interest.
Google’s cloud machine learning services provide several
pre-trained models usable out-of-the-box through a set of
APIs. The model owners can also publish their trained mod-
els to the cloud and allow other users to perform predictions
through APIs. In mobile applications, entire models are
stored on-device to enable power-efficient and low-latency
inference. Transfer learning [42], a key technique of deep
learning, can leverage and adapt the already existing models
to new classes of data, saving the effort of training the entire
neural network from scratch. People who only have small
datasets can use the model trained on a large dataset as a
fixed feature extractor in their neural networks or adapt the
model to their own domain. Transfer learning is believed to
be the next driver of machine learning success in industry
and will significantly stimulate the sharing of pre-trained
models. A large number of pre-trained models have been
publicly available in model zoo repositories [7]. In these
cases, the model parameters are entirely exposed, making it
easier for adversaries to launch inference attacks, such as
membership attacks [36] or model inversion attacks [21],
to infer sensitive data records of individuals in the training
datasets. Even by providing only the query APIs to access
remote trained models, the model parameters may still be
extracted from prediction queries and in turn used to infer
the sensitive training data [40]. Therefore, it is imperative
to develop principled privacy-preserving deep learning tech-
niques to protect private training data against adversaries
with full knowledge of model parameters.
Deep learning with Differential Privacy. Although
privacy-preserving machine learning has attracted much at-
tention over the last decade, privacy preserving deep learning
was first proposed in 2015 [35]. The proposed approach ar-
gues for privacy-preserving model training in a collaborative
federated learning system and involves multiple participants
jointly training a model by sharing sanitized parameters
while keeping their training data private and local. The
first proposal for deep learning with differential privacy
was presented in 2016 [8]. Differential privacy (DP), a
defacto standard for privacy that offers provable privacy
guarantees, has been applied for privacy-preserving machine
learning [9], [11], [12], [34], [45]. DP characterizes the

difference in output between two input datasets differing by
at most one element. This characterization is challenging
with deep learning because the internal representations of
deep neural networks are notoriously difficult to understand.
Prior works [8], [30], [39] suggest using the norm gradient
clipping in the stochastic gradient descent (SGD) algorithm
to bound the influence of any single example on the gra-
dients and then applying differentially private mechanisms
to perturb the gradients accordingly. By ensuring that each
gradient descent step is differentially private, the final output
model satisfies a certain level of differential privacy given
the composition property. It is known that the SGD training
process of a deep neural network tends to involve a large
number of iterations. Given a target differential privacy
guarantee, the differentially private training algorithm needs
a tight estimation on the privacy loss for the composition
of DP. This is necessary for the algorithm to effectively
track cumulative privacy loss during the training process
and, if necessary, terminate before the loss exceeds the
privacy budget. Unfortunately, Abadi and his co-authors [8]
have shown the existing strong composition theorem [19]
for differential privacy does not yield a tight analysis. To
address this problem, the moments accountant method is
proposed [8], which tracks the log moments of the privacy
loss variable and provides a much tighter estimate of the
privacy loss for the composition of Gaussian mechanisms
under random sampling.

In this paper, however, we examine several issues and
possible improvement on using the differentially private
SGD (DP-SGD) algorithm and privacy accounting method
proposed in [8]. The first problem is related to the underes-
timation of privacy loss caused by data batching methods.
For computational efficiency, the SGD algorithm usually
takes small batches from the training dataset to iteratively
compute gradients and update model parameters. The DP-
SGD approach in [8] exploits the privacy amplification of
random sampling to produce a tighter estimation of privacy
loss. This is based on the assumption that the data batches
for mini-batch SGD input are generated through random
sampling with replacement on the training dataset. In prac-
tice, for better efficiency, data batching is implemented via
random reshuffling, which randomly shuffles the training
dataset and then partitions them into batches of the similar
size [5], [24]. Therefore, it has been implemented as standard
APIs in deep learnig frameworks like Tensorflow. Several
existing DP-SGD implementations [1], [6], [20], [46] use
moments accountant(MA) method to track privacy loss,
while implementing random shuffling or using its APIs
to generate data batches which may violate the random
sampling assumption required by MA. Table I demonstrates
some examples. Our anlysis shows that random reshuffling
incurs higher privacy loss than random sampling. Thus,
simply treating reshuffling and random sampling as the same
will lead to the underestimation of privacy loss and the

privacy accounting should depend on how data is accessed.
The second issue is the need for a tight analysis on cumu-

lative privacy loss for DP-SGD which tends to have a large
number of iterations. To address this problem, we propose
the use of concentrated differential privacy (CDP), a general-
ization of differential privacy recently introduced by Dwork
and Rothblum [18]. CDP focuses on cumulative privacy loss
for a large number of computations and provides a sharper
analysis tool. Based on CDP, we analyze the privacy loss
under random reshuffling and random sampling respectively.
In particular, our CDP based privacy accounting method for
random reshuffling provides a tighter estimation of privacy
loss even than the result produced by the strong composition
theorem with having privacy amplification effect of random
sampling. In addition, we also consider using CDP for the
privacy loss analysis under random sampling based data
batching. We find that CDP is not able to capture the privacy
amplification effect of random sampling. Accordingly, we
propose to consider a relaxation of CDP and convert it to
traditional (ε, δ)-differential privacy. Our method provides a
slightly loose but easy method to approximately estimate the
privacy loss for random sampling.

The third novelty of our approach to differentially private
deep learning is our development of a dynamic privacy
budget allocation to improve model accuracy under dif-
ferentially private training. The perturbed gradients during
the training process inevitably degrade model accuracy. We
aim to provide differential privacy guarantees on the final
output models. This means that we are much less concerned
with the privacy loss of a single iteration. This provides
opportunities to optimize the model accuracy via adjusting
privacy budget allocation for every training iteration. In this
paper, we propose a set of dynamic privacy budget allocation
methods and our extensive experiments demonstrate benefits
for improving the model accuracy. It is worth noting that the
techniques proposed in this paper not only apply to neural
networks but also may apply to any other iterative learning
algorithms.

The remainder of the paper is as follows. We review
necessary background in Section II, provide an overview
of our approach in Section III, and then give a detailed
technical development in Section IV. Section V describes
experimental results. Some discussions are given in Section
VI. Section VII presents related work and Section VIII
concludes the paper. Deferred proofs are provided in the
Appendix.

II. BACKGROUND
A. Deep Learning

Deep learning uses neural networks that are defined as
a hierarchical composition of parameterized functions to
model the input data. For supervised learning, the training
data are labeled with correct classes, and a multi-layer neural
network is deployed to model the correlation between data

Table I: We examine a few data batching APIs in Tensorflow. Given a list of numbers from 0 to 9 as input data, we use them
to generate batches of size 1 and show the output batch for each training iteration in an epoch. In addition, we run the true
random sampling that samples each number with probability batch size/data size=0.1 to generate batches in 10 iterations.

Batching methods Input data example of output batches in one epoch
tf.train.shuffle batch [0,1,2,. . . ,9] [2],[6],[8],[0],[5],[7],[1],[4],[9],[3]
tf.estimator.inputs.numpy input fn [0,1,2,. . . ,9] [5],[1],[4],[9],[8],[3],[7],[2],[6],[0]
random sampling with prob=0.1 [0,1,2,. . . ,9] [2], [1 7], [] ,[4 5], [], [7] ,[5 7 9] ,[], [1], [1 3 7]

instances and their labels. A typical neural network consists
of n(n > 1) layers of neurons. Each layer of neurons is
parameterized by a weight matrix W (l) and a bias vector
b(l). Layers apply an affine transformation to the previous
layer’s output and then computes an activation function σ
over that. Typical examples of the activation function σ are
sigmoid, rectified linear unit(ReLU) and tanh.

The training of a neural network aims to learn the pa-
rameters θ = {W (l), b(l)|1 ≤ l ≤ n} that minimize a loss
function L defined to represent the penalty for misclassifying
the training data. It is usually a non-convex optimization
problem and solved by gradient descent. The gradient de-
scent method iteratively computes the gradient of the loss
function L and updates the parameters every step until the
loss converges to a local optimum. In practice, the training
of neural networks uses the mini-batch stochastic gradient
descent (SGD) algorithm, which is much more efficient for
large datasets. At each step a batch B of examples is sampled
from the training dataset and the gradient of the average
loss is computed, i.e., 1

|B|
∑

x∈B ∇θL(θ, x) as ∇θL(θ). The
SGD algorithm then applies the following update rule for
parameters θ

θ = θ − α∇θL(θ) (1)

where α is the learning rate. The running time of the mini-
batch SGD algorithm is usually expressed as the number
of epochs. Each epoch consists of all of the batches of
the training dataset, i.e., in an epoch every example has
been seen once. Within an epoch, the pass of one batch of
examples for updating the model parameters is called one
iteration.

B. Differential Privacy

Differential privacy is a rigorous mathematical framework
that formally defines the privacy properties of data analysis
algorithms. Informally it requires that any changes to a
single data point in the training dataset can only cause
statistically insignificant changes to the algorithm’s output.

Definition 1 (Differential Privacy [15]). A randomized
mechanism A provides (ε, δ)-differential privacy if for any
two neighboring database D and D′ that differ in only a
single entry, ∀S ⊆ Range(A),

Pr(A(D) ∈ S) ≤ eε Pr(A)(D′) ∈ S) + δ (2)

If δ = 0, A is said to be ε-differential privacy. In the rest
of this paper, we write (ε, δ)-DP for short.

The standard approach to achieving differential privacy
is the sensitivity method [15], [16] that adds to the output
some noise that is proportional to the sensitivity of the query
function. The sensitivity measures the maximum change of
the output due to the change of a single database entry.

Definition 2 (Sensitivity [16]). The sensitivity of a query
function q : D → R

d is

Δ = max
D,D′

||q(D)− q(D′)|| (3)

where D, D′ ∈ D are any two neighboring datasets that
differ at most one element, || · || denotes L1 or L2 norm.

In this paper, we choose the Gaussian mechanism that
uses L2 norm sensitivity. It adds zero-mean Gaussian noise
with variance Δ2σ2 in each coordinate of the output q(D),
as

q(D) +N (0,Δ2σ2I) (4)

It satisfies (ε,δ)-DP if σ2 > 2 log(1.25δ)/ε2 and ε ∈
(0, 1) [17].

C. Concentrated Differential Privacy

Concentrated differential privacy (CDP) is a generaliza-
tion of differential privacy recently introduced by Dwork
and Rothblum [18]. It aims to make privacy-preserving
algorithms more practical for large numbers of computations
than traditional DP while still providing strong privacy guar-
antees. It allows the computation to have much less concern
about single-query loss but high probability bounds for the
cumulative loss, and provides sharper and more accurate
analysis on the cumulative loss for multiple computations
compared to the popular (ε, δ)-DP.

CDP considers privacy loss on an outcome o as a random
variable when the randomized mechanism A operates on
two adjacent database D and D′:

L
(o)
(A(D)||A(D′))

Δ
= log

Pr(A(D) = o)

Pr(A(D′) = o)
(5)

The (ε, δ)-DP guarantee ensures that the privacy loss vari-
able is bounded by ε but exceeds that with probability no
more than δ. As a relaxation to that, (μ, τ)-concentrated
differential privacy, (μ, τ)-CDP for short [18], ensures that
the mean (i.e., expectation) of the privacy loss is no more
than μ and the probability of the loss exceeding its mean
by an amount of t · τ is bounded by e−t2/2. An al-
ternative formulation of CDP to Dwork and Rothblum’s
(μ, τ)-CDP is proposed by Bun and Steinke [10], called

“zero-concentrated differential privacy” (zCDP for short).
Instead of mean concentrated as (μ, τ)-CDP, zCDP makes
privacy loss concentrated around zero (hence the name), still
following sub-Gaussian such that larger deviations from zero
become increasingly unlikely.

Definition 3 (Zero-Concentrated Differential Privacy
(zCDP) [10]). A randomized mechanism A is ρ-zero con-
centrated differentially private (i.e., ρ-zCDP) if for any two
neighboring databases D and D′ that differ in only a single
entry and all α ∈ (1,∞),

Dα(A(D)||A(D′)) Δ
=

1

α− 1
log

(
E

[
e(α−1)L(o)

]) ≤ ρα

(6)
Where Dα(A(D)||A(D′)) called α-Rényi divergence be-
tween the distributions of A(D) and A(D′).

The (ε, δ)-DP bounds the privacy loss by ensuring
Pr(L(o) > ε) ≤ δ. In contrast, zCDP entails a bound on the
moment generating function of privacy loss L(o), indicated
by an equivalent form of (6)

E

[
e(α−1)L(o)

]
≤ e(α−1)αρ (7)

This implies that for zCDP, privacy loss L(o) is assumed to
be a sub-Gaussian random variable such that it has a strong
tail decay property, namely, Pr(L(o) > t+ρ) ≤ e−t2/(4ρ) for
all t > 0 [10]. The following propositions are restatements
of some zCDP results given in [10] that will be used in our
paper.

Proposition 1. If A provides ρ-zCDP, then A provides (ρ+
2
√
ρ log(1/δ), δ)-DP for any δ > 0.

Proposition 2. The Gaussian mechanism with noise
N (0,Δ2σ2I) satisfies (1

2σ2)-zCDP.

We use zCDP instead of original (μ, τ)-CDP because
zCDP is comparable to (ε, δ)-DP, as indicated by Proposition
1 and is immune to post-processing while (μ, τ)-CDP is not
closed under post-processing [10].

D. Composition

Differential privacy offers elegant composition properties
that enable more complex algorithms and data analysis
task via the composition of multiple differentially private
building blocks. The composition should have privacy guar-
antees degraded gracefully with multiple outputs that may
be subjected to the joint analysis from building blocks.

For a sequential composition of k mechanisms
A1, . . . ,Ak satisfying (εi, δi)-DP for i=1,. . ., k respectively,
the basic composition result [17] shows that the privacy
composes linearly, i.e., the sequential composition satisfies
(
∑k

i εi,
∑k

i δi)-DP. When εi = ε and δi = δ, the strong
composition bound from [19] states that the composition
satisfies (ε

√
2klog(1/δ′) + kε(eε − 1), kδ + δ′)-DP. For

zCDP, it has a simple linear composition property [10]:

Theorem 1. Two randomized mechanisms A1 and A2

satisfy ρ1-zCDP and ρ2-zCDP respectively, their sequential
composition A = (A1,A2) satisfies (ρ1 + ρ2)-zCDP.

Compared with (ε, δ)-DP, CDP provides a tighter bound
on the cumulative privacy loss under composition, which
makes it more suitable for algorithms running a large
number of iterations. In other words, while providing the
same privacy guarantee, CDP allows lower noise scale
and thus better accuracy. Consider k iterative compo-
sition of a Gaussian mechanism with noise N (0, σ2I).
To guarantee the final (ε, δ)-DP, in terms of (εi, δi)-
DP for every iteration, the permitted loss εi of each it-
eration is εi = ε/(2

√
2k log(1/(δ − kδi))), which will

be very low when k is large. The noise scale is
σ =

√
k
ε (4

√
log(1.25/δi) log(1/(δ − kδi))). Suppose δi =

δ/(k + 1), we then have σ >
√
k
ε (4 log((k + 1)/δ)). In

contrast, with using ρi-zCDP for every iteration, because
ρ ≈ ε2/(4 log(1/δ)) zCDP satisfies (ε, δ)-DP [10] and
ρi = 1

kρ. It is easy to show that the noise scale σ =√
k
ε

√
2log(1/δ) which is multiple times smaller than the

noise scale derived under (ε, δ)-DP. On the other hand,
a single parameter ρ of zCDP and its linear composition
naturally fit the concept of a privacy budget. Thus, zCDP is
an appropriate choice for privacy accounting.

III. OVERVIEW

Because it is difficult to characterize the maximum
difference of the model parameters over any two neigh-
boring datasets for neural networks, differentially private
deep learning [8], [30], [39] relies on differentially pri-
vate stochastic gradient descent (DP-SGD) to control the
influence of training data on the model. This approach
explicitly bounds per-example gradients ∇θL(θ, x) in every
iteration by clipping the L2 norm of gradient vectors. Given
a clipping threshold C, this is done by replacing the gradient
vector g with g/max(1, ||g||2

C) which scales g down to
norm C if ||g||2 > C. A Gaussian mechanism with L2

norm sensitivity of C is then applied to perturb the gradients
before the gradient descent step in Eq. (1) updates the model
parameters. Because each SGD step is differentially private,
by the composition property of differential privacy, the final
model parameters are also differentially private. The problem
with DP-SGD is that the training of a deep neural network
(DNN) tends to have a large number of iterations, which
causes large cumulative privacy loss at the end. Therefore, a
tight estimation of privacy loss under composition is critical
for allowing lower noise scale or more training iterations
(for desired accuracy) when we have a fixed privacy budget.

To analyze the cumulative privacy loss of DP-SGD, we
employ concentrated differential privacy(CDP) which was
developed to accommodate a larger number of computations
and provides sharper and tighter analysis of privacy loss
than the strong composition theorem of (ε, δ)-DP. One

way to track the privacy loss of DP-SGD is the Moments
Accountant (MA) method proposed by Abadi et al. [8].
It assumes that the data batches for mini-batch SGD are
generated by randomly sampling examples from the training
dataset with replacement, MA takes advantage of the privacy
amplification effect of random sampling to achieve a much
tighter estimate on privacy loss than the strong composition
theorem. It has been shown in [29] that running an (ε, δ)
differentially private mechanism over a set of examples
each of which is independently sampled with probability q
(0 < q < 1) achieves (log(1+ q(eε − 1)), qδ)-DP. However,
in practice, random batches are generated by randomly
shuffling examples and then partitioning them into batches
for computation efficiency, which is distinct from random
sampling with replacement. By analyzing the privacy loss
under these two data batching methods, random sampling
with replacement and random reshuffling respectively, we
show that 1) random sampling with replacement and random
reshuffling result in different privacy loss; and 2) privacy
accounting using the MA method underestimates the actual
privacy loss of their neural network training, because it
simply regards random reshuffling as random sampling
with replacement. To address these problems, we develop
a privacy accounting method for random reshuffling, and
our algorithm makes proper choices depending on which
method is used for data batching. For privacy accounting
under random sampling based batching, we show that CDP
is unable to capture the privacy amplification effect of
random sampling. To address that, we propose a relaxation
of zCDP and convert it to (ε, δ)-DP. Compared with MA, our
approach provide an explicit expression to approximately
estimate the privacy loss. It is easy to compute and can be
useful when the users need to decide proper training time,
noise scale and sampling ratio during the planning phase.

In our approach, dynamic privacy budget allocation is
applied to DP-SGD to improve the model accuracy. In model
publishing the privacy loss of each learning step is not our
primary concern. This allows us to allocate different privacy
budgets to different training epochs as long as we maintain
the same overall privacy guarantee. Our dynamic budget
allocation approach is in contrast to the previous work [8],
which employs a uniform privacy budget allocation, and uses
the same noise scale in each step of the whole training
process. Our dynamic privacy budget allocation approach
leverages several different ways to adjust the noise scale. Our
experimental results demonstrate that this approach achieves
better accuracy while retaining the same privacy guarantee.

Algorithm 1 presents our DP-SGD algorithm. In each
iteration, a batch of examples is sampled from the training
dataset and the algorithm computes the gradient of the loss
on the examples in the batch and uses the average in the
gradient descent step. The gradient clipping bounds per-
example gradients by l2 norm clipping with a threshold C.
The Gaussian mechanism adds random noise N (0, σ2

tC
2
I)

Algorithm 1: Differentially Private SGD Algorithm
Input: Training examples {x1, . . . , xN}, learning rate ηt,

group size L, gradient norm bound C, total privacy
budget ρtotal

1 Initialize w0 ;
2 Initialize cumulative privacy loss cprivt = 0;
3 for t = 1 : T do
4 Dynamic privacy budget allocation:
5 σt ← AdpBudgetAlloc(ρtotal, t, T, schedule);
6 update cprivt according to data batching method, t and

σt;
7 If cprivt > ρtotal, break ;
8 data batching:
9 Take a batch of data samples Bt from the training

dataset;
10 B = |Bt|;
11 Compute gradient:
12 For each i ∈ Bt, gt(xi) ← �wtL(wt, xi);
13 Clip gradient:
14 ĝt(xi) ← gt(xi)/max

(
1, ||gt(xi)||2

C

)
;

15 Add noise:
16 g̃t ← 1

B

(∑
i ĝt(xi) +N (0, σ2

tC
2
I)
)
;

17 Descent:
18 wt+1 ← wt − ηtg̃t ;
19 Output wT ;

to
∑

i ĝt(xi) to perturb the gradients in every iteration. We
have a total privacy budget ρtotal and cumulative privacy
cost cprivt . The way to update cprivt depends on which
batching method is used. If the privacy cost exceeds the
total budget, then the training is terminated. In the pseudo
code, the function AdpBudgetAlloc(ρtotal, t, T, schedule)
is used to obtain the noise scale σt for the current training
step t, according to schedule that decides how the noise
scale is adjusted during the training time.

IV. DETAILS OF OUR APPROACH

In this section, we present the details of our approach
for differentially private deep learning. We first propose
our dynamic privacy budget allocation techniques and then
develop privacy accounting methods based on zCDP for
different data batching methods.

A. Dynamic Privacy Budget Allocation

In Algorithm 1, the privacy budget allocated to an epoch
decides the noise scale of Gaussian mechanism used by each
iteration within that epoch. For a given privacy budget ρtotal,
the final model accuracy depends on how the privacy budget
is distributed over the training epochs. Our approach aims
to optimize the budget allocation over the training process
to obtain a differentially private DNN model with better
accuracy.

Concretely, our dynamic privacy budget allocation fol-
lows the idea that, as the model accuracy converges, it is
expected to have less noise on the gradients, which allows

the learning process to get closer to the local optimal spot
and achieve better accuracy. A similar strategy has been
applied to the learning rate of DNNs in common practice.
It is often recommended to reduce the learning rate as the
training progresses, instead of using a constant learning rate
throughout all epochs, to achieve better accuracy [3], [13].
Therefore, we propose a set of methods for privacy budget
allocation, which effectively improve the model accuracy by
dynamically reducing the noise scale over the training time
(as demonstrated by our experiments).

1) Adaptive schedule based on public validation dataset:
One approach for adjusting the noise scale is to monitor the
validation error during training and reduce the noise scale
whenever the validation error stops improving. We propose
an adaptive privacy budget allocation that dynamically re-
duces the noise scale according to the validation accuracy.
Every time when the validation accuracy improves by less
than a threshold δ, the noise scale is reduced by a factor
of k until the total privacy budget runs out. However, when
the validation dataset is sampled from the private training
dataset, the schedule has some dependency on the private
dataset, which adds to the privacy cost. In this case, if we
can leverage a small publicly available dataset from the same
distribution and use it as our validation dataset, then it will
not incur any additional privacy loss.

In our approach, with a public validation dataset, the val-
idation accuracy is checked periodically during the training
process to determine if the noise scale needs to be reduced
for subsequent epochs. The epochs over which the validation
is performed are referred to as validation epochs. Let σe be
the noise scale for the DP-SGD training in the validation
epoch e, and Se be the corresponding validation accuracy .
The noise scale for the subsequent epochs is adjusted based
on the accuracy difference between current epoch e and the
previous validation epoch e− 1. Initially, S0 = 0,

σ′
e =

{
kσe, if Se − Se−1 ≤ δ (8)
σe (9)

The updated noise scale σ′
e is then applied to the training

until the next validation epoch e + 1. The above equations
amount to say that if the improvement on the validation
accuracy Se − Se−1 is less than the threshold δ, it triggers
the decay of noise scale σe = kσe where k (0 < k < 1)
is decay rate, a hyperparameter for the schedule. We note
that the validation accuracy may not increase monotonically
as the training progresses, and its fluctuations may cause
unnecessary reduction of noise scale and thus waste on
the privacy budget. This motivates us to use the moving
average of validation accuracy to improve the effectiveness
of validation-based noise scale adjustment: at validation
epoch e, we define an averaged validation accuracy S̄e over
the previous m validation epochs from e, including itself, as

follows:
S̄e =

1

m

e∑
i=e−m+1

Si (10)

The schedule checks the averaged validation accuracy every
period (period ≥ m) number of validation epochs and
compares the current result with that of the last checking
time to decide if the noise scale needs to be reduced
according to Eq. (8).

2) Pre-defined schedules: When the public validation
dataset is not available, we propose to use an alternative
approach that pre-defines how the noise scale decreases over
time without accessing any datasets or checking the model
accuracy. Concretely, in our approach, the noise scale is
reduced over time according to some decay functions. The
decay functions update the noise scale by epoch, while the
noise scale keeps the same for every iteration within an
epoch. By leveraging the Gaussian mechanism that adds
noise from N (0, σ2

tC
2
I), we provide four instances of decay

functions, all of which take the epoch number t as an
argument.
a) Time-Based Decay: It is defined with the mathematical
form

σt = σ0/(1 + kt)

where σ0 is the initial noise parameter for σ, t is the epoch
number and k (k > 0) is decay rate. when k < 1, it is
known as “search-then-converge” [14], which decreases the
noise scale linearly during the SGD search phase when t is
less than the “search time” 1/k, and decreases the noise by
1/t when t is greater than 1/k.
b) Exponential Decay: It has the mathematical form

σt = σ0e
−kt

where k (k > 0) is decay rate.
c) Step Decay: Step decay reduces the learning rate by some
factor every few epochs. The mathematical form is

σt = σ0 ∗ k�t/period�
where k (1 > k > 0) is the decay factor and period decides
how often to reduce noise in terms of the number of epochs.
d) Polynomial Decay: It has the mathematical form

σt = (σ0 − σend) ∗ (1− t/period)k + σend

where k(k > 0) is the decay power and t < period. A
polynomial decay function is applied to the initial σ0 within
the given number of epochs defined by period to reach σend

(σend < σ0). When k = 1, this is a linear decay function.
The schedules for noise decay are not limited to the above

four instances. In this paper we choose to use these four
because they are simple, representative, and also used by
learning rate decay in the performance tuning of DNNs.
Users can apply them in various ways. For example, a user
can use them in the middle of training phase, but keep
constant noise scale before and after. Note that in the time-

based decay and exponential decay, t can be replaced by
�t/period as done in the step decay such that the decaying
is applied every period number of epochs. The polynomial
decay requires a specific end noise scale after period epochs,
and we make the noise scale constant after the training time
exceed period epochs.

3) Privacy Preserving Parameter Selection: The pro-
posed schedules require a set of pre-defined hyperparam-
eters, such as decay rate and period. Their values decide
the training time and affect the final model accuracy. It is
expected to find the optimal hyperparameters for the sched-
ules to produce the most accurate model. A straightforward
approach is to test a list of k candidates by training k
neural networks respectively and trivially choose the one that
achieves the highest accuracy, though this adds the privacy
cost up to kρtotal. A better approach is to apply differentially
private parameter tuning, such as the mechanism proposed
by Gupta et al. [12]. The idea is to partition the dataset to
k+1 equal portions, train k models with using k schedules
on k different data portions respectively, and evaluate the
number of incorrect predictions for each model, denoted
by zi (1 ≤ i ≤ k), on the remaining data portion. Then,
the Exponential Mechanism [31] is applied, which selects
and outputs a candidate with the probability proportional to
exp(−εzi

2). This parameter tuning procedure satisfies ε-DP,
and accordingly satisfies 1

2ε
2-zCDP [10].

B. Refined Privacy Accountant

The composition property of zCDP allows us to easily
compute cumulative privacy loss for the iterative SGD
training algorithm. Suppose that each iteration satisfies ρ-
zCDP and the training runs T iterations, then the whole
training process satisfies (Tρ)-zCDP. In this section we show
that 1) the composition can be further refined by considering
the property of the mini-batch SGD algorithm, and 2) more
importantly, different batching methods lead to different
privacy loss. In particular, we analyze the privacy loss
composition under two common batching methods: random
sampling with replacement and random reshuffling. With
random reshuffling, the training dataset is randomly shuffled
and then partitioned into batches of similar size and SGD
sequentially processes one batch at a time. It is a random
sampling process without replacement. For random sampling
with replacement, each example in a batch is independently
sampled from the training dataset with replacement. Because
these two data batching methods have different privacy
guarantees, for tracking privacy loss correctly, it is important
for the users to choose the right accounting method based
on the batching method they use.

1) Under random reshuffling: SGD takes disjoint data
batches as input within an epoch with random reshuffling.
We note that the existing results [10], [16], [18] on the com-
position of a sequence of differential private mechanisms
A1, . . . ,Ak assume that each mechanism Ai runs with the

same dataset X as input. It is expected that their composition
has less cumulative privacy loss if each of differentially
private mechanisms runs on disjoint datasets. The formal
composition result in this scenario is detailed in Theorem 2.
All the proofs of lemmas and theorems in this paper can be
found in Appendix.

Theorem 2. Suppose that a mechanism A consists of a
sequence of k adaptive mechanisms, A1, . . . ,Ak, where
each Ai :

∏i−1
j=1 Rj × D → Ri and Ai satisfies ρi-zCDP

(1 ≤ i ≤ k). Let D1,D2, . . . ,Dk be the result of a random-
ized partitioning of the input domain D. The mechanism
A(D) = (A1(D ∩ D1), . . . ,Ak(D ∩ Dk)) satisfies max

i
ρi-

zCDP.

Theorem 2 provides a tighter characterization of privacy
loss for the composition of mechanisms having disjoint input
data. Assuming for all i ∈ (1, . . . , k), ρi = ρ, then in this
case it is trivial to show that the mechanism A satisfies
ρ-zCDP given Theorem 2. Compared with a guarantee of
(kρ)-zCDP using the composition property in Proposition
1, we demonstrate that the total privacy loss of sequential
computations on disjoint datasets is just ρ, equivalent with
one computation step in the sequence. For ε-DP, the similar
result in [32] of the parallel composition theorem says that
when each εi-differentially private mechanism queries a dis-
joint subset of data in parallel and work independently, their
composition provides (maxi εi)-DP instead of the

∑
i εi

derived from a naive composition.
In the differentially private mini-batch SGD algorithm

shown in Algorithm 1, each iteration step t satisfies (1
2σ2

t
)-

zCDP according to Proposition 2. In this paper, we suppose
that each iteration in the same epoch uses the same noise
scale σ and each uses a disjoint data batch. Then, by
Theorem 2, we know that the computation of this epoch
still satisfies (1

2σ2)-zCDP. Because the training dataset is
repeatedly used every epoch, the composition of the epoch
level computations follows normal composition of Proposi-
tion 1. Thus, when the training runs a total of E epochs and
each epoch e satisfies ρe-zCDP, the whole training procedure
satisfies (

∑E
e=1 ρe)-zCDP.

2) Under random sampling with replacement: We have
shown a privacy amplification effect resulting from the
disjoint data access of every iteration within one epoch
under random reshuffling. In contrast, the MA method [8]
exploits the privacy amplification effect of random sampling
with replacement. In this section, we examine how random
sampling with replacement affects the privacy loss in terms
of zCDP. Intuitively, the random sampling with replacement
introduces more uncertainty than the random reshuffling
process which samples data batches without replacement.
However, our analysis shows that CDP cannot characterize
the privacy amplification effect of random sampling. It
is because of the restrictive notion of sub-Gaussianity in

CDP which requires moment constraints on all orders, i.e.,
α ∈ (1,∞) in Eq. (7). To address this problem, we propose
a relaxation of zCDP and convert it to (ε, δ)-DP. This then
allows us to capture the privacy amplification of random
sampling.

Suppose a new mechanism A′ that runs ρ-zCDP mech-
anism A on a random subsample of dataset D where each
example is independently sampled with probability q. With-
out loss of generality, we fix D and consider a neighboring
dataset D

′= D ∪ de. we use Λ(∗) to denote the sampling
process over dataset ∗, let T be any subsample that does
not include de and T ′ = T ∪ de. Because de is randomly
sampled with probability q, A′(D′) is distributed identically
as u0

Δ
= Pr(Λ(D) = T)A(T) with probability (1 − q), and

as u1
Δ
= Pr(Λ(D′) = T ′|de ∈ T ′)A(T ′) with probability q.

Therefore, the following holds:

A′(D) ∼ u0, A′(D′) ∼ qu1 + (1− q)u0 (11)

By Pr
(
Λ(D) = T

)
=Pr

(
Λ(D′) = T ′|de ∈ T ′) due to T ′ =

T ∪de, it is easy to prove that A′ still satisfies ρ-zCDP. The
proof details can be found in the Appendix C.
No privacy amplification for A′ in terms of CDP.
Consider

(α− 1)Dα(A′(D′)||A′(D))

= log

(
Eu0

[(qu1 + (1− q)u0

u0

)α])
> log

(
Eu0

[(
q
u1

u0

)α])
= α log q + (α− 1)Dα(u1||u0) (12)

When α → ∞, we have

Dα(A′(D′)||A′(D)) > αρ+
α

α− 1
log q → αρ+log q (13)

This shows that the sampling does not produce any reduction
with regard to q on ρ and still Dα(A′(D′)||A′(D)) = Θ(αρ).
Therefore, by definition, zCDP is not able to capture the
privacy amplification effect of random sampling.

The reason there is no privacy amplification with random
sampling on zCDP is that concentrated DP requires a sub-
Gaussian distribution for privacy loss, and thus moments
must be bounded by exp(O(α2)) at all orders α ∈ (1,+∞).
This is a fairly strong condition. Alternatively, it requires
that a mechanism A has α-Rényi divergence bounded by
αρ for all α ∈ (1,+∞). To demonstrate that, we assume
a Gaussian mechanism A that A(T) ∼ N(0, σ2) and
A(T ′) ∼ N(1, σ2). Denote N(0, σ2) by p0 and N(1, σ2)
by p1. It is trivial to show that Dα(u1||u0) = Dα(p1||p0)
and Dα(qu1+(1−q)u0||u0) = Dα(qp1+(1−q)p0||p0). We
can then numerically compute Dα(u1||u0) and Dα(qu1 +
(1 − q)u0||u0) with q = 0.01 and σ = 4. Results are
shown in Figure 1. Dα(u1||u0) is linear in α because
Dα(u1||u0) = αρ = α/(2σ2). However, we can see that
Dα(qu1 + (1− q)u0||u0) has a changing point at α = 147.
Before this changing point it is close to zero, because q =
0.01 is very small and the two distributions qu1+(1− q)u0

and u0 are close to each other. At higher orders, the sampling
effect vanishes and the divergence increases at the rate of
Dα(u1||u0). This indicates that the privacy amplification
effect from random sampling does not hold for all orders
α ∈ (1,+∞), and we cannot improve the privacy metric
in terms of zCDP under the random sampling. On the other
hand, Figure 1 suggests that we need to analyze the α-Rényi
divergence within a limited range of α to capture the privacy
amplification effect. We will show that having a bound on
Dα(·||·) within a limited range of α makes it possible to
capture the privacy amplification effect of random sampling.
However, such constraint does not fit into the definition
of CDP since it indicates a sub-exponential privacy loss
variable, a relaxation to sub-Gaussianity in the definition of
CDP. Therefore, in this paper we address it by converting
the α-Rényi divergence under such relaxation to traditional
(ε, δ)-DP.

In the following we show the conversion to (ε, δ)-DP in
a general form for a Gaussian mechanism with bounded α-
Rényi divergence in some limited range of α parameterized
by q and σ, and then consider specific cases with concrete
values for the range of α and bounds on α-Rényi divergence.

Suppose that f : D → R
p with ||f(·)||2 ≤ 1. Consider

a mechanism A′ that runs a Gaussian mechanism adding
noise N (0, σ2

I) over a random subsample J ⊆ D where
each example is independently sampled with probability
q, i.e., A′(D) =

∑
i∈J f(xi) + N (0, σ2

I). Let Dα(·||·)
be the α-Rényi divergence between A′(D) and A′(D′) for
two neighboring datasets D and D

′. Consider P (∗) and
Uα(∗) as some finite functions of q and σ. We assume
Dα(·||·) is bounded by α ·P (q, σ) within a limited range of
1 < α ≤ Uα(q, σ). Then, we have the following theorem:

Theorem 3. Let ρ̂ = P (q, σ) and uα = Uα(q, σ). If the
mechanism A′ has

Dα(A′(D)||A′(D′)) ≤ αρ̂ (14)

for 1 < α ≤ uα, it satisfies⎧⎪⎨⎪⎩
(
ρ̂+ 2

√
ρ̂ log(1/δ), δ

)
−DP, if δ ≥ 1/ exp(ρ̂(uα − 1)2) (15)(

ρ̂uα − log δ

uα − 1
, δ
)
−DP, otherwise (16)

Theorem 3 shows in a general form the connection to (ε,
δ)-DP when we have α-Rényi divergence bounded within a
limited range of α. Proper choice of Uα(q, σ) for the range
of α (for example, let Uα(q, σ) < 147 in Figure 1) with a
corresponding P (q, σ) can capture the privacy amplification
effect of random sampling with replacement, which we will
discuss later.
Composition. Now we consider the composition of a
sequence of Gaussian mechanisms with random sampling.
Suppose k mechanisms, denoted by M=(A′

1,. . . , A′
k) where

each A′
i uses sampling ratio qi and noise scale σi. Because

the constraint of α in Eq. (14) depends on the sampling ratio

Figure 1: α-Rényi divergence under sampling(q=0.01, σ=4)

and noise scale, we examine their composition in two cases:
1.) Each mechanism uses the same q and σ. For 1 < α ≤

uα, by the composition property of α-Rényi divergence [10],
we have Dα(M(D)||M(D′)) ≤ kαP (q, σ). The conversion
to (ε, δ)-DP can be done by letting ρ̂ = kP (q, σ) in (15)
and (16) in Theorem 3.

2.) The sampling ratio and noise scale are differ-
ent for each mechanism. Then, for each Ai, we have
Dα(Ai(D)||Ai(D

′)) ≤ αP (qi, σi) for 1 < α ≤ Uα(qi, σi).
To allow the composition of α-Rényi divergence of mech-
anisms with different qi and σi, we constrain α to the
range 1 < α ≤ mini{Uα(qi, σi)}. It is then clear that
Dα(M(D)||M(D′)) ≤ α(

∑
i P (qi, σi)) holds within this α

range. Letting ρ̂ =
∑

i P (qi, σi) and replacing q and σ by
qj and σj where j = argmini{Uα(qi, σi)|1 ≤ i ≤ k} in Eq.
(15) and (16), we can still obtain the corresponding (ε,δ)-DP.

When random sampling is used for batching, Algorithm
1 follows the above method to estimate privacy loss in
terms of (ε, δ)-DP. In particular, the algorithm specifies a
fixed δ = δ0 and a total privacy budget εtotal, and at
every iteration step t, it updates ρ̂ =

∑t
i=0 P (qi, σi) and

computes the corresponding cumulative privacy loss εt. If
εt > εtotal, the training is terminated and the final model
satisfies (εtotal, δ0)-DP.
The empirical settings of P and Uα. To put Theorem 3
and its composition in use to estimate privacy loss while
capturing the privacy amplification effect of random sam-
pling, proper Uα(q, σ) and P (q, σ) have to be determined.
However, the α-Rényi divergence for Gaussian mechanism
with sampling appears to be analytically intractable. We
noted an asymptotic bound on the log moment was given
in previous work [8] when q ≤ 1

16σ . By definition, α-
Rényi divergence is equal to the log moment multiplied by a
factor of 1

α−1 . Then, under the same condition, Dα(·||·) has
an asymptotic bound of q2

1−qα/σ
2 + O(q3(α − 1)2/σ3) for

1 < α ≤ σ2 log 1
qσ +1. This bound exhibits the privacy am-

plification by having a factor of q2. Therefore, our solution
here is to empirically find an appropriate P (q, σ) around the
asymptotic bound within 1 < α ≤ Uα(q, σ) = σ2 log 1

qσ +1

given q ≤ 1
16σ .

We set P (q, σ) = q2/σ2 which is originally derived
with the log moment bound given in the proof statement
of Theorem 1 of [8]. It was brought to our attention

that this bound misses an asymptotic term. However, by
conducting numerical comparison, we observed that with
using P (q, σ) = q2/σ2, the bound αq2/σ2 for α-Rényi
divergence in (14) empirically holds for a wide of parameter
settings of q and σ. Our numerical validations on this
bound and the details are given in Appendix D. Therefore,
this approach enables a quick estimation of privacy loss
which can be easily used to decide appropriate noise scale,
sampling ratio and the number of training steps during the
planning phase. especially when we choose dynamic privacy
budget allocation. It is worth to note, for privacy accounting
with a provable guarantee in a more general setting and
tighter results, the MA method [8] should be used.
Summary. We have shown that CDP is not able to capture
the privacy amplification effect of random sampling. We
consider bounding α-Rényi divergence over a constrained
range of α instead of (1,∞) and convert to (ε, δ)-DP. Our
empirical solution can be used as an approximate privacy
loss estimation and easy to compute especially when we use
different sampling ratios and noise scales for each iteration
of DP-SGD for dynamic privacy budget allocation.

More importantly, we have provided formal analysis to
show that the compositions of differential privacy under
two batching methods are distinct. As demonstrated by
our experimental results, this causes different privacy loss.
Therefore, we argue that the privacy accounting method has
to be chosen according to which data batching method is
used. In our implementation, we focus on random reshuf-
fling, because it is a common practice [5], [24] followed by
existing deep learning implementations and it is also numer-
ically observed that random reshuffling outperforms random
sampling with replacement in the convergence rate [25].

C. DP Composition Under Dynamic Schedules

For pre-defined schedules, once the hyperparameters are
specified, they follow the decay functions to update the noise
scale without accessing the data and the model, and thus do
not incur any additional privacy cost. Since the noise scale is
updated by epoch, each iteration step within an epoch uses
the same noise scale. Suppose the epoch t uses the noise
scale σt. Each iteration of epoch t is then ρ = 1/(2σ2

t)
zCDP by Proposition 2, and the total privacy cost of epoch
t can be calculated by Theorem 2 or 3 depending on which
batching method is used. Over the course of training, the
cumulative privacy loss is updated at each epoch, and once
the cumulative privacy loss exceeds the fixed privacy budget
ρtotal, the training is terminated. To achieve a target training
time under a given total privacy budget, we can determine
the exact values of hyperparameters for these schedules in
advance before the training time.

For the validation-based schedule, the access to the public
validation dataset does not incur additional privacy cost.
With this schedule, the composition of differential privacy
involves adaptive choices of the privacy parameter ρ at every

epoch, which is corresponding to the noise scale σ of the
Gaussian mechanism. This means that the choice of privacy
parameters itself is a function of the realized outcomes of the
previous rounds. It has been shown by Rogers et al. [33] that
the strong composition theorem for (ε, δ)-DP fails to hold
in this adaptive privacy parameter setting since the theorem
requires the privacy parameters to be pre-defined ahead of
time. To address this problem, they define the privacy loss as
a random variable as done in Eq. (5) for CDP and develop
the composition for (ε, δ)-DP using privacy filters. Privacy
filters provide a way to halt the computation with probability
1−δ before the realized privacy loss exceeds ε. Our approach
relies on zCDP which defines privacy loss as in Eq. (5) by
nature and therefore the composition accumulating privacy
cost with regard to Rényi divergence holds for the adaptive
parameter settings.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed privacy account-
ing methods, and demonstrate the effectiveness of dynamic
privacy budget allocation on different learning tasks. Our im-
plementation is based on the TensorFlow implementation [1]
of DP-SGD in the paper [8].

A. Comparing Privacy Accounting Approaches

In Section IV-B we derive different privacy accounting
methods for two data batching methods: random reshuffling
(RF) and random sampling with replacement (RS). We
refer to them as zCDP(RF) and zCDP(RS) respectively. To
numerically compare them with other privacy accounting
methods including strong composition [19] and the moments
accountant (MA) method [8], we unify them into (ε, δ)-DP.
Following [8], we assume that the batches are generated
with RS for both the strong composition and MA. We use
the implementation of [8] in TensorFlow to compute MA.
For strong composition, we apply the strong composition
theorem in [19] to the composition of (log(1+q(eε−1)), qδ)-
DP mechanisms that are the privacy amplified version of
(ε, δ)-DP mechanisms running with random sampling ratio
q. We compute (ε, δ)-DP for zCDP(RF) with Proposition 1
and for zCDP(RS) with the methods in Section IV-B2.

In our experimental setting, we assume a batch size B
for random reshuffling. For random sampling we assume a
sampling ratio q = B

N given a total of N samples. In the
following, when we vary q, it is equivalent to change the
batch size for random reshuffling. The number of iterations
in one epoch is 1

q . For simplicity, we use the same noise scale
for Gaussian mechanism N (0, C2σ2I) for every iteration
and set q = 0.01 and σ = 6 by default. Given σ = 6, the
Gaussian mechanism satisfies both (ε = 0.808, δ = 1e− 5)-
DP and ρ = 0.0139-zCDP. We track the cumulative privacy
loss by epoch with different privacy accounting methods and
convert the results to ε in terms of (ε, δ)-DP with fixed δ =
1e− 5.

Figure 2 shows the growth of privacy loss metric ε
during the training process. It shows that zCDP(RF) has
lower estimation on privacy loss than that of the strong
composition during the training. The final spent ε at epoch
400 by zCDP(RF) and strong composition are 21.5 and 34.3
respectively. Although random sampling introduces higher
uncertainty and thus less privacy loss than random shuffling,
zCDP(RF) still achieves lower and thus tighter privacy loss
estimation even than the strong composition with random
sampling. This demonstrates the benefit of CDP for com-
position of a large number of computations. The results for
zCDP(RS) and MA are very close to each other because
that they both exploit the moment bounds of privacy loss to
achieve tighter tail bound and take advantage of the privacy
amplification of random sampling. The final spent ε is 2.37
and 1.67 for zCDP(RS) and MA respectively. The reason
for zCDP(RS) to have a slightly higher estimation is that
its conversion to (ε, δ)-DP explicitly uses an upper bound
for the log moment instead of the numerical computation
of log moments. The benefit of zCDP(RS) is that it is
simple to compute with explicit expressions in Theorem 3,
and its composition is easy under dynamic privacy budget
allocation.

Figure 2 shows that zCDP(RF) has higher privacy loss
compared to MA and zCDP(RS), because more uncertainty
is introduced with RS. However, it is worth noting that the
common practice in deep learning is to use RF, including the
implementation of [8]. Thus, zCDP(RF) is the proper choice
for them and also straightforward due to the composition
property of ρ-zCDP which simply adds up on ρ values. The
results show that MA underestimates the real privacy loss
when treating the random reshuffling as random sampling
with replacement.

We further examine how zCDP(RF) and zCDP(RS)
change with the sampling ratio q and the noise scale σ.
Using the default σ = 6, Figure 3a shows the privacy
loss ε at the end of 200 training epochs with varying q
values. For zCDP(RF), the cumulative privacy loss does
not change with q. This is because the composition of ρ-
zCDP iterations within one epoch still satisfies ρ-zCDP by
Theorem 2 and across epochs the linear composition of ρ-
zCDP in Theorem 1 is applied, which makes the final privacy
loss depend exclusively on the number of training epochs.
We have fixed 200 epochs so the final privacy loss does
not change. In contrast, the privacy loss given by zCDP(RS)
increases with the sampling ratio q, which can be seen in
Eq. (15) where ε increases with ρ̂ which is proportional to
q2. Similarly, Figure 3b shows the privacy loss after 200
epochs by varying noise scales with the same q=0.01. We
observe that increasing σ from 5 to 14 significantly reduces ε
for zCDP(RF) but has noticeably less impact on zCDP(RS).
It suggests that under random sampling, a small sampling
ratio contributes much more on privacy than the noise scale
σ. This indicates that we may reduce the noise scale to im-

Figure 2: Privacy parameter ε v.s. epoch

(a) ε v.s. q (b) ε v.s. σ

Figure 3: privacy loss ε v.s. sampling ratio q & noise scale
σ

prove the model accuracy without degrading much privacy.
However, for random reshuffling, the privacy loss does not
depend on the sampling ratio (i.e., the batch size) but is
decided by σ, so it is more critical to achieve a good trade-
off between privacy and model accuracy in this case. Our
privacy budget allocation techniques optimize this trade-off
by dynamically adjusting σ during the training to improve
accuracy while retaining the same privacy guarantee.

B. Evaluating Dynamic Privacy Budget Allocation

In this section we evaluate the effectiveness of dynamic
privacy budget allocation compared to uniform privacy bud-
get allocation adopted by Abadi et al. [8]. Since the Ten-
sorFlow implementation uses random reshuffling to generate
batches, privacy accounting in Section IV-B1 should be used
to avoid the underestimation of privacy loss. We therefore
use ρ as the metric to represent the privacy budget and
loss. Because the techniques for adjusting noise scales are
independent of the batching method, the benefit of dynamic
privacy budget allocation on model accuracy demonstrated
under random reshuffling also applies to random sampling.

1) Datasets and Models: Our experiments use three
datasets and different default neural networks for each
dataset.
MNIST. This is a dataset of handwritten digits consists of
60,000 training examples and 10,000 testing examples [28]
formatted as 28X28 size gray-level images. In our ex-
periment, the neural network model for MNIST follows
the settings in previous work [8] for comparison: a 60-
dimensional PCA projection layer followed by a simple
feed-forward neural network comprising a single hidden
layer of 1000 ReLU units. The output layer is softmax of
10 classes corresponding to the 10 digits. The loss function

computes cross-entropy loss. A batch size 600 is used. The
non-private training of this model can achieve 0.98 accuracy
with 100 epochs.
Cancer Dataset. This dataset [2] consists of 699 patient
examples. Each example has 11 attributes including an id
number, a class label that corresponds to the type of breast
cancer (benign or malignant), and the 9 features describing
breast fine-needle aspirates. After excluding 16 examples
with missing values, we use 560 examples for training and
123 examples for testing. A neural network classifier with
3 hidden layers, containing 10, 20, and 10 ReLU units, is
trained to predict whether a breast tumor is malignant or
benign. Each iteration takes the whole training data set as a
batch and thus each iteration is one epoch. The non-private
training of this model achieves testing and training accuracy
0.96 with 800 epochs.
CIFAR-10. The CIFA-10 dataset consists of 32×32 color
images with three channels (RGB) in 10 classes including
ships, planes, dogs and cats. Each class has 6000 images.
There are 40,000 examples for training, 10,000 for testing
and 10,000 for validation. For experiments on CIFAR,
we use a pre-trained VGG16 neural network model [37].
Following the previous work [8], we assume the non-private
convolutions layers that are trained over a public dataset
(ImageNet [4] for VGG16) and only retrain a hidden layer
with 1000 units and a softmax layer with differential privacy.
We use 200 training epochs and batch size of 200. The
corresponding non-private training achieves 0.64 training
accuracy and 0.58 testing accuracy.

2) Results on MNIST: In differentially private model
training, we keep the batch size at 600, clip the gradient
norm of every layer at 4, and use fixed noise scale σpca = 16
for differentially private PCA. Note that, since the PCA
part has constant privacy cost 1/(2σ2

pca) in terms of ρ-
zCDP, we exclude it from the total privacy budget ρtotal
in our experiment, i.e., ρtotal is only for the DP-SGD
in Algorithm 1. A constant learning rate 0.05 is used by
default. We evaluate the model accuracy during training
under different privacy budget allocation schedules. For the
validation-based schedule, we divide the training dataset
into 55,000 examples for training and 5000 examples for
validation, and perform validation every epoch.

The results in Table II demonstrate the benefit of dynamic
privacy budget allocations and the effect of earlier training
termination on the model accuracy. For comparison, we
consider the uniform privacy budget allocation in [8] with a
constant noise scale σc=8 for every epoch as our baseline.
We choose a fixed total privacy budget ρtotal=0.78125. This
results in 100 training epochs in the baseline case. We test
all dynamic schedules with the hyperparameters given in
the table and present their testing and training accuracy in
numbers rounded to two decimals. The training is terminated
when the privacy budget runs out, and the hyerparameters
are chosen from a set of candidates to demonstrate varied

Table II: Budget Allocation Schedules under fixed budget ρtotal = 0.78125, initial noise scale σ0 = 10 for dynamic schedules

Uniform
[8] (σc =8)

Time
(k=0.05)

Step(k=0.6,
period=10)

Exp
(k=0.01)

Poly(k=3,σend=2,
period=100)

Validation(k=0.7,m=5,
δ=0.01,period=10)

epochs 100 38 31 71 44 64
training accuracy 0.918 0.934 0.928 0.934 0.930 0.930
testing accuracy 0.919 0.931 0.929 0.929 0.932 0.930
non-private SGD 0.978/0.970 0.959/0.957 0.955/0.954 0.971/0.965 0.963/0.959 0.97/0.964
uniform/same #epochs 0.922/0.925 0.921/0.925 0.922/0.925 0.925/0.929 0.924/0.926

training times in epochs which are reported in the table. We
also ran a non-private version of SGD with using the same
training time as these schedules to see the impact of DP-
SGD on accuracy. We can see from Table II that the baseline
with constant σc=8 achieves 0.918 training accuracy and
0.919 testing accuracy. By comparison, all non-uniform pri-
vacy budget allocation schedules improve the testing/training
accuracy by 1%∼1.6% while running fewer epochs. Because
DP-SGD is a randomized procedure and the numbers in the
table vary among trials, we repeat all the experiments 10
times and report in Figure 5 the mean accuracy along with
the min-max bar for every schedule. These results show that
dynamic schedules consistently achieve higher accuracy than
the baseline. Therefore, given a fixed privacy budget, the
dynamic budget allocation can achieve better accuracy than
using the uniform budget allocation.

The accuracy improvement shown with dynamic sched-
ules in the above example comes from two sources: less
training time and non-uniformity of budget allocation (i.e.,
decaying of the noise scale). With uniform allocation under
a fixed privacy budget, reducing the training time increases
the privacy budget allocated to every epoch and thus de-
creases the noise scale used by the Gaussian mechanism.
Therefore, when the model training benefits more from
the reduced perturbation rather than longer training time,
using less training time can improve the model accuracy.
As verification, we apply uniform budget allocation with
the noise scale

√
T/(2ρtotal) to achieve the same training

time T as the corresponding dynamic schedule. The training
accuracy and testing accuracy are presented respectively
in the final row of Table II. All cases outperform the
baseline case with σc = 8 with less than 100 training
epochs, indicating the benefit of trading the training time
for more privacy budget per epoch. however, it is worth
noting that in certain cases, increasing the noise scale to
prolong the training time may help improve the accuracy,
exemplified by the result of the validation-based schedule
on the Cancer dataset. Overall, when compared with the
uniform allocation under the same training time, dynamic
schedules demonstrate higher accuracy, therefore illustrating
the benefit of non-uniformity and dynamic budget allocation.

Figure 4 shows how the noise scale σ changes with the
epochs under different schedules in Table II. The curves
terminate at the end of the training due to the depleted
privacy budget. For the validation-based decay, the duration

Figure 4: The change of noise scale σ during training

of the noise scale keeping unchanged decreases over the
training time. The noise scale keeps 10 for 29 epochs, 7
for 20 epochs and 4.9 for 10 epochs. It is because that, as
the model converges, the increment rate of the validation
accuracy declines and it is more often to find that the
accuracy increment does not exceed the given threshold.

We additionally manipulate different hyperparamters in-
dividually while keeping the rest constant to demonstrate
their effects on training/testing accuracy and training time..
By default all accuracy numbers are the average of five trials.
The effect of decay functions. In our previous experiments,
we evaluate four types of decay functions for the pre-defined
schedules. Here we compare their effects on the model
accuracy with constant training time. Given the total privacy
budget and initial noise scale, we can use the composition
theorem of ρ-zCDP to search for proper values of the
parameter k in these functions for the schedule to achieve a
target training time. We present the values of k for different
decay functions to achieve training times of 60, 70, 80,
90, and 100 epochs respectively in Table III in our arXiv
version [43]. These values are derived via search in step size
1e−4, with the same initial noise scale and other parameters
as stated in Table II.

Figure 6 shows the training and testing accuracy of pre-
defined schedules under different training times along with
the accuracy achieved by uniform budget allocation [8] using
the same privacy budget. We observe that all training in-
stances using pre-defined schedules achieve higher accuracy
compared to the uniform budget allocation given a fixed
training time. However, there is no clear winner among the
different decay functions. Their accuracy increases from 30
to 50 or 60 epochs and then decreases as the training time
increases from 50 or 60 to 100 epochs. At 100 epochs, all
pre-defined schedules have an accuracy closer to that of the
uniform budget allocation schedule running 100 epochs. Due

Figure 5: The accuracy comparison of different schedules

Figure 6: The accuracy under fixed training time

to the similar behaviors of the different decay functions, we
choose to simply set the decay function to the exponential
decay in subsequent experiments unless otherwise stated.
Decay rate. The decay rate k decides how fast the noise
scale decays. Keeping other parameters as the same as those
reported in Table II, we vary k from 0.005 to 0.5 for
exponential decay and from 0.3 to 0.9 for validation-based
decay. Figure 7 and 8 show the accuracy and training time
under different values of k. We make three observations.
First, in both cases, there exists an optimal decay rate to
achieve maximum accuracy. For exponential decay, the best
accuracy occurs at k=0.2; for validation-based decay, it
occurs at k=0.7. Second, for exponential decay, with the
increase of k, the noise scale decreases at a higher rate.
The privacy budget is therefore spent faster and the training
time strictly decreases. For the validation-based decay, it
reduces the noise scale to a k fraction of the original, so
the decay rate is actually 1-k and the training time should
increase with k. Figure 8 shows that the training time overall
increases with k but with some random fluctuations. This
is because that the validation-based decay adjusts the noise
scale according to the validation accuracy which may change
during the training in a non-deterministic way.

Third, the results at the ends of the x-axis in both figures
indicate two interesting facts. At one end, although the
lowest decay rate leads to the longest training time, it
also produces the worst accuracy because the noise scale
decays more slowly in this case and therefore more epochs
will suffer relatively higher noise scales. This degrades the
efficiency of the learning process and lowers the accuracy.
At the other end of the axis, the highest decay rate causes
the training to stop much earlier, resulting in an insufficient
training time which also degrades the accuracy.
Learning rate. Next we fix the decay rate k=0.0138 for

exponential decay. Given a privacy budget 0.78125, the
training lasts 60 epochs. With an initial learning rate 0.1, we
linearly decrease the learning rate to endlr over 10 epochs
and then fix it at endlr thereafter. We vary endlr from
0.01 to 0.07. Figure 9 shows that the accuracy decreases
significantly when the learning rate is too small or too large.
Number of hidden units/layers. Next, we vary the number
of hidden units in the model from 200 to 1600. The results
are shown in Figure 10. Although more hidden units increase
the sensitivity of the gradient, leading to more noise added
at each iteration, we observe that increasing the number of
hidden units does not decease the model accuracy under
the exponential decay schedule. This is consistent with the
observation in [8] using uniform budget allocation. This
shows that the effectiveness of dynamic budget allocation
schedules scales to neural networks of different sizes. We
also vary the number of hidden layers from 1 to 3, each
with 1000 hidden units. The accuracy results can be found
in Table IV in our arXiv version [43] and they are consistent
with [8] under the uniform allocation wherein the authors
claim that, for MNIST, one hidden layer combined with PCA
works better than networks with more layers.
Initial noise scale. In the previous experiments, the initial
noise scale σ0=10 is set as the default. To examine the
effect of σ0, we vary its value from 7 to 20 and measure
the model accuracy under the fixed privacy budget 0.78125
in two cases: 1) for each σ0, we choose the exponential
decay rate to achieve a fixed training time of 60 epochs;
2) the exponential decay rate is fixed to 0.015, leading to
variation in training time. Figure 11a and 11b show that,
overall, increasing the initial noise scale reduces accuracy. In
comparing the two figures, we observe that when the training
time is fixed, the choice of σ0 has less impact on accuracy.
This is because, when the training time is fixed, a larger
σ0 results in a higher decay rate of the noise scale which
benefits accuracy. However, for fixed decay rate, although
higher σ0 leads to more training epochs, there is no accuracy
improvement. This indicates that the model accuracy is more
sensitive to the noise scale than the training time.
Accuracy and privacy in training. Figure 12 and 13
illustrate the change of model accuracy and privacy loss
during training time for schedules with the same parameters
as in Table II except the parameters explicitly noted in the
figures. Figure 13 shows that the uniform privacy budget
allocation in [8] incurs linear growth of privacy loss in terms
of ρ-zCDP while our dynamic budget allocation schedules
have faster growth rate due to the reduction of noise scale
with time. All instances stop when the given total privacy
budget of 0.78125 is reached. Combined with Figure 12,
we can see that the exponential decay schedule consistently
achieves better accuracy before the training ends compared
to the uniform allocation, thanks to its faster noise scale re-
duction, while the validation-based schedule performs more
conservatively and has a relatively longer training time.

Figure 7: exponential decay Figure 8: validation-based Figure 9: learning rate Figure 10: hidden units

An important implication of Figure 12 is that the gap
between uniform budget allocation and non-private SGD
indicates the maximum potential for the accuracy improve-
ment through dynamic budget allocation over the uniform
allocation. The proposed dynamic budget allocation sched-
ules provide users a way to improve the accuracy of DP-
SGD to approach that of non-private SGD. It is not possible
for dynamic budget allocation to completely close this
gap because gradient perturbation inevitably hurts model
accuracy. Therefore, we argue that the effectiveness of
dynamic privacy budget allocation should be evaluated on
how much it can reduce the gap between non-private SGD
and DP-SGD with uniform allocation. In our experiment,
the accuracy difference between non-private SGD and DP-
SGD of uniform case is 0.05 at the end of training. The
exemplified schedules reduce this difference by 20%∼30%.
One of our ongoing research directions is to investigate the
ways to effectively find the best hyperparameters to apply
these schedules.

3) Results on other datasets: We repeat the experiments
on the Cancer Dataset and CIFAR-10 datasets. By applying
exponential decay and validation-based decay to each learn-
ing task, we compare corresponding model accuracy with the
uniform allocation method [8]. In this set of experiments,
we first consider a uniform schedule that uses a constant
noise scale to achieve a desired training time under the given
privacy budget. Then we choose a value around this noise
scale as the initial noise scale for decay schedules. A set
of candidates for the decay rate is evaluated, and we use
each candidate to train a model and compare achieved model
accuracy. The parameters for the schedules we used can be
found in Table V in our arXiv version [43].

Results for testing and training accuracy are show in
Figures 14 and 15. For the Cancer dataset, the exponential
decay produces the model accuracy closer to the non-private
SGD, about 3% higher accuracy than the uniform allocation
case, and reduces the gap between non-private SGD and
DP-SGD with uniform allocation by 70%. The validation-
based schedule produces about 1.8% higher accuracy than
the uniform case, with taking advantage of a longer training
time as shown in Figure 14. For CIFAR-10, the exponential
decay achieves 2% higher accuracy than the uniform case,
and reduces the gap by about 12%. The validation-based
schedule improves model accuracy by 4% over the uniform

(a) fixed training time (b) fixed decay rate

Figure 11: Initial noise scale

Figure 12: Accuracy in training Figure 13: Privacy in training

Figure 14: Accuracy (Cancer) Figure 15: Accuracy (Cifar-10)

case, and reduces the gap by about 19%.

VI. DISCUSSION

We discuss a number of nuances/caveats as take-away
remarks for deploying differentially private deep learning
in practice for model publishing.
Understanding privacy parameter. Although differential
privacy (DP) as a theory has evolved through different forms,
today it is still not clear how a realistic privacy benefit
can be realized as a function of the privacy parameters
in the DP definitions such as the ε and δ parameters in
traditional DP and the ρ in zCDP. These privacy parameters
lack understandable interpretations to the end-users. For ρ-
zCDP, results like Proposition 1 would help if ε and δ had
straightforward privacy-related interpretations. Advancement
in interpretability and usability of DP parameters by end-
users and domain-scientists can have profound impact on
the practical deployment of differential privacy.

Data Dependency. The characteristics of input data, for
example, dependency among training instances or depen-
dency in the presence of training instances can render a
differentially private mechanism ineffective for protecting
the privacy of individuals [26], [27], [30]. The baseline
definition of differential privacy is focused on the privacy
of a single instance and therefore when multiple instances
of the same user are present, a DP mechanism needs to
be extended to group-level differential privacy to provide
sufficient protection. One direction of our future work is to
investigate and explore the ways of extending our DP-SGD
techniques to provide a group-level privacy guarantee.
Resilience to Privacy Risks and Attacks. Differentially
private deep learning aims to compute model parameters in
a differentially private manner to limit the privacy risk as-
sociated with output model parameters. There are a number
of known attacks in deep learning such as model inversion
attacks and membership inference attacks. Model inversion
attacks exploit the prediction output along with model access
to infer an input instance. Membership inference attacks
exploit the black box access to the prediction API to infer the
membership of individual training instances. However, there
is no formal study on whether or not a differentially private
deep learning model is resilient to such attacks and what
types of privacy risks known in practice can be protected
with high certainty by a differentially private DNN model.
In fact, DP only absolves the differentially-private release as
a (quantifiably) strong cause of an inference. The work [23]
provides an upper bound on the inferential privacy guarantee
for differentially private mechanisms. DP, however, does not
prevent the inference. This is another grand challenge in
differential privacy and data privacy in general.

VII. RELATED WORK

Privacy threats in machine learning Existing works [21],
[22], [36], [38] have shown that machine learning models
and their usage may leak information about individuals in
the training dataset and input data. Fredrikson, et al. [22]
proposed a model inversion attack, which uses the out-
put/prediction produced by a model to infer the unknown
features of the input data and apply this attack against
decision trees and neural networks in a pharmacogenetics
scenario [21]. Reza et al. [36] developed a membership
inference attack that aims to determine if an individual
record was used as part of the training dataset for the
model using only the black-box access to the target model.
Song et al. [38] proposed training phase attacks which
perform minor modifications to training algorithms to make
them output models which encode a significant amount
of information about the training dataset while achieving
high quality metrics like accuracy and generalizability. In
addition, model extraction attacks proposed in [40] aim
to duplicate the functionality of the model with black-box

access. Such attacks can be leveraged to infer information
about the model’s training dataset.
Privacy-preserving deep learning To enable deep learning
over the data from multiple parties while preserving the
privacy of each party’s training dataset, Reza et al [35]
proposed a distributed deep learning framework that lets
the participants train their model independently on their
own dataset and only selectively share a subsets of their
models’ parameters during training. Abadi et al. [8] proposed
a differentially private SGD algorithm for deep learning
to offer provable privacy guarantees on the output model.
DP [15] as a defacto standard for privacy has been applied
to various machine learning algorithms, such as logistic
regression [11], [45], support vector machines [34] and risk
minimization [9], [12], aiming to limit the privacy risk
associated with the output model parameters on the training
dataset. Our work in this paper is primarily related to [8]. We
improve their approach in a number of ways. For example,
instead of using traditional (ε, δ)-differential privacy, we
apply concentrated differential privacy [10], [18] to provide
tight cumulative privacy loss estimation over a large number
of computations. Furthermore, we characterize the effect of
data batching methods on the composition of differential
privacy and propose a dynamic privacy budget allocation
framework for improving the model accuracy.

VIII. CONCLUSION

We have presented our approach to differentially private
deep learning for model publishing with three original
contributions. First, since the training of neural networks
involves a large number of iterations, we apply CDP for
privacy accounting to achieve tight estimation on privacy
loss. Second, we distinguish two different data batching
methods and propose privacy accounting methods for pri-
vacy loss estimation under each respectively. Third, we
have implemented several dynamic privacy budget alloca-
tion techniques for improving model accuracy over existing
uniform budget allocation schemes. Our experiments on
multiple datasets demonstrate the effectiveness of dynamic
privacy budget allocation.

ACKNOWLEDGMENT

The authors would like to thank our anonymous reviewers
for their valuable comments and suggestions. This research
was partially sponsored by NSF under grants SaTC 156409,
CISE’s SAVI/RCN (1402266, 1550379), CNS (1421561),
CRISP (1541074), SaTC (1564097) programs, an REU
supplement (1545173), an RCN BD Fellowship, provided
by the Research Coordination Network (RCN) on Big Data
and Smart Cities, an IBM Faculty Award, and gifts, grants,
or contracts from Fujitsu, HP, Intel, and Georgia Tech
Foundation through the John P. Imlay, Jr. Chair endowment.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do

not necessarily reflect the views of the funding agencies and
companies mentioned above.

REFERENCES

[1] https://github.com/tensorflow/models/tree/master/research/
differential privacy.

[2] Breast cancer wisconsin (original) data set.
http://archive.ics.uci.edu/ml/datasets/
Breast+Cancer+Wisconsin+%28Original%29.

[3] Decaying the learning rate.
https://www.tensorflow.org/api guides/python/train.

[4] Imagenet. http://www.image-net.org/.

[5] Input pipeline performance guide.
https://www.tensorflow.org/performance/datasets performance.

[6] Tensorflow privacy library.
https://github.com/tensorflow/privacy.

[7] Model zoo. http://caffe.berkeleyvision.org/model zoo.html,
accessed 2017.

[8] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan,
I. Mironov, K. Talwar, and L. Zhang. Deep Learning with
Differential Privacy. In Proc. of ACM CCS, pages 308–318,
New York, NY, USA, 2016.

[9] R. Bassily, A. D. Smith, and A. Thakurta. Private empirical
risk minimization, revisited. CoRR, abs/1405.7085, 2014.

[10] M. Bun and T. Steinke. Concentrated Differential Privacy:
Simplifications, Extensions, and Lower Bounds. CoRR, 5
2016.

[11] K. Chaudhuri and C. Monteleoni. Privacy-preserving logistic
regression. In Proc of NIPS, pages 289–296, USA, 2008.

[12] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate. Differen-
tially private empirical risk minimization. J. Mach. Learn.
Res., 12:1069–1109, July 2011.

[13] F. Chollet. Xception: Deep learning with depthwise separable
convolutions. 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1800–1807, 2017.

[14] C. Darken and J. Moody. Note on learning rate schedules
for stochastic optimization. In Proc of Advances in Neural
Information Processing Systems (NIPS), pages 832–838, San
Francisco, CA, USA, 1990.

[15] C. Dwork. Differential privacy. In Automata, Languages and
Programming, volume 4052 of Lecture Notes in Computer
Science, pages 1–12. 2006.

[16] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating
noise to sensitivity in private data analysis. In Proc. of
Theory of Cryptography, TCC’06, pages 265–284, Berlin,
Heidelberg, 2006.

[17] C. Dwork and A. Roth. The algorithmic foundations of
differential privacy. Found. Trends Theor. Comput. Sci.,
9:211–407, Aug. 2014.

[18] C. Dwork and G. N. Rothblum. Concentrated Differential
Privacy. CoRR, 3 2016.

[19] C. Dwork, G. N. Rothblum, and S. Vadhan. Boosting and
differential privacy. In 2010 IEEE 51st Annual Symposium
on Foundations of Computer Science, pages 51–60, Oct 2010.

[20] C. Esteban, S. L. Hyland, and G. Rätsch. Real-valued
(medical) time series generation with recurrent conditional
gans. CoRR, abs/1706.02633, 2018.

[21] M. Fredrikson, S. Jha, and T. Ristenpart. Model Inver-
sion Attacks That Exploit Confidence Information and Basic
Countermeasures. In Proc. of ACM CCS, pages 1322–1333,
New York, NY, USA, 2015.

[22] M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ris-
tenpart. Privacy in pharmacogenetics: An end-to-end case
study of personalized warfarin dosing. In USENIX Security
Symposium, pages 17–32, San Diego, CA, 2014.

[23] A. Ghosh and R. Kleinberg. Inferential privacy guarantees
for differentially private mechanisms. CoRR, abs/1603.01508,
2016.

[24] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning.
MIT Press, 2016.

[25] M. Gürbüzbalaban, A. Ozdaglar, and P. Parrilo. Why Random
Reshuffling Beats Stochastic Gradient Descent. ArXiv e-
prints, Oct. 2015.

[26] B. Hitaj, G. Ateniese, and F. Perez-Cruz. Deep models under
the gan: Information leakage from collaborative deep learn-
ing. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’17, pages
603–618, New York, NY, USA, 2017.

[27] D. Kifer and A. Machanavajjhala. No free lunch in data
privacy. In Proceedings of the 2011 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD ’11,
pages 193–204, New York, NY, USA, 2011.

[28] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[29] N. Li, W. Qardaji, and D. Su. On sampling, anonymization,
and differential privacy or, k-anonymization meets differential
privacy. In Proc. of ASIACCS, pages 32–33, New York, NY,
USA, 2012.

[30] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang.
Learning differentially private language models without los-
ing accuracy. CoRR, abs/1710.06963, 2017.

[31] F. McSherry and K. Talwar. Mechanism design via differential
privacy. In Proceedings of the 48th Annual IEEE Symposium
on Foundations of Computer Science, FOCS ’07, pages 94–
103, Washington, DC, USA, 2007.

[32] F. D. McSherry. Privacy integrated queries: An extensible
platform for privacy-preserving data analysis. In Proc. of
ACM SIGMOD, pages 19–30, New York, NY, USA, 2009.

[33] R. M. Rogers, S. P. Vadhan, A. Roth, and J. Ullman. Privacy
odometers and filters: Pay-as-you-go composition. In D. D.
Lee, M. Sugiyama, U. von Luxburg, I. Guyon, and R. Garnett,
editors, NIPS, pages 1921–1929, 2016.

[34] B. I. P. Rubinstein, P. L. Bartlett, L. Huang, and N. Taft.
Learning in a large function space: Privacy-preserving mech-
anisms for svm learning. CoRR, abs/0911.5708, 2009.

[35] R. Shokri and V. Shmatikov. Privacy-Preserving Deep Learn-
ing. In Proc. of ACM CCS, pages 1310–1321, New York,
NY, USA, 2015.

[36] R. Shokri, M. Stronati, and V. Shmatikov. Membership
Inference Attacks against Machine Learning Models. In IEEE
Symposium on Security and Privacy (S&P), 2017.

[37] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

[38] C. Song, T. Ristenpart, and V. Shmatikov. Machine learning
models that remember too much. In Proc. of ACM CCS, pages
587–601, New York, NY, USA, 2017.

[39] S. Song, K. Chaudhuri, and A. D. Sarwate. Stochastic gradi-
ent descent with differentially private updates. In 2013 IEEE
Global Conference on Signal and Information Processing,
pages 245–248, Dec 2013.

[40] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart.
Stealing Machine Learning Models via Prediction APIs. In
USENIX Security Symposium, pages 601–618, Austin, TX,
2016.

[41] T. van Erven and P. Harremos. Rényi divergence and
kullback-leibler divergence. IEEE Transactions on Informa-
tion Theory, 60(7):3797–3820, July 2014.

[42] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How
transferable are features in deep neural networks? CoRR,
abs/1411.1792, 2014.

[43] L. Yu, L. Liu, C. Pu, M. E. Gursoy, and S. Truex. Differ-
entially private model publishing for deep learning. CoRR,
abs/1904.02200, 2019.

[44] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Un-
derstanding deep learning requires rethinking generalization.
CoRR, abs/1611.03530, 2016.

[45] J. Zhang, Z. Zhang, X. Xiao, Y. Yang, and M. Winslett.
Functional mechanism: Regression analysis under differential
privacy. Proc. VLDB Endow., 5(11):1364–1375, July 2012.

[46] X. Zhang, S. Ji, and T. Wang. Differentially private releasing
via deep generative model. CoRR, abs/1801.01594, 2018.

APPENDIX

A. Proof of Theorem 2

Theorem 2. Suppose that a mechanism A consists of a
sequence of k adaptive mechanism A1, . . . ,Ak where each
Ai :

∏i−1
j=1 Rj × D → Ri and Ai satisfies ρi-zCDP. Let

D1,D2, . . . ,Dk be the result of a randomized partition of
the input domain D. The mechanism A(D) = (A1(D ∩
D1), . . . ,Ak(D ∩ Dk)) satisfies{

ρ-zCDP, if ρi = ρ, ∀i
max

i
ρi-zCDP, if ρi �= ρj for some i, j

(17)

Proof: Suppose two neighboring datasets D and D′.
Without loss of generality, assume that D contains one more
element de than D′. Let Di = D ∩ Di and D′

i = D′ ∩ Di.
Accordingly, there exists j such that Dj contains one
more element than D′

j , and for any i �= j, Di = D′
i.

Consider any sequence of outcomes o = (o1, . . . , ok) of
A1(D1), . . . ,Ak(Dk).

Because only Dj is different from D′
j , for any i �= j, we

have
Pr[Ai(Di) = oi|Ai−1(Di−1) = oi−1, . . . ,A1(D1) = o1]

equal to
Pr[Ai(D

′
i) = oi|Ai−1(D

′
i−1) = oi−1, . . . ,A1(D

′
1) = o1]

Then, we have

L
(o)
j

Δ
= log

(
Pr(A(D) = o

Pr(A(D′) = o)

)
= log

(∏
i∈[n] Pr[ADi

i = oi|ADi−1

i−1 = oi−1, ..,AD1
1 = o1]∏

i∈[n] Pr[A
D′

i
i = oi|AD′

i−1

i−1 = oi−1, ..,AD′
1

1 = o1]

)

= log

(
Pr[ADj

j = oj |ADj−1

j−1 = oj−1, ..,AD1
1 = o1]

Pr[AD′
j

j = oj |AD′
j−1

j−1 = oj−1, ..,AD′
1

1 = o1]

)
Δ
= cj(oj ; o1, . . . , oj−1)

where ADi
i denotes Ai(Di) for short.

Once the prefix (o1, . . . , oj−1) is fixed,

Cj
Δ
= cj(oj ; o1, . . . , oj−1) = log

(
Pr(Aj(Dj) = oj)

Pr(Aj(D′
j) = oj)

)
By the ρj-zCDP property of Aj , E

[
e(α−1)Cj

] ≤
e(α−1)αρj , thus

E

[
e(α−1)L

(o)
j

]
= E

[
exp

(
(α− 1)Cj

)]
≤ e(α−1)αρj

Because of randomized partition of the input domain D,
the extra element de of D is randomly mapped to k parti-
tions. Therefore, j is uniformly distributed over {1, . . . , k},
and thus the privacy loss L(o) under random data partition is
the mixture of independent random variables L(o)

1 , · · · , L(o)
k ,

f(L(o)) =
1

k
f(L

(o)
1) + . . .+

1

k
f(L

(o)
k)

where f(X) is the probability distribution function of X .

We have

E

[
e(α−1)L(o)

]
=

1

k

k∑
j=1

E

[
exp

(
(α− 1)L

(o)
j

)]

Because L
(o)
j satisfies zCDP, by (7) then we have

≤ 1

k

k∑
j=1

exp((α− 1)αρj)

If ρj = ρ ∀j, we have E

[
e(α−1)L(o)

]
≤ exp((α− 1)αρ),

and thus the mechanism A(D) satisfies ρ-zCDP.
If not all ρj are the same, we replace each ρj with max

j
ρj ,

we have E

[
e(α−1)L(o)

]
≤ exp((α − 1)αmax

j
ρj), and the

mechanism A(D) satisfies maxi ρi-zCDP.

B. Proof of Theorem 3

Theorem 3. Let ρ̂ = P (q, σ) and uα = Uα(q, σ). If the
mechanism A′ has

Dα(A′(D)||A′(D′)) ≤ αρ̂ (18)
for 1 < α ≤ uα, it satisfies⎧⎪⎨⎪⎩
(
ρ̂+ 2

√
ρ̂ log(1/δ), δ

)
−DP, if δ ≥ 1/ exp(ρ̂(uα − 1)2)(

ρ̂uα − log δ

uα − 1
, δ
)
−DP, otherwise

Proof:
Let Z = L

(o)
(M(D)||M(D′)) be privacy loss random variable,

then for 1 < α ≤ uα,
E

[
e(α−1)Z

]
= e(α−1)Dα(M(D)||M(D′)) ≤ e(α−1)αρ̂ (19)

By Markov’ inequality,

P (Z ≥ ε) =P (e(α−1)Z > e(α−1)ε) ≤ E
[
e(α−1)Z

]
e(α−1)ε

(20)

≤ exp((α− 1)(ρ̂α− ε)) (21)
The unconstrained minimum of function g(α) = (α −

1)(ρ̂α− ε) occurs at α∗ = (ε+ ρ̂)/(2ρ̂), and the minimum
value is −(ε − ρ̂)2/(4ρ̂). If α∗ ≤ uα, this unconstrained
minimum corresponds to the constrained minimum as well
that is subject to α ≤ uα. Let δ = exp

(− (ε − ρ̂)2/(4ρ̂)
)
,

and then we have ε = ρ̂+2
√
ρ̂log(1/δ), which has the same

form as in Proposition 1. In this case,
α∗ = (2ρ̂+ 2

√
ρ̂log(1/δ))/(2ρ̂)

, and it requires

(2ρ̂+ 2
√
ρ̂log(1/δ))/(2ρ̂) ≤ uα (22)

From (22) we have
δ ≥ 1/ exp(ρ̂(uα − 1)2) (23)

Otherwise, if
δ < 1/ exp(ρ̂(uα − 1)2) (24)

which means
α∗ > uα

Then, because the function g(α) is monotonically decreasing
in the interval (0, α∗], the constrained minimum is achieved
at the boundary point

α+ = uα

and accordingly we let δ = exp
(
(α+ − 1)(ρ̂α+ − ε)

)
and

have
ε = ρ̂α+ − logδ

α+ − 1

.

C. ρ-zCDP mechanism A with random sampling still satis-
fies ρ-zCDP

Suppose A′ that runs ρ-zCDP mechanism A on a random
subsample of dataset D. Following the result (11) in the
paper, the proof is as follows:

Because Pr(Λ(D′) = T ′|de ∈ T ′) = Pr(Λ(D) = T) and
A satisfies ρ-zCDP, Rényi divergence

Dα(u0||u1) ≤ Dα(A(T)||A(T ′)) ≤ αρ (25)
Dα(u1||u0) ≤ Dα(A(T ′)||A(T)) ≤ αρ (26)

Using jointly quasi-convexity of Rényi divergence [41], we
have

Dα(u0||qu1 + (1− q)u0) ≤ Dα(u0||u1) ≤ αρ (27)
Dα(qu1 + (1− q)u0 || u0) ≤ Dα(u1||u0) ≤ αρ (28)

and thus A′ still satisfies ρ-zCDP.

D. Validation of emperical settings for bounding α-Rényi
divergence

(a) σ = 1, q = 0.01 (b) σ = 4, q = 0.01

Figure 16: Bound v.s. α-Rényi divergence
In this section we describe our numerical

validation of the bound P = q2α/σ2 of α-Rényi
divergence for the Gaussian mechanism with random
sampling given the condition q ≤ 1

16σ and α
∈ (1, Uα = σ2 log 1

qσ + 1]. We compute the α-Rényi
divergence with the code for moments accountant (named
as Renyi differential privacy (RDP) analysis in Tensor-
flow)(https://github.com/tensorflow/privacy/blob/master/privacy/
analysis/rdp accountant.py).

We test σ and q at a precision of 0.001, by varying σ
from 1 to 30 and q from 0.001 to 1

16σ with a step size of
0.001, α ∈ (1, Uα = σ2 log 1

qσ + 1] with step size 0.01.
In our validation, the bound q2α/σ2 is close but always
higher than the α-Rényi divergence. We plot Figure 16 for
demonstration. We also did randomly additional tests for
cases such as a smaller step size and a wide σ value up
to 50. We found that the empirical bound q2α/σ2 always
holds under the given conditions. Therefore, we have the
conjecture that q2α/σ2 is a valid bound for the α-Rényi
divergence of sampled Gaussian mechanism and seek its
formal proof in our future work. With using P and Uα

as stated above for Theorem 3, we can have an effective
estimation on the privacy loss in terms of (ε, δ)-DP in our
tested parameter settings of σ and q.

