
Threshold ECDSA from ECDSA Assumptions:
The Multiparty Case

Jack Doerner
j@ckdoerner.net

Northeastern University

Yashvanth Kondi
ykondi@ccs.neu.edu

Northeastern University

Eysa Lee
eysa@ccs.neu.edu
Northeastern University

abhi shelat
abhi@neu.edu

Northeastern University

Abstract—Cryptocurrency applications have spurred a resur-
gence of interest in the computation of ECDSA signatures using
threshold protocols—that is, protocols in which the signing key
is secret-shared among n parties, of which any subset of size
t must interact in order to compute a signature. Among the
resulting works to date, that of Doerner et al. [1] requires the
most natural assumptions while also achieving the best practical
signing speed. It is, however, limited to the setting in which
the threshold is two. We propose an extension of their scheme
to arbitrary thresholds, and prove it secure against a malicious
adversary corrupting up to one party less than the threshold
under only the Computational Diffie-Hellman assumption in the
Random Oracle model, an assumption strictly weaker than those
under which ECDSA is proven.

Whereas the best current schemes for threshold-two ECDSA
signing use a Diffie-Hellman Key Exchange to calculate each
signature’s nonce, a direct adaptation of this technique to a
larger threshold t would incur a round count linear in t; thus we
abandon it in favor of a new mechanism that yields a protocol
requiring log (t)+6 rounds in total. We design a new consistency
check, similar in spirit to that of Doerner et al., but suitable for an
arbitrary number of participants, and we optimize the underlying
two-party multiplication protocol on which our scheme is based,
reducing its concrete communication and computation costs.

We implement our scheme and evaluate it among groups of up
to 256 of co-located and 128 geographically-distributed parties,
and among small groups of embedded devices. We find that in
the LAN setting, our scheme outperforms all prior works by
orders of magnitude, and that it is efficient enough for use even
on smartphones or hardware tokens. In the WAN setting we
find that, despite its logarithmic round count, our protocol out-
performs the best constant-round protocols in realistic scenarios.

I. INTRODUCTION

Threshold Digital Signature Schemes [2] allow a group of
individuals to delegate their joint authority to sign a message
to any subcommittee among themselves that is larger than a
certain, predetermined size. Specifically, a t-of-n threshold
signature scheme is a set of protocols that allow n parties to
jointly generate a single public key, along with n private shares
of a joint secret key sk, and then securely sign messages if and
only if t of those parties participate in the signing operation.
In addition to the standard unforgeability properties required
of all signature schemes, threshold schemes must satisfy the
properties of privacy against t − 1 malicious participants
with respect to the secret key shares of honest parties, and
correctness against t− 1 malicious participants with respect to
signature output. That is, no group of t− 1 colluding parties

should be able to recover the secret key, even by interacting
with additional honest parties, nor should they be able to trick
an honest party into signing a message unwillingly. Threshold
signature schemes are thus best modeled as a special case of
secure multiparty computation (MPC).

The Elliptic Curve Digital Signature Algorithm (ECDSA)
is a standardized [3]–[5] derivative of the DSA scheme of
David Kravitz [6], which improves upon the efficiency of
its forebear by replacing arithmetic modulo a prime with
operations over an elliptic curve. It is widely deployed in
various web-security technologies such as DNSSec and TLS,
in various authentication protocols, in binary signing, and
in crypocurrencies, including Bitcoin [7] and Ethereum [8].
Although ECDSA is in widespread use, designing threshold
signing protocols for ECDSA has been challenging due to the
unusual structure of the signing algorithm: in each signature,
a nonce k, its multiplicative inverse 1/k, and the product
sk/k (where sk is the secret key) all appear simultaneously.
Computing these values efficiently in the multiparty context is
the primary difficulty that threshold schemes must address.

MacKenzie and Reiter [9] constructed a 2-of-2 ECDSA
protocol using multiplicative sharings of k and sk, which
allowed shares of sk/k and 1/k to be computed via local
operations, but their protocol required a mechanism to verify
that the shares have been computed correctly. For this, they em-
ployed additively homomorphic encryption. Gennaro et al. [10]
extended this technique, introducing a six-round protocol for
general t-of-n signing, and Boneh et al. [11] subsequently
optimized their extension in terms of computational efficiency,
and reduced the round count to four. Meanwhile Lindell [12]
introduced optimizations in the 2-of-2 setting, such that key-
generation and signing required only 2.4 seconds and 37
milliseconds in practice, respectively. Unfortunately, these
schemes require expensive zero-knowledge proofs, as well
as the use of Paillier Encryption [13], which leads both to
poor performance and to reliance upon assumptions such as
the Decisional Composite Residuosity Assumption (and a new
assumption about the Paillier cryptosystem, in the case of
Lindell’s protocol) that are foreign to the mathematics on
which ECDSA is based.

Doerner et al. [1] propose an alternative solution for 2-of-
n threshold key generation and signing: while their protocol
retains the multiplicative sharings of prior approaches, they
forgo operating on Paillier ciphertexts. Instead, they construct a

new, hardened variant of Gilboa’s multiplication-by-oblivious-
transfer technique [14], by which their protocol converts
multiplicative shares into additive shares, and thereby produces
additive shares of the final ECDSA signature. Security against
malicious adversaries is achieved via a novel consistency
check that leverages relationships among various elements
of an ECDSA signature to ensure that the multipliers receive
consistent inputs. Their scheme requires only two rounds and
outperforms prior schemes by one to two orders of magnitude
in terms of computational efficiency, such that signatures can be
produced in under four milliseconds, and key generation for two
parties can be completed in under 45 milliseconds. Moreover,
their scheme was proven secure using only the Computational
Diffie-Hellman Assumption [15], an assumption “native” to
elliptic curves and implied by the Generic Group Model [16]
(in which ECDSA is proven secure [17]), and the Random
Oracle Model.

While the 2-of-n key-generation protocol of Doerner et
al. can be generalized to arbitrary thresholds, their signing
scheme is in a few respects inherently limited to two parties.
As with prior two-party schemes, it uses a Diffie-Hellman
Key Exchange [15] to calculate the signature’s instance key
R = k ·G (where G is the elliptic curve group generator), given
a multiplicative sharing of k. With a threshold larger than two,
the long-standing open problem of multiparty key exchange is
implicated. A direct extension of the Diffie-Hellman method
to t parties would require t − 1 rounds, and, though key
exchange can be achieved in a sublinear number of rounds
via indistinguishability obfuscation [18] in the general case, or
bilinear pairings [19] when t = 3, neither of these methods
results in a practically-efficient protocol with ECDSA-native
assumptions. Additionally, the consistency check that ensures
security against malicious adversaries is a decidedly two-party
construction: it relies upon the asymmetrical roles of the parties,
and integrates proof-wise with the aforementioned Diffie-
Hellman Exchange. Furthermore, we note that the scheme
of Doerner et al. realizes a nonstandard, two-party specific
functionality. Though they prove in the Generic Group Model
that this functionality confers no additional power to an
adversary, it does allow one party to bias the distribution
of the instance key to a negligible degree, which gives that
party an undesirable subliminal channel [20].

In this work, we describe an extension of the protocols of
Doerner et al. to arbitrary thresholds. We formally define a new
multiparty functionality, replace the key exchange component
with an alternative based on multiparty multiplication, develop a
new consistency check, and optimize the underlying primitives
for the new setting and protocol structure. We implement our
protocol and test it with a large number of parties, showing
in particular that 256 parties can jointly sign in about half a
second over LAN, and 128 parties require about four seconds
to sign when spread around the world.

A. Our Techniques

Recall that an elliptic curve is defined by the tuple (G, G, q),
where G is the group of order q of points on the curve, and

G is the generator for that group. An ECDSA Signature on a
message m under the secret key sk comprises a pair (sig, rx)
of integers in Zq such that

sig =
H(m) + sk · rx

k

where k is a uniform element from Zq and rx is the x-
coordinate of the elliptic curve point R = k ·G. We frame our
task as the construction of a multiparty computation at the end
of which participating parties obtain additive shares of such
a signature, having supplied secret shares of sk as input. We
additionally require a protocol for generating shares of sk. As
this protocol will also perform one-time initialization for many
subsequent signatures, we refer to it as the setup protocol.

Our setup protocol is a natural extension of Doerner et
al. [1], requiring only minor changes to ensure security
against a dishonest majority of participants. When it completes
successfully, each of the n participating parties receives a
point on a (t − 1)-degree polynomial. The y-intercept of
this polynomial is the secret key sk, as per Shamir’s secret
sharing scheme [21]. This allows any group of t parties to
obtain an additive sharing of sk using the appropriate Lagrange
coefficients. This additive sharing is the input to our signing
protocol. Our signing protocol, however, diverges from that
work and can be understood in terms of four logical phases.

1) Instance Key Multiplication. Once a group of parties P
(where |P| = t) have agreed to sign a message, each
party Pi ∈ P samples a multiplicative share ki; these
shares jointly define the common instance key k. Using
a t-party multiplication protocol, the parties obtain both
an additive sharing of k and a multiplicatively-padded
additive sharing of 1/k.

2) Secret Key Multiplication. As the parties now have additive
sharings of sk and 1/k, a GMW-style [22] multiplication
protocol can be used to obtain an additive sharing of sk/k.

3) Consistency Check. The parties compute R = k ·G and
verify that consistent and correct inputs were used in the
previous phases. Each party broadcasts a set of values
that sum to predictable targets if and only if all parties
have used inputs in the Secret Key Multiplication phase
that are consistent with those used in the Instance Key
Multiplication phase. This consistency check is similar
in form and purpose to the consistency check employed
by Doerner et al., but it operates in a broadcast fashion
and enforces additional relationships required due to
differences between the previous phases of our protocol
and their analogues in Doerner et al.’s scheme.

4) Signing. Once the consistency of all inputs has been
checked, each party i in the set of participants P is
convinced that it holds vi, wi, and R such that for some
value k,∑

i∈P

vi =
1

k
and

∑
i∈P

wi =
sk

k
and R = k ·G

The parties locally compute their shares of the signature

sigi
..= vi ·H(m) + wi · rx

and broadcast them. The signature is then reconstructed

sig ..=
∑
i∈P

sigi

and verified using the standard verification algorithm.
Our signing protocol is therefore essentially composed of

three maliciously secure t-party multipliers, augmented by a
check message to enforce consistency of inputs. These multi-
pliers come in two flavors: one that converts a multiplicative
sharing into an additive sharing, and a GMW-style multiplier,
which produces an additive sharing of the product of two
additive sharings. We realize both varieties of multiplier by
evaluating a two-party multiplication protocol between each
pair of parties. The asymptotic round count of the overall
protocol is determined by the fact that data dependencies in
the conversion process between multiplicative and additive
shares require these two-party multiplication protocols to be
evaluated log(t) sequential groups.

Our two-party multiplier is based upon Oblivious Transfer
(OT) and derived from the two-party multiplication protocol of
Doerner et al. [1], who were inspired in turn by the semi-honest
multiplication protocol of Gilboa [14], but we improve upon the
performance of their protocol in terms of both communication
and computation. The protocol of Doerner et al. specifies
that one of the two parties encodes its input using a high-
entropy encoding scheme, and the length of this encoded input
determines the number of OT instances required, which in
turn strongly determines the performance of the multiplication
protocol as a whole. On the other hand, our new protocol
specifies that both parties choose random inputs, and later send
correction messages to adjust their output values as necessary.
Allowing for encodings only of random values rather than
requiring the ability to encode specific inputs simplifies the
encoding scheme considerably and reduces the number of OT
instances by an amount proportional to the ECDSA security
parameter, or about 40% in practice. This improvement comes
at the cost of one additional round in the general case, but
if the parties’ inputs are guaranteed to be unknown to the
adversary during the evaluation of the protocol (as they are
in our case), then the round count need not increase, and in
the context of our ECDSA signing scheme, our new multiplier
actually reduces the overall round count relative to a naïve
composition of the multiplication protocol of Doerner et al.

B. Contributions

1) We present a t-of-n threshold ECDSA signing protocol
that requires log(t) + 6 rounds and prove it secure
against a malicious adversary who statically corrupts t−1
participants using only the Computational Diffie-Hellman
Assumption. In addition we modify the setup protocol of
Doerner et al. [1] and prove it secure in the same setting.

2) We improve upon the two-party multiplication protocol
of Doerner et al., achieving a concrete performance gain
of roughly 40%. In our protocol, a randomized Gilboa-
style multiplier generates an unauthenticated multiplication
triple, and the output shares are later adjusted at the cost

of communicating a single field element for each party.
Our protocol also supports batched multiplications, with a
reduction in communication relative to simple repetition.

3) We describe a folkloric technique for the composition of
two-party multipliers to form a t-party multiplier requiring
log(t) + 2 rounds, or log(t) + 1 in some circumstances.

4) We provide an implementation of our protocol in the Rust
language, and benchmark it on commodity server-class
hardware in both the WAN and LAN settings, as well as
on embedded devices. In the LAN setting, we evaluate
our protocol with up to 256 parties. In the WAN setting,
we evaluate with 128 parties spread across 16 datacenters.
With respect to signing, our scheme outperforms all prior
work in the LAN setting by a factor of 40 or more, and
it is competitive in the WAN setting in spite of its round
count. Though no prior works report the concrete setup
performance of an arbitrary-threshold ECDSA scheme,
we conjecture that ours improves dramatically upon them.

C. Organization

We establish the notation and building blocks for our
protocols in Section II. We describe our improved protocol
for two-party multiplication in Section III, which we use to
construct t-party multiplication in Section IV. We specify our
t-of-n threshold ECDSA protocol in Section V. We analyze
the cost of this protocol in Section VI and provide details of
our implementation and its performance in Section VII. Finally,
in the full version of this paper, we prove our protocols secure.

II. PRELIMINARIES AND DEFINITIONS

A. Notation

Throughout this paper, we use (G, G, q) to represent the
elliptic curve over which signatures are calculated, where G

is the group of curve points, G the curve generator, and q the
order of the curve. Curve points are represented in |q| = κ
bits, which is also the curve’s security parameter, and we
use s to represent the statistical security parameter. Curve
points are denoted with capitalized variables and scalars with
lowercase. Vectors are given in bold and indexed by subscripts;
thus xi is the ith element of the vector x, which is distinct
from the scalar variable x. We use = for equality, ..= for
assignment, ← for sampling from a distribution, and

c≡ for
computational indistinguishability. We make use of a Random
Oracle Hx(y) : {0, 1}∗ �→ Z

x
q with its output length varying

according to the function’s superscript; when the superscript is
omitted it is assumed to be 1. We use Pi to denote the party
with index i, and variables may often be subscripted with an
index to indicate that they belong to a particular party. When
arrays are owned by a party, the party index always comes
before the array index. For convenience, when only two parties
are present in a context, they are referred to as Alice and Bob.

In functionalities, we assume standard and implicit book-
keeping. In particular, we assume that along with the other
messages we specify, session IDs and party IDs are transmitted
so that the functionality knows to which instance a message
belongs and who is participating in that instance. We assume

that the functionality aborts if a party tries to reuse a session
ID, send messages out of order, etc. We use slab-serif to
denote message tokens, which communicate the function of
a message to its recipients. For simplicity, we omit from a
functionality’s specifier all parameters that we do not actively
use. For example, many of our functionalities are parameterized
by a group G of order q, but we leave implicit the fact that in
any given instantiation all functionalities use the same group.

B. Digital Signatures

Definition 1 (Digital Signature Scheme [23]).
A Digital Signature Scheme is a tuple of probabilistic polyno-
mial time (PPT) algorithms, (Gen, Sign,Verify) such that:

1) Given a security parameter κ, the Gen algorithm outputs
a public key/secret key pair: (pk, sk) ← Gen(1κ)

2) Given a secret key sk and a message m, the Sign algorithm
outputs a signature σ: σ ← Signsk(m)

3) Given a message m, signature σ, and public key pk, the
Verify algorithm outputs a bit b indicating whether the
signature is valid or invalid: b ..= Verifypk(m,σ)

A Digital Signature Scheme satisfies two properties:
1) (Correctness) With overwhelmingly high probability, all

valid signatures must verify. Formally, over (pk, sk) ←
Gen(1κ) and all messages m in the message space,

Pr
pk,sk,m

[
Verifypk(m, Signsk(m)) = 1

]
> 1− negl(κ)

2) (Existential Unforgeability) No adversary can forge a
signature for any message with greater than negligible
probability, even if that adversary has seen signatures for
polynomially many messages of its choice. Formally, for
all PPT adversaries A with access to the signing oracle
Signsk(·), where Q is the set of queries A asks the oracle,

Pr
pk,sk

[
Verifypk (m,σ) = 1 ∧m /∈ Q :

(m,σ) ← ASignsk(·) (pk)

]
< negl(κ)

C. ECDSA

ECDSA is parameterized by a group G of order q generated
by a point G on an elliptic curve over the finite field Zp of
integers modulo a prime p. Assuming a curve has been fixed,
the ECDSA algorithms are as follows [23]:

Algorithm 1. Gen(1κ):
1) Uniformly choose a secret key sk ← Zq .
2) Calculate the public key as pk ..= sk ·G.
3) Output (pk, sk).

Algorithm 2. Sign(sk ∈ Zq,m ∈ {0, 1}∗):
1) Uniformly choose an instance key k ← Zq .
2) Calculate (rx, ry) = R ..= k ·G.
3) Calculate

sig ..=
H(m) + sk · rx

k

4) Output σ ..= (sig mod q, rx mod q).

Algorithm 3. Verify(pk ∈ G,m ∈ {0, 1}∗, σ ∈ (Zq,Zq)):
1) Parse σ as (sig, rx).
2) Calculate

(r′x, r
′
y) = R′ ..=

H(m) ·G+ rx · pk
sig

3) Output 1 if and only if (r′x mod q) = (rx mod q).

D. Security Model and Requisite Functionalities

We prove our protocols secure against any number of static
corruptions in the Universal Composability (UC) framework,
for an introduction to which we refer the reader to Canetti [24].
In this section we introduce a small set of functionalities
that we use as building blocks. We begin with a commitment
functionality and a committed-zero-knowledge functionality.
Informally, the commitment functionality Fn

Com allows a party
to send a commitment to a message to a group of parties, and
later reveal the same message to these parties. The functionality
FRDL,n

Com-ZK allows a party to send a commitment to both an elliptic
curve point and a proof of knowledge of its discrete logarithm
to a group of parties, and later reveal both. Concretely, Fn

Com

can be instantiated via the folkloric hash-based commitment
construction, and FRDL,n

Com-ZK via the Schnorr [25] protocol made
non-interactive using the Fiat-Shamir [26] or Fischlin [27]
transform, though only the latter achieves UC-security. For the
sake of efficiency, our implementation uses the Fiat-Shamir
transform in spite of this shortcoming.

Functionality 1. Fn
Com:

This functionality runs with a group of parties {Pj}j∈[1,n],
where one specific party Pi commits, and all other parties
receive the commitment and committed value.
Commit: On receiving (commit, idcom, x, I) from Pi where
I ⊆ [1, n], if (commit, idcom, ·, ·) does not exist in mem-
ory, then store (commit, idcom, x, I) in memory and send
(committed, idcom, i) to all parties Pj for j ∈ I.
Decommit: On receiving (decommit, idcom) from Pi, send
(decommitted, idcom, x) to every party Pj for j ∈ I

Functionality 2. FRDL,n
Com-ZK:

This functionality is parameterized by a group G of order q
generated by G. It runs with a group of parties {Pj}j∈[1,n],
where one party Pi is the prover, and the others verify.
Commit Proof: On receiving (com-proof, idcom-zk, x,X, I)
from party Pi where x ∈ Zq and X ∈ G, if
(com-proof, idcom-zk, ·, ·, ·) does not exist in memory, then
send (committed, idcom-zk, i) to every party Pj for j ∈ I
and store (com-proof, idcom-zk, x,X, I) in memory.
Decommit Proof: On receiving (decom-proof, idcom-zk)
from party Pi, if (com-proof, idcom-zk, x,X, I) exists in
memory, then:

1) If X = x ·G, send (accept, idcom-zk, X) to every party
Pj for j ∈ I.

2) Otherwise send (fail, idcom-zk) to every Pj for j ∈ I.

In addition, our multiplication protocols make use of
Correlated Oblivious Transfer extensions [28], which we model
using the Fη

COTe functionality of Doerner et al. [1], who derive
it in turn from a similar functionality introduced by Keller et
al. [29]. We reproduce their functionality here, for completeness.
In short, Fη

COTe interacts with two parties: A sender, who
supplies a vector of correlations, and a receiver, who supplies
vector of choice bits. For each vector element, the functionality
returns to the sender a random pad, and to the receiver either the
same random pad, or the same pad plus the sender’s correlation.
Concretely, we instantiate this functionality in the same manner
as Doerner et al., using the OT-extension protocol of Keller et
al. [29], with Doerner et al.’s VSOT (a derivative of Simplest
OT [30]) performing the required base OTs.

Functionality 3. Fη
COTe:

This functionality is parameterized by a batch size η and a
set of groups {Gi}i∈[1,η], one group for each element in a
batch (though groups are not necessarily unique). It runs with
a sender S and a receiver R, who may participate in the Init
phase once, and the Choice and Transfer phases many times.
Init: On receiving (init) from both parties, store (ready)
in memory and send (init-complete) to the receiver.
Choice: On receiving

(
choose, idext,β

)
from the receiver,

if
(
choice, idext, ·) with the same idext does not exist in

memory, and if (ready) does exist in memory, and if
β ∈ {0, 1}η, then send (chosen) to the sender and store(
choice, idext,β

)
in memory.

Transfer: On receiving
(
transfer, idext,α

)
from the

sender, if a message of the form
(
choice, idext,β

)
exists in

memory with the same idext, and if
(
complete, idext

)
does

not exist in memory, and if α ∈ G1 × . . .×Gη , then:
1) Sample a vector of random pads ωS ← G1 × . . .×Gη

2) Send (pads,ωS) to the sender.
3) Compute ωR

..=
{
βi ·αi − ωS,i

}
i∈[1,η]

.
4) Send (padded-correlation,ωR) to the receiver.
5) Store (complete, idext) in memory.

III. IMPROVED TWO-PARTY MULTIPLICATION

Doerner et al. [1] built their two party signing protocol atop
two-party multiplication, and our protocol retains this property
even when the number of signing parties is larger. While their
protocol was optimized for the single-use computation setting
(in which a small number of multiplications are computed
by exactly two parties with no preprocessing), we design a
new variant that is optimized for scenarios in which multiple
overlapping pairs of parties compose their multiplications
with one another. As a result we require a new two-party
multiplication functionality. Specifically, our new functionality
F�

2PMul involves three main phases. Following the one-time
initialization phase, there is a preprocessing phase in which
the parties must each send a message to the functionality in
a specific order. Following this, they can supply their inputs
(either party going first), and as each party’s input is supplied,
the opposite party’s output is delivered. One party is also

given the capability to define their own output by rushing
in the last phase, which we will discuss in conjunction with
the protocol that realizes this functionality. When F�

2PMul is
composed, multiple instances can preprocess concurrently, and
then inputs can be supplied as data dependencies require. This
corresponds to a savings in rounds when instantiated with
our multiplication protocol, relative to naïve composition of
Doerner et al.’s multiplication protocol.

In addition, we add to both our protocol and our functionality
the ability to batch multiplications together, and we make a
simplification: whereas the functionality given by Doerner et al.
allows an adversary to inject additive error into the output, we
give the adversary no such capability. We note that this change
is solely for simplicity of proof and ease of understanding:
both functionalities output pairs of unauthenticated additive
shares, and thus an adversary can always induce an offset.

Functionality 4. F�
2PMul:

This functionality is parameterized by the group Zq over
which multiplication is to be performed, and the batch size �.
It runs with two parties, Alice and Bob, who may participate
in the Init phase once, the remaining phases repeatedly.
Init: Wait for message (init) from Alice and Bob. Store
(init-complete) in memory and send (init-complete)
to Bob.
Bob-preprocess: On receiving (preprocess, idmul) from
Bob, if (bob-ready, idmul) with the same idmul does not
exist in memory, and if (init-complete) does exist in
memory, then store (bob-ready, idmul) in memory, and send
(bob-ready, idmul) to Alice.
Alice-preprocess: On receiving (preprocess, idmul)
from Alice, if there exists a message of the form
(bob-ready, idmul, ·) in memory with the same idmul,
and if (alice-ready, idmul) does not exist in memory,
then store (alice-ready, idmul) in memory, and send
(alice-ready, idmul) to Bob.
Alice-input: On receiving (input, idmul,a) from Alice, if a
message of the form (alice-ready, idmul) exists in memory
with the same idmul, and if (alice-complete, idmul, ·, ·) and
(bob-complete, idmul, ·, ·) do not exist in memory, and if
a ∈ Zq then:

1) Sample zB ← Z
�
q

2) Send (output, idmul, zB) to Bob.
3) Store (alice-complete, idmul,a, zB) in memory.

Bob-input: On receiving (input, idmul,b) from Bob, if there
exists a message (alice-ready, idmul) in memory with the
same idmul, and if (bob-complete, idmul, ·, ·) does not exist
in memory, and if b ∈ Zq then:

1) If (alice-complete, idmul,a, zB) exists in memory,
then compute

zA ..=
{
ai · bi − zB,i

}
i∈[1,�]

and send (output, idmul, zA) to Alice.
2) Otherwise send (bob-complete, idmul) to Alice.

3) Store (bob-complete, idmul,b) in memory.
Alice-input-rush: On receiving (rush, idmul,a, zA) from Al-
ice, if two messages exist in memory with the forms
(alice-ready, idmul) and (bob-complete, idmul,b) re-
spectively, but (alice-complete, idmul, ·, ·) does not exist
in memory, and if a ∈ Zq and zA ∈ Zq then:

1) Compute

zB ..=
{
ai · bi − zA,i

}
i∈[1,�]

2) Send (output, idmul, zB) to Bob.
3) Store (alice-complete, idmul,a, zB) in memory.

We now present a two-party multiplication protocol that
realizes the above functionality, which is based upon Oblivious
Transfer, and specifically OT-extensions. The multiplication
protocol of Doerner et al. specifies that Bob’s OT choice
bits comprise a high-entropy encoding of his input, and that
Alice’s OT correlations are determined by her input, and that
each party’s share of the product can be calculated simply
by summing the outputs of the OT. The round complexity
of their protocol is determined by the round complexity
of OT-extensions, which is two when instantiated with the
protocol of Keller et al. [29]. We abandon this approach,
and instead specify that the two parties use oblivious transfer
to perform a randomized multiplication (which corresponds
to the preprocessing phase in the F�

2PMul functionality), and
adjust their output shares after the fact (which corresponds
to the input phase). While the randomized multiplication
in our multiplier requires two rounds on its own, and the
adjustment step a third, it is possible for many multipliers with
data dependencies to evaluate their randomized multiplications
concurrently, reducing the round count overall.

Protocol 1. Two-party Multiplication
(
π�
2PMul

)
:

This protocol is parameterized by a statistical security
parameter s and the group Zq over which multiplication is to
be performed. Let κ = |q| and for convenience let η = ξ · �
where ξ = κ+ 2s is the number of random choice bits per
element in a batch and � is the multiplication batch size (a
parameter). This protocol makes use of a public gadget vector
g ← Z

η
q , and it invokes the Correlated Oblivious Transfer

functionality Fη
COTe and the random oracle H . For technical

reasons, Bob supplies �, but we assume that it is available as
a common input to both parties. Alice supplies a vector input
integers a ∈ Z

�
q and Bob supplies another vector of input

integers b ∈ Z
�
q. Alice and Bob receive as output vectors

of integers zA ∈ Z
�
q and zB ∈ Z

�
q, respectively, such that

zA,i + zB,i = ai · bi for all indices i ∈ [1, �].
Init:

1) Alice and Bob initialize their OT extensions by trans-
mitting (init) to Fη

COTe.
Encoding:

2) Bob samples a set of random OT choice bits, and uses

them to calculate his one-time pads b̃

β ← {0, 1}�·ξ

b̃ ..=

{〈
g, {βj}j∈[i·ξ+1,(i+1)·ξ]

〉}
i∈[1,�]

3) Alice samples her one-time pads ã ← Z
�
q and a set of

check values â ← Z
�
q and sets α ∈ Z

ξ·�
q as

α ..= {ã1‖â1}j∈[1,ξ]

∥∥ . . . ∥∥ {ãn‖ân}j∈[1,ξ]

Multiplication:
4) Alice and Bob access the Fη

COTe functionality, supplying
η = ξ · � as the OT-extension batch size. Alice plays the
sender, supplying α as her input, and Bob, the receiver,
supplies β. They receive as outputs, respectively, the
arrays ωA ∈ Z

η
q and ωB ∈ Z

η
q , which they interpret as{

z̃A,j
∥∥ẑA,j}j∈[1,η]

= ωA{
z̃B,j
∥∥ẑB,j}j∈[1,η]

= ωB

That is, z̃A is a vector wherein each element contains the
first half of the corresponding element in Alice’s output
from Fη

COTe, and ẑA is a vector wherein each element
contains the second half. z̃B and ẑB play identical roles
for Bob. The steps in the protocol up to this point
correspond to the Bob-preprocess phase in F�

2PMul.
5) Alice and Bob generate 2� shared, random values

by calling the random oracle. As input they use the
shared components of the transcript of the protocol that
implements Fη

COTe, in order the ensure that these values
have a temporal dependency on the completion of the
previous step. In our proofs, we abstract this step as a
coin tossing protocol.

χ̃ ← H�(1‖transcript)
χ̂ ← H�(2‖transcript)

6) Alice computes

r ..=

⎧⎨
⎩
∑

i∈[1,�]

χ̃i · z̃A,i·ξ+j + χ̂i · ẑA,i·ξ+j

⎫⎬
⎭

j∈[1,ξ]

u ..= {χ̃i · ãi + χ̂i · âi}i∈[1,�]

and sends r and u to Bob.
7) Bob aborts if

∨
j∈[1,ξ]

⎛
⎜⎜⎜⎜⎝

rj +
∑

i∈[1,�]

χ̃i · z̃B,i·ξ+j + χ̂i · ẑB,i·ξ+j

=
∑

i∈[1,�]

βi·ξ+j · ui

⎞
⎟⎟⎟⎟⎠

Note that steps 5, 6, and 7 correspond to the Alice-
preprocess phase in F�

2PMul.
8) Alice computes

γA
..= {ai − ãi}i∈[1,�]

and sends γA to Bob. Meanwhile, Bob computes

γB
..=
{
bi − b̃i

}
i∈[1,�]

and sends γB to Alice.
9) Alice and Bob compute their output shares

zA ..=

⎧⎨
⎩ai · γB,i +

∑
j∈[1,ξ]

gj · z̃A,i·ξ+j

⎫⎬
⎭

i∈[1,�]

zB ..=

⎧⎨
⎩b̃i · γA,i +

∑
j∈[1,ξ]

gj · z̃B,i·ξ+j

⎫⎬
⎭

i∈[1,�]

Note that this step and step 8 correspond to the Alice-
input, Bob-input, and Alice-input-rush phase in F�

2PMul.

Theorem III.1. The protocol π�
2PMul UC-realizes the function-

ality F�
2PMul for a κ-bit field Zq with s bits of statistical security

in the Fη
COTe-hybrid Random Oracle Model, in the presence

of a malicious adversary statically corrupting either party.

Rushing Adversaries. In both F�
2PMul and π�

2PMul we specify that
during the adjustment process, either Alice or Bob may adjust
their value first. We do this to ensure that both adjustments
can occur in a single round, without assuming simultaneous
message transmission: in the real world, one party will likely
transmit slightly before the other, but neither party will know
the transmission order until after both messages are sent. Due to
the asymmetry in the equations that the parties use to calculate
their output shares in step 9, however, this pseudo-simultaneous
transmission opens up an opportunity for a rushing adversary
to deprive the simulator of information that it requires to
produce the γB message, which necessitates the addition of
the previously-mentioned Alice-input-rush phase in F�

2PMul.
Consider a similar functionality that lacked the final phase

(always using the Alice-input phase when Alice adjusts her
input), and imagine the procedure of the simulator SP∗

Mul that
simulates against Alice and plays the role of the ideal adversary
for F�

2PMul. If Bob adjusts his output first, then F�
2PMul will

communicate Alice’s output zA to SP∗
Mul. SP∗

Mul must then
calculate an adjustment value γB that causes the output in
her view to be equal to the value zA returned by F�

2PMul. In
other words, γB must satisfy

γB =

⎧⎪⎪⎨
⎪⎪⎩

zA,i −
∑

j∈[1,ξ]

gj · z̃A,i·ξ+j

ai

⎫⎪⎪⎬
⎪⎪⎭

i∈[1,�]

At this point, zA and z̃A should be known to the simulator, but
since Alice has not yet transmitted her adjustment message,
the simulator should not know a, and consequently the correct
value of γB cannot be calculated. We remedy this by compelling
Alice to determine her own output zA in the functionality if
and only if she performs her adjustment second. Consequently
SP∗
Mul can choose γB uniformly, and Alice’s adjustment message

γA subsequently fixes her output zA and thereby allows her

input to be extracted via the above equation. Note that when
simulating against Bob, and equivalent problem does not occur,
since the equation Bob uses to adjust his output value does not
involve his input value. We formalize the intuition presented
here in the full version of this paper.

Round Count. As we have mentioned, our multiplication
protocol π�

2PMul requires an additional round relative to the
protocol of Doerner et al. This third round is necessitated
by the proof of security and not the protocol per se: the
adjustment messages γA and γB have no data dependency
upon the random multiplication that precedes them. However,
an adversary with some knowledge of their counterparty’s
input could potentially use that knowledge in combination
with the adjustment messages to compromise the random
multiplication in some way, were the adjustment messages sent
before the random multiplication is complete. In the context
of the multiparty ECDSA signing protocol that we present in
Section V, the parties’ multiplication inputs are information-
theoretically hidden prior to the multiplications themselves,
and consequently, we can optimize the multiplication process
slightly by sending the adjustment messages simultaneously
with the randomized multiplication, saving one round.

Cost Comparison to Prior Work. Our multiplication protocol
incurs a cost of κ + 2s OT invocations per batched input,
or � · (κ + 2s) for a batch of size �. On the other hand,
the encoding scheme used by Doerner et al.’s multiplication
protocol specifies codewords of size 2κ+ 2s, which implies a
cost of 2κ+ 2s OT instances per multiplication. In practice,
it is reasonable to choose κ = 256 and s = 80, under which
parameterization our protocol yields a savings of more than
38% in terms of OT instances.

IV. MULTIPARTY MULTIPLICATION

In this section, we compose multiple instances of the two-
party multiplication functionality F�

2PMul in order to form a
t-party multiplication protocol. Although we are aware of no
previous papers that describe it specifically, the general tech-
nique of composing two-party multipliers to form multiparty
multipliers has been in the folklore of MPC since time out of
mind. Nevertheless, we give a full account of the functionality
and protocol, and in the full version of this paper we give a
proof of security.

Specifically, the ability of a malicious party playing the role
of Alice to define its own output by rushing while interacting
with F�

2PMul implies that an adversary that can do the same
in the t-party setting, so long as at least one corrupted party
plays the role of Alice. For simplicity, our functionality will
assume that this is always the case and unconditionally allow
corrupted parties to define their own output. In addition, we
make the assumption in our functionality that the adversary
can withhold or delay the output to any honest party (by, for
example, refusing to engage in a required instance of F�

2PMul

with that party). This is a simplifying assumption, because our
protocol does not grant an adversary quite so much granularity.

We discuss this issue further in the full version of this paper.
Finally, we note the simulator, which we will describe in the
full version of this paper, cannot extract inputs from corrupted
parties individually, but must instead extract the product of
all corrupted parties’ inputs. Consequently, we specify that a
single ideal adversary (the simulator SP∗

Mul) interacts with the
functionality in the corrupted parties’ stead.

In both our functionality and protocol that follows it, a group
of n parties run the setup phase, and any subgroup of t parties
may subsequently compute an additive sharing of a product.

Functionality 5. F�,t,n
Mul :

This functionality is parameterized by group Zq over which
multiplication is to be performed, the party count n, the
threshold size t, and the batch size �. The Init phase runs once
with a group of parties {Pi}i∈[1,n], and the Multiplication
and Output phases may be run many times between any
(varying) subgroup of parties indexed by P ⊆ [1, n] such
that |P| = t. An ideal adversary, denoted SP∗

Mul, statically
corrupts the parties indexed by the set P∗ ⊂ [1, n] such that
|P∗| < t. Inputs from corrupt parties are provided directly to
the functionality by SP∗

Mul as a single, combined value.
Init: Wait for message (init) from {Pi}i∈[1,n]\P∗ and
from SP∗

Mul. Store (init-complete) in memory and send
(init-complete) to {Pi}i∈[1,n]\P∗ and to SP∗

Mul.
Multiplication: Receive (mult, idmul,P,ai) from each party
Pi for i ∈ P \ P∗, and receive (mult, idmul,P,aP∗ , zP∗)
from SP∗

Mul. If (init-complete) exists in memory but
(output, idmul, ·) does not exist in memory, and if aP∗ ∈ Z

�
q

and ai ∈ Z
�
q for all i ∈ P \P∗, and all parties agree to the

same set P, then sample

{zi}i∈P\P∗ ← Z
|P\P∗|×�
q

uniformly subject to⎧⎨
⎩zP∗,j +

∑
i∈P\P∗

zi,j

⎫⎬
⎭

j∈[1,�]

=

⎧⎨
⎩aP∗,j ·

∏
i∈P\P∗

ai,j

⎫⎬
⎭

j∈[1,�]

and store (output, idmul, z) in memory.
Output: On receiving (release, idmul, i) from SP∗

Mul, if
(output, idmul, z) exists in memory but (complete, idmul, i)
does not, and if i ∈ P \P∗, then send (output, idmul, zi) to
Pi, and store (complete, idmul, i) in memory.

We now give a protocol for t-party multiplication that realizes
F�,t,n

Mul . In our protocol specification, we will abstract away the
fact that F�

2PMul is asymmetric, with designated Alice and Bob
roles for participating parties. We will instead use phrasing
such as “Parties Pi and Pj access F�

2PMul with inputs a and
b” as shorthand to indicate that Pi plays the role of Alice and
Pj that of Bob, with inputs as specified. We will continue to
use this style throughout the rest of the paper. We illustrate
the pattern of interaction during an instance of the protocol for
the specific case of 8 parties as a wiring diagram in Figure 1.

Protocol 2. t-Party Multiplication
(
π�,t,n
Mul

)
:

This protocol is parameterized by the statistical security
parameter s and the group Zq over which multiplication is to
be performed, and by the party count n, the threshold size t,
and the batch size �. It invokes the Two-party Multiplication
functionality F�

2PMul. The Init phase is run once with the
entire group of parties {Pi}i∈[1,n], and the Multiplication
phase can be run repeatedly, each time with a unique idmul

and a varying subset of parties parties P ⊆ [1, n] such that
|P| = t. During each multiplication, every party Pi for i ∈ P
supplies an input vector ai ∈ Z

�
q and the unique index idmul

and receives an output zi ∈ Z
�
q , such that the outputs for all

parties in P form an additive sharing of the element-wise
product of the inputs.
Init: Each pair of parties Pi,Pj for i, j ∈ [1, n] such that
i < j initialize their multiplication oracle by sending (init)
to their shared F�

2PMul instance.
Multiplication:

1) Each party Pi has input ai, and sets ζ0
i

..= ai.
2) For each pair of parties Pi,Pj such that i < j:

a) Pj , acting as Bob, sends (preprocess, idmul
i,j) to

F�
2PMul, where idmul

i,j is a unique, agreed upon index.
b) On receiving (bob-ready, idmul

i,j) from F�
2PMul, Pi, as

Alice, sends (preprocess, idmul
i,j) to F�

2PMul.
c) Pj receives (alice-ready, idmul

i,j) from F�
2PMul.

3) For ρ ∈ [1, log2(t)]:
a) For each pair of parties Pi,Pj in each contiguous

non-overlapping subgroup of 2ρ parties from P, if
Pi and Pj have not previously interacted during the
course of this invocation of π�,t,n

Mul , then they send
(input, idmul

i,j , ζ
ρ−1
i) and (input, idmul

i,j , ζ
ρ−1
j) to

F�
2PMul, respectively, and receive (output, idmul

i,j , ζ
ρ,j
i)

and (output, idmul
i,j , ζ

ρ,i
j). If the party playing the role

of Alice goes second, then it samples a random output
and uses the rushing phase of F�

2PMul.
b) Each party Pi privately computes ζρ

i to be the element-
wise sum of its output shares for round ρ:

ζρ
i

..=

⎧⎨
⎩
∑

j∈Pρ,i

ζρ,j
i,l

⎫⎬
⎭

l∈[1,�]

where Pρ,i ⊂ P such that |Pρ,i| = 2ρ − 1 is the
subgroup with whom Pi interacted in round ρ.

4) Each party Pi takes zi ..= ζ
log2(t)
i to be their output.

Theorem IV.1. The protocol π�,t,n
Mul UC-realizes the function-

ality F�,t,n
Mul for a κ-bit field Zq in the F�

2PMul-hybrid Random
Oracle Model, in the presence of a malicious adversary
statically corrupting up to t− 1 parties.

Round Count. The protocol π�,t,n
Mul requires each party to engage

in t instances of the F�
2PMul functionality. The preprocessing

phases of these instances are evaluated in parallel, but due

a
1

a
3

a
2

a
4

a
7

a
6

a
5

a
8

× ×

×

×

×

×

+ +++

× ×

×

×

×

×

+ +++

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

+ +++ + +++

z
1

z
3

z
2

z
4

z
7

z
6

z
5

z
8

R
ou

n
d

3
R

o
u
n
d

2
1

P
1

P
3

P
2

P
4

P
7

P
6

P
5

P
8

Fig. 1: Illustration of a t-Party Multiplication among 8 parties.
We use × to denote an instance of the two-party multiplication
functionality F�

2PMul, and + to denote a local sum. Note that in
each round all individual instances of F�

2PMul are invoked in parallel.
Outputs from the first round are shown as green wires, from the
second round as red wires, and from the third round as blue wires.

to data dependencies, the input-adjustment phases must be
evaluated in log(t) sequential groups. Thus, when F�

2PMul is
realized by π�

2PMul, π
�,t,n
Mul will require log(t) + 2 rounds in

the general case. However, in our use-case we can apply the
optimization discussed at the end of Section III to π�

2PMul, in
light of which the round count of π�,t,n

Mul is reduced to log(t)+1.

V. THRESHOLD ECDSA

In this section, we describe the threshold ECDSA function-
ality that our protocol realizes, followed by the protocol itself,
which is broken into two parts: a setup protocol and a signing
protocol. The former protocol is run once among a group of n
parties, and its output may be reused many times by various
subgroups of t parties engaging in the latter.

A. The t-of-n ECDSA Functionality

We have made no attempt to formulate a general signature
functionality, but instead have modeled ECDSA in the threshold
setting directly, much as previous works [11], [12] have done.

Unlike the functionality of Doerner et al. [1], ours does not
allow malicious parties the ability to bias the instance key.
As is typical of dishonest-majority protocols, the adversary
will have the ability to deprive honest parties of their output.
We model this in our functionality by allowing any party to
specify a vector B ⊆ P of parties to block. We note that
ECDSA makes use of a hash function, and that the standard
specifies this function to be SHA-256. As we will discuss in
Section VII, we use SHA-256 to instantiate the Random Oracle
in our implementation. However, when our functionality makes
use of the function H , it refers not to the Random Oracle but
to SHA-256 specifically.

Functionality 6. F t,n
ECDSA:

This functionality is parameterized by the Elliptic curve
(G, G, q), as well as a hash function H . The setup phase
runs once with a group of parties {Pi}i∈[1,n], and the signing
phase may be run many times between any (varying) subgroup
of parties indexed by P ⊆ [1, n] such that |P| = t.
Setup: On receiving (init) from all parties:

1) Sample and store the joint secret key, sk ← Zq .
2) Compute and store the joint public key, pk ..= sk ·G.
3) Send (public-key, pk) to all parties.
4) Store (ready) in memory.

Signing: On receiving (sign, idsig,P,m) from each party
Pi for i ∈ P, where P ⊆ [1, n] such that |P| = t is the list
of parties participating in this signature, if (ready) exists in
memory but (complete, idsig) does not exist in memory:

1) Sample k ← Zq and store it as the instance key.
2) Wait for (get-instance-key, idsig) from all parties

P.
3) Compute (rx, ry) = R ..= k · G and send

(instance-key, idsig, R) to all parties.
4) Wait for (proceed, idsig,Bi) from every party Pi for

i ∈ P. If some party sends (abort, idsig), then halt.
5) Compute

sig ..=
H(m) + sk · rx

k

6) Collect the signature, σ ..= (sig mod q, rx mod q).
7) Compute

B ..=
⋃
i∈P

Bi

8) Send (signature, idsig, σ) to each Pi for i ∈ P \B
9) Store (complete, idsig) in memory.

B. Threshold Setup
Our setup protocol is derived from the 2-of-n setup protocol

of Doerner et al. [1]. Like their scheme, it uses simple
techniques to produce and verify an n-party Shamir secret
sharing [21] of a joint secret key sk, from which any t parties
can derive a t-party additive sharing of sk with no further
interaction; unlike their scheme, we use a proof of knowledge
to ensure security against a dishonest majority. Their protocol
sampled the public/private key pair as an n-party additive
sharing, and then converted it to a Shamir sharing; we make a

small improvement by sampling the Shamir sharing directly.
Specifically, each party locally samples a random polynomial
of degree degree-(t−1) and distributes points at predetermined
locations on this polynomial to the other parties. The parties
sum the points they receive to construct a Shamir sharing of a
single degree-(t−1) polynomial. The parties then multiply their
points on the shared polynomial by the elliptic curve generator
G, broadcast the result, and verify that all subsets of their shares
represent the same polynomial by homomorphically evaluating
the polynomial in the curve group. For degree-2 polynomials,
Doerner et al. required a number of evaluations quadratic in
n, whereas we require only a linear number regardless of the
polynomial degree. Since the homomorphic evaluation of the
polynomial is equal to pk, an adversary can learn nothing more
from the protocol than could be learned from any protocol that
realizes the same functionality.

Protocol 3. Setup
(
πt,n
ECDSA-Setup

)
:

This protocol is parameterized by the Elliptic curve (G, G, q),
and invokes the F�

2PMul, F�,t,n
Mul , and FRDL,n

Com-ZK functionalities.
It runs among a group of parties {Pi}i∈[1,n], taking no input,
and yielding to each party Pi a point p(i) on the polynomial
p, and the joint public key pk.
Public Key Generation:

1) Each party Pi samples a random degree polynomial pi
of degree t− 1.

2) For all pairs of parties Pi and Pj , Pi sends pi(j) to Pj

and receives pj(i) in return.
3) Each party Pi computes its point

p(i) ..=
∑

j∈[1,n]

pj(i)

4) Each party Pi computes Ti
..= p(i) · G and sends

(com-proof, idcom-zk
i , p(i), Ti) to FRDL,n

Com-ZK, using a
fresh, unique value for idcom-zk

i .
5) Upon being notified of all other parties’ commit-

ments, each party Pi releases its proof by sending
(decom-proof, idcom-zk

i) to FRDL,n
Com-ZK.

6) Each party Pi receives (accept, idcom-zk
j , Tj) from

FRDL,n
Com-ZK for each j ∈ [1, n] \{i} if Pj’s proof of knowl-

edge is valid. Pi aborts if it receives (fail, idcom-zk
j)

instead for any proof, or if there exists an index
x ∈ [1, n − t − 1] such that Jx = [x, x + t] and
Jx+1 = [x+ 1, x+ t+ 1] and∑

j∈Jx

λJx

j · Tj
=
∑

j∈Jx+1

λJx+1

j · Tj

where λJx

j and λJx+1

j are party Pj’s Lagrange coeffi-
cients for Shamir reconstruction with the sets of parties
indexed by Jx and Jx+1 respectively.

7) The parties compute the shared public key using any
subset J ⊆ [1, n] such that |J| = t

pk ..=
∑
j∈J

λJ
j · Tj

Auxiliary Setup:
8) Every party sends the (init) message to the F�,t,n

Mul

functionality.
9) Every pair of parties Pi and Pj such that i < j sends

the (init) message to the F�
2PMul functionality.

Round Count. The Public Key Generation portion of
πt,n
ECDSA-Setup requires three broadcast rounds in total, but

the initialization procedures in the Auxiliary Setup phase
require five, when Fη

COTe instantiated with Keller et al.’s OT-
extension [29] and the VSOT protocol [1], as we intend. Since
Auxiliary Setup is independent of Key Generation, these phases
can be run concurrently, and the round count can be as low as
five, concretely. Our implementation, however, runs them in
sequence, yielding eight concrete rounds.

C. Threshold Signing

Finally, we give our protocol for arbitrary-threshold ECDSA
signing. It follows the same general plan as that of Doerner
et al. [1], being broken down into four distinct stages. Note,
however, that unlike their protocol, the roles of all parties are
symmetric, and all parties receive the final signature at the
end (subject to the adversary’s approval). The parties begin
by sampling multiplicative shares of the instance key k, from
which they can locally compute multiplicative sharings of 1/k
and ski/k for i ∈ P, where P is the set of signing parties
and ski is the ith party’s additive share of sk. The multipliers
discussed in prior sections are then used to convert these
multiplicative sharings into additive sharings, and a consistency
check ensures that they are all consistent with one another.
Finally, each party creates a linear share of the signature using
the information known to it, and the parties exchange shares.

Protocol 4. Signing
(
πt,n
ECDSA-Sign

)
:

This protocol is parameterized by the Elliptic curve (G, G, q)
and the statistical security parameter s, and invokes the F�

2PMul,
F�,t,n

Mul , and FRDL,n
Com-ZK functionalities. It runs among a group

of parties P ⊆ [1, n] such that |P| = t, taking as input the
public key pk, the message m, and the signature index idsig

(which is used to generate other unique indices as required)
from each party Pi, along with a point p(i) on the polynomial
that encodes the secret key, and yielding to each party a copy
of the signature σ.
Instance Key Multiplication:

1) Each party Pi for i ∈ P samples their multiplicative
share of the instance key ki ← Zq and a uniform pad
value φi ← Zq, and commits to the pad by sending
(commit, idcomi,1 , φi,P) to Fn

Com, using a fresh value for
idcomi,1 . All other parties are notified of Pi’s commitment.

2) Each party Pi invokes F�,t,n
Mul with � = 2, supplying

{ki, φi/ki} as its input along with a fresh, agreed-upon
multiplication index, and receiving as output {ui, vi}.
We elide the specific messages exchanged with the

functionality in this process, but note that∑
i∈P

ui =
∏
i∈P

ki = k and
∑
i∈P

vi =
∏
i∈P

φi

ki
=

φ

k

Secret Key Multiplication:
3) Each party Pi computes λP

i , its Lagrange coefficient
given that it is reconstructing sk with the parties in P.
Pi then computes ski, its additive share of the secret
key for this group of parties

ski ..= λP
i · p(i)

4) Each pair of parties, Pi and Pj invoke F�
2PMul with � = 2.

The party with the lower index plays the role of Alice
and the other Bob, and they use a fresh, agreed-upon
multiplication index. The parties run the multiplication
preprocessing and input phases, with Pi supplying as
input {ski, vi} and Pj supplying {vj , skj}. As outputs
they receive {wj,1

i , wj,2
i } and {wi,1

j , wi,2
j }, respectively.

We again elide the specific messages involved in this
process, but note that

wj,1
i +wi,1

j = ski ·vj and wj,2
i +wi,2

j = skj ·vi
5) Each party Pi sets

wi
..= ski · vi +

∑
j∈P\{i}

(
wj,1

i + wj,2
i

)

Consistency Check:
6) Each party Pi computes Ri

..= ui ·G and commits to a
proof of knowledge of discrete logarithm for this value
by sending (com-proof, idcom-zk

i , ui, Ri,P) to FRDL,n
Com-ZK,

using a fresh value for idcom-zk
i .

7) Upon being notified of all other parties’ commitments,
each party Pi releases the previous proof by sending
(decom-proof, idcom-zk

i) to FRDL,n
Com-ZK

8) Each party Pi receives (accept, idcom-zk
j , Rj) from

FRDL,n
Com-ZK for each j ∈ P\{i} if Pj’s proof of knowledge

is valid. Once these messages are received, Pi computes

R ..=
∑
j∈P

Rj

If Pi instead receives (fail, idcom-zk
j) for any proof,

then it aborts.
9) Each party Pi calculates

Γ 1
i

..= vi ·R
Γ 2
i

..= vi · pk− wi ·G
Γ 3
i

..= wi ·R
and commits to all three values simultaneously by send-
ing (commit, idcomi,2 ,

(
Γ 1
i ,Γ

2
i ,Γ

3
i

)
,P) to Fn

Com, using a
fresh value for idcomi,2 .

10) Upon being notified of all other parties’ commitments,
Pi sends (decommit, idcomi,1) and (decommit, idcomi,2) to

Fn
Com and collects {(φj ,Γ

1
j ,Γ

2
j ,Γ

3
j)}j∈P\{i} as the

other parties do the same.
11) Each party Pi computes

φ ..=
∏
j∈P

φj

and aborts if∑
j∈P

Γ 1
j
= φ ·G ∨ φ = 0

∨
∑
j∈P

Γ 2
j
= 0 ∨

∑
j∈P

Γ 3
j
= φ · pk

Signing:
12) Each party Pi calculates

sigi
..=

H(m) · vi + rx · wi

φ

and broadcasts sigi.
13) Each party computes

sig ..=
∑
i∈P

sigi and σ ..= (sig, rx)

where (rx, ry) = R, and outputs σ if Verify(pk, σ) = 1.

Theorem V.1. The protocols πt,n
ECDSA-Setup and πt,n

ECDSA-Sign
UC-realize the functionality F t,n

ECDSA for the elliptic curve
group (G, G, q) in the (F�,t,n

Mul ,F�
2PMul,Fn

Com,FRDL,n
Com-ZK)-hybrid

Random Oracle Model, in the presence of a malicious adversary
statically corrupting up to t− 1 parties, if the Computational
Diffie-Hellman problem is hard in G.

Security. In the following paragraphs we informally discuss the
security properties of πt,n

ECDSA-Sign, in order to give the reader an
intuitive notion of the attacks that are possible when a malicious
adversary corrupts a majority of parties, and the way in which
the consistency check acts to prevent them. This section serves
only to develop an intuition; we provide a formal discussion
and a proof of Theorem V.1 in the full version of this paper.
We make the simplifying assumption that the adversary always
corrupts t− 1 parties (that is, all but one), which are indexed
by the vector P∗ ⊂ P, but note that our discussion applies
equally well to weaker adversaries. We designate the remaining
honest party as Ph with index h.

As our protocol is built atop F�,t,n
Mul , F�

2PMul, Fn
Com, and

FRDL,n
Com-ZK, we assume secure instantiations of those functionali-

ties are available, and analyze the remaining space of attacks,
which involve corrupted parties supplying inconsistent inputs
to these functionalities and thereby either producing a signature
for an unexpected message, or learning some information about
the honest parties’ secrets. Specifically, our task will be to argue
that if inconsistent inputs are supplied to the various instances
of these functionalities, then the consistency checks fail and the
remaining honest party aborts with overwhelming probability.
To this end, we can divide the class of attacks into two main
subclasses: inconsistent inputs to the instance key exchange,
and inconsistent inputs to the secret key multiplication.

• Inconsistent inputs to Instance Key Multiplication. Recall
that in their interactions with F�,t,n

Mul , the pool of corrupted
parties are represented by an ideal adversary SP∗

Mul, which
submits to the functionality a single unified input for
the entire pool. Suppose we define kP∗ to be the first
value in the batch supplied by SP∗

Mul to F�,t,n
Mul in step 2

of πt,n
ECDSA-Sign, and φP∗ to likewise be the product of

the values submitted by the corrupt parties to Fn
Com in

step 1. We can then define the error value ea such that
φP∗/kP∗ +ea is the second input in the batch supplied by
SP∗
Mul to F�,t,n

Mul in step 2. Let uP∗ and vP∗ be the unified
(that is, summed) outputs corresponding to the first and
second inputs in this step, respectively. This yields

uh + uP∗ = kh · kP∗

vh + vP∗ =
φh · φP∗

kh · kP∗
+ φh · ea

In order for the first consistency check to pass, it must
be the case that vh · R + Γ 1

P∗ = φ · G. If and only
if ea = 0, then the adversary can compute the check
message Γ 1

P∗ ..= vP∗ ·R such that this is true. Otherwise,
the adversary must compute Γ 1

P∗ ..= vP∗ ·R− φh · ea ·R,
where φh is uniform, and therefore φh · ea is uniform
as well. φh is revealed to the adversary only after Γ 1

P∗

must be committed, and therefore the adversary can do no
better than to guess, and with overwhelming probability
the check message will not verify, causing Ph to abort.

• Inconsistent inputs to Secret Key Multiplication. Suppose
that all values are defined as above, and that ski is
defined as the correct value given Pi’s Shamir share p(i)
(itself defined to be the output of the setup protocol).
Suppose furthermore that without loss of generality some
individual corrupted party P∗

i supplies as a batched input
{ski+esk, vi+ev} when invoking F�

2PMul with Ph in step 4
of πt,n

ECDSA-Sign, receiving as output {wh,1
i , wh,2

i }. For
simplicity, we assume only one corrupted party induces an
offset in this way, though the following argument applies
equally well when this is not the case. Regardless, we
now have

wP∗ ..= skP∗ · vP∗ +
∑
i∈P∗

wh,1
i + wh,2

i

where wP∗ is a unified (i.e. summed over the corrupt
parties) version of the output specified in step 5 of
πt,n
ECDSA-Sign. This yields the relation

wh + wP∗ =
sk · φ
k

+ esk · φh

kh
+ ev · skh

In the case that esk
= 0, the adversary can only pass
the second consistency check by computing the corrupted
parties’ values such that their sum Γ 2

P∗ is

Γ 2
P∗ = vP∗ · pk+ wP∗ ·G− esk · φh

kh
·G

where the adversary knows Rh = kh · G, but neither
kh itself, nor φh, and both kh and φh are uniform. As

before, φh is revealed to the adversary only after Γ 2
P∗

must be committed, and therefore Ph will abort with
overwhelming probability when esk
= 0. In the case that
ev
= 0, the adversary can only pass the third consistency
check by computing the corrupted parties’ values such
that their sum Γ 3

P∗ is

Γ 3
P∗ = wP∗ ·R− ev · skh ·R

where the adversary knows

skh ·G = pk−
∑
i∈P∗

ski ·G

but the adversary does not know skh itself. Computing
skh ·R given only R and skh ·G is a direct violation of the
Computational Diffie-Hellman Assumption, and therefore
under that assumption Ph will abort with overwhelming
probability when ev
= 0.

This covers every opportunity available to an adversary for
supplying inconsistent inputs, and so we conclude that if the
adversary does such a thing, then it will fail to pass at least
one of the checks, assuming that the Computational Diffie-
Hellman Problem is hard in the elliptic curve group G. A
formal treatment of security can be found in the full version.

Round Count. For readability, we expressed the protocol
πt,n
ECDSA-Sign in individual steps, but many of these can be

collapsed together in practice to reduce the number of rounds.
In particular, the process of committing to φi for i ∈ P is
independent of and can be performed simultaneously with the
first round of preprocessing for π�,t,n

Mul (which realizes F�,t,n
Mul),

and the preprocessing for all instances of π�
2PMul (which realizes

F�
2PMul) can be moved forward to occur at the same time. The

round-count optimization originally described in Section III
can be applied, reducing the remaining rounds required by
π�
2PMul to log(t). Following this, a single round is required to

complete all instances of π�
2PMul simultaneously. The process

of committing to Ri and an associated proof of knowledge
for i ∈ P is independent of the secret key multiplication, and
thus can it can also be performed immediately after π�

2PMul

completes. Another round is required to decommit, and two
more to commit to and then release the check messages. Finally,
the last round is used to swap shares of the signature. Thus
the total round count for ECDSA signing comes to log(t) + 6.

VI. COST ANALYSIS

In Table I we provide an accounting of the communication
costs for our ECDSA setup and signing protocols, and in
Table II we account for the costs of our multiplication protocols.
Round counts for our protocols are discussed at length in the
relevant sections. Our equations assume that elements from Zq

are represented in κ bits, and that curve points are transmitted
with point compression and thus are represented in κ + 1
bits. We assume that commitments require transmission of a
single element from Zq, that decommitments consist simply
of the committed values, and that zero-knowledge proofs of
knowledge of discrete logarithm comprise two curve points

Phase Communication (Bits)

Setup n2−n
2

· (5κ2 + 6κ+ 2) + 4κ · n+ 2n

Signing t2−t
2

· (9κ2 + 18κ · s+ κ · κOT + 30κ+ 10)

TABLE I: Overall Communication Cost Equations for ECDSA.
The costs assume that the Fη

COTe functionality is realized via the
protocol of Keller et al. [29] (which introduces an additional security
parameter, κOT) with the VSOT protocol [1] supplying base-OTs.

Offline (Setup) Costs
Protocol Rounds Communication (Bits)

π�
2PMul 5 κ · (5κ+ 4) + 2

π�,t,n
Mul 5 n2−n

2
· κ · (5κ+ 4) + 2

Online Costs

π�
2PMul 3 κ · (2ξ · �+ ξ + 3�+ κOT + 2)

π�,t,n
Mul log(t)+ 2 t2−t

2
· κ · (2ξ · �+ ξ + 3�+ κOT + 2)

TABLE II: Communication Cost Equations for Subprotocols. The
costs assume that the Fη

COTe functionality is realized via the protocol
of Keller et al. [29] with the VSOT protocol [1] supplying base-OTs.
In this table we do not consider the round-reducing optimization for
π�
2PMul. Note that � is the multiplication batch size, and ξ is the size

of the encoding used by Bob, in bits.

and a single element from Zq , along with the point for which
knowledge of discrete logarithm is to be proven.

The signing protocol πt,n
ECDSA-Sign contains one execution of

the π�
2PMul protocol for each pair of parties with � = 4; see

Section VII for a discussion of the optimization that allows
this, as opposed to the two executions each with � = 2 that
would be suggested by the protocols as previously described.
In addition, each party that participates in the sigature must
broadcast commitments and decommitments to φi, Ri, a proof
of knowledge of discrete logarithm for Ri, and check messages
Γ 1
i , Γ 2

i , and Γ 3
i . Finally, each party must broadcast its signature

share sigi. The commitments are coalesced such that only three
calls to Fn

Com are required, each adding κ bits of communication
to the cost of the value committed.

For the setup protocol πt,n
ECDSA-Setup, the bulk of the commu-

nication cost comes from the initialization of OT-extensions,
which will later be used by π�

2PMul and (by proxy) π�,t,n
Mul . The

only other elements transmitted during setup are polynomial
points pj(i) from every party Pj to every Pi, and for every Pi

a commitment and decommiment to the curve point Ti and a
corresponding proof of knowledge of Ti’s discrete logarithm.

Concretely, for κ = 256, s = 80, and κOT = 128 + s
(an additional security parameter for OT-extension [29]), the
communication cost for signing is roughly 64.7 · t · (t − 1)
kilobytes, and for setup roughly 20.5 · n · (n − 1) + 0.1 · n
kilobytes. As an example, for n = 16 and t = 8, setup requires
15291 KB of communication and signing requires 3571 KB.

VII. IMPLEMENTATION

We created proof-of-concept implementations of our t-of-
n setup and signing protocols in the Rust language, which
are derived from the open source 2-of-n implementations of
Doerner et al. [1]. Our implementation uses the secp256k1
curve, as standardized by NIST [5]. Thus, for all benchmarks,
κ = 256; additionally, we chose s = 80. We instantiated the
Fη

COTe functionality using the protocol of Keller et al. [29]
and set the OT-extensions security parameter κOT = 128 + s,
following their analysis. We chose, as Doerner et al. did, to
instantiate FRDL,n

Com-ZK via the Fiat-Shamir Heuristic (though we
note that this transform is not UC-secure), and to instantiate the
PRG, the random oracle H , and the commitment functionality
Fn

Com via SHA-256. Consequently, our protocol uses the same
concrete hash function as specified in the ECDSA standard.

We note that while the folkloric hash-based instantiation of
Fn

Com (i.e. H(m‖r) where m is the message, and r ← {0, 1}κ)
requires a random nonce to be appended to the message in
order to hide the message regardless of its distribution, in our
protocol all committed messages have sufficient entropy that
the nonce can be omitted.

Unlike Doerner et al., we do not parallelize vectors of hash-
ing operations. Instead, each party parallelizes its interactions
with its counterparties (and the computations that they require),
using a number of threads equal to the number of parties,
or a specified maximum, whichever is smaller. Additionally,
the pairwise OT-extension initialization required by our setup
protocol is parallelized among an number of threads equal to
the number of parties. While we have assumed throughout this
paper that the setup protocol can parallelize key-generation
and OT-extension initialization, our implementation runs these
two phases sequentially, and thus the practical round count is
increased from five to eight.

In our signing protocol, as described in Section V, the
parties instantiate both the F�

2PMul and F�,t,n
Mul functionalities

with batch sizes of � = 2. Within the π�,t,n
Mul protocol that

realizes F�,t,n
Mul , F�

2PMul is instantiated a second time by all
pairs of parties, again with a batch size � = 2. Observe that
the preprocessing for both sets of F�

2PMul instances can be
performed simultaneously, and that when π�

2PMul is used to
realize F�

2PMul it is feasible for the parties to provide inputs
and produce outputs for each element in a batch independently.
In our implementation, we combine the batches and use only a
single instance of the π�

2PMul protocol for each pair of parties,
with a batch size � = 4. This allows us to perform only one OT-
extension operation, and thereby save the overhead associated
with a second.

We benchmarked our implementation using a set of Google
Cloud Platform n1-highcpu-8 nodes, each running Ubuntu
18.04 with kernel 4.15.0. Each node of this type has four
physical cores clocked at 2.0 GHz, and is capable of executing
eight threads simultaneously. These machines are slightly
slower than those used by Doerner et al. [1], and thus the
timings we report for their protocol are slightly slower than they
report themselves. Each party participating in a benchmark was

n/t Range n/t Step Samples (Signing) Samples (Setup)

[2, 8] 1 16000 2000

(8, 16] 2 8000 1000

(16, 32] 4 4000 500

(32, 64] 8 2000 250

(64, 128] 16 1000 125

(128, 256] 32 500 62

TABLE III: LAN Benchmark Parameters. For signing we varied
t according to these parameters, and for setup we varied n, fixing
t = �(n+ 1)/2�.

allocated one node, and the parties communicated via Google’s
internal network. We compiled our code using the nightly
version of Rust 1.28, with the default level of optimization.
Parallelism was provided by the Rayon crate and, as each
node can execute eight threads simultaneously, we limited the
number of threads used in signing to ten (having arrived at
this number empirically). Our hash function implementations
were written in C using compiler intrinsics, and were compiled
with GCC 8.2.0. Our benchmarking programs were designed to
establish insecure connections among the parties one time only,
and then run a batch of setup or signing operations, measuring
the wall clock time for the entire batch. Thus, they record
overhead due to latency and bandwidth constraints, but they do
not record overhead due to private or authenticated channels.

A. LAN Benchmarks

For benchmarks in the LAN setting, we created a set of 256
nodes in Google’s South Carolina datacenter. Among these
nodes, we measured the bandwidth to be generally between 5
and 10 Gbits/sec, and the round-trip latency to be approximately
0.3 ms. Using these nodes, we collected data for both our
setup and signing protocols using combinations of parameters
as specified in Table III. For signing benchmarks, all costs are
independent of n, the number of parties in the larger group from
whom the signing parties are selected. Consequently, we varied
only t, the number of parties actually participating in signing.
For setup, only computation costs depend upon t, and not
bandwidth; consequently we varied n and set t = (n+1)/2�,
which we determined to be the most expensive value relative
to a particular choice of n. Our aim in choosing sample counts
was to ensure each benchmark took five to ten minutes in
total, in order to smooth out artifacts due to transient network
conditions. Our results for setup are reported in Figure 2, and
our results for signing are reported in Figure 3.

We note that our method only slightly underperforms that
of Doerner et al. [1] for 2-of-n signing in this setting, in
spite of the fact that our protocol implements a somewhat
stronger functionality. Specifically, we require 9.52 ms, whereas
an evaluation of their protocol (with no parallelism) in our
benchmarking environment requires 5.83 ms. In a similar
benchmark environment, but without parallelism, the 2-of-2
protocol of Lindell [12] was reported to require 36.8 ms to
sign with only two parties. Allowing parallelism, our protocol

Fig. 2: Wall Clock Times for n-Party Setup over LAN. Note that
all parties reside on individual machines in the same datacenter, and
latency is on the order of a few tenths of a millisecond.

Fig. 3: Wall Clock Times for t-Party Signing over LAN. Note that
all parties reside on individual machines in the same datacenter, and
latency is on the order of a few tenths of a millisecond.

is capable of signing with 24 parties in 37.6 ms, or roughly
the same time envelope. The most efficient prior works for
threshold ECDSA signing with arbitrary thresholds are those
of Gennaro et al. [10] and Boneh et al. [11] (who provide an
improved implementation Gennaro et al.’s protocol in addition
to developing new techniques). As with Lindell’s protocol, we
did not benchmark their protocols in our environment, and
so no truly fair comparison is possible. However, Boneh et
al. provide benchmarks for both protocols among groups of
parties ranging in size from 2 to 20, with each party residing
on a single four-core, eight-thread machine, and no network
costs recorded. Gennaro et al.’s protocol is the more efficient
of the two in the case of 2-of-n signing, and requires roughly
350 ms. For 20-of-n signing, Boneh et al.’s protocol is the
more efficient of the two, requiring roughly 1.5 seconds. While
it is true that their benchmark environments differs from ours,
our results are factors of roughly 40 and 50 better than theirs.
We do not believe that environmental differences account for
this.

Among the prior works, only Lindell reports on setup
performance. In the 2-of-2 case, his protocol requires 2435 ms,
whereas in the 2-of-n case our protocol requires only 45 ms.
Even in the 128-of-n case, our setup protocol requires only

66.5 ms
348 ms

87.1 ms

235 ms

Fig. 4: Map of Datacenter Locations used for WAN Benchmarks,
with latency figures along a few of the longer routes. The subgroup
of five zones inside the US are highlighted in red.

2299 ms. It seems that the performance of the setup protocols
of Gennaro et al. and Boneh et al. has never been reported, but
Lindell [12] conjectures that they would require many minutes.

B. WAN Benchmarks

As we have previously noted, our protocol is at a disad-
vantage relative to prior works in terms of round count. In
order to demonstrate the practical implications of this fact, we
ran an additional benchmark in the WAN setting. We chose
16 Google datacenters (otherwise known as zones) that offer
instances with current-generation CPUs; these are located on
a map in Figure 4. Five were located inside the United States,
in South Carolina, Virginia, Oregon, California, and Iowa.
Among these, the longest leg was between Oregon and South
Carolina, with a round-trip latency of 66.5 ms and bandwidth
of 353 Mbits/sec. The remaining 11 were located in Montreál,
London, Frankfurt, Belgium, the Netherlands, Finland, Sydney,
Taiwan, Tokyo, Mumbai, and Singapore. Among the complete
set, the longest leg was between Belgium and Mumbai, with
a round-trip latency of 348 ms and a bandwidth of 53.4
MBits/sec. We tested two configurations: one with only the
five US datacenters participating, and another with all 16. For
each configuration, we performed benchmarks with one party
in each participating datacenter, and with eight parties in each
participating datacenter. In all cases, we collected 125 samples.
Results are reported in Table IV, along with comparative data
from our LAN benchmarks.

It is worth noting that Wang et al. [31] recently made the
claim that they performed the largest-scale demonstration of
multiparty computation to date. Their benchmark involves
128 parties split among eight datacenters around the world,
who jointly compute an AES circuit using the actively-secure
multiparty garbling protocol that they developed. Our WAN
benchmark involves 128 parties split among 16 datacenters,
and thus we assert that we have also evaluated one of the
largest secure multiparty protocols to date, at least so far as
party count and geographic distribution are concerned. We also
note that the in the clear setting, AES is generally considered
to have a much lower circuit complexity than ECDSA; this
is reflected in the significantly lower computation time for a
single AES operation as compared to signing a single message

Parties/Zones Signing Rounds Signing Time Setup Time

5/1 9 13.6 67.9

5/5 9 288 328

16/1 10 26.3 181

16/16 10 3045 1676

40/1 12 60.8 539

40/5 12 592 743

128/1 13 193.2 2300

128/16 13 4118 3424

TABLE IV: Wall-clock Times in Milliseconds over WAN. The
benchmark configurations used are described in Section VII-B. For
signing we varied t according to these parameters, and for setup we
varied n, fixing t = �(n+1)/2�. Benchmarks involving only a single
zone are LAN benchmarks, for comparison.

using ECDSA. Interestingly, in the context of evaluating these
primitives securely among multiple parties, our protocol for
realizing F t,n

ECDSA performs considerably better than Wang et
al.’s realization of Fn

AES. In the LAN setting with 128 parties
(each much more powerful than the ones we employ), they
report a 17-second wall clock time, including preprocessing,
and in the global WAN setting with 128 parties, their protocol
requires 2.5 minutes. When the setup and signing costs are
combined for our protocol, it requires 2.5 seconds and 7.5
seconds with 128 parties in the LAN and global WAN settings,
respectively. We believe that this serves to demonstrate that
there are multiparty functionalities for which specially tailored
protocols are warranted in practice, as opposed to the blind
use of generic MPC for all tasks.

C. Low-power Benchmarks

Finally, we performed a set of benchmarks on a group of
three Raspberry Pi model 3B+ single-board computers in order
to demonstrate the feasibility of evaluating our protocol (and the
protocols of Doerner et al. [1]) on small, low-powered devices.
Each board has a single, quad-core ARM-based processor
clocked at 1.4 GHz. The boards were loaded with Raspbian
Linux (kernel 4.14) and connected to one another via ethernet.
As an optimization for the embedded setting, we abandoned
SHA-256 (except where required by ECDSA) in favor of the
BLAKE2 hash function [32], using assembly implementations
provided by the BLAKE2 authors. To simulate the setting
wherein an embedded device signs with a more powerful one,
we used a 2013 15" Macbook Pro running Mac OS 10.13
(i.e. one author’s laptop). This machine was engaged in other
tasks at the time of benchmarking, and no attempt was made to
prevent this. We benchmarked 2-of-2 signing and setup between
the Macbook and a single Raspberry Pi, and t-of-n setup and
signing among the group of Pis, with n set as 3 and t as both
2 and 3. When n = 2, we used the slightly more efficient
protocols of Doerner et al. [1] without modification, and when
t = 3 we used the protocols presented in this paper. For setup,
we collected 50 samples, and for signing, we collected 250.
Results are presented in Table V. We observe that in spite of

Configuration Benchmark Setup Time Signing Time

Macbook/RPi 2-of-2 1419 52.6

2×RPi 2-of-2 1960 58.5

2×RPi 2-of-n – 69.8

3×RPi 3-of-3 2277 162

TABLE V: Wall-clock Times in Milliseconds for Raspberry Pi.
The benchmark configurations used are described in Section VII-C.

the limitations of the hardware on which these benchmarks
were run, the signing time remains much less than a second,
and setup requires only a few seconds. Thus we expect our
protocol to be computationally efficient enough to run even on
embedded devices such as hardware tokens or smartwatches,
and certainly on more powerful mobile devices such as phones.

VIII. CODE AND FULL VERSION

Our implementation is available under the three-clause BSD
license from https://gitlab.com/neucrypt/mpecdsa. For the full
version of this paper, please visit http://neucrypt.org.

IX. ACKNOWLEDGMENTS

We thank Dennis Giese for providing the hardware used in
our low-power device benchmark.

REFERENCES

[1] J. Doerner, Y. Kondi, E. Lee, and a. shelat, “Secure two-party threshold
ecdsa from ecdsa assumptions,” in IEEE S&P, 2018.

[2] Y. Desmedt, “Society and group oriented cryptography: A new concept,”
in CRYPTO, 1987.

[3] National Institute of Standards and Technology, “FIPS PUB 186-4:
Digital Signature Standard (DSS),” http://nvlpubs.nist.gov/nistpubs/FIPS/
NIST.FIPS.186-4.pdf, 2013.

[4] American National Standards Institute, “X9.62: Public Key Cryptography
For The Financial Services Industry: The Elliptic Curve Digital Signature
Algorithm (ECDSA),” 2005.

[5] D. R. L. Brown, “Sec 2: Recommended elliptic curve domain
parameters,” 2010. [Online]. Available: http://www.secg.org/sec2-v2.pdf

[6] D. Kravitz, “Digital signature algorithm,” jul 1993, uS Patent 5,231,668.
[7] Bitcoin Wiki, “Transaction,” https://en.bitcoin.it/wiki/Transaction, 2017,

accessed Oct 22, 2017.
[8] G. Wood, “Ethereum: A secure decentralised generalised transaction

ledger,” 2017. [Online]. Available: https://ethereum.github.io/yellowpaper/
paper.pdf

[9] P. MacKenzie and M. K. Reiter, “Two-party generation of dsa signatures,”
in CRYPTO, 2001.

[10] R. Gennaro, S. Goldfeder, and A. Narayanan, Threshold-Optimal
DSA/ECDSA Signatures and an Application to Bitcoin Wallet Security,
2016.

[11] D. Boneh, R. Gennaro, and S. Goldfeder, “Using level-1 homomorphic
encryption to improve threshold dsa signatures for bitcoin wallet security,”
in LATINCRYPT, 2017.

[12] Y. Lindell, “Fast secure two-party ecdsa signing,” in CRYPTO, 2017.
[13] P. Paillier, “Public-key cryptosystems based on composite degree

residuosity classes,” in EUROCRYPT, 1999.
[14] N. Gilboa, “Two party rsa key generation,” in CRYPTO, 1999.
[15] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE

Trans. Inf. Theor., 1976.
[16] V. Shoup, “Lower bounds for discrete logarithms and related problems,”

in EUROCRYPT, 1997.
[17] D. R. L. Brown, “Generic groups, collision resistance, and ECDSA,”

Des. Codes Cryptography, 2005.
[18] D. Boneh and M. Zhandry, “Multiparty key exchange, efficient traitor

tracing, and more from indistinguishability obfuscation,” in CRYPTO,
2014.

[19] A. Joux, “A one round protocol for tripartite diffie-hellman,” J. Cryptol.,
2004.

[20] G. J. Simmons, “The prisoners’ problem and the subliminal channel,” in
CRYPTO, 1983.

[21] A. Shamir, “How to share a secret,” Commun. ACM, 1979.
[22] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental

game,” in STOC, 1987.
[23] J. Katz and Y. Lindell, Introduction to Modern Cryptography, Second

Edition. Chapman & Hall/CRC, 2015, ch. Digital Signature Schemes,
pp. 443–486.

[24] R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” in FOCS, 2001.

[25] C.-P. Schnorr, “Efficient identification and signatures for smart cards,”
in CRYPTO, 1989.

[26] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to
identification and signature problems,” in CRYPTO, 1986.

[27] M. Fischlin, “Communication-efficient non-interactive proofs of knowl-
edge with online extractors,” in CRYPTO, 2005.

[28] D. Beaver, “Correlated pseudorandomness and the complexity of private
computations,” in STOC, 1996.

[29] M. Keller, E. Orsini, and P. Scholl, “Actively secure OT extension with
optimal overhead,” in CRYPTO, 2015.

[30] T. Chou and C. Orlandi, “The simplest protocol for oblivious transfer,”
in LATINCRYPT, 2015.

[31] X. Wang, S. Ranellucci, and J. Katz, “Global-scale secure multiparty
computation,” in CCS, 2017.

[32] J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, and C. Winnerlein,
“Blake2: simpler, smaller, fast as md5,” https://blake2.net/blake2.pdf,
2013.

