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Abstract—Misspelled keywords have become an appealing
target in search poisoning, since they are less competitive to
promote than the correct queries and account for a consid-
erable amount of search traffic. Search engines have adopted
several countermeasure strategies, e.g., Google applies automated
corrections on queried keywords and returns search results of
the corrected versions directly. However, a sophisticated class
of attack, which we term as linguistic-collision misspelling, can
evade auto-correction and poison search results. Cybercriminals
target special queries where the misspelled terms are existent
words, even in other languages (e.g., “idobe”, a misspelling of
the English word “adobe”, is a legitimate word in the Nigerian
language).

In this paper, we perform the first large-scale analysis on
linguistic-collision search poisoning attacks. In particular, we
check 1.77 million misspelled search terms on Google and Baidu
and analyze both English and Chinese languages, which are
the top two languages used by Internet users [1]. We leverage
edit distance operations and linguistic properties to generate
misspelling candidates. To more efficiently identify linguistic-
collision search terms, we design a deep learning model that can
improve collection rate by 2.84x compared to random sampling.
Our results show that the abuse is prevalent: around 1.19% of
linguistic-collision search terms on Google and Baidu have results
on the first page directing to malicious websites. We also find that
cybercriminals mainly target categories of gambling, drugs, and
adult content. Mobile-device users disproportionately search for
misspelled keywords, presumably due to small screen for input.
Our work highlights this new class of search engine poisoning
and provides insights to help mitigate the threat.

I. INTRODUCTION

Search engines serve an important role in people’s daily lives

and drive the majority of web traffic. Indeed, 50%–70% of the

traffic to websites come through search engines [2]. Website

developers and administrators go to great lengths to improve

the rankings of their pages by following benign search engine

optimization (SEO) guides [3]. On the other hand, cybercriminals

attempt to use search engine poisoning techniques (such as

keyword stuffing [4] and link farms [5]) to poison popular

search keywords, falsely promote rankings, and divert users to

their websites for malicious purposes. Such abuses not only

deteriorate users’ experience to navigate web content, but also

cause substantial loss of visitors and revenue from legitimate

businesses.

Misspelled keywords have increasingly become the target

in SEO attacks [6], since they are less competitive to poison

compared to the correct popular queries and can capture large

numbers of users who accidentally make typographical errors.

To combat the hassle of abusing misspelled keywords, search

engines, including Google and Baidu, have taken multiple

actions, ranging from displaying warning messages to bring

users’ attention when there are potential misspellings in the

search queries, to automatically returning search results of the

correct versions. As shown in Figure 1(a), suppose a user makes a

misspelled search for adoeb on Google (misspelling of adobe).

The search is automatically changed to adobe (the correct

search term) and the user will not receive any search result for

the misspelled input. However, adversaries crave to continue

preying on the misspelled query traffic that users generate. Even

large vendors attempt to leverage misspelled keywords. For

example, Amazon used misspellings to advertise products on

their website [7], and Snickers targeted misspelled keywords

in the “You are Not You When You’re Hungry” advertisement

campaign [8]. The rapid adoption of mobile devices, such as

smart phones and tablets, exacerbates chances of incorrect inputs,

presumably due to typing on small screens. A recent report

shows that around 60% of search queries are attributed to mobile

devices [9].

To bypass automated corrections of search engines, attackers

can employ a new attack scheme, namely linguistic-collision
misspelling, which abuses the mistyped search queries coinciding

with legitimate existent words, even in a different language. For

example, “idobe” is a misspelling of the English word “adobe”,

but also happens to be an existent Nigerian word (meaning

“dropping”); “平锅” in Chinese (meaning “frying pan”) is a

mistake input of “苹果” (meaning “Apple” company). Search

engines do not enforce automated corrections on such cases,

which introduces exploitation opportunities for cybercriminals

to launch search engine poisoning attacks.

In this work, we perform the first large-scale analysis of

linguistic-collision search engine poisoning. We focus on both

English and Chinese languages, which are the top two languages

used by Internet users [1]. We collect target keywords from

a variety of categories, such as drugs, gambling, clothing,

and food. We also include Alexa top 10,000 names in the

English target-keyword corpus. Two main challenges that

we face are: (1) how to generate misspelled words, and

(2) how to effectively determine whether a particular search

term will be auto-corrected/suggested by search engines. For

English-word analysis, we first use edit distances to generate

potential misspelling candidates. To make the experiment scale

(particularly for Alexa top 10,000 names), we adapt a deep

learning model–the Recurrent Neural Network framework–

to predict how likely a misspelling candidate will not be
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(a) Showing-results-for case (high confidence about
misspellings), where the returned search results are
automatically changed for the corrected search term
adobe. Users do not receive search results for the
misspelled keyword.

����������	

(b) Including-results-for case (medium confidence
about misspellings), where the top returned results
are changed for the corrected search term adobe
and the rest of the results are for the originally input
term.

����������	

(c) Did-you-mean case (low confidence about mis-
spellings), where the returned search results are for the
misspelled keyword. Meanwhile, users are displayed
with a highlighted warning banner to indicate the
corrected term.

Figure 1: Examples of Google’s auto-correction and auto-suggestion mechanisms on searches with misspelled keywords (original target keyword
is adobe). Users receive various notifications or corrected results for the misspelled searches.

automatically corrected. Our approach can improve the collection

rate by 2.84 times compared to random sampling. For Chinese-

word analysis, we use a phonetic approach (pinyin input)

to convert Chinese characters to Roman letters and generate

misspelling candidates. To reduce online checking, we compare

the candidate words against Chinese word dictionaries, since a

misspelled Chinese word must still be another valid Chinese

word. Finally, we crawl search results showing on the first

page from Google and Baidu, and check whether the URLs are

blacklisted.

In this work, we have the following key findings.

• We find that linguistic-collision misspellings are widely

abused by attackers with 1.19% of non-auto-corrected

terms returning malicious results on the first page from

both Google and Baidu.

• Cybercriminals primarily target keywords related to drugs,

gambling, and adult terms, with searches poisoned at four

times the rate of less easily monetized categories (like

clothing or food).

• Poisoning activity exhibits a long-tail effect with search

results across the Alexa top 10,000 dataset containing

around 0.54% poisoning rate on the first page.

• Among various misspelling generation methods, vowel

substitution for English produces a 50% higher non-auto-

corrected rate compared to average, and the Chinese

methods yield a 2.4x improvement for same pronunciation

and 2.3x for fuzzy pinyin.

• According to the traffic comparison from Google Adwords

and Baidu Index, mobile-device users provide a significant

proportion of the traffic to linguistic-collision misspellings

presumably through fat-finger errors. The increase in traffic

further incentivizes attackers to target this class of search

engine poisoning.

To summarize, we make the following contributions in this

paper.

• We systematically measure and understand a new threat—

linguistic-collision misspellings, which allows attackers

to bypass existing auto-correction tools and poison large

numbers of search results.

• We design a novel approach using deep learning to collect

linguistic-collision misspellings in the wild. Based on our

experiment on the Alexa top 10,000 case, we find that our

model outperforms random sampling by 2.84x.

• Using our crawling framework, we perform the first large-

scale study of linguistic-collision misspellings collecting 1.77

million search results for misspellings generated for 18,234

original keywords across English and Chinese.

• Our results show that linguistic-collision misspellings are

widely abused on both Google and Baidu, with around 1.19%

results on the first search page directing to malicious websites.

We further perform detailed characterization of this class of

search poisoning, including the poisoned word categories,

effectiveness of misspelling generation approaches, and search

volume distribution.

II. BACKGROUND

A. Chinese Pinyin and Input Approach

Hanyu Pinyin (abbreviated as pinyin) is the phonetic system

to represent Chinese characters with Roman letters. Pinyin

provides a convenient way to learn Chinese and input Chinese

characters on computers. For example, the Chinese character

“果” can be encoded as the pinyin symbol Guo. Typically each

Chinese character is mapped to one pinyin (though there are

polyphonic Chinese characters), but one pinyin can represent

many different Chinese characters. This can introduce ambiguity

when transforming pinyin to Chinese characters. Moreover,

pronunciations of pinyin have four tones, which can be indicated

by a number following the pinyin. The aforementioned Chinese

character “果” (meaning “fruit”) maps to pinyin with the third

tone Guo3. Another Chinese character “锅” (meaning “pan”)

has the same pinyin spelling but a different tone Guo1.

Pinyin input method is the most widely used Chinese-input

approach [10] (compared to other input methods, like stroke-

based input method). Since the input is based on pronunciations,
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it is easy for Chinese speakers to master. Any English keyboard

can type pinyin. After users type pinyin of a Chinese character,

the input method will display a list of characters corresponded

to that pinyin for users to select and use. For convenience,

pinyin input system typically does not provide selection of tone

marks. The presented possible Chinese characters match the

same pinyin spelling and do not distinguish tones. For example,

the above “果” and “锅” will be shown simultaneously, once

a user types the pinyin Guo (since they have the same pinyin

spelling).

B. Deep Learning and Recurrent Neural Networks

Deep learning has been applied to a wide range of problems

as computing power has grown significantly. Neural networks

in particular have seen incredible successes in many application

domains. A neural network contains layers of neurons, which

provide the computation elements to predict future outputs. The

parameters of the neurons provide the memory and are adjusted

during training.

In this paper, we focus on a particular type of neural network,

the Recurrent Neural Network (RNN), which has been shown

to work well with sequential data [11, 12]. An RNN accepts an

input sequence of vectors and outputs a vector sequence. The

input and output symbols are generally converted to a one-hot

representation that allows the model to more easily learn the

relationships between the input and the output. The output

vectors encode the RNN’s estimate of the probability that a

given symbol should be selected in the output sequence. During

training, the correlation between input and output sequences is

learned using Long Short-Term Memory (LSTM) [13]. For text

input, RNNs are typically used to deal with text at the word

level and have proven remarkably successful in generating text.

However, character-based RNNs deal with text at the alphabet

level and thus can be more robust when dealing with extremely

large vocabularies that may be difficult to collect.

III. SEARCH ENGINE POISONING OF

MISSPELLED KEYWORDS

Misspelled keywords have been extensively exploited to

illicitly seize search traffic and gain profit [6, 8]. Recent reports

show that 10%–20% of queries on search engines contain

misspellings [14, 15]. These alternative keywords are typically

less expensive to purchase or less competitive to promote in

the search results, making misspellings attractive targets for

cybercriminals.

To counteract misspelling abuse and improve users’ experience,

over the past several years, major search engines, such as Google

and Baidu, have taken significant strategy changes to provide

auto-suggestion or auto-correction [16, 17]. We use search

results from Google to illustrate different levels of correction

that search engines offer when a spelling mistake is detected.

As an example, for a original keyword adobe, misspelled

variants result in the following four search return types from

Google (sorted from high to low regarding mitigation against

misspellings in queries).

Figure 2: Search results of misspelling cilis on Google (original
target search word is cialis). Top results lead to illicit pharmaceutical
websites. Our investigation shows that some of these websites are
reported at blacklists and they have cloaking or redirection.

1) Showing-results-for (high confidence about mis-

spellings). When search engines have high confidence in what

the correct keyword should be, results for the corrected term

are directly returned. This is the strongest-level mitigation

against misspellings in queries, where the results of the

suspect misspelled keyword will not be shown at all. Users

are notified that search has been modified with the sign

“Showing results for”. As shown in Figure 1(a), search for

adoeb (transposition of b and e) will return all results for

adobe instead. Users still have the option to modify to

search for the previous query by explicitly clicking adoeb
in the notification “Search instead for”.

2) Including-results-for (medium confidence about

misspellings). If the spelling mistakes are less evident, search

engines may include results for the assumed correct keyword

as the top results with notification “Including results for”.

The rest of the returned results are still for the misspelled

keyword. The motive is that users are more likely to click

on the results of the corrected keyword (which show as the

top results). As shown in Figure 1(b), search for adobec
(appending letter c) has the first result of adobe and the

rest results for adobec. By clicking the suggested word

adobe in “Including result for” or the original misspelled

input adobec in “Search only for”, users can refine which

word they indeed hope to search for.
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Figure 3: Workflow of finding linguistic-collision keywords for search engine poisoning. Based on a set of selected target keywords, we design
algorithms to generate potential misspelling candidates (�), expanding to a larger word set. Then we reduce the candidate sets to identify
the linguistic-collision keywords (�) and collect the corresponding non-auto-corrected results from search engines. Last we check on
blacklists to find linguistic-collision keywords associated with malicious websites with high rankings in search results for subsequent analysis (�).

3) Did-you-mean (low confidence about misspellings).

When search engines suspect the spelling may contain errors,

a warning banner of “Did you mean” with a suggested

keyword is displayed to users. However, users receive only

search results for the misspelled keyword. Though the

notification banner can blend in with search results and be

ignored, it raises the chances for users to realize misspellings

in the queries and correct them. As shown in Figure 1(c),

search for adube (misspelling of adobe by replacing letter

o with u) on Google leads to search results based on the

misspelling. If users click on the suggested query adobe
in “Did you mean”, the search will be re-run for the revised

version adobe and the warning message will disappear.

4) Non-auto-corrected (no detection of misspellings).

If search engines have no suspicion of misspellings in the

search terms, the query is performed for the keyword that

users originally submit. In particular, if a misspelling is

coincidentally an existent word, even possibly in a different

language, search engines will not modify the original query

or display any notification to users. The semantic gap is that

search engines have no prior knowledge about the original

keywords that users intend to search. For example, search

for idobe (replacing the first letter a with i) yields regular

search results for the word. The page will show no special

notification or hint about potential misspellings. In fact, the

word idobe (misspelling of adobe) is an existent word in

a Nigerian language, meaning “dropping”.

For the first three cases, users receive notifications or corrected

search results automatically, which diminishes chances of

attackers to manipulate and monetize the search results of

misspellings. However, for the non-auto-corrected case,

mistyped search queries coincide with legitimate existent words

and users receive results of the misspelled input. Therefore, it

is more likely that users cannot realize that they make query

misspellings and are tricked into clicking on the returned results.

Such misspelled keywords remain susceptible to search poisoning

attacks, which we coin as linguistic-collision misspellings. In this

paper, we focus on the non-auto-corrected cases and

conduct the first large-scale empirical analysis to characterize

linguistic-collision SEO attacks.

Pharmaceutical examples of linguistic-collision SEO. Pro-

moting illicit pharmacy websites is a major target of cybercrim-

inals [18]. We illustrate the scheme with a search on cilis, a

misspelling of the pharmaceutical drug cialis (missing one

letter a in the middle). The misspelled variant exists in the

language of Esperanto and means “chilis”. Figure 2 shows the

Google search results. We note that obviously the top search

results contain links to pharmacy websites. In particular, there are

three interesting observations. (1) The paid ads on the top refers

to a website selling pharmaceutical drugs. Vendors intentionally

purchase misspelled keywords for advertising on search engines

to gain traffic and profit. (2) The first returned result is a

website under terrypaulson.com, flagged as malicious by

VirusTotal [19]. The website deploys cloaking mechanisms to

hide the true intention. If users directly visit the URL, the website

shows a page full of text. If users click through the Google

search result, the website turns to make online pharmacy sales

(as shown in Figure 2). (3) The third search result shows a URL

under oversand.es. Clicking the link will follow redirection

to reach a website online-pharmacyrx-canada.com,

which sells illicit drugs. The entry page is hosted at Spain, while

the landing page locates at Lithuania. The above findings show

that through linguistic-collision SEO, it is comparatively easier

for cybercriminals to achieve high rankings on search engines

and evade filtering from authorities.

Another interesting example of linguistic-collision SEO is

clalis (replacing the first i with l in cialis), which

does not trigger auto-correction on Google search. Similarly,

the returned results have a purchased ads linking to an online

pharmacy website goodrx.com. Moreover, U.S. Food & Drug

Administration (FDA) has advised consumers not to fall victim

to clalis scams [20] (which is not cialis). Abuse of linguistic-

collision keywords causes negative impact to users and degrades

the results’ quality for search engines.
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IV. METHODOLOGY

In this section, we describe how we generate linguistic-

collision misspellings and establish ground truth data. We select

English and Chinese as our analyzed languages, since they

are the top two languages used by Internet users [1]. The

experiments are performed for Google and Baidu respectively,

which represent the largest search engine market share [21].

Figure 3 outlines the overall design of our methodology. The

workflow applies to both the English and Chinese experiments.

The circles represent the data sets that we generate during

the process. The descriptions about the data are shown above

each circle, and in the circles we show word examples. In

Figure 3, the English word example is cialis, referring to a

classic pharmaceutical drug. The Chinese word example is “麻
将” (Pinyin as Ma2Jiang4), meaning a traditional Chinese

gambling game. The sizes of the circles simulate whether the

data size will increase or shrink compared to the data at the

previous step. In Section VI, we investigate details of the change

ratios of data sizes along the process.

The process has three main steps. Given a set of target

keywords, we develop mechanisms to transform them into

misspelling candidates (�). Note that the generated candidates

are not necessarily linguistic-collision misspellings, and may

cause auto-suggestion/correction on search engines. Typically

one target keyword will correspond to multiple misspelling

candidates, therefore the dataset at this step will expand

considerably. Next we filter to obtain the candidates that produce

non-auto-corrected search results (�), which will shrink the

keyword set. We collect the search results and the corresponding

URLs showing on the first search page, typically around 10

results. Previous studies show that 70%–90% of user clicks

happen at the first page of search results [22, 23]. We then

examine whether the URLs of the first-page search results are

flagged as malicious by public blacklists (�). Correspondingly,

we discern which misspelled keywords are abused for search

poisoning attacks and further characterize various facets of the

attacks.

A. English-language Design

Since English and Chinese languages have distinct lingual

properties, we use different design strategies, in particular for

the first two steps. We introduce our design of English language

for misspelling generation and non-auto-corrected identification.

Misspelling generation (�). To generate misspellings from the

English keywords, we use a modified version of the Damerau-

Levenshtein edit operations [24, 25]. The Damerau-Levenshtein

edit operations can (1) insert a character, (2) replace a character,

(3) transpose two adjacent characters, or (4) delete a character.

To restrict the number of the generated candidates, we use the

approach proposed by Moore and Edelman [26], which limits the

character replacement operation to characters that are adjacent to

the original key on a QWERTY keyboard (i.e., fat-finger errors).

In addition, we allow replacement of any English alphabet

vowels, including letters a, e, i, o, u and y. We focus on edit

distances with one, as previous work has suggested that the

Damerau-Levenshtein edit operations with distance one contain

about 80% of all single mistake misspellings [24].

Non-auto-corrected identification (�). We first introduce two

straw-man approaches to identify linguistic-collision words for

English misspellings. (1) Mapping to explicit vocabulary in

dictionaries. The approach has two main limitations. One is

that linguistic-collision misspellings may be legitimate words

in non-English languages, which requires to include numerous

multi-language dictionaries. Another issue is that users keep

inventing plausible words to describe new phenomena. For

instance, “Linsanity” follows most English spelling rules, but was

not in popular use until 2012. As we will show in Section V-B,

strict dictionary checking results in poor coverage of confirmed

linguistic-collision misspellings. (2) Brute-force checking on

search engines. The approach is to perform online checking for

all misspelling candidates on search engines. For a selected set of

keywords (Alexa top 1K and manually selected categories), we

conduct exhaustive checking to obtain comprehensive analysis

(see Section V). However, the approach cannot scale for large-

scale experiments (Alexa top 10K). For example, enumerating

all possible insertions (one of the Damerau-Levenshtein edit

operations) requires performing 26 queries per input character.

Such a high-level of overhead cannot be supported for web-scale

datasets, and we need to develop a method for eliminating

auto-corrected candidates more efficiently.

We adapt a Recurrent Neural Network (RNN) framework to

estimate how likely a word will not be auto-corrected by search

engines. RNNs have been widely applied to natural language

processing (as described in Section II ) and used to predict

sequential text outputs. Our primary insight is that a formally

recognized word should display character-level patterns similar

to the rest of dictionary vocabulary for users to adopt it. RNNs

can generate high-quality language models for character-level

representations [27, 28]. Our developed approach effectively

addresses the challenges of recognizing new words (not covered

in dictionaries) and linguistic-collision words in non-English

languages.

Figure 4 demonstrates our framework for training an adapted

RNN and generating confidence estimates on misspelling

candidates. The system consists of two phases, training phase

and prediction phase. (1) In the training phase, we adapt to train

with individual words from dictionaries. We use dictionaries

to learn from a large corpus of words and capture the general

English lexical patterns. We append a null character to the

beginning and end of the word to allow the RNN to learn about

word boundaries. With the popular Tensorflow library [29], we

train a character-based RNN to recognize the typical structure of

legitimate words. After randomly initializing the model weights,

we use the Adam optimization algorithm [30] with gradient

clipping to reduce the cross-entropy during training. (2) In

the prediction phase, our goal is not to generate arbitrary text

content, but to predict whether particular misspellings that we

have generated will not be auto-corrected by search engines (i.e.,

coincidentally legitimate words). Given an input prefix �x (e.g.,

goog in Figure 4), an RNN outputs a probability distribution �p
for the alphabet on which character is most likely (in the example
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Figure 4: RNN framework to predict how likely misspelling candidates
for English original keywords will cause non-auto-corrected results on
search engines.

letter l has the highest probability). We adapt to calculate the

average entropy of the RNN’s prediction over each output

character. Suppose the candidate word has n letters, the size of

the character set is l, and the distribution output of the RNN

at letter position k (1 ≤ k ≤ n) is �pk = (pk1, pk2, . . . , pkl).
The entropy at the position k is H(�pk) =

∑l
i=1 pki log2(pki).

The average entropy for a given prediction can be calculated as∑n
j=1 H(�pj)/n. Intuitively, the average entropy is a normalized

estimate of the RNN’s confidence that the misspelling could

plausibly be used as an existent word. Low entropy values

indicate misspellings which should be more likely to be non-

corrected.

B. Chinese-language Design

The linguistic properties of Chinese words require different

strategies to generate misspelling candidates and identify non-

auto-corrected search keywords.

Misspelling generation (�). For each target keyword, we first

convert the Chinese characters into pinyin, which is composed of

English letters. Then we apply same edit distance operations (as

for English misspelling generation) to spawn new pinyin strings.

According to pinyin’s lexical rules, some generated pinyin

strings may not be valid (we still count them as candidates

to match existent pinyin). We transform pinyin strings to all

possible Chinese characters with that pronunciation. In particular,

there exist two phenomena. (1) Same pinyin. As introduced

in Section II, many different Chinese characters map to the

same pinyin. When we transform back from pinyin to Chinese

characters, the number will increase considerably. Different

tones further exaggerate the phenomenon, given that most pinyin

input methods do not provide tone selection to users. (2) Fuzzy

pinyin. Some pinyin have close pronunciations, including nasal,

retroflex, and alveolar sounds. Figure 5 shows the anatomical

parts to make the pronunciations and the confusing pinyin

strings. Many people cannot distinguish the differences. Pinyin

input methods also automatically include Chinese characters

that match fuzzy pinyin for users to select. More analysis on

misspelling generation comparison will be shown in Section VI.

Non-auto-corrected identification (�). In contrast to the En-

glish case, linguistic-collision Chinese words will still be Chinese
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Figure 5: Fuzzy pinyin and anatomical parts to produce the sounds.
We include pinyin strings that are easy to confuse with each other.

words. Therefore, we directly check whether a misspelling

candidate exists in Chinese dictionaries. For valid Chinese

words, search engines will not apply auto-correction/suggestion.

As the examples in Figure 3 demonstrate, even if all Chinese

characters are valid, the combination may not form meaningful

Chinese words. The identification procedure can be performed

offline. We collect commonly used Chinese words from four

popular word dictionaries of Sogou pinyin input method [31].

In total, the dataset contains 1,166,765 Chinese words.

C. Crawling Tasks

To perform the experiment at a large enough scale, we

designed a framework to collect search results, search volumes,

translation data, and blacklist information. Figure 6 gives a

high-level view of these tasks and how they relate to each other.

We begin by collecting the search results for input keywords,

and then check the search volumes, Google Translate API,

and blacklist for search terms. Together, these datasets provide

a comprehensive view of linguistic-collision misspellings. To

ensure that the search engine servers would not be overloaded,

we rate-limited our crawlers.

1) Search results. To determine whether or not the search results

were auto-corrected, we checked the returned page for the

notices described in Section III. If the keyword was not

corrected by the search provider, we parsed the search result

page and collected the first 10 search result entries in a

database for later analysis. In particular, we saved the title,

description, and URL for each entry. We used the URL to

check if the result was blacklisted and the title and description

proved invaluable to understanding the SEO techniques used

with linguistic-collision misspellings. In addition, we captured

the estimated number of search results to understand how

difficult the SEO is for particular keywords. Because the

search results can change quickly for pages with malicious

entries, we also captured the raw HTML to allow for later

manual inspection.

2) Search volumes. To analyze how users are exposed to non-

auto-corrected misspellings we queried Baidu Index [32] and

Google Adwords [33]. To estimate search volume for Chinese

terms, we used Baidu Index to collect daily search volumes

for the previous week and month. While Baidu Index allows
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Figure 6: Crawling framework that contains four tasks, collecting search
results, search volumes, language types, and public blacklist.

users free access to search volumes, Google Adwords has

recently restricted search volume data to paid customers. As

a result, we only use Google Adwords data to investigate

questions that only require comparing the predictions, such

as from what types of devices users are searching. Using

relative Google Adwords data allows us to compare mobile

and desktop searches, but not exact volumes for large lists

of words.

3) Language types. Because we are interested in what percentage

of English linguistic-collision misspellings are coexistent

within the same language vs. other languages, we decided to

use the Google Translate API to detect the language of the

misspellings [34]. Knowing the language of a misspelling

allows us to determine whether the misspelling is between

two languages or within the same language. In addition to

returning the detected language, the Google Translate API

returns a confidence score which allows us to understand

why Google would fail to correct the misspelling.

4) Public blacklist. Finally, we scanned all of the URLs

returned for the uncorrected misspellings found during task

1). To determine whether a URL is malicious, we checked

VirusTotal [19]. VirusTotal currently aggregates 68 antivirus

scanning engines to identify malicious URLs, including

Google Safebrowsing [35], Yandex Safebrowsing [36],

Spamhaus [37], and Baidu-International [38]. To avoid

introducing high false positive rates, we also implemented

manual spot checking to ensure that the accuracy remained

high.

V. EXPERIMENT

In this section, we describe our experiment settings, keyword

selection, and statistics of the collected data. We also demonstrate

the performance of the adapted RNN approach to generate

eligible search keywords (i.e., those that are not auto-corrected

by search engines).

A. Data Collection and Validation

To understand the characteristics of linguistic-collision mis-

spelling SEO, we perform a large scale data collection and

analysis. We ran the experiment on a cluster of 26 servers

with 2 CPUs and 4 GB of RAM from December 2017 to

July 2018. Specifically, we conducted two parallel studies

targeting Chinese and English terms. We follow the approach

in Section IV to generate candidate keywords and fetch search

results from Google and Baidu respectively. For the English

study, we generated misspellings from 11,520 original keywords

and collected 1,044,711 searches using the Google search service.

For the Chinese study, we generated misspellings from 6,714

original keywords and collected 724,865 searches from Baidu.

We use two strategies to select original target keywords: (1)

manually collected categories, and (2) Alexa list of popular

websites, for which we will describe details below.

Keyword collection per category. Miscreants intend to target

specific sets of keywords to gain illicit profit, so we manually

select 13 different categories in English and 12 different

categories in Chinese for analysis. Previous work indicates

that cybercriminals target more on prescription drugs, gambling

terms, adult terms, and software categories [18, 39] (results

in Section VI confirm the conjecture). We collect terms in

such categories for analysis. We also include general consumer

product categories, such as food, cards, clothing, cosmetics,

and jewelry, to allow for a comprehensive comparison. For

English analysis, we collected the terms from the user-ranked

forums [40], and other lists curated for specific topics [41–43]. In

addition, the discovery of a parked domain using the misspelling

of a major US defense company led to the inclusion of defense

contractor’s names as this type of more targeted misspelling could

be used by more sophisticated attackers for phishing. In total, the

English per-category keywords contain 1,520 terms, and lead to

563,555 misspelling candidates. For Chinese analysis, we mainly

obtain the target keywords from the website china-10.com,

which contains terms for various categories. We totally collect

6,714 Chinese target keywords, and generate 718,151 misspelling

candidates. A detailed breakdown of the per-category statistics is

shown in Table I. The first column is the names of the categories,

the second column shows the numbers of the collected target

keywords of English, and the sixth column shows the counts of

the target terms of Chinese. We will describe the other columns

of the table in Section VI.

Keyword collection based on Alexa top list. In domain

typosquatting attacks, cybercriminals target names of popular

websites [44, 45]. Similarly, we include the top names of Alexa

domain list [46] in our analysis. Because it is difficult to find a

counterpart list for Chinese, we only collected the Alexa top

list for English analysis. Table II shows the statistics of Alexa

top 100, 1,000, and 10,000 names respectively. The second

column represents the numbers of the generated misspelling

candidates that we search on Google. For Alexa top 1,000 terms,

we use brute-force search results of misspelling candidates for

comprehensive analysis and evaluation of RNN performance

(Section V-B). To examine the long-tail effect [47], we also

consider the Alexa top 10,000 domains, which lead to 2,105,218

misspelling candidates. However, it is inefficient to exhaustively

crawl all these keywords. Instead, we deploy the RNN approach

that we design in Section IV to identify keywords likely to cause

linguistic collision and not to be auto-corrected by Google.
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English Chinese

Category
#

Target
# Misspell
Candidates

% Non-Auto-
Corrected

%
Poisoning

#
Target

# Misspell
Candidates

% Non-Auto-
Corrected

%
Poisoning

Drugs 205 57,255 4.59% (2.6K) 1.95% (51) 46 3,738 11.85% (443) 3.61% (16)
Adult Terms 214 73,089 37.57% (27.5K) 3.47% (950) 181 32,047 11.41% (3.7K) 2.71% (99)
Gambling 192 79,464 7.33% (5.8K) 2.88% (168) 42 1,951 18.14% (354) 2.54% (9)
Software 288 126,622 6.96% (8.8K) 0.57% (50) 700 84,008 6.29% (5.3K) 0.72% (38)
Cars 68 16,675 11.40% (1.9K) 0.68% (13) 1,767 218,697 4.74% (10.4K) 0.94% (97)
Food 98 43,668 8.49% (3.7K) 0.38% (14) 1,738 159,825 6.62% (10.6K) 0.87% (92)
Jewelry 49 16,613 9.53% (1.6K) 0.19% (3) 148 24,956 6.17% (1.5K) 0.97% (15)
Women’s Clothing 43 14,235 8.33% (1.2K) 0.59% (7) 199 25,365 10.18% (2.6K) 0.74% (19)
Men’s Clothing 55 18,781 9.99% (1.9K) 0.43% (8) 440 40,903 8.85% (3.6K) 1.00% (36)
Cosmetics 47 17,706 5.72% (1.0K) 0.50% (5) 439 75,844 6.86% (5.2K) 0.75% (39)
Baby Products 46 15,484 14.09% (2.2K) 0.32% (7) 394 51,935 6.62% (3.4K) 0.93% (32)
Daily Necessities 126 42,638 6.10% (2.6K) 0.54% (14) 620 68,176 8.92% (6.1K) 0.76% (46)
Defense Contractors 89 40,984 6.65% (2.7K) 0.70% (19) —- —- —- —-

Table I: Detailed breakdown of per-category collection statistics. “# Target” is the number of original terms used to generate misspellings for that
category, “# Misspell Candidates” is the number of generated misspelling variants of the target keywords. “% Non-Auto-Corrected” is calculated
as the number of queries for which the search engine does not offer auto-correction either automatically or as a suggestion, and “% Poisoning”
is calculated as the percentage of non-auto-corrected queries which contain malicious URLs on the first page of search results. For the “%
Non-Auto-Corrected” and “% Poisoning”, we also show the raw numbers of searches in parentheses.

(a) English experiment (on Google). (b) Chinese experiment (on Baidu).

Figure 7: Comparison of search poisoning rates among different misspelling types per keyword category. The y-axis indicates the percentage of
searches that contained malicious URLs on the first page of search results (for a given keyword category and misspelling protection type).
From left to right for each category, Original refers to searches made for the correctly spelled terms, while Showing-results-for,
Including-results-for, Did-you-mean, and Linguistic-collision (Non-auto-corrected) refer to types of auto-
correction offered for the searches as described in Section III. The different categories are described in Section V-A, note that “Defense Contractors”
is only present in the English experiment. The search poisoning rates of Linguistic-collision (Non-auto-corrected) are the
same values as “% Poisoning” columns in Table I.

Auxiliary information collection. In addition to the search

results collected from Google and Baidu, we also collected

information from VirusTotal, Google Adwords, Google Translate,

and Baidu Index. We used VirusTotal to identify URLs with

suspicious activity and then investigated further into the flagged

results. In total, we collected scans for 2.06M URLs of which

1.18% (24.4k) had been detected by at least one scanner. To

improve the accuracy, we manually spot-checked the flagged

URLs for malicious activity using a virtual machine which

eventually obtained 5,256 malicious URLs under 2,743 domains.

For the English search results, we checked the device breakdown

estimates for 117,791 uncorrected misspellings and 12,943

original keywords using the Google Adwords Keyword Planner

tool [48]. Using the Google Detect Language API we collected

105,978 predictions for the uncorrected misspellings in an attempt

to understand the distribution of how the language distribution

varies across different categories. The details for our language

results can be seen in Table III.

B. Results of RNN

The final model used 150 hidden layers with a sequence

length of 5 characters. The vocabulary consisted of lower-case

alphanumerics and a null character for a total vocabulary size of

37 characters. To train the RNN model for different parameters,

we used 4 servers with 24 GB RAM and 16 CPU cores each.

The training set we used was a wordlist with 675,903 unique

words taken from several wordlists [49–52]. To select optimal

parameters, we checked each setting on completely separate
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Category
(Alexa Top)

# Misspell
Candidates

% Non-Auto-
Corrected

%
Poisoning

1–100 20,192 16.29% (3.2K) 0.85% (28)
101–1,000 216,157 13.28% (28.7K) 0.78% (221)

(RNN) 1,001–10,000 61,088 38.04% (23.2K) 0.50% (116)

Table II: Data collection statistics based on Alexa top list (similar
header meanings as in Table I). Note that the results for the Alexa top
1,001–10,000 are collected using the RNN model’s predictions.

validation data taken from the ground truth data on the Alexa

top 1,000 misspellings.

To evaluate the RNN’s performance and investigate mis-

spellings affecting less popular domains, we used the trained

RNN with the best performance on the Alexa 1,000 misspellings

to generate predictions for the 2.4 million misspellings from the

Alexa 10,000. From these predictions, we selected the keywords

with the lowest entropy from the predictions and used the

crawling framework to collect search results. The ground truth

data collected for the Alexa top 1,000 indicates that randomly

sampling the misspellings would yield a hit rate of about 13.28%.

Dictionary checking exhibited even lower performance on the

Alexa top 1,000 ground truth set with a 2.6% hit rate. The poor

performance of dictionary checking vs. random sampling can be

explained by the fact that many of the words are new, obscure,

or only in use as slang. Our RNN approach also outperforms

the naive Bayes and random forest algorithms. Due to space

limitation, more details are shown in Appendix A. Crawling

the 61,088 highest confidence predictions from the RNN gave

a non-auto-corrected rate of 38.04% with 23,236 uncorrected

misspellings. Compared to random sampling, the RNN gave a

performance improvement of 2.84x.

VI. MEASUREMENT AND DISCOVERIES

In this section, we present findings from our study, including

landscape of the abuses, characteristics of the linguistic-collision

misspellings, and estimates of search volumes for cybercriminals.

We also provide deep analysis of two interesting cases.

A. Landscape and Comparison of Misspelling Search Results

First, we examine how pervasive the linguistic-collision

misspelling SEO is. In fact, we find linguistic collisions are

widely existent: 15.16% of the English misspelling keywords

that we generate using edit distance 1 are not auto-corrected, and

7.69% of the Chinese misspelling terms based on the fat-finger,

fuzzy pinyin, and same pronunciation generation methods are

not auto-corrected. Because users primarily click search results

returned on the first page [53], we only checked to see whether

the first page of search results has been poisoned.

Blacklist statistics. To determine whether or not a URL was

potentially malicious, we checked VirusTotal for reports of

malicious activity from that URL. In total, we determine that

1,511 URLs from first-page results (10 results per first page) of

non-auto-corrected searches are malicious. Correspondingly,

0.98% (1,872) of English linguistic-collision search terms on

Google result in first-page blacklisted URLs, and 1.39% (538)

of Chinese linguistic-collision terms show poisoned results

on the first pages on Baidu. The observation indicates that

Figure 8: Longitudinal view of the poisoned non-auto-corrected search
result rate over Alexa terms (1,001–10,000 using the RNN predictions).
The results are binned by the original term’s Alexa rank with the x-axis
labels denoting the bucket lower and upper bounds, e.g., 2k covers the
range of 1,001–2,000.

linguistic-collision misspelling SEO has widespread impact, and

cybercriminals can comparatively easily manipulate rankings and

promote their pages index by linguistic-collision misspellings.

Per-category results. As mentioned in Section V, the English

misspellings were split into two major sets, per-category

keywords and Alexa domains. Table I describes the per-category

datasets for Chinese and English. The first column shows

the category names. We have 13 categories, and 12 of them

are present in both Chinese and English (“Defense” category

only has keywords in English and contains the names of the

100 largest defense contractors around the world). The fourth

and eighth columns “% Non-Auto-Corrected” represent the

proportion of misspelling queries not auto-corrected by search

engines, regarding English and Chinese respectively. The fifth

and last columns “% Poisoning” indicate the percentage of

non-auto-corrected queries containing VirusTotal blacklisted

URLs on the first-page search results, regarding English and

Chinese respectively. We also include raw numbers of searches

in parentheses in Table I. There are two observations: (1) A

considerable portion of misspellings (> 4.5% for all categories)

result in linguistic collisions that will not be auto-corrected by

search engines, and (2) many linguistic-collision misspelling

searches lead to malicious websites appearing on the first pages

of search results.

To compare linguistic-collision misspelling to other types

misspelling searches, we queried all misspell candidates that

we generated (column “# Misspell Candidates” in Table I) and

the original target keywords (column “# Target” in Table I)

from the search engines. Figure 7 shows the poisoning rates

for English and Chinese by category and level of correction

from the search engines. We find that indeed attackers more suc-

cessfully target linguistic-collision (Non-auto-corrected)

misspellings than misspellings that are protected by the different

types of auto-correction discussed in Section III. On average

linguistic-collision misspellings are poisoned at a rate of

1.19% across English and Chinese categories as compared to
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All Results Alexa top 1K Drugs Software Gambling Adult Terms
English 57.44% English 40.67% English 49.28% English 74.04% English 66.44% English 81.67%
Arabic 2.76% Arabic 5.42% Latin 3.69% Italian 1.91% Spanish 2.69% French 1.96%
Spanish 1.66% Hindi 2.19% Spanish 2.82% Arabic 1.44% Norwegian 2.14% Spanish 1.30%
Hindi 1.56% Welsh 2.18% Italian 2.47% Spanish 1.33% Italian 1.78% Indonesia 1.05%
Italian 1.53% Danish 1.68% Romanian 2.25% Hindi 1.01% French 1.68% Polish 0.79%

Table III: Per-category breakdown of language statistics.

0.16% for Original, 0.18% for Showing-results-for,

0.23% for Including-results-for, and 0.47% for

Did-you-mean terms.

We observe that the “Drugs”, “Gambling”, and “Adult Terms”

categories exhibit higher rates of poisoned non-auto-corrected

searches at 2.86% on average than other categories which

exhibit average rates of 0.66%. These terms are more easily

monetized than searches for more benign terms such as “Food” or

“Cosmetic” products, as the attackers can easily enroll in affiliate

ad programs [54]. Additionally, malicious attackers (as opposed

to those simply looking for ad revenue) may rationalize that

users performing these searches may be more willing to ignore

suspicious patterns in URLs or even explicit warning messages

by browsers to access the advertised content. Finally, other search

engine products such as Google Autocomplete have avoided

optimizing and maintaining “inappropriate” predictions for search

queries such as adult terms [55]. In contrast to the aforementioned

three categories, “Software” linguistic-collision misspellings do

not result in high poisoning rates. The comparatively lower

exploitation is presumably due to current success of traditional

SEO methods for these keywords (note the high poisoning rates

for Original terms in the English “Software” category).

However, because cybercriminals have historically targeted

software terms [18, 39], we continue to include “Software”

in our analyzed categories in Section VI-B.

While the English “Drugs”, “Gambling”, and “Adult Terms”

categories include poisoned searches for misspellings with every

type of correction, the corresponding Chinese categories contain

poisoned searches almost exclusively for linguistic-collision

misspellings. The disparity between the two is conjectured as

an artifact of Baidu’s ranking algorithm to prioritize URLs

under reputed domains. We find that on Baidu 91.3% of

search results for the Original, Showing-results-for,

Including-results-for, and Did-you-mean terms

are under only 1,000 domains (with baidu.com alone

accounting for 42.7% of results). In contrast, these 1,000 domains

account for 83.3% of the results in linguistic-collision misspelling

searches. The observations indicate that Baidu exercises less

caution on linguistic-collision misspelling searches and is likely

to include malicious results.

Alexa top list results. Table II describes the results from the

Alexa misspellings (with similar header meanings as in Table I).

To investigate the trends and long-tail effect, we use the Alexa

top 100, 1,000, and 10,000 website names as target keywords

respectively. As mentioned in Section V, the results for the

Alexa domains ranked between 1,000 and 10,000 are selected

using the RNN described in Section IV. In particular, we crawled

61,088 misspellings which received the lowest entropy from the

RNN’s entropy estimator. The Alexa 1,000 ground truth dataset

blacklist rate is 0.78% with 221 poisoned searches. Interestingly,

we see the rate of blacklisted results remains fairly constant

based on the RNN results with an average of 0.50% in the

Alexa top 1,000–10,000 (116 poisoned searches). Figure 8 shows

the longitudinal distribution of attacker activity. On average,

0.54% of the non-auto-corrected results in the Alexa dataset are

poisoned. Longitudinally, we find that the level maliciousness

is high for the Alexa 100 and 1K, indicating cybercriminals

target more on popular domains. After reaching the lowest for

the 3K domains, the poison rate slowly increases over the long-

tail. Szurdi et al. observed similar long-tail effect on domain

typosquatting [47]. Lower popularity domains may have fewer

resources to check for poisoned search results, less risk of

litigation, and less competition from other cybercriminals.

B. Characteristics of Linguistic-collision Search Results

Next we investigate the detailed properties of misspelling

search results that lead to malicious websites.

Comparison of misspelling generation. Intuitively, we would

expect users to generate some types of misspellings more

frequently than others either through mistyping or confusing the

spelling of the original term. For the English results, we compare

the non-auto-corrected rate for the wrong vowel substitution

method to the average for all misspelling generation, while for

Chinese we compare the same pronunciation terms and fuzzy

pinyin method to the rest of the misspellings. Because these

methods produce misspellings that are closer to the original

keyword than the edit-distance 1 heuristics, we would expect

these methods to produce more linguistic-collision misspellings.

Indeed, we find that for English the wrong vowel method

produces a non-auto-corrected rate of 22.85% as compared to the

edit-distance 1 misspellings which showed a non-auto-corrected

rate of 15.16%. Similarly, for Chinese the more realistic methods

outperform the fat-finger misspellings with same pronunciation

keywords uncorrected 18.21% of the time and fuzzy pinyin

escaping auto-correction for 17.63% of misspellings. Meanwhile,

for Chinese the edit distance 1 data set resulted in a non-auto-

corrected rate of 7.69%.

Language distribution of linguistic collisions. To determine

why Google would fail to correct so many misspellings, we

used the Google Translate API to detect the language which

returned the detected language and the prediction confidence. The

Google Translate API reported that the uncorrected misspellings

contained words from 74 languages, while many of the non-

English predictions had lower confidence manual spot-checking

shows that many of these misspellings are actually valid words

in other languages. To better understand the breakdown, we
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Domain name

# of
Poisoned
Searches

# of
URLs

Traffic
monetization

*.0catch.com 732 109 malvertising

*.atspace.name 63 17 malvertising
hdvidzpro.me 58 58 malvertising
wannajizz.com 49 48 malvertising

theunderweardrawer.co.uk 40 38 malvertising

Table IV: The top five malicious domains using non-auto-corrected
misspellings to poison English search terms. The websites typically
contain malicious software download or collect personal information.
While domains 0catch.com and atspace.name themselves are
not intended for malicious activities, cybercriminals utilize the sites’
free hosting to promote malicious content through misspelled keywords.

present the top five languages in Table III for the whole dataset,

the Alexa domains, and the categories with higher malicious

activity. The international flavor of the Alexa domain dataset

probably explains the low percentage of English predictions

for the Alexa misspellings as many of the top sites serve non-

English speakers. Similarly, the lower prevalence of English

predictions for the drug’s misspellings likely stems from the

many unusual drug product names.

Domains (with blacklisted URLs) indexed by multiple
misspelled keywords. To better understand how attackers apply

linguistic-collision misspelling SEO, we analyze the mapping

between misspelled keywords and domains containing blacklisted

URLs. Figure 9 displays the CDF of the number of non-auto-

corrected misspellings poisoned by the same domains.

In total, for English we saw 1,872 poisoned searches and

538 for Chinese. We observed a distinct difference in SEO

tactics with Chinese attackers carefully using paid infrastructure

(e.g., xinnet.com) and English search poisoners utilizing free

hosting services (e.g., atspace.name). While only 14.1% of

the English domains appeared for more than one misspelling,

38.6% of Chinese domains appeared more than once. For English

we observed 1,404 malicious domains that together used 2,394

unique blacklisted URLs indicating that some search results

contained several blacklisted URLs. While some URLs were

optimized to rank for several misspellings, the majority of URLs

were targeted at a single misspelling. Rather than attempt to

build content with many misspellings, which might cause search

engines and users to conclude the content is low quality, the

attackers create over 100 webpages, each targeting different

misspellings. The Chinese dataset contained 179 domains that

deployed 264 URLs. In contrast to the English attacker’s reliance

on free hosting services to create many highly targeted pages,

the Chinese domains tend to be paid and optimized for a wider

variety of search terms.

In addition to considering the high level statistics, we also ex-

amined the five most successful second-level domains in the En-

glish dataset, which are shown in Table IV. Examining how these

sites achieve such effectiveness, we find that wannajizz.com,

hdvidzpro.me, and theunderweardrawer.co.uk use

misspelled URLs and page titles to appear in the first page. On

the other hand, the *.0catch.com and *.atspace.name
campaigns each used pages targeted at a single original term

Figure 9: Cumulative distribution function of the number of indexed
misspelled keywords that were poisoned by the same domain. Note that
38.6% of Chinese domains poisoned more than one misspelling search
result, while only 14.1% of the English domains appeared for multiple
misspelling searches. The disparity between the English and Chinese
results indicates that the English attackers target individual terms, while
the Chinese domains contain a wider variety of misspellings.

English Chinese

Device Type
Original
Keywords

Misspellings
Targeted

by Attackers
Original
Keywords

Misspellings
Targeted

by Attackers
Desktop 36.05 % 11.96 % 39.74 % 21.22 %
Mobile 56.56 % 84.56 % 60.26 % 78.78 %
Tablet 7.40 % 3.48 % —- —-

Table V: Device breakdown estimates obtained from the Google
Adwords Keyword Planner (we only use the relative numbers returned
by Google Adwords as most of the data is imprecise) and Baidu Index.
“Original Keywords” estimates market segmentation for all original
English and Chinese terms, while “Misspellings Targeted by Attackers”
estimates device usage for user searching for the linguistic-collision
English and Chinese misspellings in the gambling, drugs, software,
and adult term categories.

by enumerating hundreds of misspellings. While the resulting

text does not appear coherent to a human, the content is

obviously sophisticated enough to convince the search algorithms.

Together, these sites provide an interesting view into how the

truly successful attackers achieve SEO for linguistic-collision

misspellings and also how they monetize their traffic.

C. Search Volume Analysis

To understand how attackers are able to achieve profitability

with the linguistic-collision technique, we used the Google

Adwords [33] toolsuite for the English dataset and Baidu

Index [32] for the Chinese dataset.

Mobile and desktop traffic breakdown. The device break-

down provides insight into how users arrive at the linguistic-

collision misspelling results. While in general the device

breakdown has similar characteristics between the original and

misspelled keywords, Table V shows that keywords from the

traditional spam categories (gambling, drugs, software, and adult

terms) attract a much higher percentage of mobile users. These

results indicate that attackers may tend to target mobile users

who are much more likely to misspell words by fat-fingering.

Average search volume. To estimate how many users are

exposed to blacklisted search results, we collected search volume

for the Chinese non-auto-corrected misspellings from Baidu
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Figure 10: Traffic volume estimates obtained from Baidu Index tool-
suite for the Chinese results. The x-axis is the estimated number of
searches per day and the y-axis is the cumulative distribution function
of individual category. From top to bottom, the curves represent all
of the Chinese uncorrected misspellings and the Chinese poisoned
misspellings. Note that poisoned misspellings actually receive higher
traffic than the other cases indicating that the attackers carefully choose
the optimum misspellings.

Index (unfortunately Google Adwords no longer offers API

access to traffic volumes). Figure 10 displays the average daily

search volume for all of the uncorrected misspellings and the

poisoned misspellings. Although many of the poisoned search

terms receive little traffic, some may achieve profitability as

21.5% of the poisoned terms receive over 1,000 searches a

day. The respectable search volumes per misspelling coupled

with the fact that many of these attackers can appear for many

misspellings could allow attackers to accumulate significant

traffic volumes. Even more worrisome, the search volume results

suggest that the attackers are now incentivized to increase their

attacks and that the remaining attack surface is actually rather

large.

Rankings of search results. One might hope that the blacklisted

URLs would be relegated to the bottom of the search results.

However, we find that the attackers have managed to be ranked

first for 9.5% of the English results. The Chinese blacklisted

URLs were less successful with only 2.7% as the first result. As

shown in Figure 11, the positions of blacklisted search results

for the English URLs appear to follow a uniform distribution,

while the Chinese results show comparatively lower ranking.

The disparity between the English and Chinese again seems to

indicate that the Baidu ranking algorithm prioritizes reputed

content sources (see Section VI-A).

D. Case Studies

To further explain how the attackers use linguistic-collision

misspelling, we investigate two interesting cases that highlight

both attacker incentives and methods.

“Gambling siti” and “hayday loans online”. A campaign

(involving 89 URLs ) mixes content in several languages

(with an emphasis on Germanic languages such as English,

Finish, and German) to promote advertisements. For example,

raswearsh.890m.com appears as the fourth result of the

search“gambling siti” which is a misspelling of “gambling site”

where “siti” is Italian for site. The webpage uses “Siti Gambling”

as the title.

Figure 11: Cumulative percentage of blacklisted URLs in search results
for decreasing search result position. Note that some URLs appeared
in several search pages so we treat each appearance separately when
calculating the CDF.

By searching small snippets of text from collected attacks, we

easily find over 100 other attack URLs using the same snippets

to promote a variety of products. Because the resulting pages

have valid words (albeit in different languages), the attackers

are able to rank in the top 10 search results of misspellings

for adult sites, payday loans, gambling, writing services, and

options trading kits. To monetize the traffic, each site uses

affiliate marketing programs that lead to malicious downloads or

phishing pages. For instance, a search for “hayday loans online”

(originally “payday loans online”) returns gin.890m.com,

where “hay” is a Spanish word meaning “there are”. The website

hosts a sign-up form from leadapi.net which asks users

for social security numbers, date of birth, and bank account

information. We find the campaign contains at least 20 websites

similar to gin.890m.com.

XieHe media (“协协协 和和和 影影影 视视视”). A malicious website

sds.ccbkr.com has the title “协和影视”. The website

induces users to install malicious software with free movies,

and also displays various advertisements related with gambling

and adult content. However, the title “协和” is the same as the

name of a large, well-known hospital in China. If a user directly

searches for “协和” on Baidu, most of the returned results are

related to that hospital. Indeed, the website sds.ccbkr.com
will be positioned as the 93rd in the search results (far away

from the first page) and it is unlikely that users will reach and

click the search result. On the other hand, if a user searches the

misspelled keyword “谐和” (which has the same pronunciation

as “协和”), the malicious website will show as the first in the

search results. Cybercriminals abuse the Chinese misspelling

with the same pinyin to achieve higher rank in the search engine.

In addition, we find ccbkr.com sets wildcard DNS records

to display the illicit content on arbitrary subdomains.

VII. MITIGATION DISCUSSION

Based on our findings, we propose several potential mitigation

strategies. Although affiliate networks should hold their affiliates

responsible for participating in linguistic-collision misspelling

SEO, the affiliate programs may lack the incentive to enforce

such a policy. Realistically, the search engine providers are

probably in the best position to defend against linguistic-collision
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misspelling by proactively correcting search variants to better

protect users from attackers. While auto-correction services have

improved significantly, the services could potentially benefit

from other data sources. For example, Google Translate data

could be used to identify illogical word combinations, words

that are outside of the user’s normal language, and words that

are existent within the language but very rarely used. In addition,

search engine providers, such as Google and Baidu, could put

forward a more restrictive policy to limit users from purchasing

misspelled search keywords and further disincentive affiliate

networks caught using linguistic-collision misspellings.

Finally, free hosting services should more strictly enforce the

terms and conditions of use for attackers that are utilizing these

services to obtain free infrastructure. While we only mentioned

0-catch.com and atspace.name previously, we observed

several other hosting sites (uol.com.br was another repeat

offender) that were allowing attackers to promote dangerous

or misleading ads (including at least one pyramid scheme).

Enforcing the terms and conditions for these hosting sites could

make linguistic-collision misspelling SEO less profitable for the

attackers and associating attacker activity to payment details

should make the miscreants think twice.

VIII. RELATED WORK

Search engine poisoning. A number of studies examine search

engine poisoning where cybercriminals illicitly manipulate search

engine results. deSEO [56] generated URL signatures to detect

malicious pages that are hosted on compromised legitimate

web servers for SEO attacks. SURF [57] designed a browser

plugin to detect redirection chains and poisoned search results.

Leontiadis et al. [58] conducted a measurement based study

on search redirection attacks for online illicit products and

found that the conversion rate was higher than email spam.

Extending the initial work, Leontiadis et al. [39] performed a

four-year longitudinal study to examine the evolution of search

engine poisoning, which highlighted a set of traffic redirectors

and showed that the overall scale of search poisoning attacks

had increased steadily. Liao et al. [59] focused on long-tail

search-result manipulation that uses cloud hosting platforms.

Wang et al. [60] studied the problem of exploiting autocomplete

of suggested queries on search engines to promote illicit content.

Our research differs from previous search poisoning work in

that we focus on linguistic-collision misspellings, a sophisticated

class of attacks, which evade current auto-correction defenses to

poison search results. We conduct the first large-scale analysis

to understand and characterize the abuse of linguistic-collision

misspellings to spread malicious content via search results.

Domain typosquatting. In domain typosquatting, attackers

register domain names that are purposefully similar to reputed

domains. Szurdi et al. [47] investigated long-tail typosquatting

registrations, by combining both passive and active domain

features to categorize typosquatting domains. Agten et al. [44]

focused on a sizeable set of typosquatting targets by using

crawled data over a seven-month monitoring period. They

found that typosquatting versions of popular domains appear

to change owners more frequently and few trademark own-

ers protect themselves by registering typosquatting domains.

Nikiforakis et al. [61] studied bit flips in DNS requests (i.e., bit-

squatting), where random bit-errors occurring in the memory of

commodity hardware can redirect Internet traffic to compromised

domains. Khan et al. [45] quantified the harm of typosquatting

and found that a typical user loses a second when visiting a

typosquatting domain. Kintis et al. [62] studied a specific type

of domain squatting, termed “combosquatting,” where attackers

register domains that combine a popular trademark with one or

more phrases. They found that combosquatting is used to perform

a spectrum of different types of abuse including phishing, social

engineering, affiliate abuse, trademark abuse, and even advanced

persistent threats. In addition, several studies have suggested

domain squatters often use domain parking services to monetize

their holdings [63–65]. Though the attack that we study has a

similar incentive to monetize on misspelled user inputs, unlike

traditional domain typosquatting, linguistic-collision misspellings

circumvent current auto-correction defenses by using legitimate

words in other languages.

Security analysis using deep learning. Recently, recurrent

neural networks (RNNs) were used as a tool for generating fake

Yelp reviews that are able to evade detection by humans and

existing algorithms [12]. Long Short-Term Memory (LSTM)

networks are a special type of RNN that have the ability

to remember long-term dependencies over sequences. LSTM

networks have been applied to solve various security problems,

such as vulnerability detection [66], website fingerprinting [67],

and system logs anomaly identification [11]. In our work, we

adapt an RNN architecture to predict misspellings that are likely

to avoid auto-correction, to more efficiently identify linguistic-

collision search terms.

IX. CONCLUSION

In this paper, we conduct the first large-scale measurement

analysis of search engine poisoning, evaluating over 1.77

million searches on Google and Baidu. By using linguistics

and measurement techniques, we systematically analyze the

linguistic-collision misspelling attack for English and Chinese.

We further develop a deep learning model to more efficiently

select non-auto-corrected misspelled keywords.

Our findings reveal that linguistic-collision misspellings

widely exist in search engines with 1.19% of search results

on the first page directing to blacklisted websites. We also

discover the primary target is drug, gambling, and adult terms.

In addition, we observe that mobile users disproportionately

search for misspellings. Although search engine providers

have already reduced the attack surface of typosquatting by

adding auto-correction, linguistic-collision misspellings present

a vulnerability that attackers can exploit to promote malicious

links. Our study sheds light on this new threat and provides

insights to ultimately mitigate the problem.
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APPENDIX

A. RNN Comparison to Random Forest and Naive Bayes

We compare the accuracy of non-auto-corrected predictions of

our RNN model with random forest and naive Bayes algorithms

using two approaches for each algorithm.

Approach 1. The first approach directly classifies whether a

misspelling string is likely to be non-auto-corrected by Google.

The brute-force search results of manually selected categories

contain both positive and negative cases, which we use as the

training dataset. Because both of the classification algorithms

require fixed length input vectors, we pad the variable length

words with null values. After training, the algorithms estimate

the probability that a given misspelling will be autocorrected.

However, because the ground truth data is generated from

relatively few original terms (compared to all possible words in

use on the Internet), the algorithms struggle to generalize for

misspellings generated from other original terms.

Approach 2. The second approach is similar to the one that

we developed in Section IV. In this approach, we generate a

training dataset from dictionary words. The classifier learns the

future character distribution based on the prefixes. The entropy

of a prediction estimate the likelihood whether a misspelling

candidate will be automatically corrected.

For misspellings from Alexa top 1,001–10,000 terms, our

RNN approach achieves a hitting rate of 38.04% (as shown

in Table II). At the same hitting rate on the Alexa top 1K

ground truth, we need to collect 127,438 searches with the best

predictions from the RNN. When crawling the same number of

searches, the naive Bayes model with approach 1 yields a hit

rate of 13.6% . We hypothesize that the naive Bayes model’s

poor performance stems from the strong dependency between

adjacent characters. For approach 2, naive Bayes achieves a

hit rate of 15.2% (most likely due to the reduced input size).

Since random forests can capture dependencies between input

features, the random forest classifier outperforms naive Bayes

for both approach 1 and approach 2. For approach 1, random

forest exhibits a hit rate of 29.9%, and for approach 2 the hit

rate is 22.8%, both of which are less efficient than the RNN

predictions.
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