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Abstract—We show that the problem of reconstructing en-
crypted databases from access pattern leakage is closely related
to statistical learning theory. This new viewpoint enables us
to develop broader attacks that are supported by streamlined
performance analyses. As an introduction to this viewpoint,
we first present a general reduction from reconstruction with
known queries to PAC learning. Then, we directly address the
problem of ε-approximate database reconstruction (ε-ADR) from
range query leakage, giving attacks whose query cost scales only
with the relative error ε, and is independent of the size of the
database, or the number N of possible values of data items.
This already goes significantly beyond the state-of-the-art for
such attacks, as represented by Kellaris et al. (ACM CCS 2016)
and Lacharité et al. (IEEE S&P 2018). We also study the new
problem of ε-approximate order reconstruction (ε-AOR), where
the adversary is tasked with reconstructing the order of records,
except for records whose values are approximately equal. We
show that as few as O(ε−1 log ε−1) uniformly random range
queries suffice. Our analysis relies on an application of learning
theory to PQ-trees, special data structures tuned to compactly
record certain ordering constraints. We then show that when
an auxiliary distribution is available, ε-AOR can be enhanced to
achieve ε-ADR; using real data, we show that devastatingly small
numbers of queries are needed to attain very accurate database
reconstruction. Finally, we generalize from ranges to consider
what learning theory tells us about the impact of access pattern
leakage for other classes of queries, focusing on prefix and suffix
queries. We illustrate this with both concrete attacks for prefix
queries and with a general lower bound for all query classes.

I. INTRODUCTION

This article concerns the analysis of leakage from encrypted
databases. The latter are cryptographic techniques that al-
low a client to outsource a database to an untrusted server
while maintaining the ability to make queries on the data.
Fuller et al. [1] give a comprehensive survey of this area.
All known techniques represent a trade-off between security
and efficiency, with various forms of leakage being intrinsic
to these approaches. For example, without taking special
precautions such as using oblivious memory techniques, the
access pattern, that is, the set of records returned in response
to queries, leaks to the server. While in many cases, formal
security proofs are able to establish that nothing more than the
access pattern leaks to the adversarial server, there still remains
the question: what is the practical impact of this leakage? A
more refined version of the question is:

If an encrypted database supports a certain class
of queries, but leaks the access pattern, then
how damaging is that leakage as a function of
the query and data distribution and number of
queries?

The setting of this article is one in which only access pattern
is leaked to an adversarial server. Access pattern leakage
is inherent to nearly all practical constructions of encrypted
databases, and the survey by Fuller et al. [1] overviews a
plethora of schemes to which such attacks apply. In the
particular case of range queries, all known practical solutions
leak this information [2]. Nevertheless, the previous question
is currently answered using ad hoc cryptanalysis, requiring
cumbersome and laborious analyses to establish the impact of
leakage as a function of the number of queries. The central
aim of our work is to transform this situation by bringing
statistical learning theory to bear on the problem.

A. Database Reconstruction: State of the Art
Range queries are fundamental to the operation of databases,

and have rightfully received significant attention in the at-
tack literature. The state-of-the-art for attacks based on
leakage from range queries is represented by the work of
Kellaris-Kollios-Nissim-O’Neill (KKNO) [3] and Lacharité-
Minaud-Paterson (LMP) [2]. KKNO gave attacks showing
that O(N4 logN) queries suffice to achieve Full Database
Reconstruction (FDR), that is, to reconstruct the exact value
for every record. Here, N is the number of different possible
values, which we assume without loss of generality come from
the interval [1, N ]. For dense data, where every possible value
is in at least one record, this was improved to O(N2 logN)
queries by KKNO and then to O(N logN) queries by LMP.
All of these results assume the query distribution is uniform
on ranges (though for the results in the dense setting, this
assumption is needed only to facilitate analysis and not for
the algorithms to succeed).

A typical value of N might be, say, 125 for data pertaining
to age in years, making even an O(N4 logN) attack poten-
tially worrisome. But for many data types, N can be much
larger – think of discrete data such as numerical zip codes,
timestamps, or salary data. For large N , especially when the
data is sparse rather than dense (as is typically the case), FDR
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is much too expensive (KKNO proved a general lower bound
of Ω(N4) on the number of range queries needed), and really
too strong an attack goal.

For this reason, LMP introduced the notion of Approximate
Database Reconstruction (ADR), where the adversary’s goal
is to find the value of every record up to an (additive) error
of εN rather than exactly. For small ε, such an attack is still
extremely effective: imagine learning all salaries in a database
up to an error of 1%. LMP gave the first algorithm for ADR,
which achieves ε-ADR from access pattern leakage on only
O(N · log ε−1) queries. However, it still requires a density
assumption and its analysis is highly complex.

B. Overview of Our Contributions
None of the aforementioned attacks exploiting range query

leakage is fully satisfactory: FDR is too expensive for large N ,
while the only ADR algorithm we have (from LMP’s work [2])
relies on a density assumption and its query cost still scales
with N . This presents a potentially misleading picture of the
impact of leakage for range queries, one which may lead to
underestimating the potential damage. Additionally, leakage
from other kinds of queries has received little attention, nor
have other attack settings of practical importance like known-
query attacks.

In this work, we show how statistical learning theory
effectively addresses the problem of database reconstruction,
yielding new results across a range of settings. A common
thread through all of our results is the analysis of concept
spaces over the set of all queries. The results we apply from
learning theory rely on the VC dimension of the concept space,
intuitively a measure of how complex it is. (See Appendix A
for a short primer on statistical learning theory.)

PAC learning and known-query attacks. In Section II,
we show that database reconstruction given a set of known
queries can be recast as an instance of Probably Approxi-
mately Correct (PAC) learning, and standard results from that
field can predict how many queries are needed to achieve
reconstruction. We present this reduction to PAC learning as
an introduction to how we view database reconstruction as a
learning problem, as well as an illustration of the power of this
viewpoint. While the attack model here is rather powerful, it
is considered realistic in some recent literature [6], [5], [7];
our analysis largely resolves the question of how damaging
such attacks can be. In the remainder, we no longer assume
queries are known, aligning our setting with most prior work.

Sacrificial ε-ADR. In Section III, we present two new ε-
ADR algorithms for range queries. These attacks are scale-
free: their query complexity depends not on the number of
possible values N , but only the precision ε. They accommo-
date any number of queries, as opposed to the “all-or-nothing”
attacks of KKNO and LMP. To obtain scale-freeness, we must
sacrifice recovering some records near the endpoints. As we
explain in Section III-A, scale-free ε-ADR is impossible in
general – O(N) queries are necessary to recover values near
the endpoints 1 and N , so we must sacrifice these.

The first algorithm (Section III-B), whose analysis is some-
what simpler, achieves sacrificial ε-ADR using O(ε−4 log ε−1)
uniformly random range queries. Setting ε = 1/N yields an
FDR attack with the same complexity as KKNO’s original
FDR attack. Indeed, our algorithm can be seen as generalizing
the ideas of KKNO to the ADR setting, and making it
scale-free. In Section III-C, we introduce our second attack,
the ApproxValue algorithm, which achieves sacrificial ε-
ADR using only O(ε−2 log ε−1) uniformly random queries,
but under the additional, mild requirement that the database
contains a record whose value is in the range [0.2N, 0.3N ]
(or its reflection). Setting ε = 1/N in our algorithm again
yields a FDR algorithm with complexity O(N2 logN) that
works whether data is sparse or dense, assuming only a single
favorably-located record. Our proof techniques for both attacks
are rooted in learning theory, using VC dimension and the
concept of ε-samples. Both attacks also come with general
lower bounds showing that they are optimal in the number of
queries within a log factor.

In order to assess the effectiveness of these algorithms and
the tightness of our bounds, we implement our attacks and
experiment on synthetic data (Section III-D). For example, if
N = 106 and the condition of the ApproxValue algorithm
is met, KKNO’s FDR attack would require about 1026 queries.
We found experimentally that only 500 queries (or 24 orders
of magnitude fewer than KKNO) are needed to approximate
almost all records to within 5% error.

Lifting requirements on the query distribution. In view of
the previous attacks, it may seem that the topic of analyzing
leakage from range queries is mostly closed, but these attacks
still require that the adversary knows the query distribution,
and that queries are independently and identically distributed
(i.i.d.). This second requirement especially makes little sense
for real-world queries, and we contend that practical attacks
should not require it. In this regard, we view KKNO’s work
and our aforementioned results as important indicators of what
is possible in principle, and valuable warnings regarding the
power of range query leakage, but not as practical, ready-for-
use attacks.

The question, then, is what an attacker can hope to learn in
practice, given only the access pattern leakage of some range
queries, without the (unrealistic) assumption of a known i.i.d.
query distribution. We investigate this question in Section IV.
The LMP results were a step in this direction: their algorithms
are not distribution-dependent. However, they do require that
the database is dense, whereas we would like to investigate this
question in the general setting. First, we observe that what the
adversary can learn in that setting is the order of the records’
values, rather than their values directly.

Sacrificial ε-AOR. In Section IV, we introduce the attack
target of sacrificial ε-Approximate Order Reconstruction (sac-
rificial ε-AOR). This asks that the order of all records should
be recovered, except for records that are within εN of each
other (which the algorithm groups), and the sacrificed records
whose values are within εN of 1 or N . Thus, save for
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sacrificed values, sacrificial ε-AOR reveals the order of any
two records as soon as they are at least εN apart.

As our main result in Section IV, we introduce the scale-free
ApproxOrder algorithm, which takes as input the access
pattern leakage of some range queries, builds a PQ-tree, and
extracts from it approximate order information. The algorithm
does not use any knowledge of a query distribution. If, for the
sake of analyzing the algorithm, we assume a uniform query
distribution, ApproxOrder achieves sacrificial ε-AOR after
only O(ε−1 log ε−1) queries. Once again, our analysis relies
on learning theory, more specifically the concept of an ε-net.
We also prove that the query complexity of our algorithm is
optimal within a constant factor.

For ε = 1/N , ε-AOR yields exact order reconstruction for
all records. If the database is dense, then recovering order
directly implies recovering values, so we obtain full database
reconstruction in O(N logN) queries, recovering as a special
case the main result of LMP.

The ApproxOrder algorithm is not merely theoretical,
but highly practical. There is no barrier (such as the i.i.d. query
assumption) to running it on real data. Our experiments in
Section IV-C show that the attack behaves as predicted by the
theory. As an example, for N = 106, after only 500 queries,
the attack is able to fully order records, except for records
whose difference in value is less than 2% of the support size.

ε-AOR to ε-ADR. A crucial question remains: what are the
implications of the AOR attack? That is, what does learning
approximate order reveal to the attacker? It is well known
that leaking record order is highly damaging, if only because
it can be closely correlated to record values using an auxiliary
distribution [4], [5]. In fact, the severe implications of order
leakage is one of the main motivations behind the develop-
ment of second-generation encrypted databases schemes that
attempt to hide that leakage, as argued in [2]. To concretize
that point, in Section IV-D we present an attack showing
how approximate database values can be reconstructed from
approximate order information: we extend our sacrificial ε-
AOR attack to a sacrificial ε-ADR attack using an auxiliary
model of the database distribution. (As per [4], [2], such
distributions are often available.)

We conduct experiments with real datasets of US ZIP codes
and public sector salaries in Section IV-D. The resulting
sacrificial ε-ADR attack is effective: with only 50 queries, we
can learn the first two digits of a ZIP code (often identifying
a city) for a majority of records in the target database. With
100 queries on salaries, we can predict a majority of salaries
to within 10000 USD. The table in Figure 1 compares our
different attacks on range queries.

Beyond range queries. As illustration of the power of
the viewpoint we have taken, in Section V, we generalize
approximate reconstruction to other query classes and ana-
lyze the resulting attacks using tools from learning theory.
Using generalization error as a metric γ on the values in
the database, we show that all query classes with finite VC
dimension reveal the distance (in γ) between the underlying

values of records, which allows an attacker to group records
whose values are close. Further, we show how to use an ε-net
to precisely analyze how many queries are needed to guarantee
all groups of records have small diameter according to γ. We
construct, analyze, and evaluate the first reconstruction attack
on prefix queries. We conclude the section with a general
lower bound, via a reduction to PAC learning, relating the
query class’s VC dimension, attack accuracy, and number
of queries needed for any reconstruction attack using access
pattern leakage. In addition to being of theoretical interest,
this suggests VC dimension or similar concepts from learning
theory could be a useful way to compare different techniques
which leak access pattern.

Notation. Throughout [n] denotes the set of integers
{1, . . . , n}; [a, b] denotes the set of integers within the given
interval; and open brackets such as [a, b[ denote that the
corresponding endpoint is excluded. (If b ≤ a, [a, b[ is empty.)
We model a database as a set of R records where each record
has a single attribute that takes an integer value in [N ]. We
let val(r) ∈ [N ] denote the value of the record r.

Assumptions. We assume the adversary knows the number
of possible values N , and the set of all possible queries. We
do not assume that the adversary knows the set of all records
in advance, or even their number. We do not assume that every
value appears in at least one record (no density assumption).

The ApproxValue algorithm in Section III further as-
sumes that queries are drawn i.i.d. and uniformly at random.
The attack and its analysis can be generalized to other query
distributions. As explained earlier, we then introduce the
ApproxOrder algorithm in Section IV precisely to do
away with assumptions on the query distribution. Likewise
all algorithms in Section V function without that assumption.
When it comes to analyzing the query complexity of those
algorithms, we are forced to make a hypothesis on the query
distribution. In that case, we choose an assumption about the
query distribution that helps provide insight into a typical
behavior of the algorithm. We stress that that hypothesis is
in no way required for the algorithm to function and succeed.

C. Related Work
Dautrich Jr. and Ravishankar [24] introduced the use of

PQ-trees in revealing the order of records in a database
with access pattern leakage. They experimentally measured,
in some special cases, how quickly the number of orders
contained in the tree decreases as more queries are gathered.
We use also use PQ-trees for revealing order from range
queries, but otherwise our aims are distinct from theirs—their
paper focuses primarily on heuristic measures of security after
some ordering information is revealed.

Kellaris et al. (KKNO) [3] described the first exact recon-
struction attack on range queries with access pattern leakage;
Lacharité et al. (LMP) [2] improved the results of KKNO in
the dense setting, obtaining an O(N logN) exact reconstruc-
tion attack; see Section I-A for more detail. Kornorapoulous et
al. [25] gave an approximate reconstruction attack for access
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pattern leakage from k-nearest-neighbor queries. Other papers
attacking encrypted databases include [5], [4], [26], [7], [27];
these mostly analyze so-called “property-revealing encryption”
schemes, which leak strictly more than what we assume.

II. PAC LEARNING AND DATABASE RECONSTRUCTION
ATTACKS

In this section, we explore the connection between learn-
ing theory and database reconstruction attacks. Concretely,
we demonstrate a connection between approximate database
reconstruction and “Probably Approximately Correct” (PAC)
learning [8] in the setting where the attacker has access pattern
leakage from some known queries. For a brief introduction to
PAC learning, see Appendix A-D.

Reconstruction via PAC learning. The attack setting we
consider here is one in which an attacker has observed the
access pattern leakage from a number of known queries drawn
i.i.d. from a fixed query distribution (which the adversary
does not need to know). The assumption of known queries
is somewhat stronger than has been considered previously in
this literature; however, some recent works have argued that
it is realistic [5], [7] on the grounds that the adversary is able
to make some queries or has compromised an honest user.

A crucial question is the relationship between the number
of known queries and the amount of information the adversary
can learn about the database itself, cf. Section I. We will see
that this question is essentially resolved via a simple reduction
to PAC learning in the known query setting.

We can think of a database DB with R records having
values in [N ] as being a vector of length R with values in [N ];
the value of record j is DB[j]. We construct a concept space
C = (Q,C) where the points in the ground set are the possible
queries and C = ∪i∈[N ]Ci for Ci = {q ∈ Q | q(i) = 1}. Here,
q(i) = 1 means that value i matches query q. With this set-up,
we have the following result.

Theorem II.1. Let Q be a class of queries taking inputs in
a set X and C = (Q,C) be the concept space constructed
as above. Let πq be any distribution over Q. Let d be the
VC dimension of C, and assume d is finite. Then, there is an
adversary such that for any database DB, given as input m ∈
O( d

ε log d
εδ ) queries sampled from πq and their access pattern

leakage on DB, the adversary outputs a database DB′ such
that Prπq

[
q(DB[j]) 6= q(DB′[j])

]
≤ ε holds simultaneously

for all j ∈ [R], with probability at least 1−Rδ.

This theorem requires some explanation. We chose to use
the generalization error Prπq

[
q(DB[j]) 6= q(DB′[j])

]
as the

accuracy measure in our result. This is intended to surface the
core points without adding unnecessary detail, but it may also
make the result hard to interpret. Section V studies in more
detail how generalization error relates to traditional notions of
attack accuracy.

The proof proceeds via a natural reduction to PAC learning.
The adversary gets as input m known queries along with
their access pattern leakage (i.e. which records match the

query) for each of the R records in the database. The core
observation is that the access pattern is a binary classification
of each database element; further, each database element is
a concept in C. This means that the task of reconstructing
each database element can be seen as R independent PAC
learning experiments for the concept space C defined above.
The adversary simply runs the PAC learner R times, invoking
it once for each record j. For each invocation, the adversary
gives the learner as input the m queries and their access
patterns (i.e. the 0/1 labellings) for record j. Each time the
learner is run, it outputs a hypothesis Hind ∈ C corresponding
to an element of X. The adversary’s complete output is then of
the form [H1, H2, . . . ,HR], which we denote by DB′. Each
independent invocation of the learner outputs a hypothesis Hj

with Prπq
[ q(Hj) 6= q(DB[j]) ] > ε with probability at most

δ, and a union bound over the R elements completes the proof.
Note here that, while the linear dependence on R in the

probability bound may look discouraging, the sample com-
plexity of PAC learning is only logarithmic in δ, so the loss in
tightness from the union bound over R events is small. Note
also that the union bound over all R database elements can be
avoided entirely with a more careful analysis—for example,
observe that any learner will output the same hypothesis on
any two database records with the exact same access pattern on
all m queries, so the adversary need only run the learner once
per group of records having the same access pattern leakage.
The dependency on R can also be removed at the cost of
replacing the concept set C by C∆ (as defined in section V).
Since tightness is not the goal of this result, we favor simplicity
in presentation. In the full version, we describe some possible
extensions of this result.

Closing remark. In the encrypted database literature, it has
become apparent that known- and chosen-query attacks are
damaging. However, the quantitative question (“How severe
a risk is a known- or chosen-plaintext attack?”) has not
been fully explored. We posit that extending the above result
using techniques from learning theory will fully resolve this
question. Rather than developing this theme further here, we
leave it to future work and focus the remainder of this work
on more challenging attack settings.

III. SACRIFICIAL APPROXIMATE DATABASE
RECONSTRUCTION

In this section, we introduce sacrificial ε-approximate
database reconstruction (sacrificial ε-ADR), which asks to
successfully recover the value of every record in the database
within εN , for some target precision ε, save for records whose
value lies within εN of 1 or N . The term ε-approximate means
that reconstruction is within an error of εN , as in [2]. The term
sacrificial means the attack “sacrifices” records whose value
lies within εN of the endpoints. We explain the need for this
and provide a full definition in Section III-A. The rest of the
section presents two results.

In Section III-B, we extend KKNO’s database reconstruc-
tion attack [3] to sacrificial ε-ADR. A direct application of the
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Query complexity

Attack Goal Data density Proposed attack Generic lower bound Source

KKNO FDR any O(N4 logN) Ω(N4) [3]

KKNO FDR dense O(N2 logN) – [3]

LMP FDR dense N logN +O(N) 1
2N logN −O(N) [2]

LMP ε-ADR dense 5
4N log ε−1 +O(N) N log ε−1 −O(N) [2]

GeneralizedKKNO sacrificial ε-ADR any O(ε−4 log ε−1) Ω(ε−4) Section III-B

ApproxValue sacrificial ε-ADR any∗ O(ε−2 log ε−1) Ω(ε−2) Section III-C

ApproxOrder sacrificial ε-AOR any∗ O(ε−1 log ε−1) Ω(ε−1 log ε−1) Section IV

Fig. 1. Comparison of database reconstruction attacks that use access pattern leakage from range queries chosen uniformly at random. N is the number of
possible plaintext values. All attacks are up to global reflection. Generic lower bounds are for any attack targeting the same goal under the same assumptions.
“∗” denotes some additional but mild requirements on the existence of records with particular values.

ε-sample theorem from learning theory shows the dependency
on N vanishes: the required number of queries becomes
O(ε−4 log ε−1), making the attack scale-free.

In Section III-C, we introduce a new algorithm,
ApproxValue, for sacrificial ε-ADR with a mild additional
hypothesis h1: the database contains at least one record whose
value lies in [0.2N, 0.3N ]∪ [0.7N, 0.8N ]. Under this hypoth-
esis, ApproxValue achieves sacrificial ε-ADR within only
O(ε−2 log ε−1) queries. The analysis also uses the ε-sample
theorem, but is somewhat more involved. This attack shows the
pathological nature of KKNO’s lower bounds on query com-
plexity for FDR. An experimental validation in Section III-D
supports the analysis, and shows that the constants in the O
notation are empirically very small.

As noted in the introduction, the previous two results
also imply full database reconstruction within O(N4 logN)
queries in general, and O(N2 logN) when h1 is satisfied. In
the full version, we also show that both attacks are optimal in
data within a log factor—any adversary achieving sacrificial
ε-ADR for all databases (resp. databases satisfying h1) must
require Ω(ε−4) (resp. Ω(ε−2)) queries.

A. Definition of Sacrificial ε-ADR
We now formally define sacrificial ε-approximate database

reconstruction (sacrificial ε-ADR). Let ε > 0 be the desired
precision. Let est-val(r) denote the value predicted by the
algorithm for record r. Sacrificial ε-ADR is said to succeed
iff one of the following two events occur:

1) For every record r such that εN ≤ val(r) ≤ N +1− εN ,
|est-val(r)− val(r)| < εN .

2) For every record r such that εN ≤ val(r) ≤ N +1− εN ,
|est-val(r)− (N + 1− val(r))| < εN .

The fact that reconstruction is only possible up to reflection
is inherent to this setting, as seen in [3], [2]. It is required
that for all values (except those within εN of the extrema),
either the estimated value is within εN of the correct value,
or its reflection. But whichever case it is holds simultaneously
for all values. In other words, only one bit of information is
missing globally regarding the reflection symmetry. Note that
setting ε = 1/N yields full database reconstruction (FDR), i.e.
exact value reconstruction for all records.

Finally, we come to explaining why our attack needs to
be sacrificial. Sacrificing values that are close to 1 and N is
inherent to a scale-free attack under a uniform query assump-
tion. Intuitively, these values are harder to recover because
fewer range queries touch them. The probability of hitting
records with values 1 and N with a uniform range query is
2/(N+1) = O(1/N). This remains true for any record whose
value is within O(1) of 1 or N : hitting one of these records
requires Ω(N) queries. If they are not hit, then it is impossible
for the algorithm to differentiate them or determine which
records are on the same side of N/2—reflection symmetry
cannot be determined globally for those values. Note that if
the set of all records is known our algorithms can infer that
these records have values close to either 1 or N because they
were not hit by a query.

If a query on some range [1, x] for some x ∈ [εN,N + 1−
εN ] is ever issued, then the attacker is trivially able to break
the reflection symmetry between the values within εN of 1
and N (since the query will hit records with values near one
of the endpoints, but not the other). The problem is that with
uniform queries, the probability of such a query is O(1/N), so
requiring such a query to occur is not scale-free. In practice,
though, a query of that form seems likely, since endpoints
are generally “interesting” to query. For that reason, we view
the sacrificial aspect of the attack as more of an artefact of
the analysis than a practical issue. Nevertheless, it must be
addressed in a formal treatment of the attack.

B. Generalizing the KKNO Attack
We now present our generalization of the KKNO attack to

sacrificial ε-ADR. Our algorithm proceeds in two steps. The
first step is to (approximately) recover the value of each record
up to reflection individually: for each record, we recover an
approximation of its symmetric value, defined as symval(r)

def
=

min
(
val(r), N+1−val(r)

)
. The second step of the algorithm

is to determine which values are on the same side of N/2
so that, in the end, the value of records is recovered up to
reflection globally, as discussed above.

We focus here on the first step of the attack because it
suffices to highlight the main ideas. For the second step and
its analysis, we refer the reader to the full version. Note that
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the first step does not sacrifice any values: this is necessary
only to break the reflection symmetry.

The idea underpinning the attack is natural: a given query
distribution (in this case, the uniform distribution) induces a
distribution on the probability that each value is hit by a range
query. By measuring that probability empirically, the value of a
record can be inferred. More precisely, for a value k ∈ [1, N ],
let Ak denote the set of ranges in [1, N ] that contain k. Observe
that there are |[1, k]× [k,N ]| = k(N + 1− k) such ranges.

We also assimilate Ak with the event that a uniform range
falls within Ak, i.e. contains the value k. Since there are
N(N + 1)/2 possible (non-empty) ranges in total, we have:

p(k)
def
= Pr(Ak) =

2

N(N + 1)
k(N + 1− k). (1)

We note that x 7→ p(x) is quadratic and reaches its maximum
at x = (N+1)/2. It is symmetric about that value, as implied
by the reflection symmetry of the setting.

The algorithm simply measures p(x) empirically for each
record by counting how many times that record is hit by a
query, and dividing by the number of queries. It then infers
the symmetric value of the record by choosing k such that
p(k) is as close as possible to the empirical measurement.
Pseudo-code is provided in Algorithm 1 in Appendix D.

We now turn to the analysis of the algorithm: how many
queries are required to achieve sacrificial ε-ADR? Because
the function p used to infer record values is quadratic and flat
around (N + 1)/2, getting an error of ε on the input of p,
i.e., on record values, requires an error bounded by O(ε2) on
the output of p. That is, for ε-ADR to succeed, the difference
between the empirical estimate c/Q for a record r and its
expectation p(val(r)) should be O(ε2). See the full version
for the formal proof.

Hence what we want is that the empirical probability of
each event Ak should be within O(ε2) of its expected value,
for all values k. If we were to naively apply a union bound,
since there are N distinct values k, we would get a dependency
on N . Instead, a direct application of VC theory shows that
O(ε−4 log ε−1) queries suffice, with no dependency on N . To
see this, the idea is to define the ground set X as the set of all
ranges in [1, N ], and the concept set C as the Ak’s, i.e., each
Ak is a concept. Then what we want is exactly a Ω(ε2)-sample
on that concept class.

Proposition III.1. The growth function of (X,C) is 2n, and
its VC dimension is 2.

The proof of Proposition III.1 is given in the full version.
As a direct consequence, we can apply the ε-sample theorem
(Theorem A.4), with Ω(ε2) playing the role of the ε in the
statement of the theorem, to conclude that

O
(
ε−4 log ε−1 + ε−4 log δ−1

)
queries suffice for Algorithm 1 to recover the symmetric value
of all records within εN , except with probability at most δ.
Thus for any fixed probability of success η = 1 − δ < 1,
Algorithm 1 succeeds within O(ε−4 log ε−1) queries.

For the full attack, see the full version. The rest of the
attack uses similar ideas and the first step presented here
is representative of the techniques involved. The final query
complexity remains O(ε−4 log ε−1).

C. The ApproxValue Attack
Next we introduce the ApproxValue algorithm, which

achieves sacrificial ε-ADR within onlyO(ε−2 log ε−1) queries,
saving roughly a square root factor over the generalization
of KKNO’s algorithm presented above. In particular, set-
ting ε = 1/N yields full database reconstruction within
O(N2 logN) queries, significantly improving on KKNO’s
original O(N4 logN) bound. This comes at the cost of the
attack requiring a mild hypothesis about the database. The
hypothesis h1 asks that there exist at least one record in the
database with a value in [0.2N, 0.3N ] ∪ [0.7N, 0.8N ]. The
constants here are for concreteness; others would work as well.
The record does not need to be known to the adversary, it
suffices that it exist in the database.

We note that an hypothesis such as h1 is necessary to
achieve a query complexity of O(ε−2 log ε−1): in the full
version, we prove that any algorithm achieving sacrificial ε-
ADR in full generality requires Ω(ε−4) queries. With h1 we
prove a similar lower bound of Ω(ε−2), so ApproxValue
is optimal in data within a log factor. We believe that O(ε−2)
(resp. N2) better captures the actual cost of ε-ADR (resp. full
reconstruction) on a real database, assuming a uniform query
distribution: the O(ε−4) cost of the original attack was because
the bound had to account for pathological cases where h1

is not satisfied. Such databases have all records concentrated
around 1, N/2 and N . None of the real datasets used in our
experiments had this property.

Next we explain how we gain a square factor over the previ-
ous attack, which required O(ε−4 log ε−1) queries. Above we
saw that the main ε4 term comes as a result of ε being squared
twice: first, to move from the estimate c/Q of p(val(r)) to the
symmetric value of the record, and second by applying the ε-
sample theorem to uniformly approximate p across all values.

The second squaring is inherent: even if we wanted to
approximate p on a single value, we would still need to
approximate p within ε, which requires Ω(ε2) queries. (See
the full version for more details.) In contrast, the first squaring
ultimately comes from the fact that p is quadratic. We can
avoid it if we use a linear function to approximate record
values: this is exactly what happens in the ApproxValue
algorithm. Pseudo-code of the ApproxValue algorithm is
provided in Algorithm 2 in Appendix D. The first step is
to identify a record whose (symmetric) value is as close as
possible to N/4. Hypothesis h1 implies a suitable record
exists. We call the resulting record the anchor record. Because
its value is close enough to N/4, identifying such a record does
not incur the quadratic cost of the function p as in the previous
section, because that cost only occurs near the extremum of the
function at (N + 1)/2. We then determine the value of every
other record up to symmetry around the anchor by measuring
the empirical probability that a query hits both the target record
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and the anchor record. Let vA denote the value of the anchor
record and k denote the value of a record we are trying to
approximate. The expectation of the previous probability is

d(vA, k)
def
=

2

N(N + 1)
·

{
k(N + 1− vA) if k ≤ vA
vA(N + 1− k) if k > vA.

The second step of the ApproxValue algorithm is to use
the function x 7→ d(vA, x) exactly as we used x 7→ p(x) in
the previous section to estimate a record’s value. The crucial
point is that while x 7→ p(x) was quadratic, x 7→ d(vA, x) is
piecewise linear (with a single bend at vA). This avoids the
first squaring discussed earlier.

The third and final step of ApproxValue is to use p
once again to break the symmetry around vA inherent to the
mapping x 7→ d(vA, x) used in the previous step. However,
this limited use of p does not incur a new square factor. In the
end, we obtain the following result.

Theorem III.2. Let ε < 1/4. Assume the database under
attack satisfies hypothesis h1. Then after O(ε−2 log ε−1 +
ε−2 log δ−1) queries, ApproxValue achieves sacrificial ε-
ADR with probability of success at least 1− δ.

A formal proof is given in the full version. Given any con-
stant probability of success η < 1, ApproxValue achieves
sacrificial ε-ADR within O(ε−2 log ε−1) queries.

D. Experimental Results
The ApproxValue attack achieves ε-ADR within

O(ε−2 log ε−1) queries (for any given constant probability of
success η < 1). We experimentally evaluate the tightness of
this bound for a fixed number of records, R, and various
numbers of possible values, N , so that we generate both dense
and sparse databases. Record values are sampled uniformly at
random, so hypothesis h1 was satisfied with high probability.
Our results are averaged over 500 databases, each with 500
randomly sampled queries.

For the attack to succeed, the difference
|est-val(r)− val(r)| should be at most εN for records
at least εN away from the endpoints. The records whose
values are near the endpoints may have been placed on the
wrong side of N/2 relative to the anchor record. The bottom
group of lines in Figure 2 shows, after every 10 queries, the
maximum symmetric value of such misclassified records. As
discussed in Section III-A, sacrificing reconstruction of some
records is necessary. Nevertheless, we see that our practical
results are even better than Theorem III.2 suggests: the upper
bound on the maximum symmetric value of a sacrificed
record still holds when we take it with all constants set to 1 –
in particular, taking the VC dimension to be 1, not taking into
account the success probability, and taking any multiplicative
constant hidden by the O() notation to be 1.

The primary reason this “no-constants” bound holds is
because the bound in Theorem III.2 inherits the looseness of
the ε-sample theorem (cf. Theorem A.4): while VC theory is
a good predictor of asymptotic behavior, constants are noto-
riously loose. In particular, one point where loss of tightness
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Fig. 2. Maximum symmetric errors of all records and maximum symmetric
values of records that were sacrificed. Results averaged over 500 databases
satisfying h1 for each value of N .

arises in the proof of the ε-sample theorem (e.g., as in [11,
Lemma 14.17]) is when using the growth function to upper
bound the number of subsamples induced in the so-called
double sample. Tightening this bound is possible, for instance,
with sample-based growth functions [12]. A benefit of running
experiments is that they allow us to estimate the constant in
practice: in our experiments, simply setting all constants to 1
provided a reasonable estimation of the attack’s success.

In addition to limiting the sacrificed values’ distance from
the endpoints, a successful ε-ADR attack must correctly
estimate the other records’ values within εN , up to global
reflection. The upper group of lines in Figure 2 is the
maximum error of the symmetric values, i.e., the maximum
difference |min{est-val(r), N + 1− est-val(r)} − symval(r)|
over all records r, as a fraction of N . The reason we plot
the symmetric error rather than the absolute error is that it
allows us to present results for all records at once—even
sacrificed records. It also gives an upper bound on the er-
rors |est-val(r)− val(r)| for records that were not sacrificed.
Overall, we see that experimental results behave in the manner
predicted by the theory, including scale-freeness, and that the
O() upper bound derived by the theory holds in practice, even
when setting the hidden multiplicative constant to just 1.

IV. APPROXIMATE ORDER RECONSTRUCTION

In this section, to remove the requirements that the query
distribution should be i.i.d. (which we view as unrealistic)
and known to the adversary, we turn our attention to sacri-
ficial ε-approximate order reconstruction (sacrificial ε-AOR),
defined in Section IV-A. In Section IV-B, we explain our
ApproxOrder algorithm for sacrificial ε-AOR, based on
PQ-trees, and its analysis. In Section IV-C, we experimentally
evaluate the bounds. In Section IV-D we show how the attack
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can be extended to recover approximate record values, rather
than just their order, and present experimental results.

A. Definition of Sacrificial ε-AOR
Sacrificial ε-approximate order reconstruction (sacrificial ε-

AOR) asks to recover the order of records, except for records
that are within εN of each other (“approximate” recovery), and
for records within εN of the endpoints 1 and N (“sacrificed”
records).

We first introduce some notation: if A is a set of records,
then the diameter of A is the largest difference between the
values of any two records in A, i.e.: diam(A)

def
= max{val(b)−

val(a) : a, b ∈ A}. We let < denote the order on records
induced by their values, i.e. r < s iff val(r) < val(s). For
two sets of records A and B, we write A < B to denote
∀a ∈ A, b ∈ B, a < b.

An algorithm is said to achieve sacrificial ε-AOR iff it
outputs disjoint subsets of records A1, . . . , Ak such that:

1) ∀i, diam(Ai) < εN .
2) A1 < · · · < Ak holds up to reflection.
3) For all r 6∈

⋃
Ai, val(r) ∈ [1, εN [∪]N + 1− εN,N ].

The definition implies that the algorithm reveals the order of
the values of any two records, as soon as they are at least εN
apart; except possibly for records whose value is within εN
of 1 or N . If we set ε = 1/N , sacrificial ε-AOR is equivalent
to recovering the exact order of all records.

B. The ApproxOrder Attack
Our attack makes use of PQ-trees [13], a special structure

that makes it possible to represent the set of all orders on
records compatible with the access pattern leakage. The leaves
of a PQ-tree are labeled by records. Each leaf corresponds to
a distinct record. Internal nodes constrain how their children
may be ordered: P-nodes allow any ordering, while Q-nodes
order their children up to reflection (i.e. only two orderings are
possible). A more detailed presentation of PQ-trees is provided
in Appendix B.

Pseudo-code for the ApproxOrder attack is given in
Algorithm 3 in Appendix D. The idea is to first build the
PQ-tree induced by the query access pattern leakage. The
algorithm then locates the deepest node T in the tree such that
the leaves below T contain a strict majority of all records. The
algorithm returns as its output the set Ai of leaves below each
child Ci of T , in the order of the children of T . Thus, the
order between two records is learned by the adversary iff they
appear below distinct children of T , and the order between
the two records matches the order of the children of T below
which they appear.

Analytically, our main result is as follows. The theorem
assumes hypotheses h2 and h3, which will be presented below,
and a uniform query distribution.

Theorem IV.1. Let ε < 1/4. Assume the database under at-
tack satisfies hypotheses h2 and h3. Then afterO(ε−1 log ε−1+
ε−1 log δ−1) queries, ApproxOrder achieves sacrificial ε-
AOR with probability of success at least 1− δ.

The proof of Theorem IV.1 is given in the full version. For
any fixed constant probability of success, the algorithm suc-
ceeds using only O(ε−1 log ε−1) queries. As a direct corollary
(setting ε = 1/N ), the expected number of queries before
the PQ-tree collapses into a single Q-node, thus completely
revealing the order up to reflection, is O(N logN).

The overall idea is that after that number of queries, with
high probability there exist certain queries whose endpoints
partition [1, N ] into sufficiently small buckets while revealing
the order between these buckets. By properties of PQ-trees,
this situation implies the existence of a node within the
PQ-tree that essentially directly reveals ε-approximate order
(and that node can be easily located as the deepest node
covering a majority of records). Moreover, the existence of
the aforementioned queries inducing the partition is implied
by an ε-net, so that ultimately the query complexity required
for those queries to exist is directly derived from the ε-net
theorem of VC theory.

The result does require some assumptions about the exis-
tence of records having certain values in the database, namely
hypotheses h2 and h3. Hypothesis h2 requires that there exist
two records with values a and b such that a, b ∈ [N/4, 3N/4],
and b − a ≥ N/3 (what really matters for the proof to go
through is that a, b should be Ω(N) away from 1, N and
each other); and additionally that there exist at least three
records with values within [εN,N + 1 − εN ] that are more
than εN away from each other (note that a and b can be two
of these values). Hypothesis h3 requires that a strict majority
of all records have a value within [εN,N + 1 − εN ], and
that no range of length εN contains the values of a (strict)
majority of all records. On the face of it, h2 and h3 seem
like they are restrictive in that they make several requirements
on the database. But those requirements are quite mild. Both
hypotheses essentially ask that the database should not be too
concentrated over a few values. We have not encountered a
real-world dataset that failed to satisfy those requirements.
Further, only h2 is actually required for the T node to exist and
leak sacrificial ε-approximate order as claimed. The only point
of hypothesis h3, which is more demanding, is to ensure that
that node is the deepest node covering a majority of records, so
that it can be easily located. But that is a theoretical concern:
in our experiments, the desired T node was usually in the first
two levels of the tree. Thus, the practically relevant hypothesis
is h2, which only requires that the database should not be
entirely concentrated near the endpoints.

In the full verison, we prove that the query complexity
of our algorithm is optimal within a constant factor. More
precisely, any (unbounded) adversary achieving sacrificial ε-
AOR for all databases must require Ω(ε−1 log ε−1) queries.

C. Experimental Results
Assuming uniform queries, the ApproxOrder attack suc-

ceeds within O(ε−1 log ε−1) queries (for any given constant
probability of success η < 1). We experimentally evaluate
the tightness of this bound for a fixed number of records
R, and various numbers of possible values, N , so that we
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Fig. 3. Maximum symmetric values of records not in buckets and maximum
bucket diameters. Results averaged over 500 databases for each value of N .

generate both dense and sparse databases. Record values are
sampled uniformly at random, so hypotheses h2 and h3 were
satisfied with high probability. Our results are averaged over
500 databases, each with 500 randomly sampled queries. We
measured the results after every 10 queries, and therefore
sometimes needed a heuristic to identify a likely candidate
for the Q node when the number of queries is very small.
When the root node was not a Q node, our experiments chose
the first child Q node that contained at least a third of the
records. As our results indicate, this node usually contained
an overwhelming majority of the records.

The bottom group of lines in Figure 3 shows the maximum
symmetric value (as a fraction of N ) of any record that
was not in one of the Q node’s children buckets. When the
ApproxOrder attack succeeds, the only records that are
not necessarily in buckets are those with values in [1, εN [ or
]N + 1− εN,N ]. If all records have been placed into buckets
below the Q node, the maximum excluded symmetric value is
set to 0. These results show that the theoretical upper bound
holds, even when taking it with all constants set to 1, like in
Section III-D. The attack also behaves in the predicted scale-
free way: changing N has little effect on empirical results.

The upper group of lines in Figure 3 shows the maximum
diameter (as a fraction of N ) of the Q node’s child buckets. We
compare this to the expected maximum diameter dictated by
the ε-net bound, and see that convergence happens as quickly
as predicted by the bound taken with all constants set to 1, as
in the previous case. Again, results are scale-free.

Another way of interpreting these results is to ask, after a
certain number of queries, for what ε have we achieved sacri-
ficial ε-approximate order reconstruction? Our results indicate
that the bottleneck is the maximum bucket diameter, not the
sacrificed values, so the upper group of lines in Figure 3 could

be interpreted in this way.
Although our theoretical analysis for the ApproxOrder

attack assumes a uniform query distribution, this assumption
was only for the analysis and the attacker does not need
to know the query distribution to carry out the attack. We
consider now another more realistic distribution on queries,
namely fixed-width range queries. Such queries are widespread
in practice: for example, the industry-standard TPC-H contains
six explicit fixed-width range queries. For a given number of
possible values N and width W ≤ N , there are N + 1 −W
such ranges: [1,W ], [2,W + 1], . . . , [N + 1 − W,N ]. We
experimentally evaluate how well the ApproxOrder attack
performs for a dataset of R = 1000 records, N = 10000
possible values, and range queries of different widths. The
results are in Figure 4. Unlike the case of uniform range
queries, the limiting factor here in attaining ε-AOR is initially
the too-high symmetric values of the sacrificed records. For
small range widths (relative to the domain size, N ), these
results are to be expected: when only a few queries have
been observed, the total number of possible values that have
matched any query so far is limited, and thus the maximum
symmetric value of a record that is not in a bucket may be
high. After this initial period, the attack’s performance follows
the results of the uniform range query case and reflects the
behaviour of ε−1 log ε−1 .

D. From AOR to ADR
We now show how our approximate ordering attack can

be combined with a model of the database distribution π
(commonly called an auxiliary distribution) to mount powerful
ε-ADR attacks. That is, we leverage our approximate ordering
attack above to achieve approximate database recovery. Our
attack is somewhat reminiscent of the LMP auxiliary distribu-
tion attack, with two major differences: (1) it does not require
the additional rank leakage used by LMP, and (2) we can study
its performance analytically.

We implemented the resulting ε-ADR attack and conducted
experiments with several datasets representative of practical
use cases of encrypted databases. As in the analysis of
approximate order reconstruction, we will assume here that
the query distribution is uniform only to make the exposition
simpler—no part of our attack requires queries to be uni-
formly distributed. Our attack takes as input the output of
any algorithm achieving ε-AOR. It also takes a model of the
database distribution π (which needs only to approximate the
true database distribution), the query distribution πq , and the
domain size N . It outputs an estimate for the underlying value
of every record in the database. The pseudocode for the attack
is given in Algorithm 4 in Appendix D.

Attack intuition. Briefly, the attack uses the observation that,
for every disjoint subset of records Ai (i ∈ [1, . . . , k]) given
by ε-AOR, some information about the ranks of the records
(i.e. their positions in a sorted list of all records) in the subset
is revealed. Because each sacrificed record could be before A1

or after Ak the exact ranks are unknown, but lower and upper
bounds can be computed.
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Fig. 4. (Top) Maximum symmetric values of records not in buckets. (Bottom)
Maximum bucket diameters. Results for fixed-width queries averaged over 500
databases for each value of range query width.

There are three main questions to answer in building an
attack from this observation. (1) How should the attack orient
the Ai? (2) How many sacrificed records should go before A1?
(3) How should record values be estimated? We will describe
the steps of the attack at a high level here; a full description
of the attack steps appears in Appendix C.

The first step is record rank estimation. This step has three
tasks: choosing an orientation of the Ai, guessing how many
of the sacrificed records are less than the first sorted group
A1, and computing a range of possible ranks for the records
in each Ai. The attack uses a heuristic to orient the Ai that
looks at the number of records above and below the median
group. To estimate the number of sacrificed records to put
below A1, we model the number of sacrificed records to the
left of A1 as successes in a binomial distribution and use it to
estimate the smallest rank of an element in A1. After that, the
range of ranks for each Ai can be computed as a running sum
of the smallest rank and number of records in each group.

The second step is partition estimation. This step estimates a
range of possible values for each group Ai, given the range of
ranks for the group. We estimate the value for each rank using

the expected value of the order statistic with that rank. The
third step is database estimation, which estimates a value for
each record in a group given a range of values for that group.
Our estimate for each record is the median of the range.

Experiment setup and data. We implemented Algorithm 4
in Python 2.7 and ran all our experiments on an Ubuntu 16.04
desktop with an Intel Core i7-6700 CPU, clocked at 3.4GHz.
We used an existing C++ implementation [14] of the PQ-tree
data structure and used SWIG [15] to call it from Python.

We evaluate the attack on two datasets. The first is a
database of registered pilots from the US government Federal
Aviation Administration (FAA) [16]. It contains the ZIP code
of residence for over 61,000 pilots nationwide. ZIP codes are
five-decimal-digit numbers. The most significant digits reveal
increasingly precise information about location—for example,
the first three digits identify a neighborhood in large cities.
For more information see [17]. For this experiment we use US
Census data about ZIP code population as an auxiliary model
of the distribution. Though there are some high-probability
ZIP codes, the distribution is overall fairly uniform. Further,
the FAA ZIP codes are not well-modeled by the census data
- their statistical distance is about 0.51.

The second is a database of California (CA) state public
employee salaries from 2016. Salary data is sensitive both for
cultural reasons and because of the possibility of blackmail.
The database contains over 248,000 numbers between 0 and
762,000 US dollars. Most are salaries (i.e. at least 25,000 US
dollars), but a sizeable fraction are in the low hundreds of
dollars. We did not remove the low dollar amounts (as doing
so could bias experiments in our favor) but we did truncate the
few outliers over 500,000 US dollars. We used a database of
around 120,000 New York (NY) state public employee salaries
from the same year as auxiliary data for this experiment. Both
NY and CA salary datasets are roughly Gaussian with means
73,000 and 67,000 respectively. Their statistical distance is
about 0.19. Rather than use the full CA salary database, in
this experiment we subsampled random databases of 10,000
salaries and averaged the results to better understand how the
attack performs on smaller databases.

Results and discussion. Our attacks will measure accuracy
as percent error, that is, if the true value of a record is u and
the attack guesses v, (for u, v ∈ [N ] the error for that record
is |u − v|/N . The baseline guessing attack for this accuracy
measure is predicting the median of the database distribution
for every record. Figure 5 shows the results of the ZIP code ex-
periment averaged over 20 randomly-generated transcripts and
the salary experiments averaged over 10 randomly subsampled
databases each with 10 randomly-generated transcripts. We
also show the baseline guessing accuracy. The variance was
low in all our experiments with 25 or more queries. With
only ten queries, the variance for the 75th percentile error is
quite high, which we intuitively expect—with so few queries
many groups of records will be large. The results in that
table assume the Ai have been oriented correctly. Because
ZIP codes have a fairly flat distribution our heuristic procedure
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Percent Error
25% 50% 75%

# Queries ZC SAL ZC SAL ZC SAL

10 4 2 7 4 11 7

25 2 1 4 2 7 4

50 1 1 3 2 6 3

100 1 1 2 2 5 3

BL 15 2 27 5 37 9

Fig. 5. Accuracy of Algorithm 4 on FAA ZIP codes (‘ZC”, N = 9, 999)
and CAL salaries (‘SAL”, N = 500, 000): percentage of records recovered
with error at most the listed percent of N . ‘BL” refers to baseline guessing.
Error is computed as |(actual)− (guessed)|/N ).

OrientSubsets chose the wrong orientation in about half of the
experiments. The Ai were oriented correctly in all runs of the
salary experiment. Since there are only two ways to orient
the Ai an incorrect guess is mostly inconsequential. We do
not include trials for which the PQ tree does not have a Q
node at the first level. This happened only a few times in all
experiments for ZIP codes. For salary experiments with 10
queries about one-quarter of the trials did not have a Q node
at the first level. With 100 queries, about one-tenth of the trials
did not. (The attacker can tell when there is no Q node and
choose to see more queries before running the attack.)

The attack on ZIP codes performed extremely well. With
only ten queries, we are able to guess the first digit correctly
for over half the records on average. Concretely, about half the
database records would have their state of residence partially
revealed with only ten queries. With only one hundred queries,
we recover the first two digits (or a small window with only a
few possibilities) for a majority of the records in the database.

For the attack on salaries, the accuracy of the baseline
guessing attack is artificially low because of the skew of the
distribution—the max value (which we use as the denominator
to compute percent error) is much larger than all but a tiny
fraction of salaries. Thus, the baseline guessing attack having
5% error translates to 25,000 USD, but most salaries are within
25,000 USD of the median, so baseline guessing performs
very poorly on most salaries. In contrast, our attack predicts a
majority of the records in the database to within 2% error
(10,000 USD) with only fifty queries, and with only 100
queries predicts a quarter with 1% error (5,000 USD).

V. GENERALIZING APPROXIMATE RECONSTRUCTION

We have seen how ε-nets and ε-samples can be used to
build and analyze approximate reconstruction attacks on range
queries. In this section, we abstract a core technical idea from
those attacks – that records accessed the same way by most
queries must be “close” – and show how it extends beyond
range queries. We explore this in three ways: (1) by using
learning theory to define a natural and general notion of
distance relevant to access pattern attacks, (2) by showing how
ε-nets are the right technical tool for analyzing the meaning
of this distance for particular query classes, and (3) by using
this distance notion to prove a general lower bound on the
query complexity of any attack with access pattern leakage.

To the best of our knowledge, our general lower bound is
the first such proof ever given for this setting and illustrates a
core finding of this work: the security impact of access pattern
leakage for any class of queries is related to its VC dimension.

Distances induced by range queries. Let Ci be the set
of range queries matching value i, and Cj , j. Then, the set
of queries matching i XOR j (exactly one of i and j) is
∆(Ci, Cj), where ∆ is the symmetric difference operator on
sets, and the number of such queries is γ(i, j)

def
= |∆(Ci, Cj)|.

We can make three interesting observations about γ(i, j). First,
it is related to the numerical distance metric |i − j| (though,
importantly, they are not identical). Second, γ(·, ·) is itself a
metric on [N ]. Third, distance in this metric is approximately
revealed by the access pattern leakage of range queries: if
every query accesses either both or neither records i and j,
then γ(i, j) is likely to be small. These three properties were
used extensively in our attacks on range queries, but they are
not specific to range queries: we can abstract them using ideas
from learning theory.

Distance, generally. Consider any class of queries Q on
[N ] and distribution π over those queries, and consider the
concept space (Q,C) with concepts C def

= {Ci}i∈[N ], where

each Ci
def
= {q ∈ Q | q(i) = 1}. Each query is a point in this

concept space, and there is a set corresponding to each possible
value in [N ] containing the queries that match it. Now, define
the symmetric difference concept space (X,C)∆ def

= (X,C∆),
where C∆ def

= {∆(Ci, Cj)}i,j∈[N ] and ∆(·, ·) is the symmetric
difference of the input sets. This new concept space contains,
for each pair i, j, the queries which return exactly one of
i, j. Next define the function γπ(i, j)

def
= Prπ [ ∆(Ci, Cj) ]. As

above for range queries, where implicitly π was the uniform
distribution, this defines a metric on [N ]. To see that the
triangle inequality holds, observe that for any i, j, and k,
any query in ∆(Ci, Cj) is in ∆(Ci, Ck) or ∆(Ck, Cj). This
allows us to generalize the use of ε-nets in ApproxOrder
to arbitrary query classes. If the adversary observes a set of
queries that is an ε-net for the symmetric difference concept
space, then it must be the case that for any subset S of records
with identical access pattern, the underlying values V of those
records satisfy diamγ(V )

def
= maxi,j∈V γπ(i, j) ≤ ε.

Thus, if we simply group together records that have the
same access pattern, then the existence of an ε-net provides an
upper bound on the distance (with respect to the measure γ) of
records in the same group. Essentially, access pattern leakage
from any query class reveals a kind of approximate equality
between the underlying values of the records in the database.
This approximate equality depends both on the query class
and the query distribution. For range queries, we used this
approximate equality to build the ApproxOrder attack and
reveal a great deal of information with few queries. However,
closeness in the metric γ may not be practically interesting
for all query classes and distributions: for example, access
pattern leakage from the “query class” which is sampled
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uniformly at random from 2[N ] is unlikely to reveal anything
interesting. Nevertheless, for many query classes used in
practice, closeness in this distance metric can lead to serious
privacy breaches. For example, for prefix queries, two values
being close in this metric implies they have a common prefix.
We will show a simple attack that allows an adversary to
reveal which records in the database are approximately equal
according to the distance metric γπ .

Approximate equality attack. Consider a set of queries
Q, possible record values [N ], and resulting concept space
(Q,C), whose VC dimension d we assume is finite and
≥ 2. Let πq be any distribution over Q. The attack takes as
input records {r1, r2, . . . , rR} along with a 0-1 matrix AP
with R rows and Q columns, where APij = 1 iff query j
returns record i. The attack views each row of the matrix as
a number in [0, 2Q − 1] and outputs a partition by grouping
all records with the same number. Let gi = {ri1, . . . , rik} be
any such group, and let V = {v1, . . . , vk} be the underlying
values of these records. An application of the ε-net theorem
lets us immediately conclude that Prπq

[ diamγ(V ) ≤ ε ] >
1− (2Q)d2−εQ/2, and this bound holds for all groups simul-
taneously.

A. Prefix and Suffix Queries

Next, we show how to instantiate the approximate equality
attack for a practically relevant query class. For a set Σ≤` of
all strings with length ≤ ` from some alphabet Σ, define a
prefix query q to be a string in the set ∪`j=1Σj . In text search,
prefix queries are usually indicated by a trailing asterisk “*”.
For any element j ∈ Σ≤`, define the predicate q(j) to be 1
if either q = j or q is a prefix of j, and 0 otherwise. As an
example, take the database {cat, carbon}. A prefix query “c*”
on these two values would return both, but “carb*” would
return only the second one.

Although prefix queries are technically a subset of range
queries, there are three crucial differences which obviate the
use of previous attacks on range queries: prefix queries do
not reveal order, they cannot overlap without one query being
contained in the other, and the number of queries matching any
fixed string is constant. (Replacing “prefix” with “suffix” in the
discussion above gives an identical query class that matches
strings based on a suffix instead of a prefix. Our discussion
and attacks easily translate to suffix queries, so we dispense
with a separate discussion for them.)

In the the symmetric difference concept space for prefix
queries, the concepts ∆(Ci, Cj) for i, j ∈ Σ≤` are the queries
that are prefixes of exactly one of i or j. If i and j themselves
have a common prefix, though, some prefix queries will match
both i and j. More precisely, if i and j have a length-k
common prefix, then |∆(Ci, Cj)| = (|i| − k) + (|j| − k).
Informally, if the adversary notices that two records are always
accessed together or not at all, then it can infer that they share
a long common prefix. We will describe how to formalize this
intuition with ε-nets. Further, if the adversary has a model of
the database distribution, it can use frequency analysis to learn

the characters of each record, one at a time (reminiscent of
the climax of the science-fiction movie WarGames).

A WarGames attack on prefix search. Most modern text
and web search systems support prefix queries on unstruc-
tured data [18], and they are ubiquitous in software-as-a-
service (SaaS) products like Salesforce, ServiceNow, and
Dropbox [19], [20], [21]. A common [21], [19] design pattern
for these systems is to send a prefix query for every character
the user types in the search bar. Since users may find their
desired result without finishing their query, the distribution of
queries is heavily biased towards shorter prefixes.

Our attack in this setting is simple. First, the adversary runs
the approximate equality attack described above, obtaining
a partition of the records in the database. Then, for each
record, it takes the union of all query results containing that
record. Here is where we apply the generalized distance notion
discussed earlier: with an ε-net, we can ensure that each group
in the partition contains records with at least a length-one
common prefix, and that the unions we form afterwards are
exactly the sets of records with the same first character. The
first character of each record is then recovered via frequency
analysis, and the attack is iterated to learn the second character,
then the third, etc.

Analyzing the attack. We model the queries as being sam-
pled via a two-step process. First, a prefix length `q is sampled
from a Zipf distribution on [`]. (Recall that the standard Zipf
distribution on ` elements has Pr [ i ] = (1/i)/H`, where
H` =

∑`
m=1 1/m is the `th harmonic number.) Then, the

query is sampled as a uniformly random element of Σ`q . Call
this distribution over queries πts.

We first consider, for two words i, j ∈ Σ≤`, how
the length of i and j’s common prefix relates to
Prπts [ ∆(Ci, Cj) ]. If i and j have different lengths
and share a length-k prefix, then Prπts [ ∆(Ci, Cj) ] =
1
H`

(∑|i|
m=k+1 1/(m|Σ|m) +

∑|j|
m=k+1 1/(m|Σ|m)

)
. Let `min

be the length of the shortest string. If the queries observed by
the adversary are an ε-net for the symmetric difference concept
space and for ε = 1

H`

∑`min
m=1 1/(m|Σ|m), then, for all i, j

having no common prefix, we have the distance γπts(i, j) > ε
and a query accessing i and j differently must have occurred.
The VC dimension of this concept space is at most 4, so
O( 1

ε log 1
εδ ) queries suffice for this attack to recover the first

character of every record with probability at least 1− δ. This
same analysis can be iterated for the rest of the characters.

Experiments. We implemented the attack using last name
data from the Fraternal Order of Police (FOP) database dump,
posted online in 2016. It contains the personal information of
over 600,000 law enforcement officers in the United States.
For auxiliary data, we used public US Census statistics [22]
on last name frequencies. We also ran the attack on the FAA
ZIP code dataset from the experiments in Section IV-D, but
it performed quite poorly, primarily due to the auxiliary data
being a poor model of the ZIP code distribution.

In 9 out of 10 trials with only 500 prefix queries sampled
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according to the distribution described above, we were able to
partition the records into groups with at least a one-character
prefix in common. The mean number of queries required to
do this was 315. Once we obtain this partition, we recovered
the first character for over 70% of the last-name records. With
the same number of trials for 40,000 queries, we recovered
the first and second characters of over 55% of the last-
name records. With 3 million queries, we recovered the first
three characters for over 40% of last-name records, and we
recovered roughly 1,500 three-character last names exactly.
The sample complexities given by the ε-net theorem above
are 1,491, 120,000, and 6 million for recovering 1, 2, and 3
characters—much higher than our experiments indicated. As
we saw above, applying these results can give loose bounds
but the “true” constants are usually small.

This attack on prefix queries can be improved. Our goal was
not simply to construct an accurate reconstruction attack for
prefix queries, but to demonstrate the power of the learning-
theoretic approach in building and analyzing reconstruction
attacks. We can generalize the prefix attack to obtain the
three basic steps for this approach: (1) define a concept
space and a metric, (2) use an ε-net to analyze the number
of queries needed to learn approximate equality, then (3)
perform an attack on the information about values revealed by
approximate equality. We note also that standard results [11]
on intersections and unions of concept classes can extend this
approach to composite query classes (e.g. a SQL query which
intersects the result of a range query on one column and a
prefix query on another).

B. A General Lower Bound on Attacks
The metric γ is defined for any query class, and in many

cases this leads to privacy implications: for range queries,
it is closely related to the distance between record values;
for prefix queries, the length of the longest common prefix.
A general approximate reconstruction attack should recover
values that are close (for γ) to the actual record values, and
lower bounds on closeness (for γ) should imply lower bounds
on the accuracy of any approximate reconstruction attack. The
following theorem gives one such lower bound on the number
of queries necessary for any approximate reconstruction attack
on any query class, as a function of the desired accuracy ε and
the VC dimension d of the query class.

Theorem V.1. Let Q be a class of queries on [N ], πq a query
distribution, and C = (Q,C) the associated concept space
with VC dimension d > 1. Let γ(i, j)

def
= Prπq

[ ∆(Ci, Cj) ]
be the distance metric induced on [N ] by Q and πq . Consider
any algorithm that takes as input a database of size R with
elements in [N ], together with the access pattern leakage of
m queries sampled from πq , and outputs an approximation
DB′ such that γ(DB[i], DB′[i]) ≤ ε for all i ∈ [1, . . . , R],
with probability of success at least 1− δ (over the choices of
queries from πq). Then m is in Ω( d

ε + 1
ε log 1

δ ).

This result is a direct application of PAC learning theory: an
algorithm that takes any database as input and outputs a DB′

satisfying the stated condition is a PAC learner for the concept
space C defined in the theorem statement. We can thus apply
a general lower bound [23] on the sample complexity of PAC
learning to conclude that m must be in Ω(dε + 1

ε log 1
δ ). With a

smaller number of queries m, there will be, with probability at
least δ, two values in [N ] whose distance γ is strictly greater
than ε, but which every query given to the algorithm accessed
in the same way.

This result is not easy to interpret, so we briefly reflect on
its implications. First, it holds even if the adversary knows the
exact query distribution and database distribution. Next, note
that the same lower bound holds for the existence of an ε-net:
if the queries fail to form an ε-net for the metric γ, then some
records that are more than ε apart in γ cannot be separated
based on access pattern. Since any approximate attack should
be able to distinguish such records, in some sense this ap-
proximate equality attack is a minimal approximate attack. For
example, consider both our sacrifical ε-ADR and -AOR attacks
from Sections III and IV. Recovering approximate values or
a partition into buckets with small diameters implies we are
able to group together approximately-equal records. From this
perspective, the lower bound on the existence of an ε-net for γ
may be interpreted as a lower bound on the number of queries
necessary for any form of approximate attack for which γ is
a relevant notion of distance—not only an approximate attack
attempting to recover values, as in Theorem V.1.

VI. CONCLUSIONS

This work initiates the application of learning theory to
attacks on encrypted databases which leak access patterns.
Our learning-theoretic viewpoint lets us build and analyze
approximate reconstruction attacks which are both nearly-
optimal in query complexity and effective on real data. We
believe this work represents an exciting first step towards
building a cohesive theory of security in the presence of
access pattern leakage. Towards this, we recommend two main
research directions for future work to pursue: first, extend our
attacks to other query types of practical importance like edit
distance, wildcard, and substring queries. Second, study and
apply other results from learning theory, such as active or
online learning, to access pattern leakage attacks and defenses.
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APPENDIX A
STATISTICAL LEARNING THEORY PRIMER

We provide a brief summary of learning theory, using
terminology from a recent textbook [11].

A. Concept spaces, ε-nets, ε-samples

Let X be some set of (base) elements. (We consider only
finite sets in this work.) A concept (also called event or range)
A is a subset of X. Given a probability distribution D on the set
X, let fD represent the pmf. We can then assign a probability
to any concept A in the natural way: PrD(A) is the probability
that a single element of X sampled according to D is in A,
i.e., PrD(A) =

∑
a∈A fD(a).

A concept space (or set system) is a pair (X,C) where C
is a set of concepts (subsets) of X (also called subset family).
Any concept C can also be viewed as a function from X to
{0, 1}: the function’s output on input x ∈ X is 1 if x ∈ C
and 0 otherwise. Given a concept space (X,C) and a sample
S of elements drawn from X according to D, we may ask the
following questions:
• Does every concept in C with some not-too-small prob-

ability occur in the sample S?
• Is the relative occurrence of every concept of C in the

sample S close to its expectation?
Answering these questions involves analyzing objects called
ε-nets [29] and ε-samples.

Definition A.1. A subset S ⊆ X is an ε-net for the concept
space (X,C) with respect to the distribution D if for every
event C ∈ C with PrD(C) ≥ ε, the intersection S ∩ C is
non-empty.

Definition A.2. A subset S ⊆ X is an ε-sample (also called
ε-approximation) for the concept space (X,C) with respect to
the distribution D if for every concept C ∈ C,∣∣∣∣ |S ∩ C||S|

− PrD(C)

∣∣∣∣ ≤ ε.
Informally, a sample S is an ε-sample when every concept’s

relative frequency in S is within ε of its true probability.
Thinking of ε as being small, this can be seen as saying that
S “induces” uniform convergence of relative frequencies to
probabilities.

One way to analyze when a set S is an ε-net or an ε-sample
is to characterize the complexity of the concept space. We turn
to this next.
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B. Shattering, VC dimension, growth functions
The critical measures in determining the complexity of a

concept space are the growth function mC(n) and the Vapnik-
Chervonenkis (VC) dimension d, which are related. Given a
concept space (X,C) and a finite sample S ⊆ X, an important
object is the set of subsamples of S induced by C (also called
the projection of C on S): CS := {C ∩ S}C∈C. The size of
this set is the index of C with respect to S:

∆C(S) := |CS | = |{A ⊆ X : ∃C ∈ C with A = C ∩ S}| .

Clearly, the index of a concept space relative to a set S is at
most 2|S| and, when C is finite, it is at most |C|.

The concept space (X,C) shatters the sample S ⊆ X if C
induces all possible subsamples of S, i.e., ∆C(S) = 2|S|.

The VC dimension (also called density [30] or capacity
and denoted by d) of a concept space (X,C) is the largest
cardinality (possibly infinite) of a set S ⊆ X that can be
shattered by C. (It is sufficient for only one set of this size
to exist; not all sets of this size need to be shattered by C.)
VC dimension is an indicator of the complexity of a concept
space. Related to VC dimension is the growth function of a
concept space (X,C), which is the maximum index of C over
all samples S ⊆ X of size n: mC(n) := maxS⊆X:|S|=n ∆C(S).

The VC dimension, then, is the largest value of n for which
the growth function equals 2n. Knowing the VC dimension of
a concept space is sufficient to determine an upper bound on
the growth function: either d is infinite or the growth function
is bounded by

∑d
i=0

(
n
i

)
.

Lemma A.3 (Sauer’s Lemma [30]). Let (X,C) be a concept
space having finite VC dimension d. Then, the growth function
satisfies mC(n) ≤

∑d
i=0

(
n
i

)
.

This partial sum of binomial coefficients
∑d
i=0

(
n
i

)
is de-

noted by G(d, n) [11]. By induction on d, it is straightforward
to show that it is upper-bounded by nd for d ≥ 2.

C. Sufficient conditions for ε-nets and ε-samples
In their groundbreaking paper, Vapnik and Chervonenkis

established a lower bound [31, Thm. 2] on the probability that
a sample S is an ε-sample, i.e., that the relative frequencies
of events in C are all within ε of their true probabilities.

Theorem A.4 (Sufficient conditions for ε-sample [31]). Let
(X,C) be a concept space with growth function mC(n) and
VC dimension d. Let D be a probability distribution on X and
let S be a set of size n drawn from X according to D. Then,
for any ε > 0, the probability that S is an ε-sample is at least
1− 4 ·mC(2n) · e−ε2n/8. In particular, there is an n that is

O
(
d

ε2
log

d

ε
+

1

ε2
log

1

δ

)
such that any sample S of size at least n is an ε-sample with
probability at least 1− δ.

More precisely, [11, Thm. 14.15] establishes that a sample
of size at least 32d

ε2 log 64d
ε2 + 16

ε2 log 2
δ is an ε-sample with

probability at least 1− δ.

Inspired by Vapnik and Chervonenkis’s work on ε-samples,
Haussler and Welzel introduced ε-nets and derived a lower
bound in the case where the distribution over X is uniform [29,
Thm. 3.7]. Later work extended this bound to arbitrary distri-
butions:

Theorem A.5 (Sufficient conditions for ε-net [11]). Let (X,C)
be a concept space with growth function mC(n) and VC
dimension d. Let D be a probability distribution on X and
let S be a set of size n drawn from X according to D. Then,
for any ε > 0, the probability that S is an ε-net is at least
1− 2 ·mC(2n) · e−εn/2. In particular, there is an n that is

O
(
d

ε
log

d

ε
+

1

ε
log

1

δ

)
such that a sample of at least this size is an ε-net with
probability at least 1−δ. Specifically, a random sample of size
at least max{ 8d

ε log 16d
ε ,

4
ε log 2

δ } is an ε-net with probability
at least 1− δ.

Ehrenfeucht et al. prove a lower bound [23, Cor. 5] on the
number of samples needed to obtain an ε-net with probability
at least 1 − δ. Since every ε-sample is an ε-net, this lower
bound also applies to ε-samples.

Theorem A.6 (Necessary conditions for ε-net or
ε-sample [23], [11]). Let (X,C) be a concept space of
VC dimension d. Let D be a probability distribution on X and
let S be sample drawn from X according to D. Let ε > 0 and
δ > 0. Suppose S is an ε-net (or ε-sample) with probability
at least 1− δ. Then |S| = Ω

(
d
ε + 1

ε log 1
δ

)
.

D. PAC Learning
Introduced by Valiant [8], PAC learning is concerned with

algorithms which learn from labelled examples. (We restrict
our attention to realizable and consistent PAC learning; for a
more general treatment see [9].) Using the terminology above,
a learner L is an algorithm which takes as input a transcript
{(si, C(si))}mi=1 of elements from X (where each si←$ π for
some distribution π on X) along with their labels according
to the unknown concept C. A learner outputs a hypothesis
H ∈ C representing its guess for C. The learner L is a
PAC learner for C if for any C ∈ C, distribution π on X,
and 0 < ε, δ < 1, for a sample (or transcript) of size m in
O(poly(1

ε ,
1
δ )) drawn according to π, the generalization error

Prπ [ {x ∈ X |H(x) 6= C(x)} ] is less than ε with probability
at least 1 − δ. In words, the generalization error is the
probability under π that an element is labelled differently by
H and C. A central result [10] in learning theory states that if
C has finite VC dimension, then there exists a (not necessarily
efficient) PAC learner for C.

APPENDIX B
PRESENTATION OF PQ-TREES

PQ-trees were introduced in [13], and are typically used as
tools to solve other algorithmic problems (such as planarity
testing for graphs). Given a ground set X with an unknown
order, together with a set I containing intervals of X for that
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order, a PQ-tree succinctly represents (i.e. in size linear in
|X|) the set of all orderings of X that are compatible with I.
Moreover a PQ-tree can be updated on the fly: given a PQ-
tree and a new interval I not previously contained in I, the
PQ-tree can be updated in linear time to only contain those
orders that are compatible with I ∪{I}. (Details of the update
procedure are not relevant to our work.)

The structure of a PQ-tree is simple: the leaves of the tree
are labelled by the ground set X , each element of X appearing
in exactly one leaf. Internal nodes of the tree consist in two
types of nodes: P-nodes and Q-nodes. Both types of nodes
can have any number of children leaf or non-leaf nodes. P-
nodes denote that the children of the node can be ordered
in any way. For example, if X = {a, b, c}, then the tree
P (a, b, c) represents the set of all permutations of X . Q-
nodes denote that the children of the node can only be ordered
either as they appear in the tree, or as the reverse order (a.k.a.
its reflection). For example, if X = {a, b, c}, then the tree
Q(a, b, c) represents the orders abc and cba. Nodes combine
in the natural way: for example, the tree Q(a, b, P (c, d))
represents the possible orders abcd, abdc, cdba, dcba.

Initially, when no information whatsoever is known about
the order, the PQ-tree consists in a single P-node, with all
elements of the ground set as leaves. Conversely, once the
order is fully determined, the tree consists in a single Q-node,
whose leaves are either in the correct order or its reflection.
This corresponds to the usual reflection symmetry, which
cannot be broken by learning intervals (as replacing the order
on X by its reflection leaves the set of intervals invariant).

In our setting, it is possible that the ground set X , which
corresponds to the set of all record IDs, is not known in
advance. However PQ-trees can be easily extended to handle
that case: to do so, we start with a tree formed of a P-node
with a single leaf labelled by a special element ?. Whenever
the tree is updated with a new set I , if I contains new elements
not already among the leaves of the current tree, these new
elements are first added as siblings of ?. The tree is then
updated with I as normal.

APPENDIX C
DESCRIPTION OF ε-ADR ATTACK

We will describe our attack and how it resolves the three
questions posed in Section IV-D. The first step, record rank
estimation orients the Ai (question 1), estimates the number
of sacrificed records less than A1 (question 2), and produces
an estimate of the range of ranks for each group. The second
step, partition estimation, uses order statistics to estimate
a range of values (i.e. a partition of [N ]) for each range of
ranks obtained in the previous step. The third step, database
estimation, estimates a value for the records in each group
given the estimated partition (question 3).

Record rank estimation. To recap, record rank estimation
must (1) orient the Ais, (2) guess the number of sacrificed
records less than A1, the first sorted group, and (3) estimate a
range of ranks for each Ai. Our attack uses a heuristic for ori-
enting the Ai (this is function OrientSubsets in Algorithm 4):

first, measure the proportion of records above and below the
middle group. Call these quantities p̂a and p̂b, respectively.
Then, compute the probability of a database value falling
above (pa) and below (pb) the value dN/2e. If p̂a > p̂b and
pa > pb, keep that orientation, else choose the other one.
Though quite naive, below we will see this heuristic generally
works well for real data distributions.

To guess the number of sacrificed records below the first
sorted group (EstimateRank in Algorithm 4), we use a more
principled approach. Observe that the sacrificed records are
exactly those with values either lower than the value of the
smallest left query endpoint (call this value `min) or higher
than the value of the largest right endpoint (call this rmax). Let
Eij = (`min = i) ∩ (rmax = j) be the event that `min is i and
rmax is j. Let the number of sacrificed records be S and r0 be a
random variable denoting the smallest rank for a record in A1.
The RV r0 takes values in [0, . . . ,S ]. Conditioned on Eij , the
distribution of the number of sacrificed records to the left of i
and right of j is binomial with sample size S and probability
of success pij = Pr[ 1,...,i ]

Pr[ 1,...,i ]+Pr[ j,...,N ] where Pr [ x, . . . , y ] =∑y
k=x π(k) and π is the auxiliary distribution. Thus, for any

r ∈ [0, . . . ,S ],

Pr [ r0 = r ] =
∑

i≤j∈[N ]

Pr [ r0 = r | Eij ] Pr [ Eij ]

=
∑

i≤j∈[N ]

(
S

r

)
prij(1− pij)S−r Pr [ Eij ] .

If the number of queries is Q and the query distribution is
uniform, we can compute Pr [ Eij ] via inclusion-exclusion as
follows. First, define f(x, y) = (x−y)(y−x+ 1)/N(N + 1).
Then

Pr [ Eij ] = f(i, j)Q − f(i, j − 1)Q

− f(i+ 1, j)Q + f(i+ 1, j − 1)Q .

This is the only part of the attack that uses the uniform
distribution on queries. If we let π[i,j]

q be the probability
that a query is contained in the range [i, j], with a non-
uniform query distribution this expression would be the same
except with f(·, ·) replaced by π

[·,·]
q . The value r̂0 output by

function EstimateRank is then E [r0] =
∑S
r=0 rPr [ r0 = r ].

The expression Pr [ r0 = r ] has O(N2) terms, which could
make the attack scale poorly. Our implementation uses a
heuristic to discard the terms for which Pr [ Eij ] is very small,
so computing E [r0] (a one-time operation) takes only about
eighty minutes in the worst case. Once we compute r̂0 we can
find the lower and upper ranks for the Ai via addition; see the
line assigning ri in Algorithm 4.

Partition estimation. The output of the previous step is a
lower and upper rank (call them rlb and rub) for each Ai. From
this we will recover a lower and upper value (eplb and epub)
used by the final step of the attack. To estimate values from
ranks, we use order statistics. For a sample X1, . . . , Xs, the
kth order statistic (denoted X(k), k ∈ [1, . . . , s]) is the kth
largest value in the sample. The probability Pr

[
X(k) = u

]
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has a simple formula: Pr
[
X(k) = u

]
= Pr

[
X(k) ≤ u

]
−

Pr
[
X(k) ≤ u− 1

]
, where Pr

[
X(k) ≤ u

]
is

s−k∑
j=0

(
s

j

)
(1− Pr [ 1, . . . , u ])j Pr [ 1, . . . , u ]

s−j
.

Using this, we estimate eplb = maxx Pr
[
X(rlb) = x

]
and

do the same for epub. For a fixed rank and varying x, the
distribution of Pr

[
X(rlb) = x

]
converges to a Gaussian very

quickly, so maxx Pr
[
X(rlb) = x

]
≈ E

[
X(rlb)

]
.

Database estimation. This is the simplest step—the previous
step outputs a partition [1, ep1, . . . , ep|B|, N ] of [N ] where the
records in group bi are between epi and epi+1, so we need
only choose a value in [epi, epi+1] to assign to the records
in bi. Since we are concerned with minimizing the absolute
value of the difference between the true value and the guess,
the natural choice is the median of the database distribution
π, conditioned on the range [epi, epi+1]. In Algorithm 4 this
is written as RangeMedian(π, epi, epi+1).

APPENDIX D
ATTACK PSEUDOCODE

In this appendix we give detailed pseudocode descriptions
of some attacks from the main body of the article.

In Algorithm 3, the following notation related to PQ-trees
is used. If T is a PQ-tree, and T is a node of T , then the
leaves of T are defined as the leaves of the subtree rooted at
T , and denoted leaf(T ). If T is a PQ-tree, root(T ) is the root
of T .

Algorithm 1 Estimating symval.
Input: Set of queries Q.
Output: Function est-symval approximating symval.

1: for each record r do
2: c(r)← |{q ∈ Q : r ∈ q}|/|Q|
3: est-symval(r)← arg mink∈[N/2] |p(k)− c(r)|
4: end for
5: return est-symval

Algorithm 2 ADR Algorithm ApproxValue..
ApproxValue(Q):
Input: Set of queries Q.
Output: Function est-val approximating val.

1: for each record r do
2: c(r)← |{q ∈ Q : r ∈ q}|/|Q|
3: ṽ(r)← arg mink |c(r)− p(k)|
4: end for
5: rA ← arg minr |ṽ(r)−N/4| . Anchor record
6: ṽA ← ṽ(rA) . Est. anchor value
7: for each record r do
8: c′(r)← |{q ∈ Q : rA, r ∈ q}|/|Q|
9: w̃L ← arg mink∈[1,ṽA] |d(ṽA, k)− c′(r)|

10: w̃R ← arg mink∈[ṽA,N ] |d(ṽA, k)− c′(r)|
11: if c(r) < (p(w̃L) + p(w̃R))/2 then
12: est-val(r)← w̃L
13: else
14: est-val(r)← w̃R
15: end if
16: end for

Algorithm 3 AOR Algorithm ApproxOrder.
ApproxOrder(Q):
Input: Set of queries Q.
Output: Disjoint subsets of records A1, . . . , Ak.

1: T ← PQ-tree built from Q.
2: T ← FindNodeT(T , root(T ))
3: C1, . . . , Ck ← children of T (in order)
4: return leaf(C1), . . . , leaf(Ck)

FindNodeT(T , S):
Input: PQ-tree T and node S of T .
Output: Deepest node S′ ≤ S with > R/2 leaves.

1: R← |leaf(root(T ))|
2: for each child C of S do
3: if |leaf(T , C)| > R/2 then
4: return FindNodeT(Q, T , C)
5: end if
6: end for
7: return S

Algorithm 4 Recovering values from approximate order.
Input: A′1, . . . , A′k, e, R,π,πq ,N .
Output: [x1, x2, . . . , xR] (∀i,xi ∈ [N ]).

1: A1, . . . , Ak ← OrientSubsets(A′1, . . . , A
′
k)

2: r̂0 ← EstimateRank(e, πq, π)
3: for all Ai, i ∈ [1, . . . , k] do
4: ri ← ri−1 + |Ai|
5: epi ← arg maxk∈[N ] Pr

[
X(ri) = k

]
6: medAi

← RangeMedian(π, epi−1, epi)
7: for all ind ∈ Ai do
8: cand[ind] = medAi

9: end for
10: end for
11: return cand

1083


