
Fidelius: Protecting User Secrets
from Compromised Browsers

Saba Eskandarian1, Jonathan Cogan1, Sawyer Birnbaum1, Peh Chang Wei Brandon1,
Dillon Franke1, Forest Fraser1, Gaspar Garcia1, Eric Gong1, Hung T. Nguyen1,

Taresh K. Sethi1, Vishal Subbiah1, Michael Backes2, Giancarlo Pellegrino1,2, and Dan Boneh1

1Stanford University
2CISPA Helmholtz Center for Information Security

Abstract—Users regularly enter sensitive data, such as pass-
words, credit card numbers, or tax information, into the browser
window. While modern browsers provide powerful client-side
privacy measures to protect this data, none of these defenses
prevent a browser compromised by malware from stealing it.
In this work, we present Fidelius, a new architecture that uses
trusted hardware enclaves integrated into the browser to enable
protection of user secrets during web browsing sessions, even if
the entire underlying browser and OS are fully controlled by a
malicious attacker.

Fidelius solves many challenges involved in providing pro-
tection for browsers in a fully malicious environment, offering
support for integrity and privacy for form data, JavaScript
execution, XMLHttpRequests, and protected web storage, while
minimizing the TCB. Moreover, interactions between the enclave
and the browser, the keyboard, and the display all require
new protocols, each with their own security considerations.
Finally, Fidelius takes into account UI considerations to ensure
a consistent and simple interface for both developers and users.

As part of this project, we develop the first open source system
that provides a trusted path from input and output peripherals
to a hardware enclave with no reliance on additional hypervisor
security assumptions. These components may be of independent
interest and useful to future projects.

We implement and evaluate Fidelius to measure its per-
formance overhead, finding that Fidelius imposes acceptable
overhead on page load and user interaction for secured pages
and has no impact on pages and page components that do not
use its enhanced security features.

Index Terms—Browser Security, Trusted I/O, Hardware en-
clave, Malware protection.

I. INTRODUCTION

The web has long been plagued by malware that infects
end-user machines with the explicit goal of stealing sensitive
data that users enter into their browser window. Some recent
examples include TrickBot and Vega Stealer, which are man-
in-the-browser malware designed to steal banking credentials
and credit card numbers. Generally speaking, once malware
infects the user’s machine, it can effectively steal all user data
entered into the browser. Modern browsers have responded
with a variety of defenses aimed at ensuring browser integrity.

This work was supported by NSF, DARPA, a grant from ONR, the Simons
Foundation, a Google faculty fellowship, and the German Federal Ministry
of Education and Research (BMBF) through funding for the CISPA-Stanford
Center for Cybersecurity (FKZ: 13N1S0762).

However, once the machine is compromised, there is little that
the browser can do to protect user data from a key logger.

In this paper we present a practical architecture, called
Fidelius, that helps web sites ensure that user data entered into
the browser cannot be stolen by end-user malware, no matter
how deeply the malware is embedded into the system. When
using Fidelius, users can safely enter data into the browser
without fear of it being stolen by malware, provided that the
hardware enclave we use satisfies the security requirements.

Hardware enclaves, such as Intel’s SGX, have recently
been used to provide security for a variety of applications,
even in case of compromise [1]–[15]. An enclave provides
an execution environment that is isolated from the rest of the
system (more on this below). Moreover, the enclave can attest
its code to a remote web site.

One could imagine running an entire browser in an enclave
to isolate it from OS-level malware, but this would be a poor
design – any browser vulnerability would lead to malware
inside the enclave, which would completely compromise the
design.

A. Our Contributions

Fidelius contains three components, discussed in detail in
the following sections: (1) a small trusted functionality running
inside an isolated hardware enclave, (2) a trusted path to I/O
devices like the keyboard and the display, and (3) a small
browser component that interacts with the hardware enclave.

A trusted path from the hardware enclave to I/O devices
is essential for a system like Fidelius. First, this is needed to
prevent an OS-level malware from intercepting the data on
its way to and from the I/O device. More importantly, the
system must prevent out-of-enclave malware from displaying
UI elements that fool the user into entering sensitive data
where the malware can read it. Beyond protecting web input
fields, the system must protect the entire web form to ensure
that the malware does not, for example, swap the “username”
and “password” labels and cause the user to enter her password
into the username field.

We implement a prototype trusted path to the keyboard
using a Raspberry Pi Zero that sits between the user’s machine
and the keyboard and implements a secure channel between
the keyboard and the hardware enclave. We implement a



trusted path to the display using a Raspberry Pi 3 that sits
between the graphics card and the display. The Raspberry Pi 3
overlays a trusted image from the hardware enclave on top of
the standard HDMI video sent to the display from the graphics
card. We discuss details in Section IX-A. Our trusted path
system is open source and available for other projects to use.
We note that we can not use SGXIO [16], an SGX trusted I/O
project, because that system uses hypervisors, which may be
compromised in our threat model.

Another complication is the need to run client-side
JavaScript on sensitive form fields. For example, a web site
may use client-side JavaScript to ensure that a credit card
checksum is valid, and alert the user if not. Similarly, many
sites use client-side JavaScript to display a password strength
meter. Fidelius should not prevent these scripts from perform-
ing as intended. Several projects have already explored running
a JavaScript interpreter in a hardware enclave. Examples
include TrustJS [17] and Secureworker [18]. Our work uses
the ability to run JavaScript in an enclave as a building block
to enable privacy for user inputs in web applications. The
challenge is to do so while keeping the trusted enclave – the
TCB – small.

To address all these challenges, this paper makes the fol-
lowing contributions:

• The design of Fidelius, a system for protecting user
secrets entered into a browser in a fully-compromised
environment.

• A simple interface for web developers to enable Fidelius’s
security features.

• The first open design and implementation of a trusted
path enabling a hardware enclave to interact with I/O
devices such as a display and a keyboard from a fully
compromised machine.

• A browser component that enables a hardware enclave to
interact with protected DOM elements while keeping the
enclave component small.

• An open-source implementation and evaluation of Fi-
delius for practical use cases.

II. TRUSTED HARDWARE BACKGROUND

A hardware enclave provides developers with the abstrac-
tion of a secure portion of the processor that can verifiably
run a trusted code base (TCB) and protect its limited memory
from a malicious or compromised OS [19], [20]. The hardware
handles the process of entering and exiting an enclave and
hiding the activity of the enclave while non-enclave code runs.
Enclave code invariably requires access to OS resources such
as networking and user or file I/O, so developers specify an in-
terface between the enclave and the OS. In SGX, the platform
we use for our implementation, the functions made available
by this interface are called OCALLs and ECALLs. OCALLs
are made from inside the enclave to the untrusted application,
usually for procedures requiring resources managed by the OS,
such as file access or output to a display. ECALLs allow code
outside the TCB to call the enclave to execute trusted code.

An enclave proves that it runs an untampered version of
the desired code through a remote attestation mechanism.
Attestation loosely involves an enclave providing a signed hash
of its initial state (including the running code), which a server
compares with the expected value and rejects if there is any
evidence of a corrupted program. In order to persist data to
disk when an enclave closes or crashes, SGX also provides a
data sealing functionality that encrypts and authenticates the
data for later recovery by a new instance of the enclave.

Finally, one of the key features of enclaves is the protection
of memory. An enclave gives developers a small memory
region inaccessible to the OS and only available when exe-
cution enters the enclave. In this memory, the trusted code
can keep secrets from an untrusted OS that otherwise controls
the machine. SGX provides approximately 90MB of protected
memory. Unfortunately, a number of side-channel attacks have
been shown to break the abstraction of fully-protected enclave
memory. We briefly discuss these attacks and accompanying
defenses below and in Section XII.
Security of hardware enclaves. We built Fidelius using the
hardware enclave provided by Intel’s SGX. SGX has recently
come under several side-channel attacks [21], [22], making
the current implementation of SGX insufficiently secure for
Fidelius. However, Intel is updating SGX using firmware and
hardware updates with the goal of preventing these side-
channel attacks. In time, it is likely that SGX can be made
sufficiently secure to satisfy the requirements needed for
Fidelius. Even if not, other enclave architectures are available,
such as Sanctum for RISC-V [23] or possibly a separate co-
processor for security operations.

III. THREAT MODEL

We leverage a trusted hardware enclave to protect against
a network attacker who additionally has full control of the
operating system (OS) on the computer running Fidelius. We
assume that our attacker has the power to examine and modify
unprotected memory, communication with peripherals/network
devices, and communication between the trusted and untrusted
components of the system. Moreover, it can maliciously inter-
rupt the execution of an enclave. Note that an OS-level attacker
can always launch an indefinite denial of service attack against
an enclave, but such an attack does not compromise privacy.

We assume that the I/O devices used with the computer
are not compromised and that the dongles we add to key-
boards/displays follow the behavior we describe. We could
assume that there is a trusted initial setup phase where the
devices can exchange keys and other setup parameters with the
enclave. This corresponds to a setting where a user buys a new
computer, sets it up with the necessary peripherals, and then
connects to the internet, at which point the machine immedi-
ately falls victim to malware. Alternatively, this honest setup
assumption could easily be avoided with an attestation/key
exchange step between the peripherals and the enclave. We
discuss both options in Section VI-A.
Overview of Security Goals. We would like to provide the
security guarantee that any user data entered via a trusted



input will never be visible to an attacker, and, except in the
case of denial of service, the data received by the server will
correspond to that sent by the user, e.g. it will not be modified,
shuffled, etc. Moreover, the enclave will only send data to
an authenticated server, and a server will only send data to
a legitimate enclave. Finally, we wish for all the low-level
protocols of our system to be protected against tampering,
replay, and other attacks launched by the compromised OS.

The remote server in our setting cooperates to secure the
user by providing correct web application code to be run in
the enclave. We are primarily concerned with the security of
user secrets locally on a compromised device, but this does
include ensuring that secrets are not sent out to an attacker.
Overview of Usability Goals. Although our work is merely
a prototype of Fidelius, we intend for it to be fully functional
and to defend not only against technical attacks on security
but also against user interface tricks aiming to mislead a user
into divulging secrets to a malicious party. This task looms
particularly important in our mixed setting where trusted
input/output come through the same channels as their untrusted
counterparts. In particular, we must make sure a user knows
whether the input they are typing is protected or not, what data
the remote server expects to receive, and where the private data
will eventually be sent. We leave the task of optimizing the
user experience to future work, but also aim to provide a tool
which can be used “as-is.”

We also want to provide a usable interface for developers
that deviates only minimally from standard web development
practices. As such, we endeavor to add only the minimal
extensions or limitations to current web design techniques to
support our security requirements.
Enumeration of Attacks. After describing the system in detail
in subsequent sections, we discuss why Fidelius satisfies our
security goals. Here we briefly list the different classes of
non-trivial attacks against which we plan to defend. Refer to
Section VIII for details on the attacks and how we defend
against them.

- Enclave omission attack: The attacker fakes use of an
enclave.

- Enclave misuse attack: The attacker abuses Enclave
ECALLs for unexpected behavior.

- Page tampering attack: The attacker modifies protected
page elements or JavaScript.

- Redirection attack: The attacker fakes the origin to which
trusted data is sent.

- Storage tampering attack: The attacker reads, modifies,
deletes, or rolls back persistent storage.

- Mode switching attack: The attacker makes unauthorized
entry/exits from private keyboard mode.

- Replay attack: The attacker replays private key presses
or display overlays.

- Input manipulation attack: The attacker forges or manip-
ulates placement of protected input fields.

- Timing attack: The attacker gains side-channel informa-
tion from the timing of display updates or keyboard
events.

�������	
��

���� ���

�������
��	
������

��

�������

����
��
���

������ ������

Fig. 1. Overview of Fidelius. The web enclave, embedded in a
malicious browser and OS, communicates with the user through our
trusted I/O path and securely sends data to a remote origin. We
assume that both the web browser and the OS are compromised.

Security Non-Goals. Fidelius provides the tools necessary
to form the basis of a secure web application, focusing on
protecting user inputs and computation over them. We do
not provide a full framework for secure web applications or
a generic tool for protecting existing web applications. In
particular, we do not protect against developers who decide
to run insecure, leaky, or malicious JavaScript code inside an
enclave, but we do provide a simple developer interface to
protect security-critical components of applications.

We assume the security of the trusted hardware platform and
that the enclave hides the contents of its protected memory
pages and CPU registers from an attacker with control of
the OS, so side channel attacks on the enclave [21], [22] are
also out of the scope of this work. We discuss side channel
attacks and mitigations for SGX in Section XII. Physical
attackers who tamper with the internal functionality of our
devices also lie outside our threat model, but we note that
our trusted devices seem to be robust against opportunistic
physical attackers that do not tamper with hardware internals
but can, for example, attach a usb keylogger to a computer.
The SGX hardware itself is also designed to resist advanced
hardware attackers.

Finally, we do not address how the honest server protects
sensitive data once the user’s inputs reach it. Our goal is to
protect data from compromise on the client side or in transit
to the server. Once safely delivered to the correct origin, other
measures must be taken to protect user data. For example, we
do not defend against a server who receives secrets from the
user and then displays them in untrusted HTML sent back to
the browser.

IV. ARCHITECTURE OVERVIEW

The goal of Fidelius is to establish a trusted path between
a user and the remote server behind a web application. To
achieve this goal, Fidelius relies on two core components:
a trusted user I/O path and a web enclave. In practice, this
involve subsystems for a secure keyboard, a secure video
display, a browser component to interact with a hardware
enclave, and the enclave itself. Figure 1 gives an overview
of the components of Fidelius.



A. Trusted User I/O Path

The trusted user I/O path consists of a keyboard and
display with a trusted dongle placed between them and the
computer running Fidelius. Each device consists of trusted
and untrusted modes. The untrusted modes operate exactly
the same as in an unmodified system. The trusted keyboard
mode, when activated, sends a constant stream of encrypted
keystrokes to the enclave. The enclave decrypts and updates
the state of the relevant trusted input field. The trusted and
untrusted display modes are active in parallel, and the trusted
mode consists of a series of overlays sent encrypted from
the enclave to the display. Overlays include rendered DOM
subtrees (including, if any, the protected user inputs) placed
over the untrusted display output as well as a dedicated portion
of the screen inaccessible to untrusted content. We cover these
functionalities and details of the protocols used to secure them
in Section VI. Finally, both trusted devices have LEDs that
notify the user when a trusted path is established and ready
to collect user input. Our system relies, in part, on users not
typing secrets on the keyboard when these security indicator
lights are off. This ensures that only the enclave has access to
secrets entered on the keyboard. We note, however, that several
works have studied the effectiveness of security indicators
in directing user behavior [24], [25] and found that users
often ignore them. We briefly discuss potential alternatives
in Section XI, but leave the orthogonal problem of designing
a better user interface – one that is more difficult to ignore –
to future work.

B. Web Enclave

A web enclave is essentially a hardware enclave running
a minimalistic, trusted browser engine bound to a single
web origin. A browser using a web enclave delegates the
management and rendering of portions of a DOM tree and
the execution of client-side scripts, e.g. JavaScript and Web
Assembly, to the enclave. In addition, the web enclave can
send and receive encrypted messages to and from trusted
devices and the origin server. Finally, the web enclave provides
client-side script APIs to access the DOM subtree, secure
storage, and secure HTTP communication.

When a user loads a web page, Fidelius checks whether
the page contains HTML tags that need to be protected, e.g.,
secure HTML forms. If it does, it initiates a web enclave,
runs remote attestation between that enclave and the server,
and validates the identity of the server. Once this process
completes, Fidelius loads the HTML tags it needs to protect
into the web enclave and verifies their signatures. Then, when
the user accesses a protected tag, e.g. with a mouse click,
Fidelius gives control to the enclave, which in turn activates
the devices’ trusted mode. The trusted mode LEDs are turned
on, informing the user that the trusted path is ready to securely
collect user input.

Web enclaves provide two main ways to send protected
messages to a remote server: directly through an encrypted
form submission or programmatically via an XMLHttpRequest
API. When a user clicks a form’s submit button, the web

�������	
��

���� ������






�����
�

����� ����!"����"�#�






������ ����
�����

���������
�������	�
��$



%���� 
��


















































%�������
�
���	

&����

������
�����
























'

�

Fig. 2. Design of Fidelius’s user interface. The green area is the trusted
display overlay.

browser notifies the enclave of this event. Then, the web
enclave encodes the form data following HTML form norms1,
encrypts that data, and signs it. The encrypted form is passed
to the web browser, which sends it to the remote server.
When a script needs to send messages to the server, it
can use the XMLHttpRequest web API. The web enclave
XMLHttpRequest API interface is similar to that implemented
by web browsers; however, it encrypts sensitive fields such as
the request body and custom HTTP headers. HTTP responses
are sent by the server in encrypted form. The enclave will
automatically decrypt responses and resume execution of the
JavaScript function waiting for the response.

V. INTERFACE DESIGN

This section describes the interfaces that Fidelius provides
for end-users and developers who wish to consume or cre-
ate protected web applications. Here we describe only how
Fidelius appears to users and developers, deferring technical
details of how it works to subsequent sections.

A. User Interface

The primary challenge in designing an interface for a
system with a mix of trusted and untrusted components lies
in distinguishing the trusted parts from the untrusted parts in
a way that cannot be faked by an attacker. Our solution is
to dedicate a small part of the screen to the web enclave,
rendering that portion of the screen inaccessible to the OS
while the trusted display is active, as indicated by an LED
outside the display. Outside of this region, user interaction with
Fidelius does not differ at all from interactions with a typical
web application. Figure 2 shows the design of Fidelius’s user
interface in use on a sample payment page. Trusted input
fields do not have any special visual features that distinguish
them from other inputs. Instead, the dedicated trusted region
of the screen displays information that defends against attacks
which make use of UI manipulation to fool a user into giving
sensitive data to an attacker.

There are two important pieces of information shown in the
protected display region. First, we must ensure that the user
sends sensitive information only to the intended destination

1See, https://www.w3.org/TR/html5/sec-forms.html



and avoids attacks like changing the contents of the url bar or
picture-in-picture attacks [26]. We achieve this by including
the origin of the web enclave in the trusted region. In Figure 2,
the trusted region shows that the web enclave is connected to
pay.site.com.

Second, we must ensure that users can distinguish real
trusted inputs from untrusted ones and that an attacker cannot
fool the user by changing the untrusted text surrounding a
trusted input field. This could include attacks where untrusted
input fields are made to look just like trusted ones (which in
fact is the case by default in Fidelius) or, for example, where
the username and password prompts before two inputs are
switched, causing the user’s password to be processed as a
username, which potentially receives far less protection after
being sent to the server. We protect against this class of attacks
by displaying a name for each trusted input in the dedicated
display region when that field has focus. This serves to indicate
to the user that the current input field is trusted. It also protects
against any attack involving shuffling of input field labels to
fool a user or cause incorrect data to be sent to the server
because the descriptive name for each input field lies outside
the reach of an attacker.

B. Developer Interface

Design of a developer interface must provide an easy to
use and backwards compatible way for developers to access
the features of Fidelius. Our developer interface requires
no changes for pages or components of pages that do not
make use of Fidelius’s features. Developers who wish to
provide stronger security guarantees to Fidelius users include
additional attributes in existing HTML tags directing Fidelius
to use the web enclave in rendering and interacting with the
content of those tags. Listing 1 shows an example of an HTML
page supporting Fidelius.

1 <html>
2 <head> [...] </head>
3 <body>
4 <form action="submit_data"
5 name="payment"
6 method="POST"
7 secure="True" sign="tX5ReRzE42Qw">
8 <input type="text"
9 value="Holder" name="holder" />

10 <input type="text"
11 value="Card Number" name="card"/>
12 <input type="text"
13 value="MM/YY" name="exp"/>
14 <input type="text"
15 value="CVV" name="cvv"/>
16 </form>
17 <div class="btn"><p>Place order</p></div>
18 <div class="btn"><p>Cancel</p></div>
19 <script type="text/JavaScript"
20 src="validator.js"
21 secure="True" sign="Fi3Rt9mq2ff0">
22 </script>
23 </body>
24 </html>

Listing 1. Fidelius-enabled code for the online payment web page.
In red, the new HTML attributes required by Fidelius.

Fidelius currently supports <form>, <input>, and
<script> tags. To mark any of these tags as compatible
with Fidelius, developers add a secure attribute to the tag. In
the case of <script> and <form> tags, a signature over the
content of the tag is included in a sign attribute, to be verified
with respect to the server’s public key inside the enclave as
described in Section VII. The signature ensures that the form
and script contents have not been modified by malware before
they were passed to the enclave. The signature is not needed
for <input> tags because the signature on a form includes
the inputs contained within it. <input> tags also require a
name attribute to be shown in the trusted component of the
display when that input has focus.

JavaScript included in secure <script> tags runs on an
interpreter inside the web enclave with different scope than
untrusted code running in the browser. Trusted JavaScript has
access to its own memory and its own web APIs for secure
storage and secure HTTP requests, but it cannot directly access
the memory or web APIs available to untrusted JavaScript.
Trusted and untrusted JavaScript can, however, make calls to
each other and pass information between each other as needed
using an interface similar to the postMessage cross-origin
message passing API.

Fidelius enforces a strict same-origin policy for web en-
claves, so network communication originating or ending in an
enclave can only come from its specified origin. By default,
the origin of HTML tags is inherited from the web page. In
general, the origin is derived from the initial URL of the page.
However, for tags such as <form> and <script>, the origin
is derived from the action and src attributes respecively.
The origin specified here is not authenticated and therefore
susceptible to tampering. We discuss the process by which
a web enclave connects to remote servers and verifies their
legitimacy in Section VII.

VI. TRUSTED PATH FOR USER I/O

In this section, we describe the building blocks to create and
manage a trusted path connecting a keyboard, display, and web
enclave. Specifically, we cover device setup, communication
patterns between devices, and the structure of individual
messages passed between devices.

Although we develop our trusted I/O path in the context of
the larger Fidelius system and focus our discussion on web
applications, it is important to note that the trusted path is
fundamentally a separate system from the web enclave. In
other words, although the two systems interact closely in the
design of Fidelius, the trusted path has applications outside
the web and can be run on its own as well. To our knowledge,
this is the first system to provide a trusted path to the user
for both input and output relying only on assumptions about
enclave security. We cover the details of how we realize the
trusted peripherals in hardware dongles in Section IX.

A. Setup

In order to securely communicate, the web enclave and
peripherals (or the dongles connected to them) must have a



shared key. One option is to operate in a threat model with an
initial trusted phase where we assume the computer is not yet
compromised. Pre-shared keys are exchanged when the user
configures the computer for the first time. Devices store the
key in an internal memory, and the enclave seals the shared
keys for future retrieval. The key can be accessed only by the
enclave directly and not by user-provided JavaScript running
inside it.

In the more realistic setting where new peripherals can be
introduced to a computer over time, we must protect against
attacks that involve introduction of malicious periphal devices.
In this setting, we need Fidelius-compatible devices to include
a trusted component that can perform an attestation with the
enclave to prove its legitimacy before exchanging keys. Note
that this attestation must occur in both directions – from
enclave to keyboard and from keyboard to enclave – or the
device that does not attest can be faked by an attacker.

B. Trusted Communication

The process of switching between trusted and untrusted
modes presents an interesting security challenge. An authenti-
cation procedure between the enclave and the trusted devices
can ensure that only the enclave initiates switches between
trusted and untrusted modes, but this ignores the larger prob-
lem that the enclave must rely on the untrusted OS to inform
it when an event has happened that necessitates switching
modes. Avoiding that necessity would require moving a pro-
hibitively large fraction of the browser and UI into an enclave.
Our solution has two parts and relies on making the user aware
of when key presses produce trusted or untrusted input. First,
we include a light on each dongle that turns on only when the
keyboard or display are in trusted mode. This alone, however,
does not suffice to solve the problem, as an attacker could
mount a “rapid switching” attack where it jumps in and out
of trusted mode faster than the user can perceive or react,
leading to parts of the user’s input being leaked by untrusted
input. Even worse, rapid switching between modes may occur
quickly enough to not be noticable to a user monitoring the
lights. To prevent this attack, we force a short delay when
switching out of trusted mode. This ensures the user will have
time to notice and react when a switch occurs.

The enclave switches devices in and out of trusted mode by
sending one of two reserved messages which are simply fixed
strings that they interpret as commands to change the trust
setting. When in trusted mode, messages between the enclave
and the peripherals are encrypted as described in Section VI-C.

Since the timing of key presses can reveal sensitive in-
formation about what keys are being pressed [27], we must
also avoid leaking timing information while in trusted input
mode. We do this by having the keyboard send a constant
stream of key presses where most contain only an encryption
of a dummy value that indicates no key pressed. As long
as the fixed frequency of key presses exceeds the pace at
which a user types, the user experience is unaffected by this
protection. Since user key presses typically result in changes

on the display, we update the display contents at the same rate
as we read keyboard inputs.

Our trusted input design in many ways mirrors that of
Bumpy [28] and SGX-USB [29], which also provide generic
trusted user input using similar techniques but do not provide
the web functionality that we do. In contrast to our work,
Bumpy does not display any trusted user input. SGX-USB
allows for generic I/O but does not solve the problem of
mixing trusted and untrusted content in a user interface as
we do in both our keyboard and display. Neither system has
source code available. We improve on the features of both
works by protecting against timing attacks on encrypted data
sent from trusted input devices.

C. Message structure

Messages sent in the trusted communication protocol de-
scribed above must include safeguards against replay attacks.
To do this, we include a counter in every message sent, so that
the same count never repeats twice. Counters are maintained
on a per-device and per-origin basis, so every message between
the enclave and the keyboard or display must include a counter
value and the name of the origin in addition to the encrypted
key press or overlay itself.

VII. WEB ENCLAVE

In this section we cover the details of the web enclave.
First, we provide an overview of the state transitions of a web
enclave. Next, we present the protocols for remote attestation,
origin authentication, and exchange of key material. Finally,
we present the details of the operations: secure HTML forms,
JavaScript code execution, secure network communication,
and persistent storage across web enclave executions.

A. Web Enclave State Machine

The web enclave implements the state machine in Figure 3.
At any point, it can be in one of the following five states:
initial, authenticated, ready, end, and fail. Transitions are
caused by ECALLs. Each state has a list of accepted ECALLs.
For example, the initial state accepts only ECALLs for the
remote attestation and origin validation. Other ECALLs bring
the web enclave to the fail state. No other transition is possible
from this state, and the enclave needs to be terminated after
reaching it.

Fidelius creates a web enclave when it finds any <form>
or <script> tags with the secure attribute set. Then it
derives the origin of the tags that need to be protected. By
default, the origin of the tags are inherited from the web page
they belong to, i.e., the domain and port of the URL. However,
for tags such as <form> and <script>, the origin is derived
from the action and src attributes respecively. Tags can
have different origins. While it is possible to create one web
enclave for each origin, the current version of the web enclave
assumes that all protected components on a page communicate
with the same origin.

Once the origin has been determined, Fidelius passes the
origin to the web enclave and performs remote attestation and



�������

(���!

)�����

���

%���%���

����
�����
����
%������

(�#���
)����������
*

������
����+������

)��
+��#�
)��
,��������

-���+!
���
����������

(��
,��������
�����
����+�������
.��
���!����
/�!����/��
����
���!����
+��#��

�0��
����
��
#������!

���#�����

Fig. 3. Finite state machine representing web enclave behavior.

origin validation, after which the enclave and the origin can
share a symmetric key. This key will be used to encrypt any
communication between the enclave and the origin, so any
network manipulation or monitoring will only result in an
attacker recovering encrypted data for which it does not have
the key. As a result, the rest of the network stack can remain
outside the enclave in untrusted code. In order to verify an
origin, the enclave must have the corresponding public key,
either as a hard-coded value or, more realistically, by verifying
a certificate signed by a hard-coded authority.

At this point, the web enclave is in the authenticated state.
Fidelius retrieves the tags with the secure attribute set and
loads them into the enclave. These operations do not cause a
state transition. The only ECALL that causes a valid transition
from this state is verification of the signatures. If the validation
of all signatures succeeds, the enclave enters the ready state.
From this point on, the enclave is fully operational and can
decrypt keyboard inputs, prepare encrypted outputs for the
display, execute JavaScript functions, and take/release control
of the trusted path upon focus and blur events respectively.

B. Features

Once an enclave has successfully entered the ready state,
the full functionality of Fidelius becomes available to the web
application. Fidelius supports secure HTML forms, JavaScript
execution, secure network communication, and persistent pro-
tected storage.

1) Secure HTML Forms: When parsing a page, Fidelius
finds <form> tags with the secure attribute and, after verify-
ing the provided signature using the server’s public key, creates
a form data structure inside the enclave to keep track of the
form and each of the inputs inside it. We currently store server
public keys inside the enclave but could replace this with root
certificates instead. When the user highlights an input inside

a given form, the browser notifies the enclave. The enclave
switches the keyboard from untrusted to trusted input mode
(see Section VI for details), and subsequent user key presses
modify the state of the highlighted input field. As mentioned
in Section V, various defenses at the interface level protect
against attacks that an attacker could mount by modifying
untrusted content between the enclave and the user. By pushing
these defensess into the UI, we allow ourselves to keep
many components of the browser outside of the enclave and
dramatically reduce Fidelius’s TCB. For example, monitoring
of mouse movements and placement of forms on the page
can be managed outside the enclave, and tampering/dishonesty
with these elements will be detected by a user who notices
the inconsistency between what she sees on the screen and
the content of the trusted overlay.

Submission of HTML forms involves encrypting the content
of the form as one blob using the shared key negotiated during
attestation and sending that to the server.

2) Javascript: We run a JavaScript interpreter inside the
enclave but leave out heavy components like the event loop.
When a trusted JavaScript function is called, the enclave
provides the interpreter with function inputs and any other
state that should be available to the code about to run.

Javascript running in the enclave can access the content of
protected HTML forms via the the global variable forms. The
forms variable contains a property for each form name. For
example, with reference to the HTML code in Listing 1, the
payment form can be accessed via forms.payment where
payment is the value of the attribute name of the <form>
tag. Developers can implement custom input validation proce-
dures. For example, a very simple form of validation can be
checking if the credit card field contains forbidden characters
such as white spaces. The JavaScript function that verifies the
presence of white spaces can be implemented as shown in
Listing 2.

1 function cardNumberHasWhiteSpaces() {
2 return /\s/g.test(forms.payment.card);
3 }

Listing 2. Simple form validation

3) Network Communication: In order for protection of user
data on the local machine to translate into a useful web
application, there must be a mechanism for transmitting data
out from the enclave without tampering by the compromised
browser or OS. We provide a basic mechanism for doing this
by supporting HTML forms, but web applications in general
need to send back data to the server programmatically in a
variety of contexts, not just when a user submits a form. To
support this need, we provide support for XMLHttpRequests
(as shown in Listing 3) where requests are encrypted inside
the enclave using the shared key from the attestation process
before leaving the enclave.

1 function doPay(e) {
2 // input form to JS associative array



3 d = toDict(forms.payment);
4
5 // validate payment data
6 if (validate(d)) {
7 return false;
8 }
9

10 // prepare raw messages
11 json_str = JSON.stringify(d);
12
13 // create SecureXMLHttpRequest
14 var xhr = new SecureXMLHttpRequest();
15 xhr.open("POST",
16 "https://pay.site.com/submit_data",
17 false); // only sync calls
18
19 // use sec_json content type
20 xhr.setRequestHeader('Content-Type',
21 'application/sec_json; charset=UTF-8');
22
23 // encrypt, sign, and send
24 xhr.send(json_str);
25
26 // seal data for possible future reuse
27 storeCreditCardData(d);
28 }

Listing 3. XMLHTTPRequest example

The problem of defending against replay of messages over
the network is not unique to the trusted hardware setting and
must be handled separately by applications built on Fidelius.

4) Persistent Storage: Fidelius provides developers with a
web storage abstraction similar to the standard web storage
provided by unmodified web browsers. Secure web storage
can be accessed via localStorage, as shown in Listing 4.

1 function storeCreditCardData(d){
2 localStorage['holder'] = d.holder;
3 localStorage['cc'] = d.card;
4 localStorage['exp'] = d.expiry;
5 localStorage['cvv'] = d.cvv;
6 }

Listing 4. Web storage

When the need for persistent storage arises, Fidelius en-
crypts the data to be stored using a sealing key and stores
it on disk (it could equivalently use existing browser storage
mechanisms to hold the encrypted data). The sealing key is
a feature provided by SGX to an enclave in order to store
persistent data across multiple runs of the enclave.

This approach raises two problems we must resolve. First,
every instance of the same enclave shares the same sealing
key, so we must ensure that different enclaves created by the
same browser cannot read each others’ secrets. We can prevent
this problem by including the associated origin as additional
authenticated data with the encrypted data to be stored. This
way an enclave can find and restore data associated with the
origin it connects to but, as a matter of policy, does not allow
the user to access data associated with any other origin. The
integrity guarantees of our trusted hardware platform ensure
that our code will abide by this policy.

The second issue is that of rollback attacks. A malicious
operating system could roll back or delete data that is stored

to disk, so, for applications that rely on maintaining sensitive
state, the enclave must have a way to determine whether it
has the most up-to-date stored data. A generic solution to
this problem, such as ROTE [30], would suffice, but ROTE
requires a distributed setting which may not be available to a
user browsing the web from home. We can solve this problem
by enlisting the assistance of the server to ensure protection
against rollbacks, especially in situations where an enclave is
connected to a server that already keeps information about
the user. The idea is to keep a revision number, one for each
origin, that gets sent from the server to the enclave at the end
of the attestation process and is incremented whenever changes
are made to locally stored data. Since the attacker cannot
change the number stored on the server or in the enclave
during execution, we can detect whenever a rollback attack has
been launched or stored data has been deleted by observing
a mismatch between the number on the data reloaded by the
enclave and the number sent by the server.

Our generic approach for storage of user secrets and net-
work connections could easily be extended to include storage
of cookies, resulting in a separate cookie store, accessible only
to the enclave, that otherwise provides the same functionality
available from cookies in unmodified browsers.

VIII. SECURITY ANALYSIS

In this section we give a clear enumeration of the different
kinds of threats against which we expect Fidelius to defend and
argue that Fidelius does indeed protect against these attacks.
We first discuss attacks on the core features of Fidelius and
then move on to attacks targeted specifically at the trusted I/O
path and user interface.

A. Attacks on Core Features

Enclave omission attack. An attacker with full control of
the sofware running on a system may manipulate the browser
extension and enclave manager software to pretend to use an
enclave when in fact it does not. This attack will, however,
fail because of defenses built into our user interface via the
keyboard and display dongles. Absent a connection to a real
enclave, the trusted input lights on the keyboard and display
will not light, alerting the user that entered data is unprotected.

Enclave misuse attack. A more subtle attack of this form
uses the enclave for some tasks but fakes it for others. For
example, to circumvent the defense above, trusted input from
the user could use the real enclave functionality, but trusted
output on the display could be spoofed without the enclave. As
such, it is necessary for each I/O device to separately defend
against fake use of an enclave. The defenses described for the
previous attack suffice to protect against this attack as well,
but both lights are needed.

An attacker could also use the genuine trusted I/O path but
attempt to omit use of the enclave when running JavaScript
inside the browser. This attacker could clearly not access
persistent storage, trusted network communication, or user
inputs because those features require keys only available inside
the enclave. On the other hand, the JavaScript to be run



inside the enclave is not encrypted, so an attacker could
potentially also run it outside the enclave, so long as it
does not make use of any other resources or features offered
by Fidelius. At this point, however, the JavaScript becomes
entirely benign because it cannot give the attacker running it
any new information or convince the user or remote server
of any falsehoods because the trusted paths to all private
information or trusted parties are barred.

A last variant of this attack would omit certain ECALLs
that perform necessary setup operations like initializing a form
and its inputs before the user begins to enter data. Omission of
these ECALLs would result in the system crashing but would
not leak secrets in the process. As mentioned before, we cannot
conceivably protect against a denial of service attack where the
compromised OS refuses to allow any access to the system.
We can only ensure that normal or abnormal use of the enclave
does not leak user secrets.

Page tampering attack. Failing to omit an enclave entirely
or even partially, the attacker can turn to modifying the inputs
given to various ecalls. In particular, the names and structure
of forms and their inputs or the JavaScript to be run inside
the enclave could be modified. Mounting this attack, however,
would require an adversary who can break the unforgeability
property of the signatures used to sign secure <form> and
<script> tags. Those tags are verified with an origin-
specific public key (either hard-coded in the enclave or verified
with a certificate) that lies out of reach of our attacker.

Since trusted JavaScript is the only way to access trusted
user inputs from within the browser, the fact that we have sep-
arate scope for execution of trusted and untrusted JavaScript
means that any attempt to directly access user secrets stored
in protected inputs will necessarily be thwarted.

Redirection attack. This attack resembles a straightforward
phishing attempt. Instead of tampering with the operation of
Fidelius, a browser could navigate to a malicious website
designed to look legitimate in an attempt to send user secrets to
an untrusted server. Here again the persistent overlay added by
our display dongle prevents an attack by displaying the origin
to which the enclave has connected. The strict same-origin
policy within the enclave means that the origin displayed in
the trusted portion of the screen is the only possible destination
for network connections originating withing the enclave. While
an attacker could establish a connection with a server other
than the declared origin, the data sent to that server will
be encrypted with a key known only to the intended origin,
rendering the data useless to others. As such, the only way for
an attacker to have legitimate-looking text appear there is to
send user data only to legitimate destinations.

Storage tampering attack. Although authenticated encryp-
tion with a sealing key tied to the enclave protects persistently
stored data from tampering, an attacker can still delete or roll
back the state of stored data. We detail our solution to protect
against this attack in Section VII-B4, where we enlist the
assistance of the server to keep an up-to-date revision number
for the enclave’s data out of reach of the attacker. Attacks
where the browser connects to a malicious site whose trusted

JavaScript tries to read or modify persistent storage for other
sites are prevented by our policy of strict separation between
stored data associated with different origins.

B. Attacks on Trusted I/O Path and UI

We now consider attacks against the trusted I/O path to
the user. Direct reading of private key presses and display
outputs is prevented by encryption of data between the enclave
and keyboard/display dongles, but we also consider a number
of more sophisticated attacks. Since the I/O path to the user
closely relates to the user interface, we discuss attacks against
both the protocols and the interface together. We discuss
security considerations involved in the setup of trusted I/O
devices in Section VI-A.

Mode switching attack. As discussed in Section VI, the
decision to switch between trusted and untrusted modes ul-
timately lies with the untrusted browser because it decides
when an input field receives focus or blurs or when to activate
Fidelius in the first place. We defend against this type of
tampering with the light on the dongles and the delay when
switching from trusted to untrusted modes. These defenses
protect against both a standard unauthorized exit from the
enclave as well as a rapid switching attack that tries to capture
some key presses by quickly switching between modes.

Replay attack. We defend against replay of trusted com-
munications between the enclave and display by including a
non-repeating count in every message that is always checked
to make sure an old count does not repeat. An attacker
could, however, eavesdrop on key presses destined for one
enclave, switch to a second enclave connected with a site it
controls, and replay the key presses to the second enclave
in an attempt to read trusted key presses. We defend against
this attack by including the name of the origin along with
the count in encrypted messages, so they cannot be replayed
across different enclaves. Likewise, since the keyboard and
display use different keys to encrypt communications with the
enclave(s), messages cannot be replayed across sources.

Input manipulation attack. Attackers can attempt to make
untrusted input fields appear where a user might expect
trusted input fields and thereby fool users into typing trusted
information in untrusted fields. Since the attacker has almost
full control of what gets placed on the display, this grants
considerable freedom in manipulating the display to mimic
visual queues that would indicate secure fields. Fortunately,
our display dongle reserves a strip at the bottom of the screen
for trusted content directly from the enclave. This area informs
the user what trusted input is currently focused, if any.

An attacker could also manipulate the placement of actual
trusted input fields or the labels that precede them on a page
in order to confuse or mislead a user as to the purpose of
each field. By using the trusted display area to show which
trusted input currently has focus, if any, we give developers
the opportunity to assign inputs descriptive trusted names that
will alert a user if there is a mismatch between an input’s name
and its stated purpose in the untrusted section of the display.



Timing attack. The fact that key presses originate with the
user means that the timing of presses and associated updates
to content on the screen may leak information about user
secrets [27]. We close this timing side channel by having the
keyboard send encrypted messages to the enclave at a constant
rate while in trusted mode, sending null messages if the user
does not press a key during a given time period and queueing
key presses that appear in the same time period. A high enough
frequency for this process ensures that the user experience is
not disrupted by a backlog of key presses. Updates to display
overlay contents also happen at a constant rate, so timing
channels through key presses and display updates cannot leak
information about user secrets.

Multi-Enclave Attacks. As mentioned in Section III, Fi-
delius does not aim to protect against attacks mounted by
incorrect or privacy-compromising code provided by an origin
that has already been authenticated. That said, we briefly dis-
cuss here some attacks that could be launched by collaboration
between a malicious OS and a malicious remote origin that
is trusted by Fidelius (for example, in case of a maliciously
issued certificate) and which tries to steal data a user meant
to send to a different trusted origin. An attacker who has
compromised a trusted site could always ask for data from a
user directly, rendering these attacks less important in practice,
but there may be some kinds of data a user would only want
to reveal to one trusted origin and not others, e.g. a password
for a particular site.

First we consider an enclave-switching attack, a more in-
volved variant of the mode-switching attack described above.
In this attack, the untrusted sytem rapidly switches between
different enclaves, one connecting to a legitimate site and the
other to a malicious site controlled by the attacker. Fidelius’s
existing mode-switching delay also protects against this variant
of the attack because the display always shows the origin
associated with the enclave currently in use.

A more complicated attack could run one honest, uncompro-
mised enclave concurrently with an enclave connected to an
malicious origin. The uncompromised enclave would feed its
overlays to the display while the compromised enclave would
receive inputs from the keyboard. This may be noticed by
users in the current Fidelius design because anything typed
would not appear on the display, but by the time a user
notices this, secrets may have already been compromised. To
defend against this, the keyboard and display dongles could
be configured to only connect to one enclave at a time (not
connecting to another enclave until the first enclave declares
it has entered the end state) and to check that they have
connected to the same enclave at setup by using the enclave
to send each other hashes of fresh origin-specific secrets.

IX. IMPLEMENTATION

We implemented a prototype of Fidelius, including both
the trusted path described in Sections V and VI and the Web

Fig. 4. Images of our Fidelius prototype in use. The image above shows
the view of a user, and the image below shows the view of an attacker
taking a screen capture while the user enters credit card information. Since
trusted overlays are decrypted and placed over the image after leaving the
compromised computer, the attacker does not see the user’s data.

Enclave features described in Section VII2. Our prototype is
fully functional but does not include the trusted setup stage
between the enclave and devices, which we carry out manually.
Figure 4 shows screenshots of our prototype in use, and
Figure 5 gives an overview of its physical construction.

Since Fidelius requires few changes on the server side and
our evaluation therefore focuses on browser overhead, we do
not implement a server modified to run Fidelius. This would
consist mainly of having the server verify a remote attestation
and decrypt messages from the web enclave.

A. Trusted Path

Our prototype runs on an Intel Nuc with a 2.90 GHz Core
i5-6260U Processor and 32 GB of RAM running Ubuntu
16.04.1 and SGX SDK version 2.1.2. We produced dongles
to place between the Nuc and an off-the-shelf keyboard and
display using a Raspberry Pi Zero with a 1 GHz single
core Broadcom BCM2835 processor and 512 MB of RAM
running Raspbian GNU/Linux 9 (stretch) for the keyboard and
a Raspberry Pi 3 with a 1.2 GHZ quad-core ARM Cortex
A53 processor and 1GB RAM running Raspbian GNU/Linux
9 (stretch) at a display resolution of 1280x720. Figures 6 and 7
show our input and output dongle devices.

2Our open source implementation of Fidelius, the instructions to build the
dongles and accompanying sample code are available at https://github.com/
SabaEskandarian/Fidelius.



������� �������

�������
1�!	����
�2��%%

�����������

�������

��

��	
������

(��
3(��
4���

�����������	��

����

����

��� ��� ���

�������
������!
�2��%%

Fig. 5. Prototype of the trusted path: (a) standard USB keyboard connected to our RPI Zero dongle to encrypt keystrokes, (b) Computer with a Fidelius-enabled
browser, and (c) standard HDMI display connected to our RPI 3 dongle to overlay secure frames.

56�78

9:;�<6
=6>?@<78

�7A@���B��
��C?D�E

;D@7<66<F�G7EA6�8H�IB?@<J@<?@<�?�BC��68�KL�

Fig. 6. Trusted keyboard dongle built from Raspberry Pi Zero. In untrusted
mode, the dongle forwards key presses from the keyboard to the computer. In
trusted mode, the dongle sends a constant stream of encrypted values to the
enclave. The values correspond to key presses if there has been any input or
null values otherwise.

	
�����
���	
����

��������
����
����

����

��������
�����

��������
��	���
��
��

���
���
�����������

Fig. 7. Trusted display dongle built from Raspberry Pi 3. Frames arrive on the
RPI3 over HDMI in, which connects through a board that treats the frames to
be displayed as camera inputs. Overlays are transmitted over Bluetooth and
decrypted on the RPI3. The combined frame and overlay go to the display
through the HDMI out cable.

The Raspberry Pi Zero simulated two input devices to the
Nuc, one standard keyboard and one secure keyboard, with
only one device active at any time based on the state of the
application being run. The RPI 3 uses a B101 rev. 4 HMDI
to CSI-2 bridge and the Picamera Python library [31] to treat
the HDMI output from the Nuc as a camera input on which it
overlays trusted content before rendering to the real display.
Trusted content is sent over a separate bluetooth channel.
The bluetooth channel exists as a matter of convenience for
implementation, as HDMI does allow for sending auxiliary
data, but we were unable to programmatically access this
channel through existing drivers.

When an encrypted overlay packet reaches the RPI3 display
device from the Nuc, it is first decrypted and decoded from a
flat black and white encoding used to transfer data back to a
full RBG color representation. Next, the image is transferred
from the decryption/decoding program to the rendering code,
which places it on the screen. We introduce a refresh delay
between sending frames to give the Picamera library adequate
time to render each frame before receiving the next one.

Although we have built a working Fidelius prototype, a
number of improvements could make for a more powerful
and complete product. These changes include miniaturization
of dongle hardware, faster transfer protocols, e.g. USB 3.0
instead of Bluetooth, and custom drivers to reduce latency
between the dongles and the keyboard/display. We leave the
engineering task of optimizing Fidelius to future work.

B. Browser and Web Enclave

On the Intel Nuc device, Fidelius is implemented as
a Chrome browser extension running on Chrome version
67.0.3396 communicating with a native program via Chrome’s
Native Messaging API3 for web enclave management. The
extension activates on page load and checks whether the page
contains components that need to be protected, e.g., secure
HTML forms and JavaScript. If it does, it communicates
with the native program to initiate the web enclave and
perform remote attestation with the server. Once this process

3See https://developer.chrome.com/apps/nativeMessaging



completes, the user can interact with secure components on the
page, and secure JavaScript code can be run in the enclave.
Since the page setup process occurs independently of the page
loading in the browser, only the secure components of a page
are delayed by the attestation process – non-secure elements of
a page have no loading penalty as a result of running Fidelius.

The majority of the work of enclave management is han-
dled by the native code. For symmetric encryption of forms,
bitmaps, and keystrokes we use AES-GCM encryption and for
signing forms we use ECDSA signatures. JavaScript inside the
enclave is run on a version of the tiny-js [32] interpreter
that we ported to run inside the enclave.

X. EVALUATION

We evaluate Fidelius in order to determine whether the
overheads introduced by the trusted I/O path and web enclave
are acceptable for common use cases and find that Fidelius
outperforms display latency on some recent commercial de-
vices by as much as 2.8× and prior work by 13.3×. Moreover,
communication between the browser and enclave introduces a
delay of less than 40ms to page load time for a login page. We
also identify which components of the system contribute the
most overhead, how they could be improved for a production
deployment, and how performance scales for larger and more
complex trusted page components.

1) TCB Size: The trusted code base for Fidelius consists
of 8,450 lines of C++ code, of which about 3200 are libraries
for handling form rendering and another 3800 are our enclave
port of tiny-js. This does not include native code running
outside the enclave or in the browser extension because our
security guarantees hold even if an attacker could compromise
those untrusted components of the system. It also excludes
dongle code which runs on the Raspberry Pi devices and
not the computer running the web browser. Compared to the
18,800,000 lines of the Chrome project4, Fidelius supports
many of the important functionalities one may wish to secure
in a web browser while exposing an attack surface orders of
magnitude smaller than a naive port of a browser into a trusted
execution environment.

2) Comparison to Commercial Devices: For a standard
login form with username and password fields, Fidelius’s key
press to display latency is 201.8 ms. We exclude the time it
takes to transfer the encrypted key press from the keyboard
to the enclave over USB 2.0 (480 Mbps) and the encrypted
bitmap from the enclave to the display over bluetooth (3 Mbps)
from these figures. This is a reasonable omission because the
size of the data being transferred is small compared to the
transfer speed of these two protocols. Figure 8 compares the
latency between a key press and display update in Fidelius to
measurements of the display latency on several commercial
mobile devices [33]. Although not competitive with high-
performance devices, Fidelius performs comparably or even
faster than some popular commercial devices, running 2.8×
faster than the latency on the most recent Kindle. Fidelius’s

4https://www.openhub.net/p/chrome/analyses/latest/languages summary

efficiency arises from leaving the majority of a page unmodi-
fied and only using encrypted overlays for trusted components.

3) Comparison to Prior Work: We also compared Fidelius
to Bumpy [28], which provides a trusted input functionality but
no corresponding display. For this comparison, we compared
Bumpy to Fidelius’s trusted path without the display com-
ponent, which accounts for the vast majority of the latency.
Bumpy’s source code is not available, so we compare to the
reported performance values measured on an HP dc5750 with
an AMD Athlon64 X2 Processor at 2.2 GHz and a Broadcom
v1.2 TPM. Fidelius outperforms Bumpy’s reported perfor-
mance by 13×, running with a latency of 10.59ms compared
to Bumpy’s 141ms. We believe this more than compensates
for differences in the computing power used to evaluate the
two systems. Although SGX-USB [29], whose source code is
also unavailable, was developed on more recent hardware, we
cannot compare directly to their reported performance results
because they report generic USB data transfer rates into an
enclave whereas we care about the latency of reading and
processing key presses.

4) Page Load Overhead: Figure 9 shows the page load
overhead incurred by Fidelius, not including remote attesta-
tion. Fidelius’s overhead includes the time for the browser to
inform the enclave of secure components and for the enclave
to verify signatures on them, totaling 35.3ms. We do not report
time for remote attestation, which depends on the latency to
the attestation service. Fortunately, waiting for the attestation
server to respond can occur in parallel with other page load
operations because notifying the enclave of the existence of
trusted components and verifying signatures do not involve
sensitive user data. Moreover, attestation time is independent
of page content, so our measurements fully capture Fidelius’s
page load time increase as trusted components are added. As
seen in Figure 9, adding components does not significantly
increase page load time.

5) Performance Factors: Figure 10 shows the cost of
various components of our trusted display pipeline, described
in Section IX-A, which makes up almost all of Fidelius’s
performance overhead. The two most expensive operations
that take place on the display are rendering the overlay using
the Picamera module and the refresh delay we introduce
in order to allow the Picamera module to process frames
without forming a queue of undisplayed frames. The Picamera
module and associated hardware on the Raspberry Pi 3 is not
optimized to add a dynamic overlay to the camera feed. A
better approach would involve directly manipulating the data
from the Nuc computer’s HDMI output instead of using it to
simulate a camera and placing overlays on top of the camera
feed. This could easily be achieved in a production deployment
of Fidelius and would dramatically reduce display latency.

We also considered how performance varies as the size of
the trusted components on a page increase. Figure 11 shows
that latency increases linearly with the size of the trusted
component. This happens because as the size of the overlay
increases, it takes longer to decrypt, decode and transfer the
overlays. Taking steps to optimize the display pipeline would



iPhone
6s

Galaxy
S7

Fidelius HTC
Rezound

Kindle
Oasis 2

0

200

400

600

L
at

en
cy

(m
s)

Display Response Latency

5 10
0

20

40

60

Number of Trusted Components

L
at

en
cy

(m
s)

Additional Page Load Time

Scripts
Forms

Refresh Decrypt Decode Transfer Render
0

20

40

60

80

100

L
at

en
cy

(m
s)

Fidelius Display Pipeline Costs

Fig. 8. Fidelius key press to display latency
compared with the screen response time on various
commercial devices.

Fig. 9. Fidelius’s impact on page load time as
the number of trusted components varies. Adding
components does not significantly affect load time.

Fig. 10. Breakdown of display costs by compo-
nent. Render/refresh delays are an artifact of our
hardware and could be dramatically reduced.

Field size(s) W H W×H px Time (ms) Incr. (ms)

1 Small 171 50 8,550 195.83 -
1 Medium 342 50 17,100 199.20 3.38
1 Large 683 50 34,150 209.65 10.45
1 Extra large 911 50 45,550 214.74 -
2 Extra large 911 100 91,100 227.02 12.28

Fig. 11. Key press to display latency when rendering forms. Widths are
fractions of the most popular screen width (w = 1366px): S= 1

8
w, M= 1

4
w,

L= 1
2
w, XL= 2

3
w. Increments calculated from the previous row.

further mitigate latency increase. However, even under our
current implementation, for two full-page width input fields
(See the two extra large input field experiments in Figure 11),
Fidelius has a display latency of only 227ms. Also, a tenfold
increase in pixels (from one small field to two extra large
fields) results in only a 31ms latency increase.

XI. DISCUSSION AND EXTENSIONS

Fidelius opens the door to a new class of secure web appli-
cations supported by the widespread availability of hardware
enclaves in modern computers. The fundamental problems
solved by Fidelius – reliably establishing a path from I/O
devices to an enclave residing in an otherwise untrusted system
and of protecting web applications without moving large
portions of a browser into an enclave – have applications well
beyond the login and payment examples described thus far.

Fidelius’s techniques and architecture can also support more
complex applications such as online tax filing or even web-
based instant messaging. The trusted I/O path has applications
beyond the web as well and could be adapted to secure
logins or desktop applications that use enclaves for their core
functionality but require interaction with a local user on the
machine. We anticipate that Fidelius’s I/O approach will be
very useful, as hardware enclaves are most widely available
on consumer desktop and laptop computers.

We close with a discussion of possible extensions that could
broaden the applicability of our architecture or would be
important considerations in a widespread deployment.

1) Usability of Trusted Devices: We have implemented
Fidelius with a user and developer interface that provides users
with the necessary tools to interpret their interaction with
Fidelius properly and avoid UI-based attacks. However, our
interface represents only one possible design for interaction
between users and the core Fidelius functionality. A great deal
of work has studied the effectiveness of security indicators
such as our indicator lights [24], [25]. Other possible designs
may, for example, use secure attention sequences or separate
trusted buttons to initiate communication with trusted compo-
nents. Future work could explore this space to determine what
approach works best for this application in practice.

2) Event Loop: Fidelius leaves the JavaScript event loop
outside the enclave to optimize the tradeoff between TCB size
and functionality. A number of additional applications could be
enabled by moving the event loop into an enclave, especially
if there is a way to accomplish this more efficiently than with
a direct port that executes the loop as-is in trusted hardware.

3) HTML Rendering: In order to render HTML forms, we
implemented a custom library that, given a description of a
form and its inputs, produces a bitmap that represents the
form. In order to extend support to other HTML tags, we
need to integrate a more versatile rendering engine into our
web enclaves. Existing libraries such as Nuklear [34] provide
a solid first step in this direction.

4) Root Certificate Store: Our current implementation of
the web enclave uses a limited number of public keys. To
scale to supporting any web site, the web enclave needs to
have a root certificate store inside the enclave.

5) Mobile Devices: We have described Fidelius in the
setting of a desktop device, but much of users’ interaction
with the web today takes place on mobile devices. While
much of the Fidelius architecture could apply equally well
in an enclave-enabled mobile setting, a trusted path system
for phones and tablets will necessarily look very different
from the keyboard and display dongles used by Fidelius.



Android’s recent protected confirmation system [35] represents
a promising first step in this direction.

XII. RELATED WORK

NGSCB. In 2003 Microsoft announces the Palladium effort,
later renamed NGSCB [36]. In that design, attestation is
provided by a TPM chip and enclave isolation is provided by
hardware memory curtaining. The project was scaled back in
2005 presumably due to the difficulty of adapting applications
to the architecture. In contrast, as we explained, web sites
can take advantage of Fidelius by simply adding an HTML
attribute to web fields and forms that it wants to protect.
SGX and the Web. TrustJS [17] explores the potential
for running JavaScript inside an enclave, demonstrating that
running trusted JavaScript on the client-side can expedite form
input validation. SecureWorker [18] provides the developer
abstraction of a web worker while executing the worker’s
JavaScript inside an enclave. Our work uses the ability to run
JavaScript in an enclave as a building block to enable privacy
for user inputs in web applications. JITGuard [37] uses SGX
to protect against vulnerabilities in Firefox’s JIT compiler.
Unmodified Applications on SGX. A handful of works aim
to allow execution of unmodified applications inside an SGX
enclave. Haven runs whole applications inside an enclave [1],
while SGXKernel [3], Graphene [5], and Panoply [2] provide
lower level primitives on which applications can be built.
Scone [4] secures linux containers by running them inside an
enclave. Flicker [38] and TrustVisor [39] use older hardware to
provide features similar to SGX on which general applications
can be built, albeit with weaker performance due to the older
and more limited hardware features on which they build. We
focus on directly solving the problem of hiding user inputs in
an untrusted browser without using generic solutions in order
to minimize TCB and avoid the potential pitfalls of porting a
monolithic browser into a trusted environment.
SGX Attacks and Defenses. A number of side channel
attacks on SGX have been shown to take advantage of, among
other things, memory access patterns [40]–[42], asynchronous
execution [43], branch prediction [44], speculative execu-
tion [21], [22], and even SGX’s own security guarantees [45]
to compromise data privacy. There do, however, exist many
defenses that have been shown to evade these side channels,
often generically, without a great deal of overhead [30], [46]–
[50]. Even more promising, researchers have proposed a series
of other architectures [23], [51], [52] which defend against
weaknesses in SGX by design and are therefore invulnerable
to broad classes of attacks. As our work is compatible with
generic defenses and concerns itself primarily with higher level
functionalities built over enclaves, we do not consider side
channels in the presentation of Fidelius.
Protection Against Compromised Browsers. A number of
software-based solutions for protection against compromised
browsers offer tradeoffs between security, performance, and
TCB size. Shadowcrypt [53] uses a Shadow DOM to allow
encrypted input/output for web applications, but is vulnerable
to some attacks [54]. Terra [55] uses VMs to allow applications

with differing security requirements to run together on the
same hardware. Tahoma [56], IBOS [57], and Proxos [58]
integrate support for browsers as OS-level features, allowing
smaller TCBs and stronger isolation/security guarantees than
in a general-purpose OS. Cloud terminal [59] evades the
problem of local malware and protects against attackers by
only running a lightweight secure thin terminal locally and
outsourcing the majority of computation to a remote server.
Trusted I/O Path. While many works study how to use a
hypervisor to build a trusted path to users (e.g. [60]–[64]),
little work has been done in the trusted hardware setting.
SGXIO [16] provides a hybrid solution that combines SGX
with hypervisor techniques to allow a trusted I/O path with un-
modified devices. In contrast, our work relies only on hardware
assumptions with no need for a hypervisor, but does require
modified keyboard and display devices. Intel has alluded to an
internal tool used to provide a trusted display from SGX [65],
[66], but no details, source code, or applications are available
for public use. SGX-USB [29] allows for generic I/O but does
not solve the problem of mixing trusted and untrusted content
in a user interface as we do in both our keyboard and display.
ProximiTEE [67] bootstraps a similar generic trusted I/O path
off of a modified attestation procedure with new safeguards
over standard SGX attestation.

Bumpy [28] (and its predecessor BitE [68]) use the trusted
execution environment provided by Flicker [38] to provide a
secure input functionality similar to ours. Aside from the larger
web architecture which we build over our trusted I/O features,
we go beyond these works by 1) enabling interactivity with the
trusted input via the trusted display (Bumpy does not display
characters the user types) and 2) closing timing side channels
on user input (an improvement we also offer over SGX-USB).

XIII. CONCLUSION

We have presented Fidelius, a new architecture for protect-
ing user secrets from malicious operating systems while in-
teracting with web applications. Fidelius protects form inputs,
JavaScript execution, network connections, and local storage
from malware in a fully compromised browser. It also features
the first publicly available system for a trusted I/O path
between a user and a hardware enclave without assumptions
about hypervisor security. Our open source implementation of
Fidelius, accompanying sample code, and a video demo are
available at https://github.com/SabaEskandarian/Fidelius.

ACKNOWLEDGMENT

We thank Amit Sahai and Keith Winstein for helpful con-
versations about this work.

REFERENCES

[1] A. Baumann, M. Peinado, and G. C. Hunt, “Shielding applications
from an untrusted cloud with haven,” in 11th USENIX Symposium on
Operating Systems Design and Implementation, OSDI ’14, Broomfield,
CO, USA, October 6-8, 2014., 2014, pp. 267–283. [Online].
Available: https://www.usenix.org/conference/osdi14/technical-sessions/
presentation/baumann



[2] S. Shinde, D. L. Tien, S. Tople, and P. Saxena,
“Panoply: Low-tcb linux applications with SGX enclaves,”
in 24th Annual Network and Distributed System Security
Symposium, NDSS 2017, San Diego, California, USA,
February 26 - March 1, 2017, 2017. [Online]. Available:
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/
panoply-low-tcb-linux-applications-sgx-enclaves/

[3] H. Tian, Y. Zhang, C. Xing, and S. Yan, “Sgxkernel: A library
operating system optimized for intel SGX,” in Proceedings of the
Computing Frontiers Conference, CF’17, Siena, Italy, May 15-17,
2017, 2017, pp. 35–44. [Online]. Available: http://doi.acm.org/10.1145/
3075564.3075572

[4] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. Stillwell, D. Goltzsche,
D. M. Eyers, R. Kapitza, P. R. Pietzuch, and C. Fetzer, “SCONE: secure
linux containers with intel SGX,” in 12th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2016, Savannah,
GA, USA, November 2-4, 2016., 2016, pp. 689–703. [Online].
Available: https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/arnautov

[5] C. Tsai, D. E. Porter, and M. Vij, “Graphene-sgx: A practical library
OS for unmodified applications on SGX,” in 2017 USENIX Annual
Technical Conference, USENIX ATC 2017, Santa Clara, CA, USA,
July 12-14, 2017., 2017, pp. 645–658. [Online]. Available: https:
//www.usenix.org/conference/atc17/technical-sessions/presentation/tsai

[6] A. Papadimitriou, R. Bhagwan, N. Chandran, R. Ramjee, A. Haeberlen,
H. Singh, A. Modi, and S. Badrinarayanan, “Big data analytics over
encrypted datasets with seabed,” in 12th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2016, Savannah,
GA, USA, November 2-4, 2016., 2016, pp. 587–602. [Online].
Available: https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/papadimitriou

[7] S. Brenner, C. Wulf, D. Goltzsche, N. Weichbrodt, M. Lorenz,
C. Fetzer, P. R. Pietzuch, and R. Kapitza, “Securekeeper: Confidential
zookeeper using intel SGX,” in Proceedings of the 17th International
Middleware Conference, Trento, Italy, December 12 - 16, 2016, 2016,
p. 14. [Online]. Available: http://dl.acm.org/citation.cfm?id=2988350

[8] B. A. Fisch, D. Vinayagamurthy, D. Boneh, and S. Gorbunov, “Iron:
Functional encryption using intel sgx,” IACR Cryptology ePrint Archive,
2016. [Online]. Available: http://eprint.iacr.org/2016/1071

[9] A. Bittau, Ú. Erlingsson, P. Maniatis, I. Mironov, A. Raghunathan,
D. Lie, M. Rudominer, U. Kode, J. Tinnés, and B. Seefeld,
“Prochlo: Strong privacy for analytics in the crowd,” in Proceedings
of the 26th Symposium on Operating Systems Principles, Shanghai,
China, October 28-31, 2017, 2017, pp. 441–459. [Online]. Available:
http://doi.acm.org/10.1145/3132747.3132769

[10] C. Priebe, K. Vaswani, and M. Costa, “Enclavedb: A secure database
using sgx,” in 2018 IEEE Symposium on Security and Privacy, SP
(Oakland), 2018.

[11] S. Sasy, S. Gorbunov, and C. W. Fletcher, “Zerotrace : Oblivious memory
primitives from intel SGX,” IACR Cryptology ePrint Archive, vol.
2017, p. 549, 2017. [Online]. Available: http://eprint.iacr.org/2017/549

[12] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan: A
distributed sandbox for untrusted computation on secret data,” in 12th
USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2016, Savannah, GA, USA, November 2-4, 2016., 2016,
pp. 533–549. [Online]. Available: https://www.usenix.org/conference/
osdi16/technical-sessions/presentation/hunt

[13] M. Russinovich, “Introducing Azure confidential com-
puting,” 2017, https://azure.microsoft.com/en-us/blog/
introducing-azure-confidential-computing/.

[14] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and
I. Stoica, “Opaque: An oblivious and encrypted distributed analytics
platform,” in 14th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2017, Boston, MA, USA, March 27-29,
2017, 2017, pp. 283–298. [Online]. Available: https://www.usenix.org/
conference/nsdi17/technical-sessions/presentation/zheng

[15] P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A. Popa, “Oblix: An
efficient oblivious search index,” in 2018 IEEE Symposium on Security
and Privacy, SP (Oakland), 2018.

[16] S. Weiser and M. Werner, “SGXIO: generic trusted I/O path for
intel SGX,” in Proceedings of the Seventh ACM on Conference
on Data and Application Security and Privacy, CODASPY 2017,
Scottsdale, AZ, USA, March 22-24, 2017, G. Ahn, A. Pretschner,

and G. Ghinita, Eds. ACM, 2017, pp. 261–268. [Online]. Available:
http://doi.acm.org/10.1145/3029806.3029822

[17] D. Goltzsche, C. Wulf, D. Muthukumaran, K. Rieck, P. R. Pietzuch,
and R. Kapitza, “Trustjs: Trusted client-side execution of javascript,”
in Proceedings of the 10th European Workshop on Systems Security,
EUROSEC 2017, Belgrade, Serbia, April 23, 2017, C. Giuffrida and
A. Stavrou, Eds. ACM, 2017, pp. 7:1–7:6. [Online]. Available:
http://doi.acm.org/10.1145/3065913.3065917

[18] mitar, wh0, and C. V. Wiemeersch, “Secureworker,” https://github.com/
luckychain/node-secureworker, 2018.

[19] V. Costan and S. Devadas, “Intel SGX explained,” IACR Cryptology
ePrint Archive, vol. 2016, p. 86, 2016. [Online]. Available: http:
//eprint.iacr.org/2016/086

[20] “Intel software guard extensions sdk for linux os, developer reference.”
[Online]. Available: https://download.01.org/intel-sgx/linux-1.8/docs/
Intel SGX SDK Developer Reference Linux 1.8 Open Source.pdf

[21] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H.
Lai, “Sgxpectre attacks: Leaking enclave secrets via speculative
execution,” CoRR, vol. abs/1802.09085, 2018. [Online]. Available:
http://arxiv.org/abs/1802.09085

[22] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the Intel SGX kingdom with transient out-of-order
execution,” in Proceedings of the 27th USENIX Security Symposium.
USENIX Association, August 2018.

[23] V. Costan, I. A. Lebedev, and S. Devadas, “Sanctum: Minimal hardware
extensions for strong software isolation,” in 25th USENIX Security
Symposium, USENIX Security 16, Austin, TX, USA, August 10-12,
2016., 2016, pp. 857–874. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity16/technical-sessions/presentation/costan

[24] T. Whalen and K. M. Inkpen, “Gathering evidence: use of visual security
cues in web browsers,” in Proceedings of the Graphics Interface 2005
Conference, May 9-11, 2005, Victoria, British Columbia, Canada, 2005,
pp. 137–144.

[25] S. E. Schechter, R. Dhamija, A. Ozment, and I. Fischer, “The emperor’s
new security indicators,” in 2007 IEEE Symposium on Security and
Privacy (S&P 2007), 20-23 May 2007, Oakland, California, USA, 2007,
pp. 51–65.

[26] C. Jackson, D. R. Simon, D. S. Tan, and A. Barth, “An evaluation of
extended validation and picture-in-picture phishing attacks,” in Financial
Cryptography and Data Security, 11th International Conference, FC
2007, and 1st International Workshop on Usable Security, USEC 2007,
Scarborough, Trinidad and Tobago, February 12-16, 2007. Revised
Selected Papers, ser. Lecture Notes in Computer Science, S. Dietrich
and R. Dhamija, Eds., vol. 4886. Springer, 2007, pp. 281–293.
[Online]. Available: https://doi.org/10.1007/978-3-540-77366-5 27

[27] D. X. Song, D. A. Wagner, and X. Tian, “Timing analysis
of keystrokes and timing attacks on SSH,” in 10th USENIX
Security Symposium, August 13-17, 2001, Washington, D.C., USA,
D. S. Wallach, Ed. USENIX, 2001. [Online]. Available: http:
//www.usenix.org/publications/library/proceedings/sec01/song.html

[28] J. M. McCune, A. Perrig, and M. K. Reiter, “Safe passage for passwords
and other sensitive data,” in Proceedings of the Network and Distributed
System Security Symposium, NDSS 2009, San Diego, California, USA,
8th February - 11th February 2009. The Internet Society, 2009.
[Online]. Available: http://www.isoc.org/isoc/conferences/ndss/09/pdf/
18.pdf

[29] Y. Jang, “Building trust in the user i/o in computer systems,” Ph.D.
dissertation, Georgia Tech, 2017.

[30] S. Matetic, M. Ahmed, K. Kostiainen, A. Dhar, D. Sommer,
A. Gervais, A. Juels, and S. Capkun, “ROTE: rollback protection
for trusted execution,” in 26th USENIX Security Symposium, USENIX
Security 2017, Vancouver, BC, Canada, August 16-18, 2017., 2017,
pp. 1289–1306. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/matetic

[31] D. Jones, “Picamera,” https://github.com/waveform80/picamera, 2017.
[32] G. Williams, “tiny-js,” https://github.com/gfwilliams/tiny-js, 2015.
[33] D. Luu, “Computer latency: 1977-2017,” 2017, https://danluu.com/

input-lag/.
[34] M. Mettke, “Nuklear,” https://github.com/vurtun/nuklear, 2018.
[35] J. Danisevskis, “Android protected confirmation: Taking transaction

security to the next level,” 2018, https://android-developers.googleblog.
com/2018/10/android-protected-confirmation.html.



[36] Wikipedia contributors, “Next-generation secure computing base —
Wikipedia, the free encyclopedia,” 2018, accessed August 2018.
[Online]. Available: https://en.wikipedia.org/wiki/Next-Generation
Secure Computing Base

[37] T. Frassetto, D. Gens, C. Liebchen, and A. Sadeghi, “Jitguard:
Hardening just-in-time compilers with SGX,” in Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, Dallas, TX, USA, October 30 - November
03, 2017, B. M. Thuraisingham, D. Evans, T. Malkin, and
D. Xu, Eds. ACM, 2017, pp. 2405–2419. [Online]. Available:
http://doi.acm.org/10.1145/3133956.3134037

[38] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and H. Isozaki,
“Flicker: an execution infrastructure for tcb minimization,” in
Proceedings of the 2008 EuroSys Conference, Glasgow, Scotland, UK,
April 1-4, 2008, J. S. Sventek and S. Hand, Eds. ACM, 2008, pp. 315–
328. [Online]. Available: http://doi.acm.org/10.1145/1352592.1352625

[39] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. D. Gligor, and
A. Perrig, “Trustvisor: Efficient TCB reduction and attestation,” in 31st
IEEE Symposium on Security and Privacy, S&P 2010, 16-19 May 2010,
Berleley/Oakland, California, USA. IEEE Computer Society, 2010,
pp. 143–158. [Online]. Available: https://doi.org/10.1109/SP.2010.17

[40] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache
attacks on intel SGX,” in Proceedings of the 10th European
Workshop on Systems Security, EUROSEC 2017, Belgrade, Serbia,
April 23, 2017, 2017, pp. 2:1–2:6. [Online]. Available: http:
//doi.acm.org/10.1145/3065913.3065915

[41] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks:
Deterministic side channels for untrusted operating systems,” in 2015
IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA,
USA, May 17-21, 2015, 2015, pp. 640–656. [Online]. Available:
https://doi.org/10.1109/SP.2015.45

[42] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun,
and A. Sadeghi, “Software grand exposure: SGX cache attacks are
practical,” in 11th USENIX Workshop on Offensive Technologies,
WOOT 2017, Vancouver, BC, Canada, August 14-15, 2017.,
2017. [Online]. Available: https://www.usenix.org/conference/woot17/
workshop-program/presentation/brasser

[43] N. Weichbrodt, A. Kurmus, P. R. Pietzuch, and R. Kapitza,
“Asyncshock: Exploiting synchronisation bugs in intel SGX enclaves,”
in Computer Security - ESORICS 2016 - 21st European Symposium on
Research in Computer Security, Heraklion, Greece, September 26-30,
2016, Proceedings, Part I, 2016, pp. 440–457. [Online]. Available:
https://doi.org/10.1007/978-3-319-45744-4 22

[44] S. Lee, M. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado,
“Inferring fine-grained control flow inside SGX enclaves with
branch shadowing,” in 26th USENIX Security Symposium, USENIX
Security 2017, Vancouver, BC, Canada, August 16-18, 2017., 2017,
pp. 557–574. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/lee-sangho

[45] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard,
“Malware guard extension: Using SGX to conceal cache attacks,” in
Detection of Intrusions and Malware, and Vulnerability Assessment
- 14th International Conference, DIMVA 2017, Bonn, Germany,
July 6-7, 2017, Proceedings, 2017, pp. 3–24. [Online]. Available:
https://doi.org/10.1007/978-3-319-60876-1 1

[46] A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing digital side-
channels through obfuscated execution,” in 24th USENIX Security
Symposium, USENIX Security 15, Washington, D.C., USA, August 12-
14, 2015., 2015, pp. 431–446. [Online]. Available: https://www.usenix.
org/conference/usenixsecurity15/technical-sessions/presentation/rane

[47] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena, “Preventing page
faults from telling your secrets,” in Proceedings of the 11th ACM on
Asia Conference on Computer and Communications Security, AsiaCCS
2016, Xi’an, China, May 30 - June 3, 2016, 2016, pp. 317–328.
[Online]. Available: http://doi.acm.org/10.1145/2897845.2897885

[48] J. Seo, B. Lee, S. M. Kim, M. Shih, I. Shin, D. Han, and
T. Kim, “Sgx-shield: Enabling address space layout randomization
for SGX programs,” in 24th Annual Network and Distributed
System Security Symposium, NDSS 2017, San Diego, California,
USA, February 26 - March 1, 2017, 2017. [Online]. Available:
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/
sgx-shield-enabling-address-space-layout-randomization-sgx-programs/

[49] M. Shih, S. Lee, T. Kim, and M. Peinado, “T-SGX:
eradicating controlled-channel attacks against enclave programs,”

in 24th Annual Network and Distributed System Security
Symposium, NDSS 2017, San Diego, California, USA,
February 26 - March 1, 2017, 2017. [Online]. Available:
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/
t-sgx-eradicating-controlled-channel-attacks-against-enclave-programs/

[50] R. Sinha, S. K. Rajamani, S. A. Seshia, and K. Vaswani, “Moat:
Verifying confidentiality of enclave programs,” in Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications
Security, Denver, CO, USA, October 12-16, 2015, 2015, pp. 1169–1184.
[Online]. Available: http://doi.acm.org/10.1145/2810103.2813608

[51] C. Liu, A. Harris, M. Maas, M. W. Hicks, M. Tiwari, and E. Shi,
“Ghostrider: A hardware-software system for memory trace oblivious
computation,” in Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’15, Istanbul, Turkey, March 14-18, 2015, Ö. Özturk,
K. Ebcioglu, and S. Dwarkadas, Eds. ACM, 2015, pp. 87–101.
[Online]. Available: http://doi.acm.org/10.1145/2694344.2694385

[52] M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi, K. Asanovic,
J. Kubiatowicz, and D. Song, “PHANTOM: practical oblivious
computation in a secure processor,” in 2013 ACM SIGSAC Conference
on Computer and Communications Security, CCS’13, Berlin, Germany,
November 4-8, 2013, A. Sadeghi, V. D. Gligor, and M. Yung, Eds.
ACM, 2013, pp. 311–324. [Online]. Available: http://doi.acm.org/10.
1145/2508859.2516692

[53] W. He, D. Akhawe, S. Jain, E. Shi, and D. X. Song, “Shadowcrypt:
Encrypted web applications for everyone,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security,
Scottsdale, AZ, USA, November 3-7, 2014, 2014, pp. 1028–1039.
[Online]. Available: http://doi.acm.org/10.1145/2660267.2660326

[54] M. Freyberger, W. He, D. Akhawe, M. L. Mazurek, and P. Mittal,
“Cracking shadowcrypt: Exploring the limitations of secure I/O systems
in internet browsers,” PoPETs, vol. 2018, no. 2, pp. 47–63, 2018.
[Online]. Available: https://doi.org/10.1515/popets-2018-0012

[55] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, “Terra: a
virtual machine-based platform for trusted computing,” in Proceedings
of the 19th ACM Symposium on Operating Systems Principles 2003,
SOSP 2003, Bolton Landing, NY, USA, October 19-22, 2003, M. L.
Scott and L. L. Peterson, Eds. ACM, 2003, pp. 193–206. [Online].
Available: http://doi.acm.org/10.1145/945445.945464

[56] R. S. Cox, S. D. Gribble, H. M. Levy, and J. G. Hansen, “A safety-
oriented platform for web applications,” in 2006 IEEE Symposium
on Security and Privacy (S&P 2006), 21-24 May 2006, Berkeley,
California, USA. IEEE Computer Society, 2006, pp. 350–364.
[Online]. Available: https://doi.org/10.1109/SP.2006.4

[57] S. Tang, H. Mai, and S. T. King, “Trust and protection in
the illinois browser operating system,” in 9th USENIX Symposium
on Operating Systems Design and Implementation, OSDI 2010,
October 4-6, 2010, Vancouver, BC, Canada, Proceedings, R. H.
Arpaci-Dusseau and B. Chen, Eds. USENIX Association, 2010, pp.
17–32. [Online]. Available: http://www.usenix.org/events/osdi10/tech/
full papers/Tang.pdf

[58] R. Ta-Min, L. Litty, and D. Lie, “Splitting interfaces: Making trust
between applications and operating systems configurable,” in 7th
Symposium on Operating Systems Design and Implementation (OSDI
’06), November 6-8, Seattle, WA, USA, B. N. Bershad and J. C. Mogul,
Eds. USENIX Association, 2006, pp. 279–292. [Online]. Available:
http://www.usenix.org/events/osdi06/tech/ta-min.html

[59] L. Martignoni, P. Poosankam, M. Zaharia, J. Han, S. McCamant,
D. Song, V. Paxson, A. Perrig, S. Shenker, and I. Stoica,
“Cloud terminal: Secure access to sensitive applications from
untrusted systems,” in 2012 USENIX Annual Technical Conference,
Boston, MA, USA, June 13-15, 2012, 2012, pp. 165–182. [Online].
Available: https://www.usenix.org/conference/atc12/technical-sessions/
presentation/martignoni

[60] A. Brandon and M. Trimarchi, “Trusted display and input using screen
overlays,” in International Conference on ReConFigurable Computing
and FPGAs, ReConFig 2017, Cancun, Mexico, December 4-6, 2017,
2017, pp. 1–6. [Online]. Available: https://doi.org/10.1109/RECONFIG.
2017.8279826

[61] Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune, “Building
verifiable trusted path on commodity x86 computers,” in IEEE
Symposium on Security and Privacy, SP 2012, 21-23 May 2012, San
Francisco, California, USA, 2012, pp. 616–630. [Online]. Available:
https://doi.org/10.1109/SP.2012.42



[62] M. Yu, V. D. Gligor, and Z. Zhou, “Trusted display on untrusted
commodity platforms,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, Denver, CO,
USA, October 12-16, 2015, 2015, pp. 989–1003. [Online]. Available:
http://doi.acm.org/10.1145/2810103.2813719

[63] K. Borders and A. Prakash, “Securing network input via a trusted
input proxy,” in 2nd USENIX Workshop on Hot Topics in Security,
HotSec’07, Boston, MA, USA, August 7, 2007. USENIX Association,
2007. [Online]. Available: https://www.usenix.org/conference/hotsec-07/
securing-network-input-trusted-input-proxy

[64] N. Feske and C. Helmuth, “A nitpicker’s guide to a minimal-complexity
secure GUI,” in 21st Annual Computer Security Applications
Conference (ACSAC 2005), 5-9 December 2005, Tucson, AZ, USA.
IEEE Computer Society, 2005, pp. 85–94. [Online]. Available:
https://doi.org/10.1109/CSAC.2005.7

[65] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. del
Cuvillo, “Using innovative instructions to create trustworthy software

solutions,” in HASP 2013, The Second Workshop on Hardware
and Architectural Support for Security and Privacy, Tel-Aviv,
Israel, June 23-24, 2013, 2013, p. 11. [Online]. Available: http:
//doi.acm.org/10.1145/2487726.2488370

[66] R. Lal and P. M. Pappachan, “An architecture methodology for secure
video conferencing,” in Technologies for Homeland Security (HST).
IEEE, 2013.

[67] A. Dhar, I. Puddu, K. Kostiainen, and S. Capkun, “Proximitee: Hardened
sgx attestation and trusted path through proximity verification,” Cryptol-
ogy ePrint Archive, Report 2018/902, 2018, https://eprint.iacr.org/2018/
902.

[68] J. M. McCune, A. Perrig, and M. K. Reiter, “Bump in the ether:
A framework for securing sensitive user input,” in Proceedings
of the 2006 USENIX Annual Technical Conference, Boston, MA,
USA, May 30 - June 3, 2006, A. Adya and E. M. Nahum,
Eds. USENIX, 2006, pp. 185–198. [Online]. Available: http:

//www.usenix.org/events/usenix06/tech/mccune.html


