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Abstract—Bitcoin is an immutable permissionless blockchain
system that has been extensively used as a public bulletin
board by many different applications that heavily relies on its
immutability. However, Bitcoin’s immutability is not without its
fair share of demerits. Interpol exposed the existence of harmful
and potentially illegal documents, images and links in the Bitcoin
blockchain, and since then there have been several qualitative
and quantitative analysis on the types of data currently residing
in the Bitcoin blockchain. Although there is a lot of attention
on blockchains, surprisingly the previous solutions proposed for
data redaction in the permissionless setting are far from feasible,
and require additional trust assumptions. Hence, the problem of
harmful data still poses a huge challenge for law enforcement
agencies like Interpol (Tziakouris, IEEE S&P’18).

We propose the first efficient redactable blockchain for the
permissionless setting that is easily integrable into Bitcoin,
and that does not rely on heavy cryptographic tools or trust
assumptions. Our protocol uses a consensus-based voting and
is parameterised by a policy that dictates the requirements and
constraints for the redactions; if a redaction gathers enough votes
the operation is performed on the chain. As an extra feature,
our protocol offers public verifiability and accountability for the
redacted chain. Moreover, we provide formal security definitions
and proofs showing that our protocol is secure against redactions
that were not agreed by consensus. Additionally, we show the
viability of our approach with a proof-of-concept implementation
that shows only a tiny overhead in the chain validation of our
protocol when compared to an immutable one.

Index Terms—Blockchain, Bitcoin, Redactable Blockchain,
GDPR

I. INTRODUCTION

Satoshi Nakamoto’s 2008 proposal of Bitcoin [38] has
revolutionised the financial sector. It helped realise a monetary
system without relying on a central trusted authority, which has
since then given rise to hundreds of new systems known as
cryptocurrencies. Interestingly however, a closer look into the
basics of Bitcoin sheds light on a new technology, blockchains.
Ever since, there has been a lot of ongoing academic re-
search [21], [28], [14], [16] on the security and applications of
blockchains as a primitive. A blockchain in its most primitive
form is a decentralised chain of agreed upon blocks containing
timestamped data.

A consensus mechanism supports the decentralised nature
of blockchains. There are different types of consensus mech-
anisms that are based on different resources, such as Proof of
Work (PoW) based on computational power, Proof of Stake
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(PoS) based on the stake in the system, Proof of Space based
on storage capacity, among many others. Typically, users in
the system store a local copy of the blockchain and run
the consensus mechanism to agree on a unified view of the
blockchain. These mechanisms must rely on non-replicability
of resources to be resilient against simple sybil attacks where
the adversary spawn multiple nodes under his control.

Apart from its fundamental purpose of being a digital
currency, Bitcoin exploits the properties of its blockchain,
as in being used as a tool for many different applications,
such as timestamp service [23], [22], to achieve fairness and
correctness in secure multi-party computation [9], [7], [15],
[31], and to build smart contracts [30]. It acts as an immutable
public bulletin board, supporting the storage of arbitrary data
through special operations. For instance, the OP RETURN code,
can take up to 80 bytes of arbitrary data that gets stored
in the blockchain. With no requirement for centralised trust
and its capability of supporting complex smart contracts,
communication through the blockchain has become practical,
reasonably inexpensive and very attractive for applications.

Blockchain and Immutability. The debate about the im-
mutability of blockchain protocols has gained worldwide at-
tention lately due to the adoption of the new General Data
Protection Regulation (GDPR) by European states. Several
provisions of the GDPR regulation are inherently incompatible
with current permissionless immutable blockchain proposals
(e.g., Bitcoin and Ethereum) [26] as it is not possible to
remove any data (addresses, transaction values, timestamp
information) that has stabilised1 in the chain in such protocols.
Since permissionless blockchains are completely decentralised
and allow for any user to post transactions to the chain
for a small fee, malicious users can post transactions to
the system containing illegal and/or harmful data, such as
(child) pornography, private information or stolen private keys,
etc. The existence of such illicit content was first reported
in [2] and has remained a challenge for law enforcement
agencies like Interpol [47]. Moreover, quantitative analysis in
the recent work of Matzutt et al. [34] shows that it is not
feasible to “filter” all data from incoming transactions to check
for malicious contents before the transaction is inserted into
the chain. Therefore, once it becomes public knowledge that
malicious data was inserted (and has stabilised) into the chain,

1A transaction (or data) is considered stable in the blockchain when it is
“deep” enough into the chain. We formally define this property in Section II-B.



the honest users are faced with the choice of either, willingly
broadcast illicit (and possibly illegal [34], [5]) data to other
users, or to stop using the system altogether.

This effect greatly hinders the adoption of permissionless
blockchain systems, as honest users that are required to com-
ply with regulations, such as GDPR, are forced to withdraw
themselves from the system if there is no recourse in place to
deal with illicit data inserted into the chain.

A. State of the Art

Specifically to tackle the problem of arbitrary harmful
data insertions in the blockchain, the notion of redacting the
contents of a blockchain was first proposed by Ateniese et
al. [13]. The authors propose a solution more focused on
the permissioned blockchain setting2 based on chameleon
hashes [18]. In their protocol, a chameleon hash function
replaces the regular SHA256 hash function when linking
consecutive blocks in the chain. When a block is modified,
a collision for the chameleon hash function can be efficiently
computed (with the knowledge of the chameleon trapdoor key)
for that block, keeping the state of the chain consistent after
arbitrary modifications.

In a permissioned setting where the control of the chain
is shared among a few semi-trusted parties, the solution
from [13] is elegant and works nicely, being even commer-
cially adopted by a large consultancy company [4], [3], [11].
However, in permissionless blockchains such as Bitcoin, where
the influx of users joining and leaving the system is ever
changing and without any regulation, their protocol clearly
falls short in this scenario, as their techniques of secret sharing
the chameleon trapdoor key and running a MPC protocol
to compute a collision for the chameleon hash function do
not scale to the thousands of users in the Bitcoin network.
Moreover, when a block is removed in their protocol it is
completely unnoticeable to the users, leaving no trace of the
old state. Although this could make sense in a permissioned
setting, in a permissionless setting one would like to have
some public accountability as to when and where a redaction
has occurred.

Later, Puddu et al. [42] proposed a blockchain protocol
where the sender of a transaction can encrypt alternate ver-
sions of the transaction data, known as “mutations”; the only
unencrypted version of the transaction is considered to be
the active transaction. The decryption keys are secret shared
among the miners, and the sender of a transaction establishes
a mutation policy for his transaction, that details how (and by
whom) his transaction is allowed to be mutated. On receiving
a mutate request, the miners run a MPC protocol to reconstruct
the decryption key and decrypt the appropriate version of the
transaction. The miners then publish this new version as the
active transaction. In case of permissionless blockchains, they
propose the usage of voting for gauging approval based on
computational power. However, in a permissionless setting

2The permissioned blockchain setting is when there is a trusted third party
(TTP) that deliberates on the users’ entry into the system.

a malicious user can simply not include a mutation for his
transaction, or even set a mutation policy where only he
himself is able to mutate the transaction. Moreover, to tackle
transaction consistency, where a mutated transaction affects
other transactions in the chain, they propose to mutate all
affected transactions through a cascading effect. This however,
completely breaks the notion of transaction stability, e.g., a
payment made in the past to a user could be altered as a
result of this cascading mutation. The proposal of [42] also
suffers from scalability issues due to the MPC protocol used
for reconstructing decryption keys across different users.

It is clear that for a permissionless blockchain without
centralised trust assumptions, a practical solution for redacting
harmful content must refrain from employing large-scale MPC
protocols that hinders the performance of the blockchain. It
also must accommodate public verifiability and accountability
such that rational miners are incentivised to follow the proto-
col.

B. Our Contributions

Editable Blockchain Protocol. We propose the first editable
blockchain protocol for permissionless systems in Section III,
which is completely decentralised and does not rely on heavy
cryptographic primitives or additional trust assumptions. This
makes our protocol easily integrable in systems like Bitcoin (as
described in Section V). The edit operations can be proposed
by any user and they are voted in the blockchain through
consensus; the edits are only performed if approved by the
blockchain policy (e.g., voted by the majority). The protocol
is based on a PoW consensus, however, it can be easily
adapted to any consensus mechanism, since the core ideas
are inherently independent of the type of consensus used. Our
protocol also offers accountability for edit operations, where
any edit in the chain can be publicly verified.
Formal Analysis. We build our protocol on firm theoretical
grounds, as we formalise all the necessary properties of an
editable blockchain in Section IV, and later show that our
generic protocol of Section III-C satisfies these properties.
We borrow the fundamental properties of a secure blockchain
protocol from [21] and adapt them to our setting.
Implementation. We demonstrate the practicality of our pro-
tocol with a proof-of-concept implementation in Python. We
first show in Section VI that adding our redaction mechanism
incurs in just a small overhead for chain validation time com-
pared to that of the immutable protocol. Then, we show that
for our protocol the overhead incurred for different numbers
of redactions in the chain against a redactable chain with
no redactions is minimal (less than 3% for 5, 000 redactions
on a 50, 000 blocks chain). Finally, we analyse the effect of
the parameters in our protocol by measuring the overhead
introduced by different choices of the system parameters when
validating chains with redactions.

C. Our Protocol
Our protocol extends the immutable blockchain of Garay et

al. [21] to accommodate for edit operations in the following



way: We extend the block structure to accommodate another
copy of the transaction’s Merkle root, that we denote by old
state. We also consider an editing policy for the chain, that
determines the constraints and requirements for approving edit
operations. To edit a block in the chain, our protocol (Fig. 1)
executes the following steps:

a) A user first proposes an edit request to the system. The
request consists of the index of the block he wants to
edit, and a candidate block to replace it.

b) When miners in the network receives an edit request,
they first validate the candidate block using its old state
information and verifying the following conditions: (1)
it contains the correct information about the previous
block, (2) it has solved the proof of work and (3) it
does not invalidate the next block in the chain. If the
candidate block is valid, miners can vote for it during
the request’s voting period by simply including the hash
of the request in the next block they mine. The collision
resistance property of the hash function ensures that a
vote for an edit request cannot be considered as a vote
for any other edit request.

c) After the voting period for a request is over, everyone in
the network can verify if the edit request was approved
in accordance to the policy (e.g., by checking the number
of votes it received). If the request was approved, then
the edit operation is performed by replacing the original
block with the candidate block.

To validate an edited chain, the miners validate each block
exactly like in the immutable protocol; if a “broken” link is
found between blocks, the miner checks if the link still holds
for the old state information3. In the affirmative case, the miner
ensures that the edited block has gathered enough votes and
is approved, according to the policy of the chain.

The process of a redaction in our generic protocol as
described in Fig. 2 is pictorially presented in Fig. 1.

II. PRELIMINARIES

Throughout this work we denote by κ ∈ N the security
parameter and by a ← A(in) the output of an algorithm
A on input in. We also use the terms “redact” and “edit”
interchangeably in this paper.

A. Blockchain Basics

We make use of the notation of [21] to describe a
blockchain. A block is a triple of the form B := 〈s, x, ctr〉,
where s ∈ {0, 1}κ, x ∈ {0, 1}∗ and ctr ∈ N. Here s is the
state of the previous block, x is the data and ctr is the proof
of work of the block. A block B is valid iff

validateBlockD(B) := H(ctr , G(s, x)) < D.

Here, H : {0, 1}∗ → {0, 1}κ and G : {0, 1}∗ → {0, 1}κ are
cryptographic hash functions, and the parameter D ∈ N is the
block’s difficulty level.

3A similar technique is used in [10] to “scar” a block that was previously
redacted.

The blockchain is simply a chain (or sequence) of blocks,
that we call C. The rightmost block is called the head of
the chain, denoted by Head(C). Any chain C with a head
Head(C) := 〈s, x, ctr〉 can be extended to a new longer chain
C′ := C||B′ by attaching a (valid) block B′ := 〈s′, x′, ctr ′〉
such that s′ = H(ctr , G(s, x)); the head of the new chain C′

is Head(C′) := B′. A chain C can also be empty, and in such a
case we let C := ε. The function len(C) denotes the length of
a chain C (i.e., its number of blocks). For a chain C of length
n and any q ≥ 0, we denote by C�q the chain resulting from
removing the q rightmost blocks of C, and analogously we
denote by q�C the chain resulting in removing the q leftmost
blocks of C; note that if q ≥ n (where len(C) = n) then
C�q := ε and q�C := ε. If C is a prefix of C′ we write C ≺ C′.
We also note that the difficulty level D can be different among
blocks in a chain.

B. Properties of a Secure Blockchain

In this section we detail the relevant aspects of the under-
lying blockchain system that is required for our protocol.

We consider time to be divided into standard discrete
units, such as minutes. A well defined continuous amount
of these units is called a slot. Each slot sl l is indexed for
l ∈ {1, 2, 3, . . .}. We assume that users have a synchronised
clock that indicates the current time down to the smallest dis-
crete unit. The users execute a distributed protocol to generate
a new block in each slot, where a block contains some data.
We assume the slots’ real time window properties as in [28].
In [21], [39], [28] it is shown that a “healthy” blockchain
must satisfy the properties of persistence and liveness, which
intuitively guarantee that after some time period, all honest
users of the system will have a consistent view of the chain,
and transactions posted by honest users will eventually be
included. We informally discuss the two properties next.

Persistence: Once a user in the system announces a particular
transaction as stable, all of the remaining users when queried
will either report the transaction in the same position in the
ledger or will not report any other conflicting transaction as
stable. A system parameter k determines the number of blocks
that stabilise a transaction. That is, a transaction is stable if
the block containing it has at least k blocks following it in the
blockchain. We only consider a transaction to be in the chain
after it becomes stable.

Liveness: If all the honest users in the system attempt to
include a certain transaction into their ledger, then after the
passing of time corresponding to u slots which represents
the transaction confirmation time, all users, when queried and
responding honestly, will report the transaction as being stable.

Throughout the paper we refer to the user as both a user
and a miner interchangeably.

C. Execution Model.

In the following we define the notation for our protocol
executions. Our definitions follow along the same lines of [41].



Bj H(B�
j ) H(B�

j ) H(B�
j ) H(B�

j )

Voting period (�)propose B�
j

B�
k B�

lR
B�

n B�
j

(a) Proposing a redaction B�
j for the block Bj

B�
j H(B�

j ) H(B�
j ) H(B�

j ) H(B�
j )

P(C, B�
j ) = accept

B�
x

B�
y

R
B�

z

(b) After a successful voting phase, B�
j replaces Bj in the chain

Figure 1: The candidate block pool R stores the candidate blocks that are proposed and that can be endorsed in the voting
phase. A block is linked to its predecessor by two links, the old link (solid arrow) and the new link (dashed arrow). In (a), a
redact request B�

j is proposed as a redaction for Bj and added to R, then the hash of B�
j is included in the chain to denote

a new candidate redaction; its voting phase starts just after its proposal. In (b), the candidate block B�
j has gathered enough

votes and was approved by the redaction policy P of the chain; B�
j replaces Bj and the redacted chain is propagated. Note

that new link from the block to the right of B�
j is broken (marked by a cross), however the old link to B�

j still holds. For
simplicity, we consider the parameters k = 0 (persistence), � = 4 (voting period) and ρ ≥ 3/4 (threshold for policy approval).

A protocol refers to an algorithm for a set of interactive
Turing Machines (also called nodes) to interact with each
other. The execution of a protocol Π that is directed by an
environment/outer game Z(1κ), which activates a number
of parties U = {p1, . . . , pn} as either honest or corrupted
parties. Honest parties would faithfully follow the protocol’s
prescription, whereas corrupt parties are controlled by an
adversary A, which reads all their inputs/messages and sets
their outputs/messages to be sent.

• A protocol’s execution proceeds in rounds that model
atomic time steps. At the beginning of every round,
honest parties receive inputs from an environment Z; at
the end of every round, honest parties send outputs to the
environment Z .

• A is responsible for delivering all messages sent by
parties (honest or corrupted) to all other parties. A cannot
modify the content of messages broadcast by honest
parties.

• At any point Z can corrupt an honest party j, which
means that A gets access to its local state and subse-
quently controls party j.

• At any point of the execution, Z can uncorrupt a cor-
rupted party j, which means that A no longer controls
j. A party that becomes uncorrupt is treated in the same
way as a newly spawning party, i.e., the party’s internal
state is re-initialised and then the party starts executing
the honest protocol no longer controlled by A.

Note that a protocol execution can be randomised, where the
randomness comes from honest parties as well as from A
and Z . We denote by view ← EXECΠ(A,Z, κ) the randomly
sampled execution trace. More formally, view denotes the joint
view of all parties (i.e., all their inputs, random coins and
messages received, including those from the random oracle) in
the above execution; note that this joint view fully determines
the execution.

III. EDITING THE BLOCKCHAIN

In this section we introduce an abstraction Γ of a blockchain
protocol, and we describe how to extend Γ into an editable
blockchain protocol Γ′.

A. Blockchain Protocol

We consider an immutable blockchain protocol (for in-
stance [21]), denoted by Γ, where nodes receive inputs from
the environment Z , and interact among each other to agree
on an ordered ledger that achieves persistence and liveness.
The blockchain protocol Γ is characterised by a set of global
parameters and by a public set of rules for validation. The
protocol Γ provides the nodes with the following set of
interfaces which are assumed to have complete access to the
network and its users.

• {C′,⊥} ← Γ.updateChain: returns a longer and valid
chain C in the network (if it exists), otherwise returns ⊥.

• {0, 1} ← Γ.validateChain(C): The chain validity check
takes as input a chain C and returns 1 iff the chain is
valid according to a public set of rules.

• {0, 1} ← Γ.validateBlock(B): The block validity check
takes as input a block B and returns 1 iff the block is
valid according to a public set of rules.

• Γ.broadcast(x ): takes as input some data x and broad-
casts it to all the nodes of the system.

The nodes in the Γ protocol have their own local chain C which
is initialised with a common genesis block. The consensus in Γ
guarantees the properties of persistence and liveness discussed
in Section II-B.

B. Editable Blockchain

We build our editable blockchain protocol Γ′ by modifying
and extending the aforementioned protocol Γ. The protocol Γ′

has copies of all the basic blockchain functionalities exposed
by Γ through the interfaces described above, and modifies



the validateChain and validateBlock algorithms in order to
accommodate for edits in C. In addition, the protocol Γ′

provides the following interfaces:
• B�

j ← Γ′.proposeEdit(C, j, x�): takes as input the chain
C, an index j of a block to edit and some data x�. It then
returns a candidate block for Bj .

• {0, 1} ← Γ′.validateCand(B�
j , C): takes as input a can-

didate block B�
j and the chain C and returns 1 iff the

candidate block B�
j is valid.

The modified chain validation and block validation algo-
rithms are presented in Algorithm 1 and Algorithm 2, respec-
tively, while the new algorithms to propose an edit to a block
and to validate candidate blocks are presented in Algorithm 3
and Algorithm 4, respectively. In Fig. 2 we formally describe
the protocol Γ′.

Intuitively, we need modifications for chain validation and
block validation algorithms to account for an edited block in
the chain. A block that has been edited possesses a different
state, that does not immediately correlate with its neighbouring
blocks. Therefore, for such an edited block we need to ensure
that the old state of the block (the state before the edit) is
still accessible for verification.4 We do this by storing the old
state information in the block itself. This therefore requires
a modified block validation algorithm and a modified chain
validation algorithm overall.

We note that for simplicity our protocol is restricted to
perform a single edit operation per block throughout the run of
the protocol. In Appendix A we describe an extension of the
protocol to accommodate for an arbitrary number of redactions
per block.
Blockchain Policy. We introduce the notion of a blockchain
policy P , that determines if an edit to the chain C should
be approved or not. The protocol Γ′ is parameterised by a
policy P that is a function that takes as input a chain C and a
candidate block B� (that proposes a modification to the chain
C) and it returns accept if the candidate block B� complies
with the policy P , otherwise it outputs reject; in case the
modification proposed by B� is still being deliberated in the
chain C, then P returns voting.

In its most basic form, a policy P requires that a candidate
block B� should only be accepted if B� was voted by the
majority of the network within some predefined interval of
blocks (or voting period �). A formal definition follows.

Definition 1 (Policy). A candidate block B� generated in
round r is said to satisfy the policy P of chain C :=
(B1, . . . , Bn), i.e., P(C, B�) = accept, if it holds that
Br+� ∈ C�k and the ratio of blocks between Br and Br+�

containing H(B�) (a vote for B�) is at least ρ, for k, � ∈ N,
and 0 < ρ ≤ 1, where k is the persistence parameter, � is the
voting period, and ρ is the ratio of votes necessary within the
voting period �.

4Note that the protocol does not need to maintain the redacted data for
verification, and therefore all redacted data is completely removed from the
chain.

C. Protocol Description

We denote a block to be of the form B := 〈s, x, ctr , y〉,
where s ∈ {0, 1}κ is the hash of the previous block, x ∈
{0, 1}∗ is the block data, and y ∈ {0, 1}κ is the old state of the
block data. To extend an editable chain C to a new longer chain
C′ := C||B′, the newly created block B′ := 〈s′, x′, ctr ′, y′〉
sets s′ := H(ctr , G(s, x), y), where Head(C) := 〈s, x, ctr , y〉.
Note that upon the creation of block B′, the component y′

takes the value G(s′, x′), that represents the initial state of
block B′.

During the setup of the system, the chain C is initialised
as C := genesis, and all the users in the system maintain a
local copy of the chain C and a pool R consisting candidate
blocks for edits, that is initially empty. The protocol runs in a
sequence of rounds r (starting with r := 1).

In the beginning of each round r, the users try to extend
their local chain using the interface Γ′.updateChain, that tries
to retrieve new valid blocks from the network and append them
to the local chain. Next, the users collect all the candidate
blocks B�

j from the network and validate them by using
Γ′.validateCand (Algorithm 4); then, the users add all the valid
candidate blocks to the pool R. For each candidate block B�

j

in R, the users compute P(C, B�
j ) to verify if the candidate

block B�
j should be adopted by the chain or not; if the output

is accept they replace the original block Bj in the chain
by the candidate block B�

j and remove B�
j from R. If the

output is reject, the users remove the candidate block B�
j

from R, otherwise if the output is voting they do nothing.
To create a new block B the users collect transactions from
the network and store them in x; if a user wishes to endorse
the edit proposed by a candidate block B�

j ∈ R that is still
in voting stage, the user can vote for the candidate block
B�

j by simply adding H(B�
j ) to the data x. After the block is

created and the new extended chain C′ := C||B is built, the
users broadcast the new chain C′ iff Γ′.validateChain(C′) = 1
(Algorithm 1). Finally, if a user wishes to propose an edit to
block Bj in the chain C, she first creates the new data x�

j ,
that represents the modifications that she proposes to make
to the data xj , and calls proposeEdit (Algorithm 3) using the
interface Γ′.proposeEdit with the chain C, index j of the block
in C and the new data x�

j . The algorithm returns a candidate
block B�

j that is broadcasted to the network.

Chain Validation. Given a chain C, the user needs to validate
C according to some set of validation rules. To do this,
she uses the Γ′.validateChain interface, that is implemented
by Algorithm 1. The algorithm takes as input a chain C and
starts validating from the head of C. In Line 5, the validity of
the block Bj is checked. If the assertion in Line 6 is false and
if the check in Line 7 is successful, then the block Bj−1 is a
valid edited block. In Line 7, the validity of Bj−1 is checked
in the context of a candidate block and whether the block is
accepted according to the voting policy P of the chain.

Block Validation. To validate a block, the validateBlock
algorithm (described in Algorithm 2) takes as input a block
B and first validates the data included in the block according



The protocol Γ′ consists of a sequence of rounds r, and is parameterised by the liveness and persistence parameters, denoted by
u, k, respectively, and by a policy P that among other rules and constraints, determines the parameter � (that is the duration of
the voting period) and ρ (that is the threshold of votes within the period � for a candidate block to be accepted and incorporated
into the chain). A pictorial representation of the protocol can be found in Fig. 1.

Initialisation. Set the chain C ← genesis, set round r ← 1 and initialise an empty list of candidate blocks for edits R := ∅.

For each round r of the protocol, we describe the following sequence of execution.

Chain update. At the beginning of a new round r, the nodes try to update their local chain by calling C ← Γ′.updateChain.

Candidate blocks pool. Collect all candidate blocks B�
j from the network and add B�

j to the pool of candidate blocks R iff
Γ′.validateCand(C, B�

j ) = 1; otherwise discard B�
j .

Editing the chain. For all candidate blocks B�
j ∈ R do:

• If P(C, B�
j ) = accept, then build the new chain as C ← C�(n−j+1)||B�

j ||j�C and remove B�
j from R. For policy P to

accept B�
j , it must be the case that the ratio of votes for B�

j within its voting period (� blocks) is at least ρ.
• If P(C, B�

j ) = reject, then remove B�
j from R. For policy P to reject B�

j it must be the case that the ratio of votes for
B�

j within its voting period (� blocks) is less than ρ.
• If P(C, B�

j ) = voting, then do nothing.

Creating a new block. Collects all the transaction data x from the network for the r-th round and tries to build a new block
Br by performing the following steps:

• (Voting for candidate blocks). For all candidate blocks B�
j ∈ R that the node is willing to endorse, if

P(C, B�
j ) = voting then set x ← x||H(B�

j ).
• Create a new block B := 〈s, x, ctr , G(s, x)〉, such that s = H(ctr ′, G(s′, x′), y′), for 〈s′, x′, ctr ′, y′〉 ← Head(C).
• Extend its local chain C ← C||B and iff Γ′.validateChain(C) = 1 then broadcast C to the network.

Propose an edit. The node willing to propose an edit for the block Bj , for j ∈ [n], creates a candidate block
B�

j ← Γ′.proposeEdit(C, j, x�) using the new data x�, and broadcasts it to the network by calling Γ′.broadcast(B�
j ).

Figure 2: Accountable permissionless editable blockchain protocol Γ′
P

Algorithm 1: validateChain (implements Γ′.validateChain)

input : Chain C = (B1, · · · , Bn) of length n.
output: {0, 1}

1: j := n;
2: if j = 1 then return Γ′.validateBlock(B1);
3: while j ≥ 2 do
4: Bj := 〈sj , xj , ctr j , yj〉 ; � Bj := Head(C) when j = n

5: if Γ′.validateBlock(Bj) = 0 then return 0;
6: if sj = H(ctr j−1, G(sj−1, xj−1), yj−1) then

j := j − 1;
7: else if (sj = H(ctr j−1, yj−1, yj−1)) ∧

(Γ′.validateCand(C, Bj−1) = 1) ∧ (P(C, Bj−1) =
accept) then j := j − 1;

8: else return 0;
9: return 1;

to some pre-defined validation predicate. It then checks if the
block indeed satisfies the constraints of the PoW puzzle. Apart
from this check, the or (∨) condition is to ensure that in case
of dealing with an edited block B, the old state of B still
satisfies the PoW constraints.

Proposing an Edit. Any user in the network can propose
for a particular data to be removed or replaced from the

Algorithm 2: validateBlock (implements Γ′.validateBlock)

input : Block B := 〈s, x, ctr , y〉.
output: {0, 1}

1: Validate data x, if invalid return 0;
2: if H(ctr , G(s, x), y) < D ∨H(ctr , y, y) < D then

return 1;
3: else return 0;

blockchain. She uses the proposeEdit algorithm as described
in Algorithm 3 and constructs a candidate block to replace
the original block. The algorithm takes as input a chain C, the
index j of the original block and new data x�

j that will replace
the original data. If the user’s intention is simply to remove all
data from block Bj then x�

j := ε. It then generates a candidate
block as the tuple B�

j := 〈sj , x�j , ctr j , yj〉.
Validating Candidate Blocks. When the user wishes to
validate a candidate block B�

j := 〈sj , x�j , ctr j , yj〉 for the j-th
block of a chain C, she uses validateCand which is described
in Algorithm 4. It retrieves the blocks Bj−1 and Bj+1 of index
j − 1 and j + 1 respectively from the chain C. In Line 5 it
is checked if the link s�j from B�

j to Bj−1 holds and that
the link sj+1 from Bj+1 to B�

j also satisfies the condition
sj+1 = H(ctrj , yj , yj). The latter condition checks if the “old



Algorithm 3: proposeEdit (implements Γ′.proposeEdit)

input : Chain C = (B1, · · · , Bn) of length n, an index
j ∈ [n], and the new data x�

j .
output: A candidate block B�

j .

1: Parse Bj := 〈sj , xj , ctr j , yj〉;
2: Build the candidate block B�

j := 〈sj , x�j , ctr j , yj〉;
3: return B�

j ;

link” still holds. If both checks are successful the candidate
block B�

j is considered valid, otherwise it is considered invalid.

Algorithm 4: validateCand (implements Γ′.validateCand)

input : Chain C = (B1, · · · , Bn) of length n, and a
candidate block B�

j for an edit.
output: {0, 1}

1: Parse B�
j := 〈sj , x�j , ctr j , yj〉;

2: if Γ′.validateBlock(B�
j ) = 0 then return 0;

3: Parse Bj−1 := 〈sj−1, xj−1, ctr j−1, yj−1〉;
4: Parse Bj+1 := 〈sj+1, xj+1, ctr j+1, yj+1〉;
5: if s�j = H(ctr j−1, yj−1, yj−1) ∧ sj+1 = H(ctr j , yj , yj)

then return 1;
6: else return 0;

IV. SECURITY ANALYSIS

In this section we analyse the security of our editable
blockchain protocol of Fig. 2.

We assume the existence of an immutable blockchain proto-
col Γ, as described in Section III-A, that satisfies the properties
of chain growth, chain quality and common prefix [21]. The
basic intuition behind our security analysis is that, given that Γ
satisfies the aforementioned properties, our editable blockchain
protocol Γ′

P , (which is Γ′ parameterised by a policy P),
preserves the same properties (or a variation of the property in
the case of common prefix). Therefore, our protocol behaves
exactly like the immutable blockchain Γ when there are no
edits in the chain, and if an edit operation was performed, it
must have been approved by the policy P . We discuss each
individual property next.
Chain Growth. The chain growth property from Γ is auto-
matically preserved in our editable blockchain Γ′, since the
possible edits do not allow the removal of blocks or influence
the growth of the chain. We present the formal definition next,
followed by a theorem stating that Γ′ preserves chain growth
whenever Γ satisfies chain growth.

Definition 2 (Chain Growth [21]). Consider the chains C1, C2
possessed by two honest parties at the onset of two slots
sl1, sl2, with sl2 at least s slots ahead of sl1. Then it holds
that len(C2)− len(C1) ≥ τ ·s, for s ∈ N and 0 < τ ≤ 1, where
τ is the speed coefficient.

Theorem 1. If Γ satisfies (τ, s)-chain growth, then Γ′
P satisfies

(τ, s)-chain growth for any policy P .

Proof. We note that Γ′ extends Γ, that by assumption satisfies
chain growth. Also, note that in Γ′ it is not possible to remove
a block from the chain (for any policy P), thereby reducing
the length of C. In other words, the edits performed do not
alter the length of the chain. Therefore, we conclude that Γ′

satisfies chain growth whenever Γ satisfies chain growth.

Chain Quality. The chain quality property informally states
that the ratio of adversarial blocks in any segment of a chain
held by a honest party is no more than a fraction μ, where μ
is the fraction of resources controlled by the adversary.

Definition 3 (Chain Quality [21]). Consider a portion of
length �-blocks of a chain possessed by an honest party during
any given round, for � ∈ N. Then, the ratio of adversarial
blocks in this � segment of the chain is at most μ, where
0 < μ ≤ 1 is the chain quality coefficient.

Theorem 2. Let H be a collision-resistant hash function. If
Γ satisfies (μ, �)-chain quality, then Γ′

P satisfies (μ, �)-chain
quality for any (k, �, ρ)-policy where ρ > μ.

Proof. We note that the only difference in Γ′
P in relation to

Γ is that blocks can be edited. An adversary A could edit
an honest block B in the chain C into a malicious block B�

(e.g., that contains illegal content), increasing the proportion of
malicious blocks in the chain, and therefore breaking the chain
quality property. We show below that A has only a negligible
probability of violating chain quality of Γ′.

Let A propose a malicious candidate block B�
j for editing an

honest block Bj ∈ C. Since A possesses only μ computational
power, by the chain quality property of Γ we know that
the adversary mines at most μ ratio of blocks in the voting
phase. As the policy stipulates, the ratio of votes has to be
at least ρ for B� to be approved, where ρ > μ. Therefore,
B� can only be approved by the policy P if honest nodes
vote for it. Observe that the adversary could try to build
an “honest looking” (e.g., without illegal contents) candidate
block B̃� �= B� such that H(B̃�) = H(B�), in an attempt
to deceive the honest nodes during the voting phase; the
honest nodes could endorse the candidate block B� during
the voting phase, and the adversary would instead edit the
chain with the malicious block B̃�. The adversary has only
a negligible chance of producing such a candidate block B�

where H(B̃�) = H(B�), since this would violate the collision-
resistance property of the hash function H .

Moreover, B� is incorporated to the chain only if it is an
honest candidate block. This concludes the proof.

Common Prefix. The common prefix property informally
says that if we take the chains of two honest nodes at different
time slots, the shortest chain is a prefix of the longest chain
(up to the common prefix parameter k). We show the formal
definition next.



Definition 4 (Common Prefix [21]). The chains C1, C2 pos-
sessed by two honest parties at the onset of the slots sl1 < sl2
are such that C�k

1 � C2, where C�k
1 denotes the chain obtained

by removing the last k blocks from C1, where k ∈ N is the
common prefix parameter.

We remark however, that our protocol Γ′
P inherently does

not satisfy Definition 4. To see this, consider the case where
two chains C1 and C2 are held by two honest parties P1 and
P2 at slots sl1 and sl2 respectively, such that sl1 < sl2.
In slot r starts the voting phase (that lasts � blocks) for a
candidate block B�

j proposing to edit block Bj , such that
j + k ≤ r < sl1 ≤ � + k < sl2. Note that at round sl1
the voting phase is still on, therefore P(C1, B�

j ) = voting.
By round sl2, the voting phase is complete and in case
P(C2, B�

j ) = accept the block Bj is replaced by B�
j in C2.

However, in chain C�k
1 the j-th block is still Bj , since the

edit of B�
j is waiting to be confirmed. Therefore, C�k

1 ⊀ C2,
thereby violating Definition 4.

The pitfall in Definition 4 is that it does not account for
edits or modifications in the chain. We therefore introduce a
new definition that is suited for an editable blockchain (with
respect to an editing policy). The formal definition follows.

Definition 5 (Editable Common prefix). The chains C1, C2 of
length l1 and l2, respectively, possessed by two honest parties
at the onset of the slots sl1 ≤ sl2 satisfy one of the following:

1) C�k
1 � C2, or

2) for each B�
j ∈ C�(l2−l1)+k

2 such that B�
j /∈ C�k

1 , it must
be the case that P(C2, B�

j ) = accept, for j ∈ [l1 − k],

where C�(l2−l1)+k
2 denotes the chain obtained by pruning the

last (l2 − l1) + k blocks from C2, P denotes the chain policy,
and k ∈ N denotes the common prefix parameter.

Intuitively, the above definition states that if there exists a
block that violates the common prefix as defined in Defini-
tion 4, then it must be the case that this block is an edited
block whose adoption was voted and approved according to
the policy P in chain C2. We show that our protocol Γ′

satisfies Definition 5 next.

Theorem 3. Let H be a collision-resistant hash function. If Γ
satisfies k-common prefix, then Γ′

P satisfies k-editable common
prefix for a (k, �, ρ)-policy.

Proof. If no edits were performed in a chain C, then the
protocol Γ′

P behaves exactly like the immutable protocol Γ,
and henceforth the common prefix property follows directly.

However, in case of an edit, consider an adversary A that
proposes a candidate block B�

j to edit Bj in chain C2, which
is later edited by an honest party P2 at slot sl2. Observe that
by the collision resistance property of H , A is not able to
efficiently produce another candidate block B̃�

j �= B�
j such

that H(B̃�
j ) = H(B�

j ). Therefore, since P2 is honest and
adopted the edit B�

j in C2, it must be the case that B�
j received

enough votes such that P(C2, B�
j ) = accept. This concludes

the proof.

Tx

in: . . .

out-script: τ1
amount: α1

witness: . . .

Tx′

in: TxID

out-script: τ2
amount: α2

witness: x, s.t ., τ1(x) = 1

Figure 3: The structure of a transaction in Bitcoin. The
transaction Tx′ is spending the output τ1 of transaction Tx.

How the properties play together: By showing that Γ′ satisfies
the three aforementioned properties, we show that Γ′

P is a live
and persistent blockchain protocol immutable against edits not
authorised by the policy P .

The editable common prefix property ensures that only
policy approved edits are performed on the chain. The Chain
quality property, for a (k, �, ρ)-policy P where ρ > μ, ensures
that an adversary does not get a disproportionate contribution
of blocks to the chain.

V. INTEGRATING INTO BITCOIN

In this section we describe how our generic editable
blockchain protocol (Fig. 2) can be integrated into Bitcoin.
For simplicity, we consider one redaction per block and the
redaction is performed on one or more transactions included in
the block. The extension of the generic protocol for multiple
redactions (described in Appendix A) can be immediately
applied to the construction described in this section. Next, we
give a brief background on the Bitcoin protocol.

A. Bitcoin Basics

Transactions. A simple transaction Tx in Bitcoin has the
following basic structure: an input script, an output script
with a corresponding amount, and a witness. More complex
transactions may have multiple input and output scripts and/or
more complex scripts. A transaction Tx′ that spends some
output τ of Tx, has the ID of Tx in its input, denoted by
TxID := H(Tx), and a witness x that satisfies the output script
τ of Tx (as shown in Fig. 3). The amount α2 being spent by
the output script τ2 needs to be smaller (or equal) than the
amount α1 of τ1. The most common output scripts in Bitcoin
consists of a public key, and the witness x is a signature of
the transaction computed using the corresponding secret key.
We refer the reader to [1] for a comprehensive overview of
the Bitcoin scripting language.
Insertion of Data. Users are allowed to propose new transac-
tions containing arbitrary data, that are then sent to the Bitcoin
network for a small fee. Data can be inserted into specific
parts of a Bitcoin transaction, namely the output script, input
script and witness. Matzutt et al. [34] provide a quantitative
analysis of data insertion methods in Bitcoin. According to
their analysis, OP RETURN and coinbase transactions are the
major pockets apart from some non-standard transactions,
where data is inserted.
Block Structure. A Bitcoin block consists of two parts,
namely the block header, and a list of all transactions within



the block. The structure of the block header is detailed
in Fig. 5, whereas a pictorial representation of the list of
transactions can be found in Fig. 6.

B. Modifying the Bitcoin Protocol

In this section we detail the modifications to the Bitcoin
protocol necessary to integrate it to our generic editable
blockchain protocol of Section III. The resulting protocol is a
version of Bitcoin that allows for redaction of (harmful) data
from its transactions.

By redaction of transactions, we mean removing data from
a transaction without making other changes to the remaining
components of the transaction. As shown in Fig. 4, consider a
transaction Tx1 that contains some harmful data in its output
script, and let Tx�1 be a candidate transaction to replace Tx in
the chain, where Tx�1 is exactly the same as Tx1, except that
the harmful data is removed.

Tx1

in: . . .

out-script 1: τ1
amount: α1

out-script 2: τ2, harmful data

witness: x

Tx�1

in: . . .

out-script 1: τ1
amount: α1

out-script 2: τ3, harmful data

witness: x

Figure 4: The transaction Tx1 on the left contains harmful
data, and the candidate transaction Tx�1 on the right contains
a copy of all the fields of Tx1, with exception of the harmful
data.

Proposing Redactions. A user who wishes to propose
a redaction proceeds as follows: First, constructs a special
transaction editTx (as shown in Fig. 7) containing Tx1ID and
Tx�1ID , that respectively denotes the hash of the transaction
Tx1 being redacted, and the hash of Tx�1 that is the candidate
transaction to replace Tx1 in the chain5. Then, broadcasts the
special transaction editTx and the candidate transaction Tx�1 to
the network; editTx requires a transaction fee to be included
in the blockchain, while Tx�1 is added to a pool of candidate
transactions6. The candidate transaction Tx�1 is validated by
checking its contents with respect to Tx1, and if it is valid,
then it can be considered for voting.
Redaction Policy. The redactable Bitcoin protocol is param-
eterised by a policy parameter P (Definition 1). The policy
P dictates the requirements and constraints for redaction
operations in the blockchain. An informal description of a
(basic) policy for Bitcoin would be:

A proposed redaction is approved valid if the following
conditions hold:

• It is identical to the transaction being replaced, except
that it can remove data.

5We note that our transaction ID is Segwit compatible, as the witness is
not used with the hash H to generate a transaction’s ID.

6If a candidate transaction does not have a corresponding editTx in the
blockchain then the transaction is not included in the candidate pool, and it
is treated as spam instead.

Value Description
hash prev hash of the previous block header
merkle root root of the merkle tree (whose the

leaves are the transactions)
difficulty the difficulty of the proof-of-work
timestamp the timestamp of the block
nonce nonce used in proof-of-work
old merkle root root of the merkle tree of old set

of transactions

Figure 5: Structure of the Bitcoin block header. The last
highlighted field (old merke root) is only included in the
block header of the extended (editable) protocol.

• It can only remove data that can never be spent, e.g.,
OP RETURN output scripts.

• It does not redact votes for other redactions in the chain.
• It received more than 50% of votes in the 1024 consecu-

tive blocks (voting period) after the corresponding editTx
is stable in the chain.

where voting for a candidate transaction Tx�1 simply means
that the miner includes editTxID = H(Tx1ID ||Tx�1ID) in the
coinbase (transaction) of the new block he produces. After
the voting phase is over, the candidate transaction is removed
from the candidate pool.

The reason for restricting the redactions to non-spendable
components of a transaction (e.g., OP RETURN) is that, permit-
ting redactions on spendable content could lead to potential
misuse (Section VII) and future inconsistencies within the
chain. We stress however, that this is not a technical limi-
tation of our solution, but rather a mechanism to remove the
burden of the user on deciding what redactions could cause
inconsistencies on the chain in the future. We feel that the
aforementioned policy is suitable for Bitcoin, but as policies
are highly dependent on the application, a different policy can
be better suited for different settings.
New Block Structure. To account for redactions, the
block header must accommodate an additional field called
old merkle root. When a block is initially created, i.e., prior
to any redaction, this new field takes the same value as
merkle root. For a redaction request on block Bj , that pro-
poses to replace Tx1 with the candidate transaction Tx�1, the
transactions list of the candidate block B�

j (that will replace
Bj) must contain Tx1ID = H(Tx1) in addition to the remaining
transactions. A new merkle root is computed for the new set
of transactions, while old merkle root remains unchanged.
To draw parallels with the abstraction we described in Sec-
tion III-A, G(s, x) is analogous to merkle root and y is
analogous to old merkle root.
Block Validation. The validation of a block consists of the
steps described below.

• Validating transactions: The block validates all the trans-
actions contained in its transactions list; the validation
of non-redacted transactions is performed in the same
way as in the immutable version of the protocol. Trans-



Tx1

Tx2

Tx3

...

(a) Non-redacted.

Tx�1,Tx1ID

Tx2

Tx3

...

(b) Redacted transaction Tx1.

Figure 6: List of transactions contained within a block before
(left) and after (right) redacting a transaction in the block.

editTx

in: . . .

out-script: Tx1ID ,Tx
�
1ID

witness: . . .

Figure 7: The special transaction editTx is broadcasted to the
network to propose a redaction of transaction Tx1 for the
candidate transaction Tx�1.

actions that have been previously redacted require a
special validation that we describe next. Consider the
case presented in Fig. 4, where Tx1 is replaced by Tx�1.
The witness x was generated with respect to Tx1ID and
is not valid with respect to Tx�1ID . Fortunately, the old
state Tx1ID (hash of the redacted transaction) is stored,
as shown in Fig. 6b, ensuring that the witness x can
be successfully validated with respect to the old version
of the transaction. Therefore, we can ensure that all the
transactions included in the block have a valid witness,
or in case of redacted transactions, the old version of
the transaction had a valid witness. To verify that the
redaction was approved in the chain one needs to find
a corresponding editTx (Fig. 7) in the chain, and verify
that it satisfies the chain’s policy.

• PoW verification: The procedure to verify the PoW puzzle
is described in Algorithm 2. If the block contains an
edited transaction, i.e., old merkle root �= merkle root,
then substitute the value in hash merkle root with that in
old merkle root and check if the hash of this new header
is within T .

Chain Validation. To validate a full chain a miner needs
to validate all the blocks within the chain. The miner can
detect if a block has been redacted by verifying its hash
link with the next block; in case of a redacted block, the
miner verifies if the redaction was approved according to
the chain’s policy. The miner rejects a chain as invalid if
any of the following holds: (1) a block’s redaction was not
approved according to the policy, (2) the merkle root value
of the redacted block is incorrect with respect to the set of
transactions (that contains the hash of the redacted transaction)
or (3) a previously approved redaction was not performed on
the chain.
Transaction Consistency. Removing a transaction entirely
or changing spendable data of a transaction may result in

serious inconsistencies in the chain. For example, consider a
transaction Tx1 that has two outputs denoted by A and B,
where the second output B has a data entry and the first output
A contains a valid spendable script that will be eventually
spent by some other transaction Tx′. If the redaction operation
performed on Tx1 affects the output script of A, Tx′ may
become invalid, causing other transactions to become invalid.
A similar problem may arise if the redaction is performed on
the input part of Tx1 enabling the user who generated Tx1
to possibly double spend the funds. Therefore, we only allow
redactions that do not affect a transaction’s consistency with
past and future events.

Redaction and Retrievability. The redaction policy P for
Bitcoin restricts redactions to only those operations that do
not violate a transaction’s consistency. This means that we do
not allow monetary transactions to be edited (such as standard
coin transfer). We stress, however that the main objective
of redacting a transaction Tx is to prevent some malicious
content x, that is stored inside Tx, from being broadcasted
as part of the chain, thereby ensuring that the chain and its
users are legally compliant. Note that we cannot prevent an
adversary from locally storing and retrieving the data x, even
after its redaction, since the content was publicly stored in
the blockchain. In this case, the user that willingly keeps the
malicious (and potentially illegal) data x will be liable.

Accountability. Our proposal offers accountability during and
after the voting phase is over. Moreover, the accountability
during the voting phase prevents the problem of transaction
inconsistencies discussed above.

• Voting Phase Accountability: During the voting phase,
anyone can verify all the details of a redaction request.
The old transaction and the proposed modification (via
the candidate transaction) are up for public scrutiny. It is
publicly observable if a miner misbehaves by voting for
a redaction request that, apart from removing data, also
tampers with the input or (a spendable) output of the
transaction, in turn affecting its transaction consistency.
This could discourage users from using the system due to
its unreliability as a public ledger for monetary purposes.
Since the miners are heavily invested in the system and
are expected to behave rationally, they would not vote for
such an edit request (that is against the policy) during the
voting phase.

• Victim Accountability: After a redaction is performed, our
protocol allows the data owner, whose data was removed,
to claim that it was indeed her data that was removed.
Since we store the hash of the old transaction along
with the candidate transaction in the edited block (refer
to Fig. 6b), it is possible for a user that possesses the old
data (that was removed) to verify it against the hash that is
stored in the redacted block. This enforces accountability
on the miners of the network who vote for a redaction
request by discouraging them from removing benign data.
At the same time, our protocol guarantees protection
against false claims, as the hash verification would fail.



VI. PROOF-OF-CONCEPT IMPLEMENTATION

In this section we report on a Python proof-of-concept
implementation used for evaluating our approach. We imple-
ment a full-fledged Blockchain system based on Python 3 that
mimics all the basic functionalities of Bitcoin. Specifically, we
include a subset of Bitcoin’s script language that allows us
to insert arbitrary data into the chain, which can be redacted
afterwards. The redacting mechanism is built upon the pro-
posed modifications to Bitcoin that we describe in Section V.
For conceptual simplicity we rely on PoW as the consensus
mechanism.

A. Benchmarking

We detail the performance achieved by our implemen-
tation running several experiments. The benchmarking was
performed in a virtual environment on a Linux server with
the following specifications.

• Intel Xeon Gold 6132 CPU @ 2.60GHz
• 128GB of RAM
• Debian Linux 4.9.0-6-amd64
• Python 3.5.3.
We measure the run time of Algorithm 1 by validating

chains of varying lengths (i.e., number of blocks) and with
different numbers of redactions in the chain. For each ex-
periment, a new chain is created and validated 50 times,
then the arithmetic mean of the run time is taken over all
runs. Each chain consists of up to 50, 000 blocks, where each
block contains 1, 000 transactions. Note that a chain of size
50, 000 blocks approximates a one year snapshot of the bitcoin
blockchain.

The great variation of the results shown in the experiments
is due to the randomness involved in the chain creation and
validation process, since each chain will contain its own set
of (different) transactions, slightly influencing the run time.
Overhead Compared to Immutable Blockchain. For the
first series of experiments, we generate chains of length
ranging from 10, 000 up to 50, 000 blocks. We generate both,
immutable and redactable chains (with no redactions). The
goal here is to measure the overhead that comes with the
integration of our redactable blockchain protocol with an
immutable blockchain when there are no redactions performed.
The results in Fig. 8 indicate that there is only a tiny overhead.
Interestingly, we note that as the size of the chain grows,
the overhead tends to get smaller; this is because on a chain
without redactions the only extra step required is to check if
there are any votes in the coinbase transaction of a new block,
what becomes negligible compared to the verification time as
the chain grows larger.
Overhead by Number of Redactions. For the second series
of experiments, we generate redactable chains with the number
of redactions ranging from 2% (1, 000 redactions) to 10%
(5, 000 redactions) of the blocks. The redacted transactions
within a block contains dummy data consisting of 4 bytes
that are removed during the experiment. This experiment is
intended to measure the overhead with respect to the number
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Figure 8: The graph shows the validation time overhead
required to validate a redactable chain (with no redactions)
compared to an immutable chain.

of redactions performed in a chain compared to a redactable
chain with no redactions. The results in Fig. 9 show that the
overhead tends to be at most linear in the number of redactions,
since in our prototype instead of looking ahead whether there
is a redaction request and a sufficient number of votes, we
keep track of the redaction request and wait for its votes and
eventual confirmation.

Overhead by the Voting Parameters � and ρ. In the last
series of experiments, we consider chains with 1% of the
blocks redacted. We vary the voting period � to measure how
it influences the validation time compared to a chain with
1% of blocks redacted but with a voting period of � = 5.
The threshold of votes ρ is set to

(� �
2�+ 1

)
/� (i.e., requiring

majority number of blocks in the voting period to contain votes
for approving a redaction). The results in Fig. 10 show that the
overhead is very small (even negligible for small sizes of �)
and tends to be at most linear in �. This meets our expectations,
since the overhead in validation time originates from keeping
and increasing the voting counts over the voting period �. In
the worst case, where ρ = 1 we need to keep track of the
voting count over the entire voting period.

VII. DISCUSSION

In this section we discuss some of the generic attacks on
our system and how it is immune to such attacks.

Unapproved Editing. A malicious miner could pass off an
edit on the blockchain that does not satisfy the network’s
policy. This can occur if the miner presents the blockchain
with an edit that has not been considered for voting, or has
gathered insufficient votes. In any of the above cases, it is
possible for any user in the network to account for an edit
by verifying in the chain if the exact edit presented by the
miner is approved or not. And since majority of the miners in
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Figure 9: The graph shows the validation time overhead
required to validate a chain for an increasing number of
redactions, compared to a redactable chain with no redactions.
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Figure 10: The graph shows the validation time overhead
required to validate a chain (with 1% of the blocks redacted)
for increasing voting periods, compared to a chain (with 1%
of the blocks redacted) on a fixed voting period of � = 5.

the network is honest, the user accepts an approved edit as an
honest edit.

Scrutiny of Candidate Blocks. It is in the interest of the
(honest) miners and the system as a whole, to actively scruti-
nise a candidate block and decide on voting based on its merit.
Therefore, the miners are strongly discouraged from using a
default strategy in voting, e.g., always vote for a candidate
block without scrutiny, using a pre-determined strategy that is
agnostic to what the candidate block is proposing.

Denial of Service. A malicious miner may try to flood
the network with edit requests as an attempt to slow down

transaction confirmation in the chain. However, the miner
is deterred from doing this because he incurs the cost of a
transaction fee for the editTx that is part of his edit request
similar to other standard transactions. Moreover, it may also
be the case for the editTx to incur a higher transaction fee as
a strong deterrent against spamming.

False Victim. A malicious user may wrongly claim that a
particular transaction related to him was edited. For example,
he may claim that some monetary information was changed
where he was the beneficiary. Since such an edit could affect
the trust in the system, the user could potentially affect the
credibility of the entire system. We prevent such an attack
through victim accountability of our protocol. We can verify
the user’s claim against the hash of the old version of the
transaction that is stored in the chain itself. Given the hash
function is collision resistant, a wrong claim would fail the
check.

Double Spend Attacks. Consider a scenario where a mali-
cious user is the recipient of a transaction. If this transaction
was edited by removing some data stored in it, the hash of the
new version of the transaction is different. If the miner had
already spent the funds from the old version of this transaction,
after the edit, he may attempt a double spend by exploiting the
new version of the transaction. This is prevented by associating
the new version and the old version of the edited transaction
with each other, thereby noticing such a double spend. If
the funds had already been spent, the old version would be
a spent transaction. Because the edit that is performed does
not conflict with the consistency of the transaction, the new
version of the transaction would also be a spent transaction.

Consensus delays. Consider a scenario where two different
users hold chains with a different set of redacted blocks, and
therefore cannot arrive at a consensus on the final state of the
chain, what may result in delays. Assuming the miners have
not locally redacted blocks on their own and have behaved
honestly according to the protocol, this scenario would mean
that the different set of redacted blocks in the chains held by
the two miners have been approved by the policy. However,
this would be a blatant violation of the Editable common prefix
property of our protocol (Theorem 3).

VIII. RELATED WORK

1) Bitcoin and Applications: Several works [8], [12], [40]
have analysed the properties and extended the features of the
Bitcoin protocol. Bitcoin as a public bulletin board has found
several innovative applications far beyond its initial scope,
e.g., to achieve fairness and correctness in secure multi-party
computation [9], [7], [15], [31], to build smart contracts [30],
to distributed cryptography [6], and more [32], [29], [16].

2) Content Insertion in Bitcoin: There have been several
works [13], [35], [36], [42], [45], [46] on analysing and
assessing the consequences of content insertions in public
blockchains. They shed light on the distribution and the usage
of such inserted data entries. The most recent work of Matzutt
et al. [34] gives a comprehensive quantitative analysis of illicit



content insertions including, insertion techniques, potential
risks and rational incentives. They also show that compared
to other attacks [20], [24] on Bitcoin system, illicit content
insertion can pose immediate risks to all users of the system.

3) Proactive Countermeasures: Proactive measures to de-
tect illicit material circulated in the network and detecting
them have been studied [44], [27], [25]. In a blockchain set-
ting, preventive solutions [19], [17], [37] focus on maintaining
only monetary information instead of the entire ledger history.
Matzutt et al. [33] use a rational approach of discouraging
miners from inserting harmful content into the blockchain.
They advocate a minimum transaction fee and mitigation of
transaction manipulatability as a deterrent for the same.
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APPENDIX

A. Protocol extension for multiple redactions

In this section we sketch an extension to the protocol
of Fig. 2 to accommodate multiple redactions per block.

The intuition behind the extension is simple enough to be
explained in this paragraph; a block can potentially be redacted
n times and each redaction B�

j of the block Bj that is approved
must contain information about the entire history of previous
redactions. In our extension, this information is stored in the
y�j component of the candidate block B�

j . We now sketch the
required protocol changes.

Proposing an Edit. To propose a redaction for block
Bj := 〈sj , xj , ctr j , yj〉 the user must build a candidate block
B�

j of the following form: B�
j := 〈sj , x�j , ctr j , y�j 〉, where

y�j := yj ||G(sj , xj) iff yj �= G(sj , xj). Note that for the first
redaction of Bj , we have that yj = G(sj , xj), and therefore
y�j := G(sj , xj).

Block Validation. To validate a block, the users run the
validateBlockExt algorithm described in Algorithm 5. Intu-
itively, the algorithm performs the same operations as Algo-
rithm 2, except that it takes into account the possibility of the
block being redacted multiple times. Observe that by parsing
y as y(1)||y(2)||...||y(l), we are considering a block that has
been redacted a total of l times and y(1) denotes the original
state information of the unredacted version of the block.

Voting for Candidate Blocks. To vote for a redaction, we
additionally define the following interface.

• H(ctr , G(s, x�), y�) ← Γ′.Vt(B�): takes as input a
candidate block B� and parses B� as (s, x�, ctr , y�). It

Algorithm 5: validateBlockExt
input : Block B := 〈s, x, ctr , y〉.
output: {0, 1}

1: Validate data x, if invalid return 0;
2: Parse y as y(1)||y(2)||...||y(l), where y

(i)
j ∈ {0, 1}κ ∀i ∈ [l];

3: if (H(ctr , G(s, x), y) < D) ∨ (H(ctr , y(1), y(1)) < D)
4: then return 1;
5: else return 0;

Algorithm 6: validateCandExt
input : Chain C = (B1, · · · , Bn) of length n, and a candidate

block B�
j for an edit.

output: {0, 1}
1: Parse B�

j := 〈sj , x�j , ctrj , yj〉;
2: Parse yj as y

(1)
j ||y(2)j ||...||y(l)j , where y

(i)
j ∈ {0, 1}κ ∀i ∈ [l];

3: if Γ′.validateBlockExt(B�
j ) = 0 then return 0;

4: Parse Bj−1 := 〈sj−1, xj−1, ctrj−1, yj−1〉;
5: Parse yj−1 as y

(1)
j−1||y

(2)
j−1||...||y

(l′)
j−1, where y

(i)
j−1 ∈ {0, 1}κ

∀i ∈ [l′];
6: Parse Bj+1 := 〈sj+1, xj+1, ctrj+1, yj+1〉;
7: if sj �= H(ctrj−1, y

(1)
j−1, y

(1)
j−1) ∨ sj+1 �= H(ctrj , y

(1)
j , y

(1)
j ) then

return 0;
8: for i ∈ {2, . . . , n} do
9: if the fraction of votes for H(ctr , y

(i)
j , y

(1)
j || . . . ||y(i−1)

j ) in
the chain C is not at least ρ within its voting period of �
blocks then return 0;

10: return 1

outputs the hash value H(ctr , G(s, x�), y�) as a vote for
the candidate block B�.

The voting interface is invoked by users that wish to endorse
a candidate block by including a vote in the newly mined block
(if the candidate block is still in its voting phase). Accordingly
the policy P of the chain for redactions checks if a candidate
block has received at least a ratio of ρ votes (as output by the
Γ′.Vt) in a span of � blocks after immediately its proposal.

Candidate Block Validation. If a block Bj is being redacted
more than once, then the corresponding candidate block B�

j

Algorithm 7: validateChainExt
input : Chain C = (B1, · · · , Bn) of length n.
output: {0, 1}

1: j := n;
2: if j = 1 then return Γ′.validateBlockExt(B1);
3: while j ≥ 2 do
4: Bj := 〈sj , xj , ctrj , yj〉 ; � Bj := Head(C) when j = n

5: Bj−1: := 〈sj−1, xj−1, ctrj−1, yj−1〉;
6: Parse yj as y

(1)
j || . . . ||y(l)j , where y

(i)
j ∈ {0, 1}κ ∀i ∈ [l];

7: Parse yj−1 as y
(1)
j−1|| . . . ||y

(l′)
j−1, where y

(i)
j−1 ∈ {0, 1}κ

∀i ∈ [l′];
8: if Γ′.validateBlockExt(Bj) = 0 then return 0;
9: if sj = H(ctrj−1, G(sj−1, xj−1), yj−1) then j := j − 1;

10: else if sj = H(ctrj−1, y
(1)
j−1, y

(1)
j−1) ∧

Γ′.validateCandExt(C, Bj−1) = 1 ∧ P(C, Bj−1) = accept
then j := j − 1;

11: else return 0;
12: return 1;



needs to be validated for accounting for the multiple redactions
that happened before; for each redaction of Bj , the votes
for that redaction must exist in the chain C. validateCandExt
(described in Algorithm 6) validates such a candidate block.
Chain Validation. To validate a chain, the user runs the
validateChainExt algorithm (described in Algorithm 7). The
only change compared to Algorithm 1 is that now yj is parsed
as y(1)j || . . . ||y(l)j where the initial unredacted state of the block
is stored in y(1).


