
Helen: Maliciously Secure Coopetitive Learning for Linear Models

Wenting Zheng, Raluca Ada Popa, Joseph E. Gonzalez, and Ion Stoica
UC Berkeley

Abstract—Many organizations wish to collaboratively train
machine learning models on their combined datasets for a
common benefit (e.g., better medical research, or fraud detection).
However, they often cannot share their plaintext datasets due to
privacy concerns and/or business competition. In this paper, we
design and build Helen, a system that allows multiple parties
to train a linear model without revealing their data, a setting
we call coopetitive learning. Compared to prior secure training
systems, Helen protects against a much stronger adversary who
is malicious and can compromise m − 1 out of m parties.
Our evaluation shows that Helen can achieve up to five orders
of magnitude of performance improvement when compared to
training using an existing state-of-the-art secure multi-party
computation framework.

I. INTRODUCTION

Today, many organizations are interested in training machine
learning models over their aggregate sensitive data. The parties
also agree to release the model to every participant so that
everyone can benefit from the training process. In many existing
applications, collaboration is advantageous because training on
more data tends to yield higher quality models [40]. Even more
exciting is the potential of enabling new applications that are
not possible to compute using a single party’s data because they
require training on complementary data from multiple parties
(e.g., geographically diverse data). However, the challenge is
that these organizations cannot share their sensitive data in
plaintext due to privacy policies and regulations [3] or due to
business competition [67]. We denote this setting using the term
coopetitive learning1, where the word “coopetition” [30] is a
portmanteau of “cooperative” and “competitive”. To illustrate
coopetitive learning’s potential impact as well as its challenges,
we summarize two concrete use cases.

A banking use case. The first use case was shared with us by
two large banks in North America. Many banks want to use
machine learning to detect money laundering more effectively.
Since criminals often hide their traces by moving assets across
different financial institutions, an accurate model would require
training on data from different banks. Even though such a model
would benefit all participating banks, these banks cannot share
their customers’ data in plaintext because of privacy regulations
and business competition.

A medical use case. The second use case was shared with us by
a major healthcare provider who needs to distribute vaccines
during the annual flu cycle. In order to launch an effective
vaccination campaign (i.e., sending vans to vaccinate people in

1We note that Google uses the term federated learning [67] for a different
but related setting: a semi-trusted cloud trains a model over the data of millions
of user devices, which are intermittently online.

participant 1 participant m

participant 2

 . . .

coopetitive

learning

model

Fig. 1: The setting of coopetitive learning.

remote areas), this organization would like to identify areas that
have high probabilities of flu outbreaks using machine learning.
More specifically, this organization wants to train a linear
model over data from seven geographically diverse medical
organizations. Unfortunately, such training is impossible at this
moment because the seven organizations cannot share their
patient data with each other due to privacy regulations.

The general setup of coopetitive learning fits within the
cryptographic framework of secure multi-party computation
(MPC) [8, 37, 70]. Unfortunately, implementing training using
generic MPC frameworks is extremely inefficient, so recent
training systems [56, 41, 54, 34, 20, 35, 5] opt for tailored
protocols instead. However, many of these systems rely on
outsourcing to non-colluding servers, and all assume a passive
attacker who never deviates from the protocol. In practice, these
assumptions are often not realistic because they essentially
require an organization to base the confidentiality of its data on
the correct behavior of other organizations. In fact, the banks
from the aforementioned use case informed us that they are
not comfortable with trusting the behavior of their competitors
when it comes to sensitive business data.

Hence, we need a much stronger security guarantee: each
organization should only trust itself. This goal calls for
maliciously secure MPC in the setting where m− 1 out of m
parties can fully misbehave.

In this paper, we design and build Helen, a platform for mali-
ciously secure coopetitive learning. Helen supports a significant
slice of machine learning and statistics problems: regularized
linear models. This family of models includes ordinary least
squares regression, ridge regression, and LASSO. Because
these models are statistically robust and easily interpretable,
they are widely used in cancer research [48], genomics [28, 59],

financial risk analysis [63, 17], and are the foundation of basis
pursuit techniques in signals processing.

The setup we envision for Helen is similar to the use cases
above: a few organizations (usually less than 10) have large
amounts of data (on the order of hundreds of thousands or
millions of records) with a smaller number of features (on the
order of tens or hundreds).

While it is possible to build such a system by implementing
a standard training algorithm like Stochastic Gradient Descent
(SGD) [61] using a generic maliciously secure MPC proto-
col, the result is very inefficient. To evaluate the practical
performance difference, we implemented SGD using SPDZ, a
maliciously secure MPC library [1]. For a configuration of 4
parties, and a real dataset of 100K data points per party and
90 features, such a baseline can take an estimated time of 3
months to train a linear regression model. Using a series of
techniques explained in the next section, Helen can train the
same model in less than 3 hours.

A. Overview of techniques

To solve such a challenging problem, Helen combines
insights from cryptography, systems, and machine learning.
This synergy enables an efficient and scalable solution under
a strong threat model. One recurring theme in our techniques
is that, while the overall training process needs to scale
linearly with the total number of training samples, the more
expensive cryptographic computation can be reformulated to
be independent of the number of samples.

Our first insight is to leverage a classic but under-utilized
technique in distributed convex optimization called Alternating
Direction Method of Multipliers (ADMM) [15]. The standard
algorithm for training models today is SGD, which optimizes
an objective function by iterating over the input dataset. With
SGD, the number of iterations scales at least linearly with the
number of data samples. Therefore, naı̈vely implementing SGD
using a generic MPC framework would require an expensive
MPC synchronization protocol for every iteration. Even though
ADMM is less popular for training on plaintext data, we show
that it is much more efficient for cryptographic training than
SGD. One advantage of ADMM is that it converges in very few
iterations (e.g., a few tens) because each party repeatedly solves
local optimization problems. Therefore, utilizing ADMM allows
us to dramatically reduce the number of MPC synchronization
operations. Moreover, ADMM is very efficient in the context of
linear models because the local optimization problems can be
solved by closed form solutions. These solutions are also easily
expressible in cryptographic computation and are especially
efficient because they operate on small summaries of the input
data that only scale with the dimension of the dataset.

However, merely expressing ADMM in MPC does not solve
an inherent scalability problem. As mentioned before, Helen
addresses a strong threat model in which an attacker can deviate
from the protocol. This malicious setting requires the protocol
to ensure that the users’ behavior is correct. To do so, the
parties need to commit to their input datasets and prove that
they are consistently using the same datasets throughout the

computation. A naı̈ve way of solving this problem is to have
each party commit to the entire input dataset and calculate
the summaries using MPC. This is problematic because 1) the
cryptographic computation will scale linearly in the number of
samples, and 2) calculating the summaries would also require
Helen to calculate complex matrix inversions within MPC
(similar to [57]). Instead, we make a second observation that
each party can use singular value decomposition (SVD) [38] to
decompose its input summaries into small matrices that scale
only in the number of features. Each party commits to these
decomposed matrices and proves their properties using matrix
multiplication to avoid explicit matrix inversions.

Finally, one important aspect of ADMM is that it enables
decentralized computation. Each optimization iteration consists
of two phases: local optimization and coordination. The
local optimization phase requires each party to solve a local
sub-problem. The coordination phase requires all parties to
synchronize their local results into a single set of global
weights. Expressing both phases in MPC would encode local
optimization into a computation that is done by every party,
thus losing the decentralization aspect of the original protocol.
Instead, we observe that the local operations are all linear
matrix operations between the committed summaries and the
global weights. Each party knows the encrypted global weights,
as well as its own committed summaries in plaintext. Therefore,
Helen uses partially homomorphic encryption to encrypt the
global weights so that each party can solve the local problems
in a decentralized manner, and enables each party to efficiently
prove in zero-knowledge that it computed the local optimization
problem correctly.

II. BACKGROUND

A. Preliminaries

In this section, we describe the notation we use for the rest
of the paper. Let P1, ..., Pm denote the m parties. Let ZN

denote the set of integers modulo N , and Zp denote the set
of integers modulo a prime p. Similarly, we use Z∗

N to denote
the multiplicative group modulo N .

We use z to denote a scalar, z to denote a vector, and Z to
denote a matrix. We use EncPK(x) to denote an encryption
of x under a public key PK. Similarly, DecSK(y) denotes a
decryption of y under the secret key SK.

Each party Pi has a feature matrix Xi ∈ Rn×d, where
n is the number of samples per party and d is the feature
dimension. yi ∈ Rn×1 is the labels vector. The machine
learning datasets use floating point representation, while our
cryptographic primitives use groups and fields. Therefore, we
represent the dataset using fixed point integer representation.

B. Cryptographic building blocks

In this section, we provide a brief overview of the crypto-
graphic primitives used in Helen.

1) Threshold partially homomorphic encryption: A partially
homomorphic encryption scheme is a public key encryption
scheme that allows limited computation over the ciphertexts.

For example, Paillier [58] is an additive homomorphic encryp-
tion scheme: multiplying two ciphertexts together (in a certain
group) generates a new ciphertext such that its decryption yields
the sum of the two original plaintexts. Anyone with the public
key can encrypt and manipulate the ciphertexts based on their
homomorphic property. This encryption scheme also acts as
a perfectly binding and computationally hiding homomorphic
commitment scheme [39], another property we use in Helen.

A threshold variant of such a scheme has some additional
properties. While the public key is known to everyone, the
secret key is split across a set of parties such that a subset of
them must participate together to decrypt a ciphertext. If not
enough members participate, the ciphertext cannot be decrypted.
The threshold structure can be altered based on the adversarial
assumption. In Helen, we use a threshold structure where all
parties must participate in order to decrypt a ciphertext.

2) Zero knowledge proofs: Informally, zero knowledge
proofs are proofs that prove that a certain statement is true
without revealing the prover’s secret for this statement. For
example, a prover can prove that there is a solution to a Sudoku
puzzle without revealing the actual solution. Zero knowledge
proofs of knowledge additionally prove that the prover indeed
knows the secret. Helen uses modified Σ-protocols [25] to prove
properties of a party’s local computation. The main building
blocks we use are ciphertext proof of plaintext knowledge,
plaintext-ciphertext multiplication, and ciphertext interval proof
of plaintext knowledge [23, 14], as we further explain in
Section IV. Note that Σ-protocols are honest verifier zero
knowledge, but can be transformed into full zero-knowledge
using existing techniques [24, 32, 33]. In our paper, we present
our protocol using the Σ-protocol notation.

3) Malicious MPC: We utilize SPDZ [27], a state-of-the-art
malicious MPC protocol, for both Helen and the secure baseline
we evaluate against. Another recent malicious MPC protocol
is authenticated garbled circuits [69], which supports boolean
circuits. We decided to use SPDZ for our baseline because
the majority of the computation in SGD is spent doing matrix
operations, which is not efficiently represented in boolean
circuits. For the rest of this section we give an overview of
the properties of SPDZ.

An input a ∈ Fpk to SPDZ is represented as 〈a〉 =
(δ, (a1, . . . , an), (γ(a)1, . . . , γ(a)n)), where ai is a share of
a and γ(a)i is the MAC share authenticating a under a SPDZ
global key α. Player i holds ai, γ(a)i, and δ is public. During
a correct SPDZ execution, the following property must hold:
a =

∑
i ai and α(a+ δ) =

∑
i γ(a)i. The global key α is not

revealed until the end of the protocol; otherwise the malicious
parties can use α to construct new MACs.

SPDZ has two phases: an offline phase and an online phase.
The offline phase is independent of the function and generates
precomputed values that can be used during the online phase,
while the online phase executes the designated function.

C. Learning and Convex Optimization

Much of contemporary machine learning can be framed in
the context of minimizing the cumulative error (or loss) of

a model over the training data. While there is considerable
excitement around deep neural networks, the vast majority of
real-world machine learning applications still rely on robust
linear models because they are well understood and can
be efficiently and reliably learned using established convex
optimization procedures.

In this work, we focus on linear models with squared error
and various forms of regularization resulting in the following
set of multi-party optimization problems:

ŵ = argmin
w

1

2

m∑
i=1

‖Xiw − yi‖22 + λR(w), (1)

where Xi ∈ R
n×d and yi ∈ R

n are the training data
(features and labels) from party i. The regularization function
R and regularization tuning parameter λ are used to improve
prediction accuracy on high-dimensional data. Typically, the
regularization function takes one of the following forms:

RL1(w) =

d∑
j=1

|wj |, RL2(w) =
1

2

d∑
j=1

w2
j

corresponding to Lasso (L1) and Ridge (L2) regression re-
spectively. The estimated model ŵ ∈ R

d can then be used
to render a new prediction ŷ∗ = ŵTx∗ at a query point x∗.
It is worth noting that in some applications of LASSO (e.g.,
genomics [28]) the dimension d can be larger than n. However,
in this work we focus on settings where d is smaller than n,
and the real datasets and scenarios we use in our evaluation
satisfy this property.
ADMM. Alternating Direction Method of Multipliers
(ADMM) [15] is an established technique for distributed convex
optimization. To use ADMM, we first reformulate Eq. 1 by
introducing additional variables and constraints:

minimize:
{wi}m

i=1, z

1

2

m∑
i=1

‖Xiwi − yi‖22 + λR(z),

such that: wi = z for all i ∈ {1, . . . , p} (2)

This equivalent formulation splits w into wi for each party
i, but still requires that wi be equal to a global model z. To
solve this constrained formulation, we construct an augmented
Lagrangian:

L ({wi}mi=1, z,u) =
1

2

m∑
i=1

‖Xiwi − yi‖22 + λR(z)+

ρ

m∑
i=1

uT
i (wi − z) +

ρ

2

m∑
i=1

||wi − z||22 , (3)

where the dual variables ui ∈ R
d capture the mismatch between

the model estimated by party i and the global model z and
the augmenting term ρ

2

∑m
i=1 ||wi − z||22 adds an additional

penalty (scaled by the constant ρ) for deviating from z.
The ADMM algorithm is a simple iterative dual ascent on

the augmented Lagrangian of Eq. (2). On the kth iteration,
each party locally solves this closed-form expression:

wk+1
i ← (

XT
i Xi + ρI

)−1 (
XT

i yi + ρ
(
zk − uk

i

))
(4)

and then shares its local model wk+1
i and Lagrange multipliers

uk
i to solve for the new global weights:

zk+1 ← argmin
z

λR(z) +
ρ

2

m∑
i=1

||wk+1
i − z+ uk

i ||22. (5)

Finally, each party uses the new global weights zk+1 to update
its local Lagrange multipliers

uk+1
i ← uk

i +wk+1
i − zk+1. (6)

The update equations (4), (5), and (6) are executed iteratively
until all updates reach a fixed point. In practice, a fixed number
of iterations may be used as a stopping condition, and that is
what we do in Helen.
LASSO. We use LASSO as a running example for the rest of
the paper in order to illustrate how our secure training protocol
works. LASSO is a popular regularized linear regression model
that uses the L1 norm as the regularization function. The
LASSO formulation is given by the optimization objective
argminw ‖Xw−y‖22+λ‖w‖. The boxed section below shows
the ADMM training procedure for LASSO. Here, the quantities
in color are quantities that are intermediate values in the
computation and need to be protected from every party, whereas
the quantities in black are private values known to one party.

The coopetitive learning task for LASSO

Input of party Pi: Xi,yi

1) Ai ←
(
XT

i Xi + ρI
)−1

2) bi ← XT
i yi

3) u0, z0,w0 ← 0
4) For k = 0, ADMMIterations-1:

a) wk+1
i ← Ai(bi + ρ

(
zk − uk

i

)
)

b) zk+1 ← Sλ/mρ

(
1
m

∑m
i=1

(
wk+1

i + uk
i

))
c) uk+1

i ← uk
i +wk+1

i − zk+1

Sλ/mρ is the soft the soft thresholding operator, where

Sκ(a) =

⎧⎪⎨
⎪⎩

a− κ a > κ

0 |a| ≤ κ

a+ κ a < −κ

(7)

The parameters λ and ρ are public and fixed.

III. SYSTEM OVERVIEW

Figure 2 shows the system setup in Helen. A group of m
participants (also called parties) wants to jointly train a model
on their data without sharing the plaintext data. As mentioned
in Section I, the use cases we envision for our system consist of
a few large organizations (around 10 organizations), where each
organization has a lot of data (n is on the order of hundreds of
thousands or millions). The number of features/columns in the
dataset d is on the order of tens or hundreds. Hence d � n.

We assume that the parties have agreed to publicly release
the final model. As part of Helen, they will engage in an
interactive protocol during which they share encrypted data,

and only at the end will they obtain the model in decrypted
form. Helen supports regularized linear models including least
squares linear regression, ridge regression, LASSO, and elastic
net. In the rest of the paper, we focus on explaining Helen
via LASSO, but we also provide update equations for ridge
regression in Section VII.

A. Threat model

We assume that all parties have agreed upon a single
functionality to compute and have also consented to releasing
the final result of the function to every party.

We consider a strong threat model in which all but one
party can be compromised by a malicious attacker. This means
that the compromised parties can deviate arbitrarily from the
protocol, such as supplying inconsistent inputs, substituting
their input with another party’s input, or executing different
computation than expected. In the flu prediction example, six
divisions could collude together to learn information about one
of the medical divisions. However, as long as the victim medical
division follows our protocol correctly, the other divisions will
not be able to learn anything about the victim division other
than the final result of the function. We now state the security
theorem.

Theorem 6. Helen securely evaluates an ideal functionality
fADMM in the (fcrs, fSPDZ)-hybrid model under standard cryp-
tographic assumptions, against a malicious adversary who can
statically corrupt up to m− 1 out of m parties.

We formalize the security of Helen in the standalone MPC
model. fcrs and fSPDZ are ideal functionalities that we use in
our proofs, where fcrs is the ideal functionality representing
the creation of a common reference string, and fSPDZ is the
ideal functionality that makes a call to SPDZ. Due to space
constraints, we present the formal definitions as well as the
security proofs in the full version of this paper.
Out of scope attacks/complementary directions. Helen does
not prevent a malicious party from choosing a bad dataset
for the coopetitive computation (e.g., in an attempt to alter
the computation result). In particular, Helen does not prevent
poisoning attacks [44, 18]. MPC protocols generally do not
protect against bad inputs because there is no way to ensure
that a party provides true data. Nevertheless, Helen will ensure
that once a party supplies its input into the computation, the
party is bound to using the same input consistently throughout
the entire computation; in particular, this prevents a party from
providing different inputs at different stages of the computation,
or mix-and-matching inputs from other parties. Further, some
additional constraints can also be placed in pre-processing,
training, and post-processing to mitigate such attacks, as we
elaborate in Section IX-B.

Helen also does not protect against attacks launched on the
public model, for example, attacks that attempt to recover the
training data from the model itself [65, 16]. The parties are
responsible for deciding if they are willing to share with each
other the model. Our goal is only to conduct this computation
securely: to ensure that the parties do not share their raw

participant m

encrypted data summaries
from other parties

global public key

private share of global secret key

private database of this party,
input to coopetitive learning

[]
participant 1

[]

participant 2
[]

communication
exchanging

encrypted data

 . . .

Fig. 2: Architecture overview of Helen. Every red shape indicates secret information known only to the indicated party, and
black indicates public information visible to everyone (which could be private information in encrypted form). For participant
m, we annotate the meaning of each quantity.

plaintext datasets with each other, that they do not learn more
information than the resulting model, and that only the specified
computation is executed. Investigating techniques for ensuring
that the model does not leak too much about the data is a
complementary direction to Helen, and we expect that many of
these techniques could be plugged into a system like Helen. For
example, Helen can be easily combined with some differential
privacy tools that add noise before model release to ensure that
the model does not leak too much about an individual record
in the training data. We further discuss possible approaches
in Section IX-B.

Finally, Helen does not protect against denial of service –
all parties must participate in order to produce a model.

B. Protocol phases

We now explain the protocol phases at a high level. The first
phase requires all parties to agree to perform the coopetitive
computation, which happens before initializing Helen. The
other phases are run using Helen.

Agreement phase. In this phase, the m parties come together
and agree that they are willing to run a certain learning
algorithm (in Helen’s case, ADMM for linear models) over
their joint data. The parties should also agree to release the
computed model among themselves.

The following discrete phases are run by Helen. We summa-
rize their purposes here and provide the technical design for
each in the following sections.

Initialization phase. During initialization, the m parties
compute the encryption keys using a generic MPC protocol.
The public output of this protocol is a public key PK that is
known to everyone. Each party also receives a piece (called a
share) of the corresponding secret key SK: party Pi receives
the i-th share of the key denoted as [SK]i. A value encrypted
under PK can only be decrypted via all shares of the SK, so
every party needs to agree to decrypt this value. Fig. 2 shows
these keys. This phase only needs to run once for the entire
training process, and does not need to be re-run as long as the
parties’ configuration does not change.

Input preparation phase. In this phase, each party pre-
pares its data for the coopetitive computation. Each party Pi

precomputes summaries of its data and commits to them by
broadcasting encrypted summaries to all other parties. The
parties also need to prove that they know the values inside
these encryptions using zero-knowledge proofs of knowledge.
From this moment on, party Pi will not be able to use different
inputs for the rest of the computation.

By default, each party stores the encrypted summaries from
other parties. This is a viable solution since these summaries
are much smaller than the data itself. It is possible to also
store all m summaries in a public cloud by having each party
produce an integrity MAC of the summary from each other
party and checking the MAC upon retrieval which protects
against a compromised cloud.

Model compute phase. This phase follows the iterative
ADMM algorithm, in which parties successively compute
locally on encrypted data, followed by a coordination step
with other parties using a generic MPC protocol.

Throughout this protocol, each party receives only encrypted
intermediate data. No party learns the intermediate data because,
by definition, an MPC protocol should not reveal any data
beyond the final result. Moreover, each party proves in zero
knowledge to the other parties that it performed the local
computation correctly using data that is consistent with the
private data that was committed in the input preparation phase.
If any one party misbehaves, the other parties will be able to
detect the cheating with overwhelming probability.

Model release phase. At the end of the model compute
phase, all parties obtain an encrypted model. All parties jointly
decrypt the weights and release the final model. However, it is
possible for a set of parties to not receive the final model at the
end of training if other parties misbehave (it has been proven
that it is impossible to achieve fairness for generic MPC in
the malicious majority setting [19]). Nevertheless, this kind of
malicious behavior is easily detectable in Helen and can be
enforced using legal methods.

IV. CRYPTOGRAPHIC GADGETS

Helen’s design combines several different cryptographic
primitives. In order to explain the design clearly, we split
Helen into modular gadgets. In this section and the following
sections, we discuss (1) how Helen implements these gadgets,
and (2) how Helen composes them in the overall protocol.

For simplicity, we present our zero knowledge proofs as
Σ-protocols, which require the verifier to generate random
challenges. These protocols can be transformed into full
zero knowledge with non-malleable guarantees with existing
techniques [33, 32]. We present these transformations in the
full version of the paper.

A. Plaintext-ciphertext matrix multiplication proof

Gadget 1. A zero-knowledge proof for the statement:
“Given public parameters: public key PK, encryptions
EX, EY and EZ; private parameters: X,
• DecSK(EZ) = DecSK(EX) · DecSK(EY), and
• I know X such that DecSK(EX) = X.”

Gadget usage. We first explain how Gadget 1 is used in Helen.
A party Pi in Helen knows a plaintext X and commits to X
by publishing its encryption, denoted by EncPK(X). Pi also
receives an encrypted matrix EncPK(Y) and needs to compute
EncPK(Z) = EncPK(XY) by leveraging the homomorphic
properties of the encryption scheme. Since parties in Helen
may be malicious, other parties cannot trust Pi to compute and
output EncPK(Z) correctly. Gadget 1 will help Pi prove in
zero-knowledge that it executed the computation correctly. The
proof needs to be zero-knowledge so that nothing is leaked
about the value of X. It also needs to be a proof of knowledge
so that Pi proves that it knows the plaintext matrix X.

Protocol. Using the Paillier ciphertext multiplication
proofs [23], we can construct a naı̈ve algorithm for proving
matrix multiplication. For input matrices that are Rl×l, the
naı̈ve algorithm will incur a cost of l3 since one has to prove
each individual product. One way to reduce this cost is to have
the prover prove that tZ = (tX)Y for a randomly chosen
t such that ti = ti mod q. For such a randomly chosen t,
the chance that the prover can construct a tZ

′
= tXY is

exponentially small (an analysis is presented in our full paper).
As the first step, both the prover and the verifier ap-

ply the reduction to get the new statement EncPK(tZ) =
EncPK(tX)EncPK(Y). To prove this reduced form, we apply
the Paillier ciphertext multiplication proof in a straightforward
way. This proof takes as input three ciphertexts: Ea, Eb, Ec.
The prover proves that it knows the plaintext a∗ such that
a∗ = DecSK(Ea), and that DecSK(Ec) = DecSK(Ea) ·
DecSK(Eb). We apply this proof to every multiplication for
each dot product in (tX) · Y. The prover then releases the
individual encrypted products along with the corresponding
ciphertext multiplication proofs. The verifier needs to verify that
EncPK(tZ) = EncPK(tXY). Since the encrypted ciphers from
the previous step are encrypted using Paillier, the verifier can

homomorphically add them appropriately to get the encrypted
vector EncPK(tXY).

Finally, the prover needs to prove that each element of tZ is
equal to each element of tXY. We can use the same ciphertext
multiplication proof by setting a∗ = 1.

B. Plaintext-plaintext matrix multiplication proof

Gadget 2. A zero-knowledge proof for the statement:
“Given public parameters: public key PK, encryptions
EX, EY, EZ; private parameters: X and Y,
• DecSK(EZ) = DecSK(EX) · DecSK(EY), and
• I know X, Y, and Z such that DecSK(EX) = X,
DecSK(EY) = Y, and DecSK(EZ) = Z.”

Gadget usage. This proof is used to prove matrix multiplica-
tion when the prover knows both input matrices (and thus the
output matrix as well). The protocol is similar to the plaintext-
ciphertext proofs, except that we have to do an additional proof
of knowledge of Y.
Protocol. The prover wishes to prove to a verifier that Z =
XY without revealing X,Y, or Z. We follow the same protocol
as Gadget 1. Additionally, we utilize a variant of the ciphertext
multiplication proof that only contains the proof of knowledge
component to show that the prover also knows Y. The proof
of knowledge for the matrix is simply a list of element-wise
proofs for Y. We do not explicitly prove the knowledge of
Z because the matrix multiplication proof and the proof of
knowledge for Y imply that the prover knows Z as well.

V. INPUT PREPARATION PHASE

A. Overview

In this phase, each party prepares data for coopetitive
training. In the beginning of the ADMM procedure, every
party precomputes some summaries of its data and commits
to them by broadcasting encrypted summaries to all the other
parties. These summaries are then reused throughout the model
compute phase. Some form of commitment is necessary in
the malicious setting because an adversary can deviate from
the protocol by altering its inputs. Therefore, we need a new
gadget that allows us to efficiently commit to these summaries.

More specifically, the ADMM computation reuses two ma-
trices during training: Ai = (XT

i Xi + ρI)−1 and bi = XT
i yi

from party i (see Section II-C for more details). These two
matrices are of sizes d × d and d × 1, respectively. In a
semihonest setting, we would trust parties to compute Ai

and bi correctly. In a malicious setting, however, the parties
can deviate from the protocol and choose Ai and bi that are
inconsistent with each other (e.g., they do not conform to the
above formulations).

Helen does not have any control over what data each party
contributes because the parties must be free to choose their own
Xi and yi. However, Helen ensures that each party consistently
uses the same Xi and yi during the entire protocol. Otherwise,
malicious parties could try to use different/inconsistent Xi and
yi at different stages of the protocol, and thus manipulate the

final outcome of the computation to contain the data of another
party.

One possibility to address this problem is for each party
i to commit to its Xi in EncPK(Xi) and yi in EncPK(yi).
To calculate Ai, the party can calculate and prove XT

i X
using Gadget 2, followed by computing a matrix inversion
computation within SPDZ. The result Ai can be repeatedly
used in the iterations. This is clearly inefficient because (1) the
protocol scales linearly in n, which could be very large, and
(2) the matrix inversion computation requires heavy compute.

Our idea is to prove using an alternate formulation via
singular value decomposition (SVD) [38], which can be much
more succinct: Ai and bi can be decomposed using SVD to
matrices that scale linearly in d. Proving the properties of Ai

and bi using the decomposed matrices is equivalent to proving
using Xi and yi.

B. Protocol

1) Decomposition of reused matrices: We first derive an
alternate formulation for Xi (denoted as X for the rest of
this section). From fundamental linear algebra concepts we
know that every matrix has a corresponding singular value
decomposition [38]. More specifically, there exists unitary
matrices U and V, and a diagonal matrix Γ such that X =
UΓVT , where U ∈ Rn×n, Γ ∈ Rn×d, and V ∈ Rd×d.
Since X and thus U are real matrices, the decomposition also
guarantees that U and V are orthogonal, meaning that UTU =
I and VTV = I. If X is not a square matrix, then the top
part of Γ is a diagonal matrix, which we will call Σ ∈ Rd×d.
Σ’s diagonal is a list of singular values σi. The rest of the Γ
matrix are 0’s. If X is a square matrix, then Γ is simply Σ.
Finally, the matrices U and V are orthogonal matrices. Given
an orthogonal matrix Q, we have that QQT = QTQ = I.

It turns out that XTX has some interesting properties:

XTX = (UΓVT)TUΓVT

= VΓTUTUΓVT

= VΓTΓVT

= VΣ2VT .

We now show that (XTX+ ρI)−1 = VΘVT , where Θ is the

diagonal matrix with diagonal values
1

σ2
i + ρ

.

(XTX+ ρI)VΘVT = V(Σ2 + ρI)VTVΘVT

= V(Σ2 + ρI)ΘVT

= VVT = I.

Using a similar reasoning, we can also derive that

XTy = VΓTUTy.

2) Properties after decomposition: The SVD decomposition
formulation sets up an alternative way to commit to matrices
(XT

i Xi + ρI)−1 and Xiyi. For the rest of this section, we
describe the zero knowledge proofs that every party has to

execute. For simplicity, we focus on one party and use X and
y to represent its data, and A and b to represent its summaries.

During the ADMM computation, matrices A = (XTX +
ρI)−1 and b = XTy are repeatedly used to calculate the
intermediate weights. Therefore, each party needs to commit
to A and b. With the alternative formulation, it is no longer
necessary to commit to X and y individually. Instead, it suffices
to prove that a party knows V, Θ, Σ (all are in Rd×d) and a
vector y∗ = (UTy)[1:d] ∈ Rd×1 such that:

1) A = VΘVT ,
2) b = VΣTy∗,
3) V is an orthogonal matrix, namely, VTV = I, and
4) Θ is a diagonal matrix where the diagonal entries are

1/(σ2
i + ρ). σi are the values on the diagonal of Σ and ρ

is a public value.

Note that Γ can be readily derived from Σ by adding rows
of zeros. Moreover, both Θ and Σ are diagonal matrices.
Therefore, we only commit to the diagonal entries of Θ and
Σ since the rest of the entries are zeros.

The above four statements are sufficient to prove the
properties of A and b in the new formulation. The first two
statements simply prove that A and b are indeed decomposed
into some matrices V, Θ, Σ, and y∗. Statement 3) shows that
V is an orthogonal matrix, since by definition an orthogonal
matrix Q has to satisfy the equation QTQ = I. However, we
allow the prover to choose V. As stated before, the prover
would have been free to choose X and y anyway, so this
freedom does not give more power to the prover.

Statement 4) proves that the matrix Θ is a diagonal matrix
such that the diagonal values satisfy the form above. This
is sufficient to show that Θ is correct according to some Σ.
Again, the prover is free to choose Σ, which is the same as
freely choosing its input X.

Finally, we chose to commit to y∗ instead of committing to
U and y separately. Following our logic above, it seems that
we also need to commit to U and prove that it is an orthogonal
matrix, similar to what we did with V. This is not necessary
because of an important property of orthogonal matrices: U’s
columns span the vector space Rn. Multiplying Uy, the result
is a linear combination of the columns of U. Since we also
allow the prover to pick its y, Uy essentially can be any vector
in Rn. Thus, we only have to allow the prover to commit to
the product of U and y. As we can see from the derivation,
b = VΓTUy, but since Γ is simply Σ with rows of zeros,
the actual decomposition only needs the first d elements of
Uy. Hence, this allows us to commit to y∗, which is d× 1.

Using our techniques, Helen commits only to matrices of
sizes d × d or d × 1, thus removing any scaling in n (the
number of rows in the dataset) in the input preparation phase.

3) Proving the initial data summaries: First, each party
broadcasts EncPK(V), EncPK(Σ), EncPK(Θ), EncPK(y

∗),
EncPK(A), and EncPK(b). To encrypt a matrix, the party
simply individually encrypts each entry. The encryption scheme
itself also acts as a commitment scheme [39], so we do not
need an extra commitment scheme.

To prove these statements, we also need another primitive
called an interval proof. Moreover, since these matrices act
as inputs to the model compute phase, we also need to prove
that A and b are within a certain range (this will be used
by Gadget 4). The interval proof we use is from [14], which
is an efficient way of proving that a committed number lies
within a certain interval. However, what we want to prove is
that an encrypted number lies within a certain interval. This
can be solved by using techniques from [26], which appends
the range proof with a commitment-ciphertext equality proof.
This extra proof proves that, given a commitment and a Paillier
ciphertext, both hide the same plaintext value.

To prove the first two statements, we invoke Gadget 1 and
Gadget 2. This allows us to prove that the party knows all of
the matrices in question and that they satisfy the relations laid
out in those statements.

There are two steps to proving statement 3. The prover will
compute EncPK(V

TV) and prove it computed it correctly
using Gadget 1 as above. The result should be equal to the
encryption of the identity matrix. However, since we are using
fixed point representation for our data, the resulting matrix
could be off from the expected values by some small error.
VTV will only be close to I, but not equal to I. Therefore,
we also utilize interval proofs to make sure that VTV is close
to I, without explicitly revealing the value of VTV.

Finally, to prove statement 4, the prover does the following:
1) The prover computes and releases EncPK(Σ

2) because
the prover knows Σ and proves using Gadget 1 that this
computation is done correctly.

2) The prover computes EncPK(Σ
2 + ρI), which anyone can

compute because ρ and I are public. EncPK(Σ
2) and

EncPK(ρI) can be multiplied together to get the summation
of the plaintext matrices.

3) The prover now computes EncPK(Σ
2 + ρI) × EncPK(Θ)

and proves this encryption was computed correctly using
Gadget 1.

4) Similar to step 3), the prover ends this step by using interval
proofs to prove that this encryption is close to encryption
of the identity matrix.

VI. MODEL COMPUTE PHASE

A. Overview

In the model compute phase, all parties use the summaries
computed in the input preparation phase and execute the
iterative ADMM training protocol. An encrypted weight
vector is generated at the end of this phase and distributed
to all participants. The participants can jointly decrypt this
weight vector to get the plaintext model parameters. This
phase executes in three steps: initialization, training (local
optimization and coordination), and model release.

B. Initialization

We initialize the weights w0
i , z

0, and u0
i . There are two

popular ways of initializing the weights. The first way is to
set every entry to a random number. The second way is to

initialize every entry to zero. In Helen, we use the second
method because it is easy and works well in practice.

C. Local optimization

During ADMM’s local optimization phase, each party takes
the current weight vector and iteratively optimizes the weights
based on its own dataset. For LASSO, the update equation is
simply wk+1

i ← Ai(bi+ρ
(
zk − uk

i

)
), where Ai is the matrix

(XT
i Xi + ρI)−1 and bi is XT

i yi. As we saw from the input
preparation phase description, each party holds encryptions of
Ai and bi. Furthermore, given zk and uk

i (either initialized or
received as results calculated from the previous round), each
party can independently calculate wk+1

i by doing plaintext
scaling and plaintext-ciphertext matrix multiplication. Since
this is done locally, each party also needs to generate a proof
proving that the party calculated wk+1

i correctly. We compute
the proof for this step by invoking Gadget 1.

D. Coordination using MPC

After the local optimization step, each party holds encrypted
weights wk+1

i . The next step in the ADMM iterative opti-
mization is the coordination phase. Since this step contains
non-linear functions, we evaluate it using generic MPC.

1) Conversion to MPC: First, the encrypted weights need
to be converted into an MPC-compatible input. To do so, we
formulate a gadget that converts ciphertext to arithmetic shares.
The general idea behind the protocol is inspired by arithmetic
sharing protocols [23, 27].

Gadget 3. For m parties, each party having the public
key PK and a share of the secret key SK, given public
ciphertext EncPK(a), convert a into m shares ai ∈ Zp

such that a ≡ ∑
ai mod p. Each party Pi receives secret

share ai and does not learn the original secret value a.

Gadget usage. Each party uses this gadget to convert
EncPK(wi) and EncPK(ui) into input shares and compute
the soft threshold function using MPC (in our case, SPDZ).
We denote p as the public modulus used by SPDZ.

Protocol. The protocol proceeds as follows:

1) Each party Pi generates a random value ri ∈ [0, 2|p|+κ]
and encrypts it, where κ is a statistical security parameter.
Each party should also generate an interval plaintext proof
of knowledge of ri, then publish EncPK(ri) along with the
proofs.

2) Each party Pi takes as input the published {EncPK(rj)}mj=1

and compute the product with EncPK(a). The result is
c = EncPK(a+

∑m
j=1 rj).

3) All parties jointly decrypt c to get plaintext b.
4) Party 0 sets a0 = b − r0 mod p. Every other party sets

ai ≡ −ri mod p.
5) Each party publishes EncPK(ai) as well as an interval proof

of plaintext knowledge.

2) Coordination: The ADMM coordination step takes in
wk+1

i and uk
i , and outputs zk+1. The z update requires

computing the soft-threshold function (a non-linear function),
so we express it in MPC. Additionally, since we are doing
fixed point integer arithmetic as well as using a relatively small
prime modulus for MPC (256 bits in our implementation), we
need to reduce the scaling factors accumulated on wk+1

i during
plaintext-ciphertext matrix multiplication. We currently perform
this operation inside MPC as well.

3) Conversion from MPC: After the MPC computation, each
party receives shares of z and its MAC shares, as well as shares
of wi and its MAC shares. It is easy to convert these shares
back into encrypted form simply by encrypting the shares,
publishing them, and summing up the encrypted shares. We
can also calculate uk+1

i this way. Each party also publishes
interval proofs of knowledge for each published encrypted
cipher. Finally, in order to verify that they are indeed valid
SPDZ shares (the specific protocol is explained in the next
section), each party also publishes encryptions and interval
proofs of all the MACs.

E. Model release

1) MPC conversion verification: Since we are combining
two protocols (homomorphic encryption and MPC), an attacker
can attempt to alter the inputs to either protocol by using
different or inconsistent attacker-chosen inputs. Therefore,
before releasing the model, the parties must prove that they
correctly executed the ciphertext to MPC conversion (and vice
versa). We use another gadget to achieve this.

Gadget 4. Given public parameters: encrypted value
EncPK(a), encrypted SPDZ input shares EncPK(bi), en-
crypted SPDZ MACs EncPK(ci), and interval proofs of
plaintext knowledge, verify that
1) a ≡ ∑

i bi mod p, and
2) bi are valid SPDZ shares and ci’s are valid MACs on

bi.

Gadget usage. We apply Gadget 4 to all data that needs to
be converted from encrypted ciphers to SPDZ or vice versa.
More specifically, we need to prove that (1) the SPDZ input
shares are consistent with EncPK(w

k+1
i) that is published

from each party, and (2) the SPDZ shares for wk+1
i and zk

are authenticated by the MACs.

Protocol. The gadget construction proceeds as follows:

1) Each party verifies that EncPK(a), EncPK(bi) and
EncPK(ci) pass the interval proofs of knowledge. For
example, bi and ci need to be within [0, p].

2) Each party homomorphically computes EncPK(
∑

i bi), as
well as Ed = EncPK(a−∑

i bi).
3) Each party randomly chooses ri ∈ [0, 2|a|+|κ|], where

κ is again a statistical security parameter, and publishes
EncPK(ri) as well as an interval proof of plaintext knowl-
edge.

4) Each party calculates Ef = Ed

∏
i EncPK(ri)

p =
EncPK((a − ∑

i bi) +
∑

i(ri · p)). Here we assume that
log |m|+ |p|+ |a|+ |κ| < |n|.

5) All parties participate in a joint decryption protocol to
decrypt Ef obtaining ef .

6) Every party individually checks to see that ef is a multiple
of p. If this is not the case, abort the protocol.

7) The parties release the SPDZ global MAC key α.
8) Each party calculates EncPK(α(

∑
bi + δ)) and

EncPK(
∑

ci).
9) Use the same method in steps 2 – 6 to prove that α(

∑
bi+

δ) ≡ ∑
ci mod p.

The above protocol is a way for parties to verify two
things. First, that the SPDZ shares indeed match with a
previously published encrypted value (i.e., Gadget 3 was
executed correctly). Second, that the shares are valid SPDZ
shares. The second step is simply verifying the original SPDZ
relation among value share, MAC shares, and the global key.

Note that we cannot verify these relations by simply releasing
the plaintext data shares and their MACs since the data shares
correspond to the intermediate weights. Furthermore, the shares
need to be equivalent in modulo p, which is different from the
Paillier parameter N . Therefore, we use an alternative protocol
to test modulo equality between two ciphertexts, which is the
procedure described above in steps 2 to 6.

Since the encrypted ciphers come with interval proofs of
plaintext knowledge, we can assume that a ∈ [0, l]. If two
ciphertexts encrypt plaintexts that are equivalent to each other,
they must satisfy that a ≡ b mod p or a = b+ ηp. Thus, if
we take the difference of the two ciphertexts, this difference
must be ηp. We could then run the decryption protocol to test
that the difference is indeed a multiple of p.

If a ≡ ∑
i bi mod p, simply releasing the difference could

still reveal extra information about the value of a. Therefore, all
parties must each add a random mask to a. In step 3, ri’s are
generated independently by all parties, which means that there
must be at least one honest party who is indeed generating a
random number within the range. The resulting plaintext thus
statistically hides the true value of a−∑

i bi with the statistical
parameter κ. If a
≡ ∑

i bi mod p, then the protocol reveals
the difference between a−∑

i bi mod p. This is safe because
the only way to reveal a−∑

i bi mod p is when an adversary
misbehaves and alters its inputs, and the result is independent
from the honest party’s behavior.

2) Weight vector decryption: Once all SPDZ values are
verified, all parties jointly decrypt z and the final weights are
released to everyone.

VII. EXTENSIONS TO OTHER MODELS

Though we used LASSO as a running example, our tech-
niques can be applied to other linear models like ordinary
least-squares linear regression, ridge regression, and elastic net.
Here we show the update rules for ridge regression, and leave
its derivation to the readers.

Ridge regression solves a similar problem as LASSO, except
with L2 regularization. Given a dataset (X,y) where X

is the feature matrix and y is the prediction vector, ridge

regression optimizes argminw
1

2
‖Xw − y‖22 + λ‖w‖2. The

update equations for ridge regression are:

wk+1
i = (XT

i Xi + ρI)−1(XT
i yi + ρ(zk − uk

i))

+ (ρ/2)‖wi − zk + uk
i ‖22

zk+1 =
ρ

2λ/m+ ρ
(w̄k+1 + ūk)

uk+1
i = uk

i + xk+1
i − zk+1

The local update is similar to LASSO, while the coordination
update is a linear operation instead of the soft threshold function.
Elastic net, which combines L1 and L2 regularization, can
therefore be implemented by combining the regularization
terms from LASSO and ridge regression.

VIII. EVALUATION

We implemented Helen in C++. We utilize the SPDZ
library [1], a mature library for maliciously secure multi-
party computation, for both the baseline and Helen. In our
implementation, we apply the Fiat-Shamir heuristic to our zero-
knowledge proofs [32]. This technique is commonly used in
implementations because it makes the protocols non-interactive
and thus more efficient, but assumes the random oracle model.

We compare Helen’s performance to a maliciously secure
baseline that trains using stochastic gradient descent, similar to
SecureML [54]. Since SecureML only supports two parties in
the semihonest setting, we implemented a similar baseline using
SPDZ [27]. SecureML had a number of optimizations, but they
were designed for the two-party setting. We did not extend
those optimizations to the multi-party setting. We will refer
to SGD implemented in SPDZ as the “secure baseline” (we
explain more about the SGD training process in Section VIII-A).
Finally, we do not benchmark Helen’s Paillier key setup phase.
This can be computed using SPDZ itself, and it is ran only
once (as long as the party configuration does not change).

A. Experiment setup

We ran our experiments on EC2 using r4.8xlarge instances.
Each machine has 32 cores and 244 GiB of memory. In order to
simulate a wide area network setting, we created EC2 instances
in Oregon and Northern Virginia. The instances are equally
split across these two regions. To evaluate Helen’s scalability,
we used synthetic datasets that are constructed by drawing
samples from a noisy normal distribution. For these datasets,
we varied both the dimension and the number of parties. To
evaluate Helen’s performance against the secure baseline, we
benchmarked both systems on two real world datasets from
UCI [29].
Training assumptions. We do not tackle hyperparameter
tuning in our work, and also assume that the data has been nor-
malized before training. We also use a fixed number of rounds
(10) for ADMM training, which we found experimentally using
the real world datasets. We found that 10 rounds is often enough
for the training process to converge to a reasonable error rate.
Recall that ADMM converges in a small number of rounds

because it iterates on a summary of the entire dataset. In
contrast, SGD iteratively scans data from all parties at least
once in order to get an accurate representation of the underlying
distributions. This is especially important when certain features
occur rarely in a dataset. Since the dataset is very large, even
one pass already results in many rounds.

MPC configuration. As mentioned earlier, SPDZ has two
phases of computation: an offline phase and an online phase.
The offline phase can run independently of the secure function,
but the precomputed values cannot be reused across multiple
online phases. The SPDZ library provides several ways of
benchmarking different offline phases, including MASCOT [46]
and Overdrive [47]. We tested both schemes and found
Overdrive to perform better over the wide area network. Since
these are for benchmarking purposes only, we decided to
estimate the SPDZ offline phase by dividing the number of
triplets needed for a circuit by the benchmarked throughput. The
rest of the evaluation section will use the estimated numbers
for all SPDZ offline computation. Since Helen uses parallelism,
we also utilized parallelism in the SPDZ offline generation
by matching the number of threads on each machine to the
number of cores available.

On the other hand, the SPDZ online implementation is not
parallelized because the API was insufficient to effectively
express parallelism. We note two points. First, while paralleliz-
ing the SPDZ library will result in a faster baseline, Helen
also utilizes SPDZ, so any improvement to SPDZ also carries
over to Helen. Second, as shown below, our evaluation shows
that Helen still achieves significant performance gains over
the baseline even if the online phase in the secure baseline is
infinitely fast.

Finally, the parameters we use for Helen are: 128 bits for
the secure baseline’s SPDZ configuration, 256 bits for the
Helen SPDZ configuration, and 4096 bits for Helen’s Paillier
ciphertext.

B. Theoretic performance

Baseline Secure SGD C ·m2 · n · d
Helen SVD decomposition c1 · n · d2

SVD proofs c1 ·m · d2 + c2 · d3
MPC offline c1 ·m2 · d

Model compute c1 ·m2 · d+ c2 · d2 + c3 ·m · d

TABLE I: Theoretical scaling (complexity analysis) for SGD
baseline and Helen. m is the number of parties, n is the number
of samples per party, d is the dimension.

Table I shows the theoretic scaling behavior for SGD and
Helen, where m is the number of parties, n is the number
of samples per party, d is the dimension, and C and ci are
constants. Note that ci’s are not necessarily the same across the
different rows in the table. We split Helen’s input preparation
phase into three sub-components: SVD (calculated in plaintext),
SVD proofs, and MPC offline (since Helen uses SPDZ during
the model compute phase, we also need to run the SPDZ offline
phase).

(a) Helen’s scaling as we increase
the number of dimensions. The
number of parties is fixed to be
4, and the number of samples per
party is 100, 000.

(b) Helen’s two phases as we
increase the number of parties.
The dimension is set to be 10,
and the number of samples per
party is 100, 000.

Fig. 3: Helen scalability measurements.

SGD scales linearly in n and d. If the number of samples
per party is doubled, the number of iterations is also doubled.
A similar argument goes for d. SGD scales quadratic in m
because it first scales linearly in m due to the behavior of the
MPC protocol. If we add more parties to the computation, the
number of samples will also increase, which in turn increases
the number of iterations needed to scan the entire dataset.

Helen, on the other hand, scales linearly in n only for the
SVD computation. We emphasize that SVD is very fast because
it is executed on plaintext data. The c1 part of the SVD proofs
formula scales linearly in m because each party needs to verify
from every other party. It also scales linearly in d2 because each
proof verification requires d2 work. The c2 part of the formula
has d3 scaling because our matrices are d×d), and to calculate
a resulting encrypted matrix requires matrix multiplication on
two d× d matrices.

The coordination phase from Helen’s model compute phase,
as well as the corresponding MPC offline compute phase, scale
quadratic in m because we need to use MPC to re-scale weight
vectors from each party. This cost corresponds to the c1 part
of the formula. The model compute phase’s d2 cost (c2 part of
the formula) reflects the matrix multiplication and the proofs.
The rest of the MPC conversion proofs scale linearly in m and
d (c3 part of the formula).

C. Synthetic datasets

We want to answer two questions about Helen’s scalability
using synthetic datasets: how does Helen scale as we vary
the number of features and how does it scale as we vary the
number of parties? Note that we are not varying the number of
input samples because that will be explored in Section VIII-D
in comparison to the secure SGD baseline.

Fig. 3a shows a breakdown of Helen’s cryptographic com-
putation as we scale the number of dimensions. The plaintext
SVD computation is not included in the graph. The SVD proofs
phase is dominated by the matrix multiplication proofs, which
scales in d2. The MPC offline phase and the model compute
phase are both dominated by the linear scaling in d, which
corresponds to the MPC conversion proofs.

Fig. 3b shows the same three phases as we increase the
number of parties. The SVD proofs phase scales linearly in the

number of parties m. The MPC offline phase scales quadratic
in m, but its effects are not very visible for a small number of
parties. The model compute phase is dominated by the linear
scaling in m because the quadratic scaling factor isn’t very
visible for a small number of parties.

Finally, we also ran a microbenchmark to understand Helen’s
network and compute costs. The experiment used 4 servers and
a synthetic dataset with 50 features and 100K samples per party.
We found that the network costs account for approximately
2% of the input preparation phase and 22% of Helen’s model
compute phase.

D. Real world datasets

We evaluate on two different real world datasets: gas sensor
data [29] and the million song dataset [9, 29]. The gas sensor
dataset records 16 sensor readings when mixing two types of
gases. Since the two gases are mixed with random concentration
levels, the two regression variables are independent and we can
simply run two different regression problems (one for each gas
type). For the purpose of benchmarking, we ran an experiment
using the ethylene data in the first dataset. The million song
dataset is used for predicting a song’s published year using 90
features. Since regression problems produce real values, the
year can be calculated by rounding the regressed value.

For SGD, we set the batch size to be the same size as the
dimension of the dataset. The number of iterations is equal to
the total number of sample points divided by the batch size.
Unfortunately, we had to extrapolate the runtimes for a majority
of the baseline online phases because the circuits were too big
to compile on our EC2 instances.

Fig. 4 and Fig. 5 compare Helen to the baseline on the two
datasets. Note that Helen’s input preparation graph combines
the three phases that are run during the offline: plaintext SVD
computation, SVD proofs, and MPC offline generation. We
can see that Helen’s input preparation phase scales very slowly
with the number of samples. The scaling actually comes from
the plaintext SVD calculation because both the SVD proofs
and the MPC offline generation do not scale with the number
of samples. Helen’s model compute phase also stays constant
because we fixed the number of iterations to a conservative
estimate. SGD, on the other hand, does scale linearly with the
number of samples in both the offline and the online phases.

For the gas sensor dataset, Helen’s total runtime (input
preparation plus model compute) is able to achieve a 21.5x
performance gain over the baseline’s total runtime (offline
plus online) when the number of samples is 1000. When the
number of samples per party reaches 1 million, Helen is able to
improve over the baseline by 20689x. For the song prediction
dataset, Helen is able to have a 9.1x performance gain over
the baseline when the number of samples is 1000. When the
number of samples per party reaches 100K, Helen improves
over the baseline by 911x. Even if we compare Helen to the
baseline’s offline phase only, we find that Helen still has close
to constant scaling while the baseline scales linearly with the
number of samples. The performance improvement compared

Samples per party 2000 4000 6000 8000 10K 40K 100K 200K 400K 800K 1M
sklearn L2 error 8937.01 8928.32 8933.64 8932.97 8929.10 8974.15 8981.24 8984.64 8982.88 8981.11 8980.35
Helen L2 error 8841.33 8839.96 8828.18 8839.56 8837.59 8844.31 8876.00 8901.84 8907.38 8904.11 8900.37
sklearn MAE 57.89 58.07 58.04 58.10 58.05 58.34 58.48 58.55 58.58 58.56 58.57
Helen MAE 57.23 57.44 57.46 57.44 57.47 57.63 58.25 58.38 58.36 58.37 58.40

TABLE II: Select errors for gas sensor (due to space), comparing Helen with a baseline that uses sklearn to train on all plaintext
data. L2 error is the squared norm; MAE is the mean average error. Errors are calculated after post-processing.

Samples per party 1000 2000 4000 6000 8000 10K 20K 40K 60K 80K 100K
sklearn L2 error 92.43 91.67 90.98 90.9 90.76 90.72 90.63 90.57 90.55 90.56 90.55
Helen L2 error 93.68 91.8 91.01 90.91 90.72 90.73 90.67 90.57 90.54 90.57 90.55
sklearn MAE 6.86 6.81 6.77 6.78 6.79 6.81 6.80 6.79 6.79 6.80 6.80
Helen MAE 6.92 6.82 6.77 6.78 6.79 6.81 6.80 6.79 6.80 6.80 6.80

TABLE III: Errors for song prediction, comparing Helen with a baseline that uses sklearn to train on all plaintext data. L2 error
is the squared norm; MAE is the mean average error. Errors are calculated after post-processing.

Fig. 4: Helen and baseline performance on the gas sensor data.
The gas sensor data contained over 4 million data points; we
partitioned into 4 partitions with varying number of sample
points per partition to simulate the varying number of samples
per party. The number of parties is 4, and the number of
dimensions is 16.

to the baseline offline phase is up to 1540x for the gas sensor
dataset and up to 98x for the song prediction dataset.

In Table II and Table III, we evaluate Helen’s test errors on
the two datasets. We compare the L2 and mean average error
for Helen to the errors obtained from a model trained using
sklearn (a standard Python library for machine learning) on the
plaintext data. We did not directly use the SGD baseline because
its online phase does not compile for larger instances, and using
sklearn on the plaintext data is a conservative estimate. We can
see that Helen achieves similar errors compared to the sklearn
baseline.

IX. RELATED WORK

We organize the related work section into related coopetitive
systems and attacks.

Fig. 5: Helen and baseline performance on the song prediction
data, as we vary the number of samples per party. The number
of parties is 4, and the number of dimensions is 90.

Fig. 6: Helen comparison with SGD

A. Coopetitive systems

Coopetitive training systems. In Fig. 7, we compare Helen to
prior coopetitive training systems [56, 41, 34, 20, 35, 5, 54, 66].
The main takeaway is that, excluding generic maliciously secure
MPC, prior training systems do not provide malicious security.
Furthermore, most of them also assume that the training process
requires outsourcing to two non-colluding servers. At the same
time, and as a result of choosing a weaker security model,
some of these systems provide richer functionality than Helen,
such as support for neural networks. As part of our future
work, we are exploring how to apply Helen’s techniques to
logistic regression and neural networks.

Other coopetitive systems. Other than coopetitive training
systems, there are prior works on building coopetitive systems
for applications like machine learning prediction and SQL
analytics. Coopetitive prediction systems [13, 62, 60, 51, 36, 45]
typically consist of two parties, where one party holds a model
and the other party holds an input. The two parties jointly

Work Functionality n-party? Maliciously secure? Practical?
Nikolaenko et al. [56] ridge regression no no –
Hall et al. [41] linear regression yes no –
Gascon et al. [34] linear regression no no –
Cock et al. [20] linear regression no no –
Giacomelli et al. [35] ridge regression no no –
Alexandru et al. [5] quadratic opt. no no –
SecureML [54] linear, logistic, deep

learning
no no –

Shokri&Shmatikov [66] deep learning not MPC (heuristic) no –
Semi-honest MPC [7] any function yes no –
Malicious MPC [27, 37, 11, 2] any function yes yes no
Our proposal, Helen: regularized linear models yes yes yes

Fig. 7: Insufficiency of existing cryptographic approaches. “n-party” refers to whether the n(>2) organizations can perform
the computation with equal trust (thus not including the two non-colluding servers model). We answer the practicality question
only for maliciously-secure systems. We note that a few works that we marked as not coopetitive and not maliciously secure
discuss at a high level how one might extend their work to such a setting, but they did not flesh out designs or evaluate their
proposals.

compute a prediction without revealing the input or the model to
the other party. Coopetitive analytics systems [6, 55, 12, 21, 10]
allow multiple parties to run SQL queries over all parties’ data.
These computation frameworks do not directly translate to
Helen’s training workloads. Most of these works also do not
address the malicious setting.

Trusted hardware based systems. The related work pre-
sented in the previous two sections all utilize purely software
based solutions. Another possible approach is to use trusted
hardware [53, 22], and there are various secure distributed
systems that could be extended to the coopetitive setting [64, 42,
71]. However, these hardware mechanisms require additional
trust and are prone to side-channel leakages [49, 68, 50].

B. Attacks on machine learning

Machine learning attacks can be categorized into data
poisoning, model leakage, parameter stealing, and adversarial
learning. As mentioned in §III-A, Helen tackles the problem
of cryptographically running the training algorithm without
sharing datasets amongst the parties involved, while defenses
against these attacks are orthogonal and complementary to our
goal in this paper. Often, these machine learning attacks can be
separately addressed outside of Helen. We briefly discuss two
relevant attacks related to the training stage and some methods
for mitigating them.

Poisoning. Data poisoning allows an attacker to inject poi-
soned inputs into a dataset before training [44, 18]. Generally,
malicious MPC does not prevent an attacker from choosing
incorrect initial inputs because there is no way to enforce this
requirement. Nevertheless, there are some ways of mitigating
arbitrary poisoning of data that would complement Helen’s
training approach. Before training, one can check that the inputs
are confined within certain intervals. The training process itself
can also execute cross validation, a process that can identify
parties that do not contribute useful data. After training, it is

possible to further post process the model via techniques like
fine tuning and parameter pruning [52].

Model leakage. Model leakage [65, 16] is an attack launched
by an adversary who tries to infer information about the
training data from the model itself. Again, malicious MPC
does not prevent an attacker from learning the final result. In
our coopetitive model, we also assume that all parties want
to cooperate and have agreed to release the final model to
everyone. One way to alleviate model leakage is through the
use of differential privacy [43, 4, 31]. For example, a simple
technique that is complementary to Helen is adding carefully
chosen noise directly to the output model [43].

X. CONCLUSION

In this paper, we propose Helen, a coopetitive system
for training linear models. Compared to prior work, Helen
assumes a stronger threat model by defending against malicious
participants. This means that each party only needs to trust
itself. Compared to a baseline implemented with a state-of-the-
art malicious framework, Helen is able to achieve up to five
orders of magnitude of performance improvement. Given the
lack of efficient maliciously secure training protocols, we hope
that our work on Helen will lead to further work on efficient
systems with such strong security guarantees.

XI. ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable
reviews, as well as Shivaram Venkataraman, Stephen Tu, and
Akshayaram Srinivasan for their feedback and discussions. This
research was supported by NSF CISE Expeditions Award CCF-
1730628, as well as gifts from the Sloan Foundation, Hellman
Fellows Fund, Alibaba, Amazon Web Services, Ant Financial,
Arm, Capital One, Ericsson, Facebook, Google, Huawei, Intel,
Microsoft, Scotiabank, Splunk and VMware.

REFERENCES

[1] bristolcrypto/spdz-2: Multiparty computation with SPDZ, MASCOT,
and Overdrive offline phases. https://github.com/bristolcrypto/SPDZ-2.
Accessed: 2018-10-31.

[2] VIFF, the Virtual Ideal Functionality Framework. http://viff.dk/, 2015.
[3] Health insurance portability and accountability act, April 2000.
[4] ABADI, M., CHU, A., GOODFELLOW, I., MCMAHAN, H. B., MIRONOV,

I., TALWAR, K., AND ZHANG, L. Deep learning with differential privacy.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (2016), ACM, pp. 308–318.

[5] ALEXANDRU, A. B., GATSIS, K., SHOUKRY, Y., SESHIA, S. A.,
TABUADA, P., AND PAPPAS, G. J. Cloud-based quadratic optimization
with partially homomorphic encryption. arXiv preprint arXiv:1809.02267
(2018).

[6] BATER, J., ELLIOTT, G., EGGEN, C., GOEL, S., KHO, A., AND ROGERS,
J. Smcql: secure querying for federated databases. Proceedings of the
VLDB Endowment 10, 6 (2017), 673–684.

[7] BEN-DAVID, A., NISAN, N., AND PINKAS, B. Fairplaymp: a system
for secure multi-party computation. www.cs.huji.ac.il/project/Fairplay/
FairplayMP.html, 2008.

[8] BEN-OR, M., GOLDWASSER, S., AND WIGDERSON, A. Completeness
theorems for non-cryptographic fault-tolerant distributed computation.
In Proceedings of the twentieth annual ACM symposium on Theory of
computing (1988), ACM, pp. 1–10.

[9] BERTIN-MAHIEUX, T., ELLIS, D. P., WHITMAN, B., AND LAMERE, P.
The million song dataset. In Ismir (2011), vol. 2, p. 10.

[10] BITTAU, A., ERLINGSSON, U., MANIATIS, P., MIRONOV, I., RAGHU-
NATHAN, A., LIE, D., RUDOMINER, M., KODE, U., TINNES, J., AND
SEEFELD, B. Prochlo: Strong privacy for analytics in the crowd. In
Proceedings of the 26th Symposium on Operating Systems Principles
(2017), ACM, pp. 441–459.

[11] BOGDANOV, D., LAUR, S., AND WILLEMSON, J. Sharemind: A
Framework for Fast Privacy-Preserving Computations. 2008.

[12] BONAWITZ, K., IVANOV, V., KREUTER, B., MARCEDONE, A., MCMA-
HAN, H. B., PATEL, S., RAMAGE, D., SEGAL, A., AND SETH, K.
Practical secure aggregation for privacy-preserving machine learning. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security (2017), CCS ’17.

[13] BOST, R., POPA, R. A., TU, S., AND GOLDWASSER, S. Machine
learning classification over encrypted data. In Network and Distributed
System Security Symposium (NDSS) (2015).

[14] BOUDOT, F. Efficient proofs that a committed number lies in an
interval. In International Conference on the Theory and Applications of
Cryptographic Techniques (2000), Springer, pp. 431–444.

[15] BOYD, S., PARIKH, N., CHU, E., PELEATO, B., AND ECKSTEIN, J.
Distributed optimization and statistical learning via the alternating
direction method of multipliers. In Foundations and Trends in Machine
Learning, Vol. 3, No. 1 (2010).

[16] CARLINI, N., LIU, C., KOS, J., ERLINGSSON, Ú., AND SONG, D. The
secret sharer: Measuring unintended neural network memorization &
extracting secrets. arXiv preprint arXiv:1802.08232 (2018).

[17] CHEN, H., AND XIANG, Y. The study of credit scoring model based on
group lasso. Procedia Computer Science 122 (2017), 677 – 684. 5th
International Conference on Information Technology and Quantitative
Management, ITQM 2017.

[18] CHEN, X., LIU, C., LI, B., LU, K., AND SONG, D. Targeted backdoor
attacks on deep learning systems using data poisoning. arXiv preprint
arXiv:1712.05526 (2017).

[19] CLEVE, R. Limits on the security of coin flips when half the processors
are faulty. In Proceedings of the eighteenth annual ACM symposium on
Theory of computing (1986), ACM, pp. 364–369.

[20] COCK, M. D., DOWSLEY, R., NASCIMENTO, A. C., AND NEWMAN,
S. C. Fast, privacy preserving linear regression over distributed datasets
based on pre-distributed data. In Proceedings of the 8th ACM Workshop
on Artificial Intelligence and Security (AISec) (2015).

[21] CORRIGAN-GIBBS, H., AND BONEH, D. Prio: Private, robust, and
scalable computation of aggregate statistics. In 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 17) (2017).

[22] COSTAN, V., AND DEVADAS, S. Intel sgx explained. IACR Cryptology
ePrint Archive 2016 (2016), 86.

[23] CRAMER, R., DAMGÅRD, I., AND NIELSEN, J. Multiparty computation
from threshold homomorphic encryption. EUROCRYPT 2001 (2001),
280–300.

[24] DAMGÅRD, I. Efficient concurrent zero-knowledge in the auxiliary string
model. In International Conference on the Theory and Applications of
Cryptographic Techniques (2000), Springer, pp. 418–430.

[25] DAMGÅRD, I. On σ-protocols. Lecture Notes, University of Aarhus,
Department for Computer Science (2002).

[26] DAMGÅRD, I., AND JURIK, M. Client/server tradeoffs for online
elections. In International Workshop on Public Key Cryptography (2002),
Springer, pp. 125–140.

[27] DAMGÅRD, I., PASTRO, V., SMART, N., AND ZAKARIAS, S. Multiparty
computation from somewhat homomorphic encryption. In Advances in
Cryptology–CRYPTO 2012. Springer, 2012, pp. 643–662.

[28] D’ANGELO, G. M., RAO, D. C., AND GU, C. C. Combining
least absolute shrinkage and selection operator (lasso) and principal-
components analysis for detection of gene-gene interactions in genome-
wide association studies. In BMC proceedings (2009).

[29] DHEERU, D., AND KARRA TANISKIDOU, E. UCI machine learning
repository, 2017.

[30] DICTIONARIES, E. O. Coopetition.
[31] DUCHI, J. C., JORDAN, M. I., AND WAINWRIGHT, M. J. Local privacy,

data processing inequalities, and statistical minimax rates. arXiv preprint
arXiv:1302.3203 (2013).

[32] FAUST, S., KOHLWEISS, M., MARSON, G. A., AND VENTURI, D. On the
non-malleability of the fiat-shamir transform. In International Conference
on Cryptology in India (2012), Springer, pp. 60–79.

[33] GARAY, J. A., MACKENZIE, P., AND YANG, K. Strengthening zero-
knowledge protocols using signatures. In Eurocrypt (2003), vol. 2656,
Springer, pp. 177–194.

[34] GASCN, A., SCHOPPMANN, P., BALLE, B., RAYKOVA, M., DOERNER,
J., ZAHUR, S., AND EVANS, D. Privacy-preserving distributed linear
regression on high-dimensional data. Cryptology ePrint Archive, Report
2016/892, 2016.

[35] GIACOMELLI, I., JHA, S., JOYE, M., PAGE, C. D., AND YOON, K.
Privacy-preserving ridge regression with only linearly-homomorphic
encryption. Cryptology ePrint Archive, Report 2017/979, 2017. https:
//eprint.iacr.org/2017/979.

[36] GILAD-BACHRACH, R., DOWLIN, N., LAINE, K., LAUTER, K.,
NAEHRIG, M., AND WERNSING, J. Cryptonets: Applying neural
networks to encrypted data with high throughput and accuracy. In
International Conference on Machine Learning (2016), pp. 201–210.

[37] GOLDREICH, O., MICALI, S., AND WIGDERSON, A. How to play any
mental game. In Proceedings of the nineteenth annual ACM symposium
on Theory of computing (1987), ACM, pp. 218–229.

[38] GOLUB, G. H., AND VAN LOAN, C. F. Matrix computations, vol. 3.
JHU Press, 2012.

[39] GROTH, J. Homomorphic trapdoor commitments to group elements.
IACR Cryptology ePrint Archive 2009 (2009), 7.

[40] HALEVY, A., NORVIG, P., AND PEREIRA, F. The unreasonable
effectiveness of data. IEEE Intelligent Systems 24, 2 (Mar. 2009), 8–12.

[41] HALL, R., FIENBERG, S. E., AND NARDI, Y. Secure multiple linear
regression based on homomorphic encryption. In Journal of Official
Statistics (2011).

[42] HUNT, T., ZHU, Z., XU, Y., PETER, S., AND WITCHEL, E. Ryoan: A
distributed sandbox for untrusted computation on secret data. In OSDI
(2016), pp. 533–549.

[43] IYENGAR, R., NEAR, J. P., SONG, D., THAKKAR, O., THAKURTA,
A., AND WANG, L. Towards practical differentially private convex
optimization. In 2019 IEEE Symposium on Security and Privacy (SP),
IEEE.

[44] JAGIELSKI, M., OPREA, A., BIGGIO, B., LIU, C., NITA-ROTARU, C.,
AND LI, B. Manipulating machine learning: Poisoning attacks and
countermeasures for regression learning. arXiv preprint arXiv:1804.00308
(2018).

[45] JUVEKAR, C., VAIKUNTANATHAN, V., AND CHANDRAKASAN, A.
Gazelle: A low latency framework for secure neural network inference.
CoRR abs/1801.05507 (2018).

[46] KELLER, M., ORSINI, E., AND SCHOLL, P. Mascot: faster malicious
arithmetic secure computation with oblivious transfer. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security (2016), ACM, pp. 830–842.

[47] KELLER, M., PASTRO, V., AND ROTARU, D. Overdrive: making spdz
great again. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques (2018), Springer, pp. 158–189.

[48] KIDD, A. C., MCGETTRICK, M., TSIM, S., HALLIGAN, D. L.,
BYLESJO, M., AND BLYTH, K. G. Survival prediction in mesothelioma

using a scalable lasso regression model: instructions for use and initial
performance using clinical predictors. BMJ Open Respiratory Research
5, 1 (2018).

[49] KOCHER, P., GENKIN, D., GRUSS, D., HAAS, W., HAMBURG, M.,
LIPP, M., MANGARD, S., PRESCHER, T., SCHWARZ, M., AND YAROM,
Y. Spectre attacks: Exploiting speculative execution. arXiv preprint
arXiv:1801.01203 (2018).

[50] LEE, S., SHIH, M.-W., GERA, P., KIM, T., KIM, H., AND PEINADO,
M. Inferring fine-grained control flow inside sgx enclaves with branch
shadowing. In 26th USENIX Security Symposium, USENIX Security
(2017), pp. 16–18.

[51] LIU, J., JUUTI, M., LU, Y., AND ASOKAN, N. Oblivious neural network
predictions via minionn transformations. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security
(2017), ACM, pp. 619–631.

[52] LIU, K., DOLAN-GAVITT, B., AND GARG, S. Fine-pruning: Defending
against backdooring attacks on deep neural networks. arXiv preprint
arXiv:1805.12185 (2018).

[53] MCKEEN, F., ALEXANDROVICH, I., BERENZON, A., ROZAS, C. V.,
SHAFI, H., SHANBHOGUE, V., AND SAVAGAONKAR, U. R. Innovative
instructions and software model for isolated execution. HASP@ ISCA
10 (2013).

[54] MOHASSEL, P., AND ZHANG, Y. Secureml: A system for scalable
privacy-preserving machine learning. IACR Cryptology ePrint Archive
2017 (2017), 396.

[55] NARAYAN, A., AND HAEBERLEN, A. Djoin: Differentially private join
queries over distributed databases. In Proceedings of the 10th USENIX
Conference on Operating Systems Design and Implementation (2012),
OSDI’12.

[56] NIKOLAENKO, V., WEINSBERG, U., IOANNIDIS, S., JOYE, M., BONEH,
D., AND TAFT, N. Privacy-preserving ridge regression on hundreds of
millions of records. In Security and Privacy (SP), 2013 IEEE Symposium
on (2013), IEEE, pp. 334–348.

[57] NIKOLAENKO, V., WEINSBERG, U., IOANNIDIS, S., JOYE, M., BONEH,
D., AND TAFT, N. Privacy-preserving ridge regression on hundreds of
millions of records. In Security and Privacy (SP), 2013 IEEE Symposium
on (2013), IEEE, pp. 334–348.

[69] WANG, X., RANELLUCCI, S., AND KATZ, J. Global-scale secure
multiparty computation. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (2017), ACM,
pp. 39–56.

[58] PAILLIER, P. Public-key cryptosystems based on composite degree
residuosity classes. In EUROCRYPT (1999), pp. 223–238.

[59] PAPACHRISTOU, C., OBER, C., AND ABNEY, M. A lasso penalized
regression approach for genome-wide association analyses using related
individuals: application to the genetic analysis workshop 19 simulated
data. BMC Proceedings 10, 7 (Oct 2016), 53.

[60] RIAZI, M. S., WEINERT, C., TKACHENKO, O., SONGHORI, E. M.,
SCHNEIDER, T., AND KOUSHANFAR, F. Chameleon: A hybrid secure
computation framework for machine learning applications. Cryptology
ePrint Archive, Report 2017/1164, 2017. https://eprint.iacr.org/2017/1164.

[61] ROBBINS, H., AND MONRO, S. A stochastic approximation method. In
Herbert Robbins Selected Papers. Springer, 1985, pp. 102–109.

[62] ROUHANI, B. D., RIAZI, M. S., AND KOUSHANFAR, F. Deepsecure:
Scalable provably-secure deep learning. CoRR abs/1705.08963 (2017).

[63] ROY, S., MITTAL, D., BASU, A., AND ABRAHAM, A. Stock market
forecasting using lasso linear regression model, 01 2015.

[64] SCHUSTER, F., COSTA, M., FOURNET, C., GKANTSIDIS, C., PEINADO,
M., MAINAR-RUIZ, G., AND RUSSINOVICH, M. Vc3: Trustworthy data
analytics in the cloud using sgx. In Security and Privacy (SP), 2015
IEEE Symposium on (2015), IEEE, pp. 38–54.

[65] SHMATIKOV, V., AND SONG, C. What are machine learning models
hiding?

[66] SHOKRI, R., AND SHMATIKOV, V. Privacy-preserving deep learning. In
CCS (2015).

[67] STOICA, I., SONG, D., POPA, R. A., PATTERSON, D., MAHONEY,
M. W., KATZ, R., JOSEPH, A. D., JORDAN, M., HELLERSTEIN, J. M.,
GONZALEZ, J. E., ET AL. A berkeley view of systems challenges for ai.
arXiv preprint arXiv:1712.05855 (2017).

[68] VAN BULCK, J., MINKIN, M., WEISSE, O., GENKIN, D., KASIKCI, B.,
PIESSENS, F., SILBERSTEIN, M., WENISCH, T. F., YAROM, Y., AND
STRACKX, R. Foreshadow: Extracting the keys to the intel sgx kingdom
with transient out-of-order execution. In Proceedings of the 27th USENIX
Security Symposium. USENIX Association (2018).

[70] YAO, A. C. Protocols for secure computations. In Foundations of
Computer Science, 1982. SFCS’08. 23rd Annual Symposium on (1982),
IEEE, pp. 160–164.

[71] ZHENG, W., DAVE, A., BEEKMAN, J. G., POPA, R. A., GONZALEZ,
J. E., AND STOICA, I. Opaque: An oblivious and encrypted distributed
analytics platform. In USENIX Symposium of Networked Systems Design

and Implementation (NDSI) (2017), pp. 283–298.

