
Beyond Credential Stuffing:
Password Similarity Models using Neural Networks

Bijeeta Pal∗, Tal Daniel†, Rahul Chatterjee∗, Thomas Ristenpart∗

∗ Cornell Tech † Technion

Abstract—Attackers increasingly use passwords leaked from
one website to compromise associated accounts on other websites.
Such targeted attacks work because users reuse, or pick similar,
passwords for different websites. We recast one of the core
technical challenges underlying targeted attacks as the task of
modeling similarity of human-chosen passwords. We show how
to learn good password similarity models using a compilation of
1.4 billion leaked email, password pairs.

Using our trained models of password similarity, we exhibit the
most damaging targeted attack to date. Simulations indicate that
our attack compromises more than 16% of user accounts in less
than a thousand guesses, should one of their other passwords
be known to the attacker and despite the use of state-of-the-
art countermeasures. We show via a case study involving a large
university authentication service that the attacks are also effective
in practice. We go on to propose the first-ever defense against
such targeted attacks, by way of personalized password strength
meters (PPSMs). These are password strength meters that can
warn users when they are picking passwords that are vulnerable
to attacks, including targeted ones that take advantage of the
user’s previously compromised passwords. We design and build
a PPSM that can be compressed to less than 3 MB, making it
easy to deploy in order to accurately estimate the strength of a
password against all known guessing attacks.

I. INTRODUCTION

Despite repeated calls to replace passwords entirely with
different authentication mechanisms [1]–[4], human-chosen
passwords remain widespread today and will continue for the
foreseeable future. This is true despite their notoriety for being
easy-to-guess [5], hard-to-remember [6], and difficult-to-type-
correctly [7]. The latter two issues tend to encourage reuse of
similar passwords across websites: nearly 40% of users reuse
their passwords or use slight variations [8].

Password reuse and the rising prevalence of password
leaks make targeted guessing attacks an increasingly severe
threat. The most prevalent form of targeted attack is so-called
credential stuffing, where the attacker simply tries to log into a
user’s account using password(s) associated to that user found
in a leak. The threat is acute: more than five billion leaked
accounts were being distributed on the Internet by the end of
2017 [9], [10]; bot-driven credential stuffing attacks account
for 90% of the login traffic to some of the world’s largest
websites [11]; and these attacks represent the largest source
of account take over [11].

Website operators, sometimes with the help of third-party
services such as HIBP [9], reset user passwords if their user-
names or passwords are found in breaches. Such safeguards,
which are now actively being recommended by NIST [12],

may only prevent credential stuffing — the user can select
some small variant of the breached password as their pass-
word. A small number of academic works have investigated
generalizations of credential stuffing, picking variants of the
leaked passwords based on mangling rules [13] or probabilistic
context-free grammars (PCFG) [14]. They show such targeted
attacks can be damaging, which makes sense given the well-
known tendency of users to pick similar passwords [8], even
after a password reset [15]. We use credential tweaking to
refer to attacks that submit variants of a leaked password.

In this work, we investigate credential tweaking attacks from
the viewpoint of understanding similarity between human-
chosen passwords. We explore data-driven methods for mod-
eling similarity using modern machine learning techniques.
This gives rise to a new targeted password guessing attack
that outperforms all previous ones, as well as the design of a
new kind of password strength meter that includes, in strength
estimates, vulnerability to targeted attacks.

Briefly, we treat similarity by learning models that estimate
P ( w | w̃ ), where w̃ is a leaked password from one site and
w represents a user’s choice of password at another website.
We then cast estimating this family of conditional probability
distributions (one for each w̃) as a learning task, where we use
a compilation of password leaks containing 1.4 billion email,
password pairs. We explore various heuristics for identifying
passwords used by a single user within the dataset. Ultimately
this results in a huge amount of data on password similarity.

We first use this dataset to learn a compact, generative
model capturing P ( w | w̃ ) for all w̃ using sequence-to-
sequence (seq2seq) algorithms [16]. These are widely used in
the natural language processing literature for language transla-
tion and other tasks. Here we treat an input “source” password
as w̃ and the model learns how to generate new passwords
w in a way that reflects similarity patterns seen in the data.
Using seq2seq in this way, however, led to results that do
not outperform previous attacks. We therefore took a different
approach, training the model to predict the modifications to
w̃ needed to transform it into w. While seemingly equivalent,
this proved significantly more effective. Intuitively, it focused
the model better on learning common transformations found
in the data. We call the resulting algorithm password-to-path
(pass2path), the path denoting the sequence of transformations.

Using the pass2path model, we build a credential tweaking
attack that we show via simulation can compromise more
than 48% of users’ accounts in less than a thousand guesses,



should one of their passwords from another account appear
in a breach. The baseline algorithm for credential tweaking
attack to guess the leaked passwords only, works about 40%
of the time due to password reuse. So, more interesting is
how well our attacks work in the case of credential stuffing
countermeasures. We perform (separate) simulations for that
case, which suggest that 16% of user accounts could be
breached with our attack. This is 1.2 times more effective
than the previous best targeted attack and 3 times more than
the best untargeted attack.

Simulation may not accurately represent efficacy in the real
world, and so we evaluate credential tweaking attacks on a
real-world system via a collaboration with Cornell University’s
IT Security Office (ITSO).1 ITSO deploys credential stuffing
countermeasures, as well as other state-of-the-art defenses.
Nevertheless, a pass2path-based credential tweaking attack
successfully guessed the passwords of over 8.4% of the 15, 665
active Cornell user accounts that appeared in public breaches,
in 1, 000 guesses. Our experiments here not only confirm the
danger of credential tweaking attacks in practice, but helped
us get one step ahead of attackers and identify thousands of
potentially vulnerable Cornell accounts for special monitoring.
Unfortunately forcing these users to pick new passwords won’t
necessarily prevent attacks, because they may end up choosing
a variant of their previous passwords.

We therefore introduce personalized password strength me-
ters (PPSMs). These estimate the strength (non-guessability)
of a password considering the user’s other (leaked) passwords.
We build a PPSM, called vec-ppsm, using neural network-
based word embedding techniques [17], [18], which represents
another way of modeling password similarity more amenable
to deployment as a strength meter than pass2path. Our PPSM
can identify passwords unsafe in the face of targeted guessing
attacks, and can be used in conjunction with existing pass-
word strength meters to give an accurate strength estimate of
passwords against all known attacks. In the body we discuss
various deployment settings for vec-ppsm.

In summary, our contributions include the following:
• We recast the core technical challenge in targeted guessing

attacks as a task of modeling password similarity. This
viewpoint allows us to adapt state-of-the-art machine learn-
ing tools and apply them to the billions of leaked credentials
publicly available. We designed a model pass2path that
accurately generates likely user-selected transformations of
a given leaked password w̃.

• Using pass2path, we build the most effective targeted
password guessing attack to date. It can compromise 16%
of user accounts that have been protected against credential
stuffing in just 1, 000 guesses.

• We measure targeted attacks in practice for the first time,
showing that 1, 316 in-use accounts at Cornell University
could have been compromised via our credential tweaking
attack, despite credential-stuffing countermeasures.

1Our experiment design passed review both by our university IRB as well
as by ITSO staff.

• We introduce the idea of personalized password strength
meters (PPSMs). We build a PPSM using word embedding
techniques, and show how it can be used to help prevent
credential tweaking attacks.

II. BACKGROUND

Password models. Human-chosen passwords have previously
been analyzed using tools from natural language processing
(NLP). Early examples include using Markov models to help
improve dictionary-based cracking tools [19], [20]. Subse-
quently many data-driven approaches were proposed to learn
language models for passwords using password leaks. Weir
et al. used probabilistic context-free grammars (PCFGs) [21].
They were later improved by Komanduri et al. in [22] to
estimate the distribution of human-chosen passwords. Ma
et al. [23] improved upon Markov model-based techniques
with some carefully chosen parameters, showing that they
outperform PCFG-based models when used to generate a
large number of passwords. In 2016, Melicher et al. [24]
used recurrent neural networks (RNNs) and Hitaj et al. [25]
proposed using deep generative adversarial networks (GAN)
to model passwords.

Password guessing attacks. A primary application of pass-
word models is to educate brute-force guessing attacks. Such
attacks fall into two main categories: offline and online.
Offline attacks occur when an attacker obtains cryptographic
hashes of some users’ passwords and attempts to recover
user passwords by guessing-and-checking billions (or even
trillions) of passwords. The primary challenge for the attacker
is to generate an ordered list of password guesses w1, w2, . . .
for which the true user password is likely to appear early. The
index of a password w in this list is called the guess rank (β)
of the password.

An online attack occurs when an attacker uses a login
interface or other API to submit password guesses against
some account. Because modern authentication systems should
lock accounts after a small number of failed attempts (e.g.,
10), online attacks are more limited than offline in terms of
the number of guesses an attacker can make. The primary
challenge, however, is the same. Given a number of guesses
or query budget q, the success probability of an attack is what
we call the q-success rate, denoted λq . For this study, we will
focus on the online setting, restricting the query budget to
1,000 or less.

Most password guessing literature focuses on untargeted
attacks that generate password guess sequences in a way that
is agnostic to the account being attacked. Targeted attacks
instead try to take advantage of extra knowledge about the
account being attacked. Credential stuffing attacks submit a
leaked password for an account to an associated account at
another website. These are a growing concern, in large part
due to the vast number of password leaks: user accounts, on
any given service, are very likely to be associated with at least
one account leaked from another source.



Das et al. [13] is the first academic work on targeted attacks
exploiting such side information. They showed that around
43% of users reuse the same password across different web-
sites. They also manually developed a rule-based algorithm
to guess a user’s password with information about one of
their other passwords. We refer to this kind of generaliza-
tion of credential stuffing as credential tweaking because the
adversary also submits modifications to the leaked password.
Later, Wang et al. [14] constructed a personalized PCFG model
to guide credential tweaking based on personal information,
including leaked passwords. These targeted attacks outperform
untargeted attacks for the small query budgets relevant to
online guessing. These existing techniques, however, are not
suitable for taking more advantage of the vast amounts of
leaked data now available. We will turn to more modern
machine learning techniques to do so.

Password strength meters. Password models are also used to
develop strength meters [24], [26], which are used most often
as a “nudge” to help guide users towards selecting stronger
passwords. Password strength estimation was initially done
using various statistical methods like Shannon entropy [27].
This approach has various deficiencies, see [28], [29]. More
recently, password strength is estimated by calculating a
password’s guess rank under some password model. Given
a password model, guess ranks can be efficiently estimated
using the Monte Carlo techniques introduced by Dell and
Filippone [30].

III. PRELIMINARIES

Users choose similar and related passwords for different
accounts. Therefore, knowledge of one password of a user can
be leveraged to guess their other passwords more efficiently.
While there might be many latent factors affecting user’s
choice of passwords, such as their demographics, sensitivity
of the website contents, and the website’s password policy,
previous studies [14] suggest that a user’s previous passwords
are the most dominant factor in the choice of their other
passwords. Therefore to understand the similarity between
passwords, we will focus only on a user’s passwords, agnostic
to the user who is choosing the password and the website
for which the password is being chosen for. We consider two
passwords to be ‘similar’ if they are often chosen together by
users.

More formally, let Σ be the set of characters allowed in a
password (e.g., all ASCII characters) and � be the maximum
allowed length of a password (e.g., 50). Let p denote the
probability that a user selects a password w ∈ Σ∗ for an
account. We denote the support of that distribution by W .
We model similarity between two passwords w and w̃ as
the conditional probability P

(
w
∣∣ w̃)

that a user selects the
password w ∈ W given that another of their password is
w̃ ∈ W . We can extend this definition of similarity to consider
multiple of a user’s past passwords w̃1, w̃2, . . ., and compute
the probability that w is chosen by the user. In that case, we
can model the conditional probability distribution of passwords
as P

(
w
∣∣ w̃1, w̃2, . . .

)
.

Prior studies have implicitly attempted to understand sim-
ilarity of human-chosen passwords using manually curated
mangling rules [13] or using probabilistic context-free gram-
mars (PCFG) [14]. In recent years neural networks have
proved to be very effective for many natural language tasks,
such as understanding word similarity or translating natural
language texts from one language to another. We adapt neural
networks-based NLP tools for modeling password similarity.
Using these tools, we build a more efficient attack and an
effective defense against targeted attacks.

Applications of password similarity models. A good pass-
word similarity model can be used to perform targeted attacks
against a user should an attacker have access to user’s pass-
words from other websites. Such model can also be useful
to create defenses against state-of-the-art targeted attacks. A
client-side application can warn / prevent users when choosing
a password w that can be dangerous for them in the face of
targeted attacks, by looking at the similarity between w and
various other passwords of the user. Another application of
password similarity can be in correcting password typos [7],
as typos often comprise of similar passwords.

Though all these applications of password similarity re-
quires learning conditional probability distributions, they need
different interfaces from the trained model. For example, to
construct a targeted attack, one must be able to efficiently
enumerate the conditional probability distribution to generate
guesses. However, in case of password strength meter, we
don’t need the capability of efficient enumeration. As such we
target two different kinds of models for password similarity.

The first model is a generative model, built using a
sequence-to-sequence-style model previously proposed for
language translation [16]. Given a password w̃, this model can
be used to enumerate similar passwords in decreasing order
of their conditional probability P

(
w
∣∣ w̃)

.
The second model we train is based on word embedding

techniques, usually used proposed to understand similarity
between words [17]. This model is useful to get a similarity
score between a pair of passwords (which is representative of
the conditional probability), but does not provide an efficient
way to enumerate similar passwords given only one input
password. While the generative model can be used to obtain
similarity scores too, the embedding model is sufficient to
build a strength meter. As we show in Section VII, it is easier
to train an embedding model, and it is more efficient to com-
pute similarity score between passwords than our generative
model.

Password breach dataset. The dataset we used for learn-
ing password similarity is a leaked compilation of various
password breaches over time. The dataset was first discovered
by 4iQ in the Dark Web [31].2 The dataset consists of 1.4
billion email-password pairs, with 1.1 billion unique emails

2While the leak is publicly available on the Internet, we do not want to
further publicize it via including its URL here. Researchers can contact the
authors for information.



Property Values % of PWs

Length

3 − 5 2
6 − 8 48
9 − 12 40
13 − 50 10

Composition

Lower case only 80
Upper case only 3
Letters only 38
Digits only 8
Special characters only < 0.1
Letters & digits only 55
Containing at least one letter,
one digit and one special char 5

Fig. 1: The distribution of password length and composition
in the data after cleaning.

and 463 million unique passwords. The (unknown) curator of
the dataset removed duplicate email, password pairs.

Although we do not know the exact leaks that were used
to compile this dataset, the folder contained a file called
“imported.log” that indicates the presence of all major leaks
before December 5, 2017. The listed leaks include Linkedin,
Myspace, Badoo, Yahoo, Twitter, Zoosk, Neopet, etc. Al-
though there was no official way to guarantee the authenticity
of the leak, a subset of the passwords have been verified as
legitimate by various researchers. (Alarmingly, passwords of
two authors appear in the leak.)

Dataset cleaning. Several of the passwords in the dataset
were uncracked hash values. To clean the dataset, we removed
any string that contains a substring of 20 or more characters
long containing only hex characters. This removed 1.5 million
passwords. We also removed passwords containing non-ASCII
characters and passwords that were longer than 30 characters
or shorter than 4 characters. Overall we removed 2.6 million
passwords (0.6%), reducing the number of valid passwords to
460.4 million. We also found 4, 528 users were associated
to thousands of passwords. These are very unlikely to be
passwords of a real user, so we removed these accounts.

The most popular password in the clean dataset (123456)
is used by 0.9% of all users. Therefore, the min-entropy of
the password distribution is 6.68 bits. The q-success rate λq is
defined as the expected success probability of an attacker who
can make q guesses per account. It is upper-bounded by the
sum of the probabilities of the q most probable passwords. For
our dataset λ103 = 0.11. These values are in-line with what
prior work has reported for password distributions [14], [32].
Figure 1 shows statistics about composition and lengths of
passwords in our cleaned dataset. More than 88% of passwords
were within length 6 and 12, and 80% of passwords contain
only lower case letters.

Joining accounts. The leak dataset contains account cre-
dentials in the form of email-password pairs, with duplicate
pairs removed. We want to merge the accounts to find sets of
accounts belonging to an individual user. This will give us the
list of passwords corresponding to a user. We explored three
heuristics to merge accounts as described below.

DE
full DU

full DM
full

Number of users (millions) 146 195 174
Number of passwords (millions) 183 210 190

Passwords per user
2 77.0 57.1 74.9
3 15.5 19.1 16.3
≥4 7.5 23.8 8.8

Password reuse rate 0.0 30.3 39.7

Edit distance

1 9.4 6.8 9.1
2 5.2 3.9 5.9
3 3.3 2.4 3.2
≥4 82.1 86.9 81.8

Fig. 2: Comparison of the datasets under three account joining
techniques: email address (DE

full), username (DU
full), and a com-

bination of email and username (DM
full). We only consider users

with at least two leaked passwords. The final set of rows give
the fraction of distinct passwords from the same user within
the indicated edit distance. Except for the first two rows, all
values are percentages (%).

• Email based (DE
full). In the first (and the most obvious)

strategy, we identify users and join accounts based on the
email addresses. We can claim that this strategy will only
merge accounts that belong to the same user as in most
of the cases, an email address belongs to a unique user.
However, because duplicate email-passwords were removed
from the dataset, we are not able to observe reuse of
passwords by a user in this method. A user can also have
multiple emails, which this strategy fails to capture.

• Username based (DU
full). We therefore consider another ap-

proach, in particular, using the username field of the email
address — the string preceding the domain name and ‘@’
symbol (also called local-part [33]) to further join accounts
that might belong to the same user. We merge two emails
if their usernames are equal. In this process, we found 30%
of passwords are reused by users (see Figure 2), which is
slightly below what prior works reported (40%) [8]. Also,
as we can see in Figure 2, the distribution of number of
passwords per user and the distribution of edit distances
between password pairs belonging to a user drastically
changed from what we get after email based joining. This,
we anticipate, is due to incorrect merging of accounts
belonging to different users.

• Mixed method (DM
full). To reduce false merges, we finally

consider a two-step approach. We first join accounts based
on email addresses. Then, two emails are considered “con-
nected” if the username parts of those emails are equal,
and the two password sets associated to those emails have
at least one password in common. All connected emails
are then considered belonging to a single user. Thus, two
emails belonging to a user might not have a direct common
password but they might share common passwords with
another email. This heuristic led to a password reuse rate
of 40%, while keeping the distributions of edit distances
and number of passwords per user very similar to what we
observed from only email based joining.



Another possible heuristic would be to look at more relaxed
policies for matching usernames across accounts. For exam-
ple, attackers may reasonably be able to conclude that “Al-
ice.Chang@service1.com” and “AliceChang@service2.com”
are accounts owned by the same person. We did not explore
this heuristic in detail.

After joining the accounts, we only consider users who have
at least two leaked passwords in the dataset, because training
and testing our targeted attacks, as well as personalized
strength meters, requires at least two passwords from a user
— one password is used as the target account password and
another as the one leaked.

As the username-based merging technique was not accurate,
we discard this from further discussion. The rates of password
reuse (40%) and substring permutations (18.2%) in DM

full (see
Figure 2) are in line with prior studies [13], [14]. Though we
do not have ground truth that the accounts generated by the
mixed method are correct, we believe, given the information
we have in the dataset, this is the best approximation of the
distribution of passwords chosen by a user.

We split the cleaned email-based dataset DE
full into two parts:

DE
tr (80%) and DE

ts (20%). Similarly the mixed-dataset into
DM

tr (80%) and DM
ts (20%). Unless otherwise specified, for all

training and validation (during training) we use DE
tr . This is

because the distribution of similar (unique) passwords of a user
in DM

tr and DE
tr were almost identical. Since we only consider

similar passwords of a user during training, we do not use DM
tr

for training separately. For testing, we use random samples
from both DE

ts and DM
ts .

IV. GENERATIVE MODELS OF PASSWORD SIMILARITY

In this section we describe how to construct a generative
model that estimates the conditional probability distribution
pw̃ for an input password w̃, where pw̃(w) = P

(
w
∣∣ w̃)

. A
password can be viewed as a sequence of characters w =
c1, . . . , cl. Therefore we can model the conditional distribution
of a sequence of characters given another as follows,

P
(
w
∣∣ w̃)

= P
(
c1, . . . , cl

∣∣ c̃1, . . . , c̃l′)
=

l∏
i=1

P (ci|c̃1, . . . , c̃l, c1, . . . , ci−1) .
(1)

This formulation of password similarity matches very
closely to the problem of statistical machine translation (SMT),
or more generally learning sequence-to-sequence translation.
Sutskever et al. [16] provided a very effective generic frame-
work for training sequence-to-sequence (seq2seq) models,
without needing to explicitly specify what the sequences
represent. Their seq2seq model uses an encoder-decoder-based
architecture. The encoder function maps the input sequence
onto a real valued vector v ∈ R

d for some hyperparameterized
dimension d. The vector succinctly “summarizes” the details
of the input sequence. The decoder takes the vector v and
outputs a conditional probability distribution of tokens of the
output sequence space.

A straw proposal for learning password similarity would be
to apply the seq2seq approach directly on passwords as char-

acter sequences. We call this model password-to-password or
pass2pass. However, this technique did not results in improved
performance compared to prior work. In Appendix A we give
the details of how we trained this model. Below we describe
an other (more effective) approach to modeling password
similarity using an encoder-decoder based architecture.

Password-to-path model. In pass2pass, we tried to learn the
conditional probability of a complete password. As that did
not perform well, we decided to learn the modifications a
user is likely to apply to their previous password. Password
policy of a website might impact choices of some of these
modifications. Though, our similarity model can be easily
extended to consider website password policies, for simplicity,
we will ignore the effect of password policy for now and
consider all passwords alike.

We treat a modification to a password as a sequence of
transformations defined as follows. A unit transformation
τ ∈ T specifies what edit to apply and where, in a password.
Therefore, τ is denoted by a triplet of the form (e, c′, l), where
e denotes an edit to apply, c′ ∈ Σ∪{⊥} is character or empty
string, and l ∈ Z� is a location of the edit in a password.
We consider three types of edits: substitution (sub), insertion
(ins), and deletion (del). For insertion and substitution edits, c′

denotes the character to insert or to substitute with; in case of
deletion c′ is always the empty string ⊥. For example, applying
a transformation (sub, ‘!’, 8) on the string ‘password1’ implies
substituting the 8th (last) character in the password with the
character ‘!’, which will result in the string ‘password!’.

Given a pair of passwords (w̃, w) with edit-distance t, we
can find a sequence of transformations τ1, . . . , τt that when
applied to w̃ in a cumulative manner will produce w. Such
transformations are what we call a path Tw̃→w ∈ T ∗. To
compute the path between two passwords, we pick the one
that is the shortest, where ties are broken by favoring deletion
over insertion over substitution. The transformations in the
path are ordered by the location of the edit. (See Appendix C
for more details.) For example, the path from ‘cats’ to ‘kates’
(edit distance of 2) is: {(sub, ‘k’, 0), (ins, ‘e’, 3)}.

In pass2path, we define the conditional probability of a
password w given another password w̃ as follows.

P
(
w
∣∣ w̃)

= P
(
Tw̃→w

∣∣ w̃)
=

t∏
i=1

P
(
τi

∣∣ w̃, τ1, . . . , τi−1

)
,

where t is the minimum edit distance between two passwords
w and w̃, and Tw̃→w = τ1, . . . , τt.

We use an encoder-decoder based model where the output
of the decoder function is the probability distribution over
transformations in T . With this, we can rewrite the above
equation as

P
(
w
∣∣ w̃)

=

t∏
i=1

P
(
τi

∣∣ v0, τ1, . . . , τi−1

)

=

t∏
i=1

P
(
τi

∣∣ vi−1, τi−1

)
,



where v0 is the output of the encoder, vi+1 is the output of the
decoder on input vi and τi, and τ0 is a special beginning-of-
path symbol. vi−1 contains the information from τ1 . . . τi−2

and thus replaces τ1 . . . τi−2 in the final equation. We set up
the task of learning this probability model as a supervised
learning task, with the training objective being to find the
parameter θ that maximizes the log probability of the correct
edit paths between password pairs chosen by individual users.
Let D be the set of such password pairs, then the training
objective is

argmax
θ

1

|D|
∑

(w̃,w)∈D

logP
(
Tw̃→w

∣∣ w̃ ; θ
)

The model architecture of pass2path is similar to encoder-
decoder based architecture used for seq2seq instantiated using
two recurrent neural networks (RNN) [16]. The encoder and
decoder RNNs are trained together. The details of the model
architecture are given in Appendix B. Below we will describe
some further training details for pass2path. Once trained, the
model can be used to generate similar passwords given a
leaked password w̃. The details on how to generate the q most
probable passwords are given in Section V.

Training pass2path. We train our password models using the
data created based on the email dataset (DE

tr). For each user in
the dataset, we compute all pairs of passwords including re-
ordering of the pairs, resulting in 823 million password-pairs.

We represent the passwords as a sequence of key-presses
(key-sequence) on a US keyboard. For example, ‘PASS-
WORD!’ is represented as ‘〈c〉password〈s〉1’, where 〈c〉 and
〈s〉 represents caps-lock and shift key on the keyboard. Chat-
terjee et al. [7] showed that key-sequence representation of
passwords are effective for improving password typo correc-
tion, and we use it here as it captures capitalization-related
transforms better than standard edit distance.

For each pair of passwords in the training set, we gen-
erated the minimum path between them using a dynamic
programming based algorithm. The algorithm is an extension
of the seminal algorithm for calculating minimum edit distance
between strings [34]. Given a pair of passwords w̃ and w, we
first convert the passwords into key-sequences, and then find
a path of transitions that can transform w̃ into w. We describe
our algorithm in detail in Appendix D.

A manual sample of a small number of password pairs
revealed that a large fraction of them were completely dif-
ferent without any apparent semantic or syntactic similarity.
Therefore, we decided to filter the passwords before training
based on path length (which is also equal to the key-sequence
edit distance between the passwords). Given a cutoff δ, we
only consider password pairs with path length at most δ.
We begin with δ = 2, finish three epochs of training, and
then transfer-learn the network incrementally by adding more
pairs with δ = 3 and then δ = 4. We found this way the
model converges faster, and attains higher accuracy. Overall
the model was trained on 144 million password pairs More
details on training pass2path is given in Appendix C.

The pass2path model has 2.4 million parameters and takes
60 megabytes of storage space on disk. It took about two days
to train the model with batch size 256 on an Nvidia GTX
1080 GPU and Intel Core i9 processor. The training, however,
required less than 2 GB of physical memory.

V. TARGETED GUESSING ATTACK USING PASS2PATH

As discussed in Section II, a primary motivating application
for learning password similarity is to understand the danger
of targeted guessing attacks, where an adversary generates
password guesses educated from a user’s other password(s).
In this section, we will describe how to generate thousands of
guesses from our trained pass2path model to build an effective
targeted attack. We will show via simulation that our attack
outperforms all prior guessing attacks.

Generating similar passwords. To utilize a password sim-
ilarity model for a targeted attack, we need to be able to
generate, given a leaked password w̃, a list of passwords
w1, w2, . . . , wq in decreasing order of likelihood. Namely,
P

(
wi

∣∣ w̃)
≥ P

(
wj

∣∣ w̃)
for i < j. Here q is some number

of guesses, a parameter we will concretize below. Generating
w1 is pretty straightforward given our pass2path model. First,
convert the input password w̃ into a fixed dimension vector
vw̃ ∈ R

d, and feed it to the decoder along with a special
beginning-of-sequence symbol. The decoder outputs a proba-
bility distribution over the set of transformations T . Pick the
most probable output in each iteration and use that as the input
to the next invocation of the decoder until the end-of-sequence
symbol is reached. The output sequence of transformation is
then applied to the input password to generate a new password.

This procedure however only outputs the most probable
password. To generate more than one output, we used breadth-
first beam search technique [35]. The beam search algorithm
uses a set of size q — called the beam — which, at each
iteration of decode, stores the q most probable paths (and net-
work states and probabilities) generated so far. We call a path
complete if it ends with the end-of-sequence transformation,
and incomplete otherwise. The beam is initialized with the q
most probable transformations output by the decoder on the
input of the vector vw̃ and the beginning-of-sequence symbol.
Next, for each incomplete path τ1, . . . , τi currently stored in
the beam, the decoder is called on the last transformation τi
of the path, and new paths are computed by appending the
transformations to the path. Only the q most probable newly
constructed paths are kept in the beam for the next iteration.
This step is repeated until a predefined maximum iteration
count is reached, or all the paths in the beam are complete.

Beam search is a greedy algorithm and not guaranteed to
provide the q most probable paths. However, it is a widely used
heuristic alternative for finding the top-q guesses given limited
memory and time. To find q paths for a input password, beam
search will make at most q · t calls to the decode procedure,
where t is a parameter denoting the maximum length of the
output path allowed in the model.

As there can be multiple paths that when applied to a
password w̃ outputs the same password w, the beam search



with beam width q might not generate q unique passwords.
We, therefore, generate q′ ≥ q passwords and then output the
first q unique passwords. In our experiment, we found taking
q′ = 2 ·q is sufficient for finding q unique passwords for more
than 99.9% of passwords.

Evaluating targeted guessing attacks. We evaluate a tar-
geted attack based on what fraction of user accounts can be
compromised with the knowledge of another of their leaked
passwords. We focus on the online attack setting, where an
account should be blocked (i.e., login will be disallowed
without an out-of-band authentication) after too many failed
login attempts. The number of attempts, and therefore maximal
guesses available to an attacker before an account is blocked
is what we call the query budget q. For evaluation of attacks,
we will use a guessing budget of q ∈ {10, 100, 1000}. These
are typical values used by authentication services.

We use both test datasets: DE
ts, generated using only the

email to identify users, and DM
ts , generated using the mixed

method (see Section III). The first simulates attacking a ser-
vice that has deployed credential-stuffing countermeasures,
e.g., by forcing users to select new passwords should their
previous password exist in a leak. Because repeat use of
passwords across two accounts is disallowed, we refer to this
below as the “without-repeats” setting. The second simulates
attacking a service that has not deployed such a countermea-
sure, and we, therefore, refer to it as the “with-repeats” setting.

Either of the datasets contains millions of users. Some
of the targeted attacks that we evaluate are computationally
very expensive. We need to pick a smaller but representative
sample of the test data. We computed the variances of the
rates of using the same and similar passwords by a user for
different test set sizes. We found the variance is sufficiently
low (< 0.5%) for test sets of size ≥ 105. Therefore, we
randomly sample 105 random users for each dataset to run our
evaluation. For each selected user, we pick two passwords at
random without replacement from the multiset of passwords
associated to the user — one of them (chosen randomly) is
considered as the leaked password w̃ and the other as the target
password w.

We compare our attack algorithms against the two existing
targeted guessing attacks. Das et al. [13] created a manually
curated list of transformations to generate similar passwords.
Wang et al. [14] provided multiple attacks based on informa-
tion about a user, including their demographics, their other
passwords, and a combination of these. We will focus on
the TarGuess-II attack from [14] which operates with the
knowledge of prior passwords only. Wang et al. generously
provided an implementation of both the Das et al. algorithm
and their TarGuess-II algorithm. The latter requires training
from a dataset; see Appendix E for details.

We also compare against two attacks based solely on the
empirical distributions of passwords in the training set. The
first one is an untargeted attack, which simply guesses (for
any leaked password) the q most-used password by users in the
training dataset DE

tr . We found this untargeted empirical model

outperforms the state-of-the-art untargeted guessing attack [24]
for a small number of guesses, such as q ≤ 104.

The second one is a targeted empirical attack, where for
a given leaked password w the attacker outputs the q most
popular passwords for the users who also use the password w.
While this targeted empirical attack is conceptually straight-
forward, it would require a prohibitive amount of efficiently
accessible memory to implement. We, therefore, simulate the
efficacy of this attack by computing the empirical distributions
of passwords that occur as leaked in the test data.

We use the leaked password as the first guess for all targeted
attacks in all settings. The untargeted empirical attack uses a
fixed list of q guesses for all accounts in all settings.

For higher values of the query budget q, some attacks fail
to produce q guesses for some leaked passwords. In those
cases, we just abort the attack without using up the remaining
query budget. In practice, one might try to extend the number
of guesses in some ad hoc way, e.g., by adding untargeted
guesses. Looking ahead, such an embellishment would not
improve the attacks sufficiently to catch up with pass2path.

In Figure 3 we show the different attacks’ efficacy in the
two settings. We discuss the results for each setting in turn.

Attack efficacy in the without-repeats setting. First we dis-
cuss the DE

ts results (the left table), where the target password
is distinct from the one leaked. Notably, for query budget
q = 10, the targeted attack based on the empirical distribution
performs better than all prior targeted attacks. However, its
lack of generalizability hampers its efficacy at higher query
budgets. On average only a few associated passwords are in
the training dataset for each password, and this attack can only
guess passwords observed in the training dataset.

The Das et al. attack doesn’t require training data and is
the fastest to execute among all targeted attacks we tested. It
performed comparatively well, cracking 11% of user accounts
in less than a thousand guesses. For many passwords, however,
this targeted attack was not able to produce 1, 000 guesses
(because it runs out of mangling rules to apply to the leaked
password). The Wang et al. [14] algorithm was the state-of-
the-art targeted guessing attack before our work. It cracks
13% of user accounts in less than 1, 000 targeted guesses.
However, the guess generation is very slow taking more than
three days to generate the guesses for all the passwords in
just one of our test sets on one thread of a machine with
Core i9 CPU and 128 GBs of memory. While in online
guessing attacks, computational complexity isn’t particularly
important (unlike in offline guessing attacks that attempt to
crack hashes), we mention it because it proved a significant
engineering challenge in our simulations.

Finally, pass2path performed the best among all the attacks,
cracking about 13% of passwords in 100 guesses(40% more
than what Wang et al. could crack), and 15.8% of passwords
in 1, 000 guesses (20% more). The pass2path algorithm is
also relatively slow computationally, requiring four hours of
computation to evaluate a test set. This was still significantly



Attack Method q = 10 q = 102 q = 103

Untargeted-empirical 1.6 2.5 5.2
Targeted-empirical 6.5 7.8 9.0
Das et al. [13] 5.8 9.2 11.0
Wang et al. [14] 6.5 9.3 13.1
Pass2pass 6.9 9.5 10.9
Pass2path 9.9 13.1 15.8

Attack Method q = 10 q = 102 q = 103

Untargeted-empirical 0.9 1.9 4.8
Targeted-empirical 42.6 43.4 43.9
Das et al. [13] 42.7 44.8 45.9
Wang et al. [14] 43.2 44.3 47.0
Pass2pass 43.7 45.0 45.8
Pass2path 44.8 46.7 48.3

Fig. 3: Percentage of passwords guessed by various attacks in q guesses on the two test sets generated from (left) DE
ts, the

without-repeats setting, and (right) DM
ts , the with-repeats setting. In the latter case, a major boost in guessing performance

comes from the fact that 40% of target passwords were the same as the one leaked.

faster than Wang et al.

Attack efficacy in the with-repeats setting. We now discuss
the results on the test set derived from DM

ts . Here about 40%
of passwords are reused by users, making them an easy target
for credential stuffing. As such, in this case for each attack,
we use as the first guess the leaked password. The remaining
q − 1 guesses are drawn according to the attack technique.

The untargeted empirical attack performs poorly, probably
unsurprisingly, as it does not take advantage of the leaked
password. The baseline efficacy of other attacks is very high
in this context, as 40% accounts are cracked via credential
stuffing alone. Our attack pass2path again outperforms all
previous algorithms, though here proportionally the improve-
ments are smaller due to high baseline efficacy. For example,
the improvement in 1,000 guesses over the best prior attack
(Wang et al.) is only a few percentage points. That said,
absolutely speaking pass2path compromises nearly half of user
accounts appearing in a leak using 1, 000 guesses.

Without credential stuffing defenses, a user’s vulnerability to
having their account compromised in 1, 000 guesses increases
by a factor of ten compared to an untargeted attack, should
one of their previous passwords be revealed in a leak.

Attack with multiple leaked passwords. The targeted attack
we explained so far assumes access to only one leaked
password. But in some cases, attackers will have access to
multiple leaked passwords for a target account. In theory, one
can train a model similar to pass2path but that uses a sequence
of passwords as input instead of only one.

We, however, decided to take a simpler ad hoc approach.
We independently generate sorted lists of guesses for each of
the input passwords and then merge the lists by picking one
from each list in a round robin manner, until the guessing
budget is exhausted. To test this attack strategy we picked 105

users randomly from without-repeat DE
ts dataset, who have at

least three or more passwords leaked. For each user, we pick
one password randomly as target and the remaining passwords
as the leaked passwords. Our heuristic attack approach could
compromise 23% of users accounts in 103 guesses — a 47%
improvement over using just a single leaked password. Future
work could explore more advanced models that more carefully
utilize multiple leaked passwords.

Attacking any of the accounts. In this experiment, we
consider cracking any of a user’s accounts given that the

100 101 102 103 104 105

0

5

10

15

20

25

6×

3×

# of guesses

%
of

pa
ss

w
or

ds
cr

ac
ke

d

Pass2path
Untargeted

Fig. 4: The relative advantage of targeted attacks and untar-
geted attacks for large guessing budgets, and crossover point
where untargeted attacks becomes more effective than targeted
attacks. Due to computational limits, we did not compute
points for greater than 104 guesses using pass2path, and so
the dotted line reflects the observed trend.

attacker knows one of their passwords. In this case, the attacker
gets q queries for each account. To test the efficacy of this
attack, we sample 105 users from DE

ts who had more than
two leaked passwords and pick one of the passwords as the
leaked password and the rest as target passwords. For each
account, we generate 103 guesses for the leaked password
using our pass2path targeted attack and check if any of the
target passwords is in the list of guesses. We found 18% of
users who lost one of their passwords to an attacker has at
least one other account that is susceptible to a targeted attack,
even though passwords used in those accounts are different
from the one leaked.

Crossover between targeted and untargeted attacks. The
targeted attacks are very effective for a small number of
guesses (q ≤ 103), compared to an untargeted guessing
attack. We observed, however, that as q increases the value of
tailoring attacks to the target diminishes. We plot the efficacy
of pass2path (targeted) and the untargeted empirical attacks
in Figure 4 for different number of guesses. To generate this
graph, we sampled 105 random users from DE

ts and for each
user sampled two passwords randomly. Thus we compare the
advantage of our targeted attack against the best performing
untargeted attack, ignoring the advantage of credential stuffing.

As can be seen, in a guessing budget of q = 10, the



pass2path targeted attack can compromise six times more
accounts (10% of the test accounts) than what the untargeted
attack could (1.6% of the test accounts) . This is also shown
by the first column of the left table in Figure 3. This relative
advantage however reduces with increased query budget, and
if the attacker can make many (say, q ≥ 105) guesses the
untargeted attack becomes more advantageous. In an offline
attack setting, where an attacker steals the password hash
database of a web service and tries to crack the password
hashes by making billions of guesses, targeted attacks will be
of limited use.

Discussion. In line with prior work, we have used simulations
to assess the efficacy of targeted guessing attacks. In practice
some additional complications will arise for attackers, such
as website-specific rules about password composition. A great
advantage of the pass2path model is that it can be adapted to
generate passwords matching a website password policy easily.
As we show in Section VI, using transfer-learning pass2path
model can be retrained only on a subset of the dataset that
meets the policy.

Successful password guessing may not alone be sufficient
to access modern services that employ two-factor authenti-
cation mechanisms. The use of two-factor authentication has
increased in recent years, but is still not widespread. Some
two-factor authentication systems have vulnerabilities [36],
[37] that could be exploited in conjunction with our password
guessing attacks.

Finally for the test simulation, we joined accounts using
various heuristics but there was no way of determining the
number of usernames that were correctly matched. The test
dataset also consisted of passwords present in the leaks and
thus may be biased towards weaker passwords in general.
We wanted to validate the efficiency of the attacks on actual
accounts which motivated us to perform real cracking experi-
ments as discussed in the next Section VI.

VI. TARGETED ATTACK EFFICACY IN PRACTICE

The evaluation of various targeted attacks, in the previous
section, was done by comparing their performance against a
hold-out test dataset. Here, we turn to evaluating the efficacy
of targeted attacks against real accounts, thereby simulating
exactly how an attack would proceed in the wild. To do so,
we partnered with the IT Security Office of Cornell University
(ITSO). We test what fraction of Cornell users’ accounts
are vulnerable to online guessing attacks. Though untargeted
attacks have been analyzed on real-user accounts (e.g., in [5]),
to our knowledge, this is the first evaluation of targeted attacks
on real user accounts.

In the breach compilation data, we found 19, 868 emails
with valid Cornell accounts. From the password change logs
that ITSO maintained since 2009, we verified at least 15, 776
accounts definitely have a password selected by the user.
Unless otherwise specified, all experiment results below are
presented with respect to these 15, 776 accounts. We ex-
perimented with three online guessing attacks against these
accounts: untargeted empirical, Wang et al., and pass2path.

Attack q = 10 q = 102 q = 103

Untargeted-empirical 0 0 0.1
Wang et al. [14] 0.2 0.6 2.6
Pass2path 3.3 6.0 8.4

Fig. 5: The percentage of the 15, 776 active Cornell accounts
found in the breach dataset that can be compromised within
the indicated number of guesses for three attack approaches.

Cornell uses the L8C3 password policy, that is, a password
must have at least 8 characters from at least three different
character classes: upper-case letters, lower-case letters, digits,
and symbols. We used transfer learning to retrain pass2path
on training data for which the target passwords meet Cornell’s
password composition requirements. We also adapt untargeted-
empirical attacks by considering the most popular passwords
that meet the Cornell password composition requirements.
However, there is no simple way to tailor the guesses generated
by the Wang et al. attack algorithm. More details about the
experiment setup are given in Appendix F.

Results. The results of the experiments are summarized in
Figure 5. The untargeted empirical attack performed quite
poorly: it was able to crack only 0.1% of the target accounts.
The Wang et al. attack did a bit better, cracking up to
2.6% of these accounts but as mentioned, its performance
is negatively affected by the difficulty of customizing it to
Cornell’s password requirements.

Pass2path performed the best, cracking over 8.4% of the
accounts in less than 1, 000 guesses. Among which, only 22
(0.1%) accounts were cracked using the same password as the
one leaked. This is because ITSO uses a third-party service to
help prevent credential stuffing attacks.

Recall that our simulations using hold-out data from the
breach suggested a success rate of 16%. While it is unclear
what explains the gap, we believe it is due to differences in the
distribution of passwords at Cornell compared to those found
in these breaches. In other words, targeted attacks are slightly
overfit to these public data breaches and rates will vary when
assessing vulnerability in real systems.

Nevertheless, this experiment shows the vulnerability of
accounts to targeted attacks, with 1, 374 active accounts were
vulnerable to at least one of the remote guessing attacks. We
notified ITSO about these vulnerable accounts and we are
working with ITSO to safeguard them.

VII. DEFENDING AGAINST TARGETED ATTACKS

The previous section highlights the danger of targeted
guessing attacks even when using state-of-the-art credential-
stuffing countermeasures. Can we protect accounts against
these attacks? One approach would be for site operators
to simulate targeted attack as we did for ITSO, and reset
passwords for those vulnerable within the site’s threshold of
incorrect login attempts. But even doing this, users might
in turn pick variants of their passwords that are themselves
vulnerable. We would therefore like to additionally have a



method for gauging password strength in the face of both
standard and targeted guessing attacks.

Password strength meters. Password strength meters (PSMs)
give real-time feedback to users about the strength of their
passwords. Historically, password strength was measured us-
ing Shannon entropy or heuristic variants [27], but these
measures are wildly inaccurate [28], [38]. State-of-the-art
strength meters [24], [26] instead infer the strength of a
password by estimating its guess rank (β) under the best
known guessing attack. The guess rank of a password is
the number of guesses an attack makes before reaching the
password. But the guessing attacks considered so far are user
agnostic and therefore rather inaccurate relative to targeted
guessing attacks, as we now explain.

Consider the following example situation. A user goes to
register a password “atbaub183417a” at some website under
the username “alice@gmail.com”. The zxcvbn strength me-
ter [26], which is currently in use on the Internet and consid-
ered to be a best-of-breed PSM, suggests that the guess rank of
the password is 1012, implying that it is a very strong choice.
But should alice@gmail.com exist in an easily accessible
leak with password “atbaub183417123”, our targeted attack
guesses it in less than five guesses. Later we will quantify more
broadly how often existing PSMs overestimate the strength of
passwords easily cracked by pass2path.

Personalized password strength meters. To deal with the
above gap, we propose personalized password strength meters
(PPSM). PPSMs can be used to give users feedback about their
passwords during password selection, either as a nudge or as a
strict requirement that passwords be of a requisite strength. A
PPSM takes as input a target (potential) password w and a set
P of associated passwords of a user, and returns a guess rank
under the best-known attack, including targeted attacks. In the
future we might extend PPSMs to take into account additional
user- and context-specific information, such as username and
site domain name.

One approach for estimating the guess rank of a password w
would be to return the guess rank under the best known attack,
such as the one using pass2path. However, generating guesses
using a neural network based model is both computationally
expensive and bandwidth intensive (if needed to be sent to a
client over the network).Melicher et al. [24] use various clever
optimizations to reduce an RNN model to be more efficient.
We could potentially adapt these techniques to our RNN-
based encoder-decoder architectures. Instead we will explore
a fundamentally different approach that will be more efficient.

Traditionally, password strength meters provide a score
(approximately reflecting guess rank) that is easy to com-
pute and easy to interpret. For example, zxcvbn [26] gives
a score in {0, . . . , 5} and nn-pwmeter [39] gives a score
between [0, 100]. Therefore, we observe that for most uses, a
PPSM need only output a strength score, and not necessarily
output a guess rank. Therefore, underlying our PPSM will be
a binary classifier C that takes as input two passwords w and
w̃ and outputs 0 if the target password w is probably easily

guessed given another password w̃ using a targeted guessing
attack, and outputs 1 otherwise. The reason for building a
binary classifier is because passwords susceptible to targeted
attacks are passwords that can be guessed in few guesses. We
use 1,000 as “few”, but our framework can be easily used with
other values.

To build such a classifier we will use a password similarity
measure based on word embedding techniques. The benefit of
all this is that we can get by without a (generally more expen-
sive) generative password model, instead using an embedding-
based similarity model that quickly outputs a similarity score
between two passwords but does not provide an efficient way
to enumerate similar passwords from a leaked one.

Looking ahead, we will then show how one can build our
PPSM in a way that combines multiple strength estimates,
in particular a conventional untargeted strength meter and our
similarity score. This will yield a strength meter that accurately
measures the strength of a target password w under both
targeted and untargeted attacks.

In the rest of this section, we will discuss how we build
the classifier C using a password similarity measure based on
word embedding techniques.

Password similarity via embeddings. Similarity between
words has been explored in NLP for decades. Recently neural
network-based word embedding techniques have been shown
to be very effective [17], [18], [40]. Following word embed-
ding models, we define a password embedding as a function
that maps a password to a d-dimensional vector in R

d. The
dimension d is a parameter, often chosen to be relatively
small, such as 100 or 200. The embedding is trained so that
vectors of similar passwords have low distance (for some
measure of distance). Similarity will be context-dependent. In
the case of our personalized strength meter two passwords
should be considered similar if they are often chosen by
the same user. An embedding gives a way to define a score
function s : W × W 	→ [−1, 1] that measures the similarity
of two passwords: apply the embedding and then compute the
distance between the resulting vectors.

We build password embeddings using the FastText model
described in [18]. The FastText model learns similarities by
splitting a large corpus of texts into a set of contexts (short
sequences of words). Words that often appear in a context
together are considered similar. We apply this to passwords
by treating passwords chosen by the same user as being in
a context together. FastText takes into account n-grams of
words and, as such, can produce an embedding that handles
words outside of the training set. This will be important for
our application.

For our purposes, a password is represented as a union
of its n-grams for n ∈ [mmin,mmax]. Let zw denote
the set of n-grams of password w. The beginning and
end of each word is clearly denoted by adding two spe-
cial symbols “〈” and “〉” (that are not otherwise in Σ).
For example, a password w = qwerty with mmin =
4 and mmax = 5, will have the following n-grams.



zw = {〈qwerty〉, 〈qwe, qwer, wert, erty, rty〉,
〈qwer, qwert, werty, erty〉}. (Note, the full pass-
word is always included in zw.) Then, the score function is:

s(w, w̃) =

(
1

|zw|
∑
g∈zw

ug

)� (
1

|zw̃|
∑
g∈zw̃

ug

)
(2)

Here ug is the vector embedding of an element g ∈ V , and
V is the union of all zw for w’s seen in the training data. We
denote the embedding of a password w ∈ W as vw, which is
computed as vw = uw if w ∈ V else, vw = 1

|zw∩V|
∑

g∈zw∩V
ug .

If neither the password w nor any of its n-grams is present in
V , the embedding of w is set to a random vector in R

d.

Training a password embedding. To train our password em-
bedding FastText model we used the skip-gram approach with
negative sampling. We represent each password as a sequence
of key-presses, as we did for training pass2path in Section IV.
The model requires choosing various hyperparameters.

We set the dimension of the vectors to be d = 100. This
results in much faster training compared to the normally
recommended d = 300, as well as better performance of the
classifier we build using the embeddings (See below.) We set
the sub-sampling to 10−3. Sub-sampling smooths out the fre-
quency of updates between frequent and infrequent passwords
by randomly ignoring some of the frequent passwords. We
also only consider passwords that appeared at least 10 times
or more in our training dataset. Finally, we set the minimum
size of the n-grams to consider mmin = 1 to ensure that we
can construct an embedding for any password that is not seen
during training. We set mmax = 4.

Classifying passwords using similarity scores. We want
to use the password similarity function s to build a binary
classifier C, which takes a pair of passwords and outputs
a binary score. To do so, we determine a threshold α: for
any password pair whose similarity score is greater than α
we assign them a score of 0, and 1 otherwise. We denote
a classifier with threshold α as Cα. We call a password pair
vulnerable if the target password w can be guessed within 103

guesses by any of the three targeted attacks known so far —
Das et al., Wang et al., and pass2path — given w̃. We want
to choose α so that it correctly identifies vulnerable password
pairs (by outputting 0 on them), while otherwise maximizing
the number of password pairs for which it outputs 1. The
latter competing goal stems from usability of the classifier
during password registration, which would be hampered by
overzealous marking of password pairs as vulnerable when, in
fact, they are not.

Relative to some set of password pairs, the recall of Cα
is the fraction of vulnerable password pairs whose similarity
falls above the threshold α. The precision is the fraction of
password pairs whose similarity is above the threshold α that
are actually vulnerable.

We compute the threshold in the following way. We pick
randomly 105 users from DE

ts. For each user, we pick two
passwords randomly from the set of passwords associated

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Threshold (α)

Pe
rc

en
ta

ge
(%

)

Precision
Recall

Fig. 6: Precision and recall of our PPSM classifier for different
values of the threshold α computed over a random sample of
105 password pairs from DE

ts.

with them without replacement. One of the passwords (chosen
arbitrarily) is considered as the target w, and another as the one
leaked w̃. For each pair (wi, w̃i), we flag them as vulnerable
or not using the three targeted guessing attack as discussed
above. This constitute our ground truth. Now we compute the
similarity scores s(wi, w̃i) between each pair. For a sequence
of thresholds α ∈ [0, 1] we compute the precision and recall of
Cα. The resulting precisions and recalls are shown in Figure 6.
As can be seen from the graph, there exists a trade-off between
precision and recall. To ensure a recall of 99% — being able
to detect 99% of vulnerable password pairs — we pick a
threshold of α = 0.5. The precision of C0.5 is 60%.

Compressing embedding models. Underlying our password
embedding model is a look-up table with keys being a list
of frequent passwords and their n-grams, and values be-
ing d-dimensional real valued vectors. Therefore, it requires
O(d · |V|) space to store the embedding. This is more than 1.5
gigabytes for our best performing model. Here we explore two
techniques to reduce the size of the model while maintaining
good accuracy in identifying weak passwords for targeted
guessing.

First, we observed that the quality of the model remains
almost the same even after removing all the stored password
embedding values vw = uw for w ∈ V . Instead these values
can be estimated via vw = 1

|zw∩V|
∑

g∈zw∩V
ug . Removing the

vocabulary of words from the model reduced the size from
1.5 gigabytes to only 195 megabytes, without any noticeable
change in the accuracy of the strength estimate.

Next, we used the product quantization (PQ) technique [41]
to further compress the vectors, which has been shown to
be effective for compressing neural network models [24]. PQ
takes a parameter η which determines the compression ratio —
the lower the value of η the smaller the model size, but also the
worse the accuracy of reconstruction of the input vectors after
compression. The reconstruction error of the n-gram vectors
in turn impact the score function and the classifier Cα.

We construct the classifier Cα for different values of η,



η Size (MB) Precision (%) Recall (%)

100 50.0 59.1 99.3
10 5.3 48.5 99.0
5 3.0 41.3 98.6

Fig. 7: Effect on the precision and recall of the classifier C0.5
when compressing the underlying password embedding model
using product quantization (PQ) for different values of η.

and compute their precision and recall on a sample of 105

password pairs chosen from that many random users from DE
ts.

The results are noted in Figure 7. We can see there is little
effect on recall even after compressing the model to 3 MB
(with η = 5). The precision reduced from 59% to 41%, which
we believe to be acceptable.

VIII. PPSM EVALUATION

We build our PPSM, called vec-ppsm, with two com-
ponents — one responsible for estimating strength against
targeted attacks and another for estimating strength against
untargeted attacks. For the former we use our classifier Cα
from Section VII, and for the latter we will use zxcvbn due
to its accuracy and performance. Vec-ppsm estimates the
strength of a password w in the range 0 (least secure) to 4
(secure), given a set of (leaked) passwords P .

Recall Cα can classify a password given only one other
password. To use it in vec-ppsm, when there can be more
than one password in the given password set P , we use a
min-strength approach also used by zxcvbn. That is to say, we
compute the strength score of w given each w̃ ∈ P , and output
the minimum, minw̃∈P Cα(w, w̃). If P is empty it outputs 1.

After this, in order to estimate strength against untargeted
attack, vec-ppsm works in conjunction with a conventional,
untargeted strength meter, such as zxcvbn: if the targeted
strength score of w given P is 0, vec-ppsm outputs 0,
otherwise it outputs the score output by zxcvbn.

Other approaches for comparison. We compare the efficacy
of vec-ppsm against two state-of-the-art strength meters: zx-
cvbn [26] and nn-pwmeter, a neural network based strength
meter proposed in [24], [39]. The default behavior of these
strength meters is to be agnostic to user’s other passwords.
However, zxcvbn accepts an optional argument to add site-
specific password blacklists. We used this option to simulate
a targeted strength meter version of zxcvbn, what we will refer
to as tar-zx. It applies zxcvbn, setting the optional argument
to the set of (leaked) passwords P . The vanilla use of zxcvbn
without such modification is called untar-zx in the following.

Both untar-zx and tar-zx gives a score 0 for passwords
that could be guessed in less than a thousand guesses. nn-
pwmeter returns a percentage value with 0 representing weak
passwords and 100 representing very strong. Thus we divided
it into 5 parts and assigned a score of 0 to passwords with
score less than 20.

In theory, previous targeted attacks [13], [14] can be used to
construct a personalized strength meter, but Das et al. performs
poorly as a targeted attack (see Figure 3), and Wang et al.’s

Strength Meter q ≤ 10 (%) q ≤ 103 (%) Uncracked (%)

tar-zx 40 29 8
untar-zx 12 9 8
nn-pwmeter 35 29 23
vec-ppsm 100 96 20
vec-ppsm (compressed) 99 96 31

Fig. 8: Comparing the percentage of vulnerable passwords
that are assigned strength zero (“unsafe” to be used) by
the considered strength meters. We used untar-zx as the
untargeted strength estimate component in vec-ppsm. The last
row to vec-ppsm using the compressed embedding model.
The rightmost column gives scores for passwords that are not
cracked in 103 guesses by any of the targeted attacks.

guess generation procedure is too slow to generate many
guesses (e.g., 103) in real time. Thus neither are immediately
suitable to be used for constructing a strength meter.

Evaluating vec-ppsm. We sampled 105 users randomly
from the test dataset DE

ts, and for each user, we picked
two passwords randomly without replacement as the target
password w and the user’s other password w̃. Then we try to
crack the target passwords using the pass2path targeted attack
from Section V. We also compute the strength of the target
passwords under all the strength meters under consideration.

In Figure 8, we show the percentage of vulnerable pass-
words — guessable in less than 10 and 1, 000 guesses by
pass2path — that are assigned strength 0 (unsafe to be
used) by the various strength meters. Unsurprisingly, all the
prior strength meters perform poorly: they assign 70–90% of
vulnerable passwords a score of 1 or more (meaning that the
passwords are safe against online guessing attacks). However,
these passwords are guessable in less than 1, 000 guesses by
our targeted attack, and therefore dangerous to use.

The scenario is perhaps even more concerning when we
only focus on the passwords that can be guessed in q = 10
attempts: more than 60% of them are considered safe by prior
strength meters. The best-performing strength meter among
the three prior meters is tar-zx, which constructs a blacklist
by applying a set of mangling rules to the input password,
deletes all occurrence of those blacklisted strings from the
target password, and then computes its strength. Even then,
tar-zx can only detect 40% of passwords that are severely
vulnerable to targeted attack in less than 10 guesses.

Finally, vec-ppsm, can detect 96% of all passwords that
can be guessed in 1, 000 guesses. The compressed version of
vec-ppsm performs similarly, except with increased rate of
false positives. (See the last column in Figure 8.)

We also investigated whether or not vec-ppsm flags the
Cornell account passwords found to be vulnerable to one of
the three online guessing attacks as per Section VI. We found
vec-ppsm assigns score 0 (flags unsafe) to 99.1% of the vul-
nerable passwords, given the associated leaked passwords. The
remaining 0.9% are actually passwords that were vulnerable
to the untargeted empirical attack, not a targeted attack. In
theory the untargeted attack strength meter underlying vec-



ppsm should have flagged these passwords as weak, but it
does not take into account the Cornell password policies. This
could be addressed by modifying the untargeted attack strength
meter to do so.

Deploying vec-ppsm. There are a few different deployment
scenarios where PPSMs will help improve security, which we
discuss now.

Perhaps the simplest place to immediately deploy a PPSM is
during a password change workflow in which the user provides
the old password as well as new password. The user’s old
password can be used as the “leaked” password, and the PPSM
can therefore determine if the new password is sufficiently
strong even if the previous password has leaked. Coupled
with breach notifications that result in a user changing their
password, this prevents credential tweaking attacks entirely.
The PPSM can be sent as a JavaScript payload, and the
strength check performed on the client side, thereby ensuring
that candidate passwords need not be sent to the remote server.

We note that in this case the embedding models are sent
to a client’s machine, and we must consider what risks this
may entail. For example, an attacker might try to discover
the set of passwords present in the leak dataset used to train
the model. But our compressed embedding model does not
contain any information about individual passwords, nor the
accounts to which they were associated to in the training
data. Instead, it contains n-grams of size 1 to 4. It also
does not contain any information about their popularity in
the training data. It reveals to an attacker some information
about password similarity but it does not provide a generative
model sufficient for targeted guessing attacks, unlike some
other strength meters (e.g., nn-pwmeter).

The second deployment scenario can be using vec-ppsm
during login. We assume the service has access to breached
password data (possibly via a third party service). Every time
a user successfully logs in, the service checks whether or not
the entered password is unsafe according to vec-ppsm, given
the leaked passwords associated to that account. If so, it takes
necessary steps to warn the user or otherwise safeguard the
account. This can all be done on the server side.

Another potential place for use of a PPSM is during initial
password registration with an authentication service. However
a PPSM requires access to a user’s other (leaked) passwords
to accurately estimate the strength of the password being
selected. Without access to the user’s other passwords —
leaked or not — vec-ppsm will default to an untargeted
strength estimate. In typical web registrations, we would want
to send the PPSM as a JavaScript payload to the client side,
but then it would require sending leaked passwords to the
client as well, which is a security risk. Instead, one could
perform PPSM checks on the server side, but then this requires
revealing candidate passwords to the server.

Finally, one can use vec-ppsm on a client device, in
conjunction with a password manager. The password manager,
on behalf of the client, could use a third-party leak checking
service (e.g., [9], [42]) to check if any of the client’s passwords

are leaked. Then vec-ppsm can be used to evaluate the
strength of the user’s other passwords given those leaked
passwords (or all other passwords), similar to how they already
provide feedback on untargeted attack strength [43]. Of course,
modern password managers provide the option of selecting
random passwords, a case that obviates the need for vec-ppsm
(or any strength meter). However, many users nevertheless
use their own choice of password, and simply store them in
password managers. Here vec-ppsm will provide benefit.

We have shown that vec-ppsm can warn users about
choosing vulnerable, similar passwords. However, we have not
yet addressed the user interface questions regarding how to
provide constructive feedback and help guide them towards
creating strong passwords. For example, users might get
confused in case a password is rejected due to being too similar
to a leaked password. How to best inform them about this
remains an open question.

Proof-of-concept implementation. We implemented vec-
ppsm in Python 3.6. For compressing the embedding models,
we used product quantization functionality provided by Face-
book’s Faiss library [44]. We tested our strength meter on a
single thread of a Core i9 processor by randomly sampling
100 password pairs and computing the similarity scores. We
record the time to load the model from disk, and the average
time taken to compute the similarity score for each pair. The
average (across 10 runs) time to load and decompress the
model with η = 5 (size on the disk 3.3 MB) is 0.2 seconds.
After loading the model, it takes on an average 0.3 millisecond
to compute the similarity score for a pair of passwords, with
99 percentile being within 0.1 millisecond.

IX. CONCLUSION

In this work, we tackled modeling similarity of human-
chosen passwords, and showed how this enables building both
damaging targeted guessing attacks and new defenses against
them. We explored two approaches to learning password
similarity: a generative model based on sequence-to-sequence
style learning as used previously for language translation, and
a discriminative model based on word embedding techniques.

The generative model enables us to construct a new targeted
attack, in which the adversary makes tailored guesses against a
user account using knowledge of the user’s other password(s).
We show our best performing attack can, in less than a
thousand guesses, compromise 8.4% of active user accounts at
Cornell University, for which a previous password was leaked.
This attack outperforms the best previous attack by 3.2x.

Though targeted attacks are already a widespread threat,
there are few defenses available against them. The only
ones we are aware of stop credential stuffing, but do not
prevent our credential tweaking attacks. We therefore proposed
personalized password strength meters (PPSMs), which can
be used to warn against choosing passwords that are easily
guessable under different attacks, including targeted attacks.
We built a prototype of a PPSM, called vec-ppsm, using
word embedding techniques, and showed how it can be used
to mitigate attacks.



ACKNOWLEDGMENTS

We thank Tyler Kell, Dan Villanti, and Jerry Shipman for
helping us with the experiment with Cornell ITSO. We also
thank the anonymous reviewers for their insightful comments.
This work was supported in part by NSF grants CNS-1514163
and CNS-1564102, and United States Army Research Office
(ARO) grant W911NF-16-1-0145.

APPENDIX

A. Pass2pass model.

A straw proposal for learning password similarity would
be to apply the seq2seq approach directly on passwords as
character sequences. We call this model password-to-password
or pass2pass. The encode function maps the input password
w̃ onto a real valued vector v0 ∈ R

d. The decoder function
takes a vector v ∈ R

d and a character c ∈ Σ ∪ {‘〈’, ‘〉’}
and outputs a probability distribution over the characters in
Σ ∪ {‘〈’, ‘〉’} and another vector v′ ∈ R

d, which is fed to
next iteration of the decoder. Every password is enclosed
by a special beginning-of-sequence symbol c0 = ‘〈’ and an
end-of-sequence symbol ‘〉’. Therefore, in this model, we can
rewrite Equation (1) as follows, where vi is the output of the
decoder on input vi−1 and ci−1.

P
(
w
∣∣ w̃)

= P
(
c1, . . . , cl

∣∣ v0) = l∏
i=1

P
(
ci

∣∣ vi−1, ci−1

)
We used the default neural network architecture and the

hyperparameters used in seq2seq [16] to train several variants
of pass2pass. We evaluated them by testing the trained models’
efficacies as targeted guessing attacks on a validation set,
distinct from the eventual test set we report on later. (See
Section V for details on how to use a seq2seq based model
for generating targeted guesses.) Initially we tried training
pass2pass with password pairs from DE

full. This performed
horribly. We then restricted attention to password pairs from
the same user that were within edit distance two of each
other. This sped up training and seemed to help the model
focus on easier-to-learn similarities. We also tried edit distance
three, but this performed worse than edit distance two. In
the end, the efficacy of our best-performing pass2pass model
remained underwhelming. The targeted attack based on the
best performing pass2pass model was only able to guess 11%
of users’ passwords in 1,000 guesses, while the state-of-the-art
approach from [14] can guess 13.1%. (See Figure 3)

Our intuition for this poor performance is that passwords
have a much larger support (we have around 200 million
distinct passwords) and does not follow any predefined rules
(save those set by password policies) unlike natural languages.
Restrictions by edit distance helped learning, but miss many
important similarities that ideally an attack would capture. We
needed a different approach.

B. Model architecture of pass2path

Pass2path uses two recurrent neural networks (RNN) —
one for the encoder function and another for the decoder —

c1 . . . cl τ0

τ1 . . . τt

v0 v1

Encoder RNN
Decode RNN
Soft-max

3-layer LSTM

LSTM1

x1
i

+

LSTM2

x2
i

+

x0
i

(a) (b)

Fig. 9: (a) Diagram of encoder-decoder architecture for
pass2path learning. (b) A 2-layer LSTM cells with residual
connection. Here ci’s are characters of input passwords, τi’s
are transitions, and xj

i ’s are internal states in neural networks.

which are trained together, similar to what is used for seq2seq
learning [16]. RNNs were designed to recognize patterns
in sequential data, with varied sequence-lengths. However,
vanilla RNN suffer from vanishing and exploding gradient
problems. A variant of RNN, called long short-term memory
(LSTM) [45] was shown to be effective in avoiding vanish-
ing and exploding gradient problems [46]. We used LSTM
blocks wrapped in residual cells. Residual cells, first used for
image recognition using deep neural networks [47], “short-
circuit” the input of a layer to the output, bypassing internal
calculations. (See Figure 9(b).) We found pass2path achieves
slightly better accuracy at noticeably lower training time with
residual cells than without it. We implemented pass2path in
TensorFlow [48] using the building blocks provided by the
library. Each LSTM cell in the model has three hidden layers,
each layer with 128 hidden units.

A diagram of the neural network architecture of pass2path
is given in Figure 9(a). The encoder processes each character
in a password sequentially. A character is first represented as
a one-hot-vector of dimension |Σ|, and embedded onto a real-
valued vector of dimension 200. The embedded character is
then fed to a LSTM cell with three hidden layers, each of
dimension 128.A LSTM outputs two vectors, the first one is
ignored for the encoder, and the second one, called state, is
fed to the next LSTM cell, along with the next character of
the password. Let the output of the encoder be v0, obtained
after applying it on the whole input character sequence.

The vector v0 is then fed to the decoder with a special
beginning-of-sequence symbol τ0. The architecture of the
decoder is identical to the encoder except that we consider
the first output of the LSTM layer, which is projected to a
vector of size |T |. The softmax function is applied to the
projected vector to convert it into a probability distribution
over T . The most probable transformation is considered the
output and used as the input to the next iteration of the decoder,
except if the output is a special “end-of-sequence” symbol. The
sequence of transformation outputs can then be applied to the
input password to obtain another password.



C. Training pass2path model
We trained pass2path using an encoder-decoder based neural

network architecture. Here we give the details of our training
approach, in particular, how we initialize the network prior to
training, and the hyperparameters.

We used the initialization techniques proposed in [16]: the
embedding layers are initialized with uniform random values
from [−

√
3,
√
3], while the rest of the network is initialized

with uniform values in [−r, r] where r =
√
6/(nj + nj+1)

and nj is the dimension of the input to the jth layer of
the neural network. For training, we used stochastic gradient
descent (SGD) using the Adam’s optimizer [49] to minimize
the cross-entropy loss [50] between the predicted output of
the network and the expected output. Minimizing the cross-
entropy loss (with softmax) ensures learning the conditional
probability of the output given the input.

During initial phase of training, we used teacher-forcing
to train the model faster, by feeding the expected output
transformation as the decoder’s input, instead of the predicted
character. As the training progresses we start feeding the actual
predicted character as input. We did not use attention mech-
anism [51] (a common technique used in seq2seq language
translation models) as passwords are relatively small in size
compared to sentences in language translation.

We need to pick a number of hyper parameters for our
architecture. Excluding those below, we used those suggested
in [16]. Below are the ones we set to different values for better
performance.
(1) Learning rate. The learning rate parameter controls

the effect of loss gradient on the change of the model
parameters. We used a fixed learning rate of 0.0003 for
the training.

(2) Dropout rate. The dropout rate controls removal of
neural network units (neurons) randomly during training,
which is useful to prevent overfitting [52]. We tried
dropout rates of 0.3 and 0.4, the latter worked best.

(3) Layers. Each RNN cell consists of multiple hidden
layers. For language model a typical number of hidden
layers is n ∈ {3, 4} [46]. We found pass2path with three
hidden layers performs better than four layers. Each layer
consists of 128 hidden units.

(4) Epochs. The number of epochs determines how many
times the training procedure iterates over the training
dataset. We found three epochs were enough. More sig-
nificantly increased training time with negligible benefit.

D. Generating paths from password pairs
For every training input pair, we first compute the minimum

edit distance using a dynamic programming (DP) approach,
and then backtrack the DP solution to find the actual transitions
that result in the calculated edit distance. We calculate the
distance matrix according to the formula.

D(i, j) = min

⎧⎪⎨
⎪⎩

D(i− 1, j − 1) if w(i) = w̃(j) [copy]
D(i− 1, j − 1) + 1 if w(i) �= w̃(j) [substitute]
D(i− 1, j) + 1 [insert]
D(i, j − 1) + 1 [delete]

GenPath(w, w̃) :

n ← |w|+ 1; m ← |w̃|+ 1 ; D ← ∞n×m ; T ← ∅n×m

D0,0 ← 0
for i = 1 to n do Di,0 ← i; Ti,0 ← (i− 1, 0)
for j = 1 to m do D0,j ← j; T0,j ← (0, j − 1)
for i = 1 to n do

for j = 1 to m
e ← [0, 0, 0] /* 0 : del, 1 : ins, 2 : sub */

e0 ← Di−1,j + 1; e1 ← Di,j−1 + 1
if wi−1 �= w̃j−1; then e2 ← Di−1,j−1 + 1
else e2 ← Di−1,j−1

k ← argmin e
Di,j ← ek
if k = 0 then Ti,j ← (i− 1, j) /* del */

else if k = 1 then Ti,j ← (i, j − 1) /* ins */

else Ti,j ← (i− 1, j − 1) /* sub, copy */

/* Back-trace the dynamic programming solution computed above. */

i ← n; j ← m; c ← Ti,j ; P ← ∅
while c �= ∅

parse c as (ic, jc)
if ic = i− 1 and jc = j − 1 then

if wic �= w̃jc then P.append(sub, w̃jc , ic)
i ← i− 1; j ← j − 1 then

if ic = i and jc = j − 1 then
P.append(ins, w̃jc , ic)
j ← j − 1

else
P.append(del,⊥, ic)
i ← i− 1

c ← Tic,jc

return P

Fig. 10: GenPath algorithm for generating sequence of trans-
formations from a pair of passwords.

The pseudocode for generating a path is given
in Figure 10.

E. Re-training Wang et al. for our dataset

The Wang et al. algorithm specified in [14] needs to be
trained before it is used to generate guesses. The code shared
by Wang et al. requires four files for training. All the required
files were generated using our training data DE

ts.

1) PCFG data. This data file contains three main sec-
tions: passwords containing only digits (D), only letters
(L), and only special characters(S). Each section had
9 subsections of passwords of length one to nine,
namely D1, . . . , D9, L1, . . . , L9, and S1, . . . , S9. Each
subsection contains the 10 most popular passwords
matching that structure and their probability of occur-
rence in that subsection. For example, P (‘1234’) =
C(‘1234’)/C(D4), where C(w) denotes the probability
of w, or the sum of probabilities of passwords in a
section, if w denotes a section.

2) Markov data. This file contains 4-grams that con-
tain only letters, only digits, and only special char-
acters, along with their probability. For example,



P
(
‘4’

∣∣ ‘123’
)
= C(‘1234’)/C(‘123’)

3) Reverse Markov data. This file is similar to the previ-
ous Markov data file, except the n-grams are computed
after reversing the passwords.

4) Top password data. The file contains the top 104

passwords and their probabilities from the training data.

F. Targeted password cracking experiment in practice
Cornell University has a large-scale authentication system

including nearly half a million accounts. Students, faculty,
and staff all receive accounts, and alumni accounts are by
policy not deactivated after students graduate. The accounts
are enrolled in a single-sign on (SSO) system giving access to
email and other systems, and as such are frequently targeted
by attackers.

ITSO currently has a number of mechanisms in place
to make remote guessing attacks difficult. (1) They require
passwords to consist of at least eight characters, and they
must cover at least three character classes, namely upper-case
letters, lower-case letters, digits, or symbols. Additionally the
system will reject passwords containing one or more words
from a non-public dictionary of user identifiers, first and last
names, common passwords, and common English words. For
example, “passw0Rd” is an allowed password, but “password”
is not. (2) ITSO subscribes to a service that notifies them
of accounts that have appeared in breaches. Such accounts
have their password hashes scrambled should the account’s
email-password pair match that in the breach, and users have
to choose a new password to regain access. (3) Users are
not allowed to select their old password when choosing a
new one. Thus, ITSO uses many state-of-the-art protections,
including credential stuffing countermeasures. Of course, the
authentication system has been evolving over time, and some
accounts had passwords chosen under different policies than
the current ones. We will account for this nuance below.

Experimental setup. We worked with ITSO to safely per-
form an experimental measurement of the vulnerability of
Cornell accounts to our targeted attacks. In particular, ITSO
uses Kerberos to store authentication information including
password hashes. We arranged to receive access, intermediated
and overseen by ITSO staff, to a test server that had a
mirror of the Kerberos authentication database. This ensured
we did not interfere with production authentication pipelines.
The research team never received direct access to this server,
rather all access was run by ITSO staff who ensured no
sensitive information is revealed. We treated password hashes
as particularly sensitive, and discuss how we safely handled
them more below.

We started by determining which accounts appear in the
breach dataset described in Section III. There were 19, 868
accounts found in the breach dataset, meaning that we had at
least one previously breached password for them. The age of
the last password reset of these potentially vulnerable accounts
skew older, with the median age being 5 years, but there were
accounts with passwords reset as late as in 2018.

ITSO maintains a log of password change events since 2009
that records whether the password was changed by the user
or the password was scrambled. Among the 19, 868 accounts
that appeared in the breach, 3, 106 accounts have their last
password changed prior to 2009, and therefore, we are unsure
what fraction of those accounts contain scrambled passwords.
From the remaining 16, 762 accounts with recent password
changes (after Jan 1, 2009), 986 accounts definitely have their
password scrambled at the time of the study; 15, 776 accounts
had passwords chosen by the user. We will call these as active
accounts.

To perform the experiment more quickly than simulating
online attacks directly, we carefully exported salted hashes of
19, 868 account passwords to a secured research machine and
run an offline hash cracking with a limited number guesses
per account. The machine is only accessible from the Cornell
network, has no listening services beyond SSH, requires
second factor authentication to login, and disk volumes are
encrypted. We also further protect the Kerberos hashes, by
rehashing them using 4, 096 iterations of SHA-256 with a 128-
bit per hash salt and a strong pepper (acting as a secret key).
Once disclosure proceedings are finished with ITSO, we will
delete both the pepper (cryptographically erasing these hashes)
and the entire hash database.

Cracking was performed on this secure server, a Core i5
machine with 8GB of RAM. It required five days to test all
the 45 million passwords against all 15, 776 accounts.

We compared three guessing procedures — the baseline
untargeted empirical attack, the Wang et al., and a variant
of pass2path. The untargeted-empirical attack first guesses the
leaked passwords, followed by the most probable passwords in
our breach dataset that meet Cornell password policy. For each
of the 15, 776 accounts, we generated 1, 000 guesses based
on Wang et al. attack algorithm. Unfortunately, we could not
tailor them to the Cornell password policy because the obvious
approach — rejection sampling — was prohibitively slow.

We used transfer learning to build a variant of the pass2path
model customized to the Cornell character class requirements
for passwords. We did not attempt to customize based on
the common-words dictionary check, as this dictionary is not
publicly available. We took the trained pass2path model and
retrained three more epochs on a smaller dataset containing
only those leaked password pairs where the target password
satisfied Cornell’s character class requirements.

For the Wang et al. and customized pass2path, we generated
1, 000 guesses, with the leaked password being the first guess,
for each of the target accounts. For accounts that had more
than one leaked password, we used the round-robin method
as described in Section V. On average, over the targeted
accounts, 77% of the Wang et al. and 15% of the customized
pass2path guesses do not meet Cornell’s requirements.

Results. Overall, the three targeted attacks cumulatively could
compromise 1, 688 accounts (including 314 inactive accounts
that had their most recent password change prior to 2009).
We notified ITSO about these vulnerable accounts. ITSO is



alumni staff faculty other

0

20

40

60

80

%
ac

co
un

ts

Leaked accounts
Vulnerability odds

Fig. 11: Distribution of different types of accounts that are
found in the breach dataset, and their odds to be vulnerable to
one of the three online guessing attacks. The “other” category
includes current students, contract workers, and affiliates.

working on a multi-pronged approach to safeguard Cornell
users, including scrambling the user passwords, using extra
monitoring for those accounts, and using vec-ppsm on the
server side.

Among the 1, 688 vulnerable accounts, 93% of accounts
belong to alumni of Cornell. Our experiment also found many
accounts, belonging to current faculty, staff, and students, are
vulnerable to targeted attacks and helped ITSO safeguard those
accounts better.

In Figure 11 we show the distribution of accounts found
in the leak and the accounts that are vulnerable to pass2path.
We also note the odds of being vulnerable to targeted online
guessing attacks for each type of accounts as the fraction
of accounts in each category that are vulnerable to any of
the simulated targeted online attacks. As we can see alumni
accounts have higher odds of being vulnerable to such attacks
compared to other accounts.

Interestingly, we also found that the passwords that are reset
most recently are less likely to be vulnerable. In Figure 12,
we show the relation between the last password reset year and
the odds of those account being vulnerable to online guessing
attacks. We only consider the 15, 776 active accounts (that
have changed their password at least once since 2009) for this
graph. The passwords created before 2013 is 60% more likely
to be vulnerable to targeted online guessing attacks compared
to the passwords created after 2013.

REFERENCES

[1] F. Stajano, “Pico: No more passwords!” in International Workshop on
Security Protocols. Springer, 2011, pp. 49–81.

[2] C.-T. Li and M.-S. Hwang, “An efficient biometrics-based remote user
authentication scheme using smart cards,” Journal of Network and
computer applications, vol. 33, no. 1, pp. 1–5, 2010.

[3] X. Li, J. Niu, M. K. Khan, and J. Liao, “An enhanced smart card based
remote user password authentication scheme,” Journal of Network and
Computer Applications, vol. 36, no. 5, pp. 1365–1371, 2013.

[4] J. Bonneau, C. Herley, P. C. van Oorschot, and F. Stajano, “The Quest to
Replace Passwords: A Framework for Comparative Evaluation of Web
Authentication Schemes,” in 2012 IEEE Symposium on Security and
Privacy, May 2012.

[5] M. L. Mazurek, S. Komanduri, T. Vidas, L. Bauer, N. Christin, L. F.
Cranor, P. G. Kelley, R. Shay, and B. Ur, “Measuring password guess-
ability for an entire university,” in Proceedings of the 2013 ACM SIGSAC

2009-10 2011-12 2013-14 2015-16 2017-18
5

10

15

20

25

30

%
ac

co
un

ts

Leaked accounts
Vulnerability odds

Fig. 12: Distribution of active accounts in the leaked dataset
based on the year of their last password reset. The red
line shows their odds of being vulnerable to targeted online
guessing attacks.

conference on Computer & communications security. ACM, 2013, pp.
173–186.

[6] A. Adams and M. A. Sasse, “Users are not the enemy,” Communications
of the ACM, vol. 42, no. 12, pp. 40–46, 1999.

[7] R. Chatterjee, A. Athalye, D. Akhawe, A. Juels, and T. Ristenpart,
“password typos and how to correct them securely,” IEEE Symposium
on Security and Privacy, may 2016, full version of the paper can be
found at the authors’ website.

[8] S. Pearman, J. Thomas, P. E. Naeini, H. Habib, L. Bauer, N. Christin,
L. F. Cranor, S. Egelman, and A. Forget, “Let’s go in for a closer look:
Observing passwords in their natural habitat,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2017, pp. 295–310.

[9] Troy Hunt, “Have I Been Pwned?” https://haveibeenpwned.com/
Passwords/, 2018.

[10] 4iQ, “Identities in the Wild: The Tsunami of Breached Iden-
tities Continues,” https://4iq.com/wp-content/uploads/2018/05/2018
IdentityBreachReport 4iQ.pdf/, 2018.

[11] Shape Security, “2017 Credential spill report,” http://info.shapesecurity.
com/rs/935-ZAM-778/images/Shape-2017-Credential-Spill-Report.
pdf/, 2018.

[12] P. A. Grassi, J. Fenton, E. Newton, R. Perlner, A. Regenscheid, W. Burr,
J. Richer, N. Lefkovitz, J. Danker, Y. Choong et al., “Nist special
publication 800-63b. digital identity guidelines: Authentication and
lifecycle management,” Bericht, NIST, 2017.

[13] A. Das, J. Bonneau, M. Caesar, N. Borisov, and X. Wang, “The tangled
web of password reuse.” in NDSS, vol. 14, 2014, pp. 23–26.

[14] D. Wang, Z. Zhang, P. Wang, J. Yan, and X. Huang, “Targeted on-
line password guessing: An underestimated threat,” in Proceedings of
the 2016 ACM SIGSAC conference on computer and communications
security. ACM, 2016, pp. 1242–1254.

[15] Y. Zhang, F. Monrose, and M. K. Reiter, “The security of modern
password expiration: an algorithmic framework and empirical analysis,”
in ACM Conference on Computer and Communications Security (ACM
CCS), 2010, pp. 176–186. [Online]. Available: http://doi.acm.org/10.
1145/1866307.1866328

[16] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing
systems, 2014, pp. 3104–3112.

[17] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[18] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” arXiv preprint arXiv:1607.04606,
2016.

[19] A. Narayanan and V. Shmatikov, “Fast dictionary attacks on passwords
using time-space tradeoff,” in Proceedings of the 12th ACM conference
on Computer and communications security. ACM, 2005, pp. 364–372.

[20] “John the Ripper password cracker,” http://www.openwall.com/john/,
Referenced March 2014.

[21] M. Weir, S. Aggarwal, B. de Medeiros, and B. Glodek, “Password



cracking using probabilistic context-free grammars,” in IEEE Symposium
on Security and Privacy (SP), 2009, pp. 162–175.

[22] S. Komanduri, “Modeling the Adversary to Evaluate Password Strength
with Limited Samples,” 2016.

[23] J. Ma, W. Yang, M. Luo, and N. Li, “A study of probabilistic password
models,” in Proceedings of the 2014 IEEE Symposium on Security and
Privacy (SP). IEEE Computer Society, 2014, pp. 689–704.

[24] W. Melicher, B. Ur, S. M. Segreti, S. Komanduri, L. Bauer, N. Christin,
and L. F. Cranor, “Fast, lean and accurate: Modeling password guess-
ability using neural networks.”

[25] B. Hitaj, P. Gasti, G. Ateniese, and F. Perez-Cruz, “PassGAN:
A deep learning approach for password guessing,” arXiv preprint
arXiv:1709.00440, 2017.

[26] D. L. Wheeler, “zxcvbn: Low-budget password strength estimation,” in
Proc. USENIX Security, 2016.

[27] W. E. Burr, D. F. Dodson, and W. T. Polk, Electronic authentication
guideline. US Department of Commerce, Technology Administration,
National Institute of Standards and Technology, 2004.

[28] X. D. C. De Carnavalet, M. Mannan et al., “From very weak to very
strong: Analyzing password-strength meters.” in NDSS, vol. 14, 2014,
pp. 23–26.

[29] M. M. Devillers, “Analyzing password strength,” Radboud University
Nijmegen, Tech. Rep, 2010.

[30] M. Dell’Amico and M. Filippone, “Monte carlo strength evaluation:
Fast and reliable password checking,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. ACM,
2015, pp. 158–169.

[31] J. Casal, “1.4 Billion Clear Text Credentials Discovered in a Sin-
gle Database,” https://medium.com/4iqdelvedeep/1-4-billion-clear-text-
credentials-discovered-in-a-single-database-3131d0a1ae14, Dec, 2017.

[32] J. Bonneau, “The science of guessing: analyzing an anonymized corpus
of 70 million passwords,” in IEEE Symposium on Security and Privacy
(SP). IEEE, 2012, pp. 538–552.

[33] Wikipedia, “Email address,” 2018. [Online]. Available: https://en.
wikipedia.org/wiki/Email address#Local-part

[34] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” in Soviet physics doklady, vol. 10, no. 8, 1966, pp.
707–710.

[35] C. M. Wilt, J. T. Thayer, and W. Ruml, “A comparison of greedy search
algorithms,” in Third Annual Symposium on Combinatorial Search,
2010.

[36] J. R. Rao, P. Rohatgi, H. Scherzer, and S. Tinguely, “Partitioning attacks:
or how to rapidly clone some gsm cards,” in Security and Privacy, 2002.
Proceedings. 2002 IEEE Symposium on. IEEE, 2002, pp. 31–41.

[37] S. Mavoungou, G. Kaddoum, M. Taha, and G. Matar, “Survey on threats

and attacks on mobile networks,” IEEE Access, vol. 4, pp. 4543–4572,
2016.

[38] M. Dell’Amico, P. Michiardi, and Y. Roudier, “Password strength: An
empirical analysis,” in INFOCOM, 2010 Proceedings IEEE. IEEE,
2010, pp. 1–9.

[39] B. Ur, F. Alfieri, M. Aung, L. Bauer, N. Christin, J. Colnago, L. F.
Cranor, H. Dixon, P. Emami Naeini, H. Habib et al., “Design and
evaluation of a data-driven password meter,” in Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems. ACM,
2017, pp. 3775–3786.

[40] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532–1543.

[41] H. Jegou, M. Douze, and C. Schmid, “Product quantization for nearest
neighbor search,” IEEE transactions on pattern analysis and machine
intelligence, vol. 33, no. 1, pp. 117–128, 2011.

[42] “4iQ,” https://4iq.com/, 2018.
[43] “Lastpass,” https://lastpass.com.
[44] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search

with gpus,” arXiv preprint arXiv:1702.08734, 2017. [Online]. Available:
https://github.com/facebookresearch/faiss

[45] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[46] M. Sundermeyer, R. Schlüter, and H. Ney, “Lstm neural networks for
language modeling,” in Thirteenth annual conference of the international
speech communication association, 2012.

[47] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[48] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: a system for large-
scale machine learning.” in OSDI, vol. 16, 2016, pp. 265–283.

[49] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[50] M. Ranzato, S. Chopra, M. Auli, and W. Zaremba, “Sequence level train-
ing with recurrent neural networks,” arXiv preprint arXiv:1511.06732,
2015.

[51] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is All You Need,” in Advances
in Neural Information Processing Systems, 2017, pp. 5998–6008.

[52] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from over-
fitting,” The Journal of Machine Learning Research, vol. 15, no. 1, pp.

1929–1958, 2014.


