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Abstract—Existing mutation based fuzzers tend to randomly
mutate the input of a program without understanding its under-
lying syntax and semantics. In this paper, we propose a novel on-
the-fly probing technique (called ProFuzzer) that automatically
recovers and understands input fields of critical importance to
vulnerability discovery during a fuzzing process and intelligently
adapts the mutation strategy to enhance the chance of hitting
zero-day targets. Since such probing is transparently piggybacked
to the regular fuzzing, no prior knowledge of the input specifica-
tion is needed. During fuzzing, individual bytes are first mutated
and their fuzzing results are automatically analyzed to link those
related together and identify the type for the field connecting
them; these bytes are further mutated together following type-
specific strategies, which substantially prunes the search space.
We define the probe types generally across all applications,
thereby making our technique application agnostic. Our experi-
ments on standard benchmarks and real-world applications show
that ProFuzzer substantially outperforms AFL and its optimized
version AFLFast, as well as other state-of-art fuzzers including
VUzzer, Driller and QSYM. Within two months, it exposed 42
zero-days in 10 intensively tested programs, generating 30 CVEs.

I. INTRODUCTION

Fuzzing is a widely-used software testing technique that
runs randomly or strategically generated inputs against a
program to find its vulnerabilities. It has long been considered
to be one of most effective ways in program security analysis,
contributing to the discovery of most high-impact security
flaws, e.g., CVE-2014-0160, CVE-2017-2801 and CVE-2017-
3732 [1], [2]. Critical for such a dynamic analysis is the
production of inputs with a high degree of code coverage and
good chances of hitting the security weaknesses hiding inside
the code. Typically this has been done either through generat-
ing legitimate inputs using the knowledge of an input model,
or by mutating a set of initial seed inputs, for example, through
randomly flipping their bits or strategically substituting known
values for the input content. These conventional approaches,
however, become increasingly inadequate in the presence of
the modern software characterized by a large input space and
complicated input-execution relations.

Challenges. More specifically, the generation-based approach
relies on a grammar describing the input format to produce
legitimate test cases. The grammar here needs to be given a
priori [3], [4] or recovered from execution traces off-line [5],
[6]. More importantly, although a well-constructed grammar
indeed reduces the search space, it offers little clue about

the impacts that various inputs can have on the program’s
execution: for example, whether a set of inputs will all lead to
the same execution path and therefore only one of them should
be tested. Furthermore, inputs that exploit vulnerabilities may
not even follow the input grammar because an implementation
may choose to ignore certain input fields if they are irrelevant
to the functionalities (e.g., an image format converter may
ignore fields related to rendering); also buggy implementations
may even accept ill-formed inputs.

The mutation-based approach does not require the knowl-
edge about input model. Instead, it utilizes a set of legitimate
input instances as seeds and continuously modifies them to
explore various execution paths. Prior research has studied the
way to choose the right seeds that likely lead executions to vul-
nerable program locations [7], [8], and the way to determine
critical input bytes that likely enhance code coverage [9], [10].
For a given seed, however, mutation is typically random, which
does not scale even when the input data size is moderate.

As we can see here, essential to a highly effective and
scalable fuzzing process is in-depth understanding of the target
program’s inputs. Such an input is often structured data and
can be partitioned into a sequence of data fields with specific
semantics: for example, buffer size, category indicator, etc.
The semantics of these fields are invaluable for vulnerability
discovery, helping a fuzzer determine the fields to mutate,
the range of legitimate values, the impact of a data field on
program execution, and so on. Leveraging such information,
the fuzzer can operate in a more intelligent way, focusing only
on the subspace of inputs most likely leading to execution
paths never seen before. This information (fields and their
semantics), however, may not be documented and available to
the fuzzer, and can be hard to recover without going through
an in-depth heavyweight analysis procedure.

Fuzzing with Type Probing. To address the challenges and
elevate today’s fuzzing technique using rich input semantics,
we present a new smart fuzzing technique, called ProFuzzer,
which automatically discovers input fields and their semantics
through a lightweight random fuzzing procedure called prob-
ing, to guide online evolution of seed mutations. Such probing
is entirely piggybacked to regular fuzzing and executed on
the fly. More specifically, ProFuzzer performs a two-stage
fuzzing on a target program through mutating a set of seeds.
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Fig. 1: Motivation example.

During the first stage (i.e., the probing stage), it conducts
sequential byte-by-byte probing, that is, changing one byte
each time, enumerating its values against the target program
and then moving onto the next byte. This sequential fuzzing
step also collects information about the target’s execution paths
under different byte values. The information is automatically
analyzed online to recover data fields (linking related bytes
together) and determine their field type: for example, the
consecutive bytes whose specific content leads to the same
exception path under mutation can be grouped into a field.
In our research, we identified 6 field types that model the
way their content affects the program’s execution, such as
size, loop count, and enumeration that has only a few valid
values correctly interpreting its subsequent content on the
input. These types are application agnostic, describing fuzzing
related semantics. The discovery of data fields and their types
offers guidance to fuzzing at the second stage, during which
ProFuzzer mutates each field to exploit the values that could
lead to an attack (e.g., a large data size that may exploit a
buffer-overflow vulnerability), and explore legitimate values
according to the field type for better coverage.

We implement the design on AFL [11]. We compare Pro-
Fuzzer with AFL, AFLFast [7], a state-of-the-art program
analysis aided fuzzer VUzzer [12] and two state-of-the-art hy-
brid fuzzers Driller [13] and QSYM [14] on 4 real applications
with 20 known vulnerabilities and two standard benchmarks
(LAVA-M [15] and the Google fuzzer test-suite [16]). The
results show that ProFuzzer is able to discover more bugs with
less time. For example, for the 4 real applications, ProFuzzer
can discover 18 bugs in 24 hours while the best result of
other fuzzers is only 15. In addition, the average time needed
by ProFuzzer for each bug is only 18-73% of the time needed
by other fuzzers. More details can be found in Section V.

Discoveries. We further ran ProFuzzer for two months on
10 popular real-world open-source applications, including the
software for image processing (e.g. OpenJPEG), audio and
video decoder (e.g., LibAv), PDF reader (e.g., MuPDF) and
compression library (e.g., ZzipLib). Our study has resulted
in the discovery of 42 zero-day vulnerabilities, such as heap
overflow, infinite loop, etc. Most of them will have serious
consequences once exploited. For example, a heap buffer
over-read vulnerability in Exiv2 (CVE-2017-17725) can be
triggered through a very small crafted image file, leading
to 4 bytes information leak that facilitates further exploit
(e.g., bypassing address space randomization). Note that even
though Exiv2 has been extensively tested [17], this vulner-

ability still fell through the crack. We have reported our
findings to all the affected software vendors. So far, most
of them have acknowledged that the problems we found are
real and significant. We have been awarded 30 CVEs and the
investigations on other reported problems are ongoing.

Contributions. We have the following contributions:

• New smart fuzzing technique. We designed an efficient smart
fuzzer, which discovers the relations between input bytes and
program behaviors via lightweight probing, to guide follow-
up targeted seed mutations. This approach seamlessly and
transparently integrates semantic knowledge discovery into a
fuzzing process, improving not only accuracy of the fuzzing
but also its performance, without degrading applicability.

• Discovery of zero-day vulnerabilities. Running our fuzzer on
real-world applications, we discovered 42 zero-day vulnerabil-
ities in two months. Our findings demonstrate that this online
semantic discovery and mutation guiding technique improve
the state-of-the-art.

II. MOTIVATION

We use OpenJPEG [18] to explain the problems of tradi-
tional fuzzing techniques and the idea of ProFuzzer. Open-
JPEG is an open-source image codec library that converts
various image formats into JPEG 2000. It is widely integrated
into commodity software for image processing.

Mutation-based Fuzzing. Mutation-based fuzzing mutates
seed inputs without knowing their semantics. As such, mu-
tations are largely applied randomly. The approach is simple
and application agnostic. However, it does not work effectively
due to the lack of input semantics. Figure 1a shows a seed
input for OpenJPEG. We use AFL, the most widely used
mutation-based fuzzing tool, to fuzz an old version OpenJPEG
library with 5 known vulnerabilities and after 24 hours, only
3 of them are discovered. We found that only 24 bytes out
of 62 (highlighted in Figure 1a) are helpful for coverage
improvement. Figure 1b shows the number of mutations on
each byte within 24 hours. More than 60% of the mutations
are not helpful. The root cause is that in the absence of input
specifications, mutation-based fuzzing does not receive proper
guidance. There are existing efforts to infer input semantics
for improving fuzzing. AFL provides a simple off-line file
format analyzer utility (AFL-analyze [19]) to infer the input
syntax and a built-in dictionary construction functionality [20]
to identify application-specific keywords. However, they have
limited effectiveness (see Section V-C ) due to their simplicity.



Specification-based Fuzzing. A natural enhancement of the
AFL-like approach is to use input specifications (e.g., input
syntax and semantic constraints) to guide fuzzing. Indeed a
prior study on symbolic execution based testing has shown that
input grammar can help substantially improve the effectiveness
of fuzzing [21]. However, these approaches are often difficult
to deploy. First, specifications are not always available. Sec-
ond, specification can be implicit and requires a lot of human
efforts to extract. This greatly affects the applicability of the
fuzzing technique. Most importantly, fuzzing is a per-binary
process. It is highly related with real implementation, which
may have nontrivial deviation from their input specification.
Applications usually only support part of the specification,
and sometimes specification will include some reserved bytes
whose functionalities are customized in various implemen-
tations/extensions [22]. For example, the bytes from offset
0x1c − 0x1d in Figure 1a are used to represent color depth.
Their possible values, according to the specification [23], are
0x01, 0x04, 0x08, 0x10, 0x18 and 0x20. However, the current
version of OpenJPEG does not support 0x01 or 0x04. Finally,
these specifications are not fuzzing-oriented, thus many of the
generated inputs are still redundant for fuzzing. Namely these
inputs are valid for the program, but cannot improve path
coverage or vulnerability discovery.

Basic Idea of ProFuzzer. ProFuzzer is inspired by two
important observations. First, a comprehensive, application-
specific and semantically rich input specification is not nec-
essary for fuzzing. For instance, the bytes from offset 0x26
to 0x2d in Figure 1a indicate the image’s resolution. They
are important input fields according to the file format speci-
fication. However, OpenJPEG skips these bytes during image
conversion. Therefore, identifying the field does not benefit
fuzzing much as their content does not affect the execution
path during conversion. Instead, the more useful information
is to recognize fields of special types that are critical for
fuzzing. For instance, if we know that a field describes a
buffer size, we can apply customized mutation rules to find out
whether a vulnerable buffer is present. Second, inputs can be
understood and their fields and data types can be discovered
by directly observing the fuzzing process, particularly the ways
the input content is mutated and the program’s execution path
variations in response to the mutations. As such, existing input
format reverse engineering techniques (e.g., REWARDS [24],
TIE [25], Howard [26]) that rely on heavy-weight analysis
are neither necessary nor cost-effective. Instead, we believe
that input understanding can be seamlessly integrated into the
fuzzing process, through on-the-fly semantic analysis on prior
fuzzing results to recognize input field and their types, and
then guide future input mutations.

Following the observations, we design a two-stage fuzzing
technique, ProFuzzer. During the first stage, it probes the
input fields and field types of the seed input through per-byte
mutations. Particularly, based on the behavior variations of the
target program (e.g., execution path changes) under mutations,
ProFuzzer can recognize input fields that are critical. The field
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Fig. 2: ProFuzzer architecture.
and field type information is then used in the second stage
to guide online input mutations. Different field types have
different priorities and entail various mutation policies. For
example, our approach avoids mutating fields of the raw data
type, whose mutations cause the target program to go through
the same path. For fields with the buffer size type, the multiple
bytes belonging to the same field are mutated together, follow-
ing specific mutation patterns such as prioritizing boundary
values. In contrast, even though AFL has some pre-defined
mutation patterns such as changing a random subsequence of
consecutive input bytes to special values (e.g., 0xFF), it can
hardly apply them to the right subsequences.

With field-aware mutations, ProFuzzer improves both effec-
tiveness and performance of fuzzing. We run ProFuzzer for
24 hours on OpenJPEG, discover all 5 known vulnerabilities
and achieve a path coverage 60% more than AFL. We also
calculate the number of mutations that each byte goes through
during the 24 hours in Figure 1c. Note that consecutive bytes
in the same fields have the same mutation count. Specifically,
only 24 out of 62 input bytes have been mutated, since they
are in the fields important to fuzzing. For example, ProFuzzer
probes and determines that an offset field is present at 0x0e to
0x11, which determines the offset of the subsequent data bytes
(from the file header). Offset fields are critical for vulnerability
detection due to their substantial impact on memory behaviors.
This information allows ProFuzzer to avoid blind fuzzing and
instead use a specific mutation policy (e.g., setting the value of
an offset field to be the difference between the current location
and the end of file) to strategically explore the input space of
the field. For another example, the bytes at 0x1a and 0x1b are
recognized as raw data after 512 probing runs and therefore
there are not further mutations on those bytes, whereas they
are mutated 407,170 times by AFL.

III. OVERVIEW

The architecture of ProFuzzer is shown in Figure 2. It
consists of four components: the probing engine, the mutation
engine, the execution engine and the report engine.

Probing Engine. The task of the probing engine is to generate
type templates from seed inputs for a given binary. For each
seed input, ProFuzzer goes through all the bytes. For each
byte, it iterates through all possible values (0x00 to 0xff )
and collects the corresponding execution profiles. It then
extracts some metrics (e.g., edge coverage variation caused by
mutation) from these profiles, and uses them as the features of
the byte. Then, ProFuzzer groups the consecutive bytes with
similar features into a field. Finally, it determines the type of



each field based on the relations between the changes of its
possible values and the corresponding variations of observed
features (e.g., a magic number field can be characterized by the
pattern that all mutations happening to the original value in the
seed input lead to invalid inputs and hence short executions).

Mutation Engine. The mutation engine uses the probed tem-
plate (i.e., fields and field types) to guide follow-up mutations.
The guidance is given in two aspects, The first is to enlarge
coverage in a cost-effective fashion. For instance, ProFuzzer
can avoid fuzzing raw data fields and focuses on mutating
fields that determine the interpretation of the subsequent data
This would allow us to reach code regions that was otherwise
difficult to reach. In the second aspect, the field information
can be used to guide exploit generation. For instance, buffer
size fields are the root cause of many vulnerabilities. It is
known that certain mutation patterns are critical for size fields.

Execution Engine and Report Engine. We use the standard
AFL execution and report engines. Each time the probing en-
gine or the mutation engine requests to execute the application,
the execution engine forks a new process. During execution,
it automatically collects execution profile. The report engine
monitors the execution especially for crashes or hangs.

Assumptions. We assume that the target application has the
following properties. First, its execution is deterministic: that
is, given the same input, multiple executions of the applica-
tion all follow the same execution path and yield the same
result. Second, initial valid seed inputs of reasonable size are
available. The focus of ProFuzzer is on type probing and type-
based mutation, not on seed selection. Existing seed input
generation/selection techniques [27] are hence complementary
to ProFuzzer. Third, if the validation on certain bytes fails, the
execution will quickly terminate, which means that an excep-
tional execution has a shorter execution path than a normal
one. We have performed an empirical study in Section V-A to
validate the aforementioned assumptions.

IV. DESIGN AND IMPLEMENTATION

Fuzzing Related Input Field Types. As mentioned earlier,
knowledge about application-agnostic input field types can
provide strong guidance for fuzzing. For this purpose, we
identify 6 input field types, including assertion, raw data,
enumeration, loop count, size and offset. These types cover
most input content for popular applications, such as image
processing tools, document readers and compression utilities.
Most importantly, these types affect an program’s execution
in a unique way and therefore are valuable for enhancing
the effectiveness of fuzzing on the program. In the following
discussion of these types, we use Figure 1a as an example.
For each type, we present the simplified code snippet of the
BMP conversion component in OpenJPEG for processing the
inputs of that type. Later we will show how to identify these
types and how to utilize them during fuzzing.

• Assertion. An input field of the assertion type has only a
single valid value that allows the program to execute correctly.
Other values will result in program termination with errors.

The bytes at offsets 0x00 and 0x01 in the example image
form an assertion field. As shown in the following code
snippet, OpenJPEG checks the field to determine whether it
equals to 0x4d42, which is the magic number of a BMP file.
During fuzzing, the content of any assertion field should not
be changed. Otherwise, the test case will become invalid.

header.bfType = get2Bytes(IN);

if (header.bfType != 0x4d42) exit_error(); (i)

• Raw Data. For an input field of the raw data type, its content
does not affect the execution of a program (e.g., its control flow
and memory accesses). Note that raw data are implementation
specific. The bytes from offset 0x26 to 0x2d in our example
image are image resolution, which is important for an image
rendering application. But they are raw data for OpenJPEG
because it only converts formats without rendering images.
We do not need to mutate raw data fields during fuzzing.

• Enumeration. An input field of the enumeration type is
characterized by a small set of valid values, with other values
causing the program to erroneously terminate. An example is
the field from offset 0x1c to 0x1d in the example image. These
bytes represent an image’s color depth, whose possible values
are 0x01, 0x04, 0x08, 0x10, 0x18 and 0x20, according to the
file format specification. However, in the current implemen-
tation of OpenJPEG, only 0x08, 0x10, 0x18 and 0x20 are
supported. Different processing functions will be invoked to
handle different valid color depths, as shown in the following
code snippet. In fuzzing, we want to test only the valid values.

header.biBitCount = get2Bytes(IN);

switch (header.biBitCount) {

case 0x08: bmp8toimage(pData, ...); break;
case 0x10: bmp16toimage(pData, ...); break;
case 0x18: bmp24toimage(pData, ...); break; (ii)

case 0x20: bmp32toimage(pData, ...); break;
default: exit_error();

}

• Loop Count. An input field of the loop count type determines
the times a code fragment within a loopy structure (e.g.,
for/while loop or recursive invocation) should be executed.
Loop count values have substantial impact on path counts and
negligible impact on the paths themselves. The byte at offset
0x36 in the example image is an instance of loop count. It
is a raw data field according to the file format specification.
However, it denotes the RGB value such that after color
transformations (e.g., modified census and discrete wavelet
transformations), its value affects the variable bpno as shown
in the following code snippet. The variable in turn decides the
number of bits that need to be encoded in the loop.

data = fread_data(IN);

bpno = color_transformations(data);

for (passno = 0; bpno >= 0; ++passno) (iii)

{ ... bpno--; }



• Offset. An input field of the offset type determines the
location from which the program can access the subsequent
data in the input file. Offset fields are important for fuzzing as
an erroneous offset value may cause the program to access the
data outside scope (e.g., the end of file), leading to termination
with errors on subsequent validation checks. Within the valid
range, different offsets result in different subsequent data being
accessed. If the accessed data have impact on the control flow
(i.e., non-raw-data), its different values may cause execution
to take different paths. As an example, the field from offset
0x0a to 0x0d in the example image is an instance of offset,
which points to the position from which the program loads the
image data. In our case, it starts from the 54’th byte of the
file. As shown in the following code snippet, if the offset is
set to be greater than 54, fseek() goes beyond the end of
file, causing exception. During fuzzing, an offset field needs
to be changed in a way consistent with the preceding position
shifting mutations (e.g., adding data fields).

header.bfOffBits = get4Bytes(IN);

fseek(IN, header.bfOffBits, SEEK_SET); (iv)

if (fread(pData, ..., stride * header.biHeight, IN)

!= (stride * height)) exit_error();

• Size. An input field of the size type determines the amount
of data the program should read from the input file for further
processing. Similar to the offset type, if a size value causes
any out-of-range data access, the program terminates with
errors; within the valid range, different sizes may result in
different execution paths, since different data are processed.
The difference between offset and size lies in that if a size
value is set to zero, errors must occur, while setting an offset
to 0 likely does not cause similar problems. The bytes from
0x16 to 0x19 in the example image are an instance of size,
which represent the image’s height. The right size is 0x02.
If the size is set to zero or greater than 0x02 (e.g., 0x03),
the program terminates with errors. During fuzzing, size field
mutation is bounded by the overall input size.

Note that these field types are different from traditional
types in programming languages or programmer-defined types.
The important design criteria of our type system include
application agnostic and fuzzing related. The six types may
not be comprehensive. It is possible that input bytes do not
belong to any of them. In such cases, ProFuzzer falls back to
the regular random mutation by AFL.

A. Type Probing

Field types are automatically discovered by ProFuzzer via
byte-wise mutations and analyzing the impacts of individual
mutated bytes on the program execution. Specifically, given a
program, ProFuzzer changes its input one byte at a time during
probing, enumerating all 256 values of the byte to collect the
corresponding 256 execution profile. These profiles are stored
in a compact hash array, which keeps the execution frequencies
of individual control-flow edges (i.e., control transfer from a
basic block to another). We call this representation of runtime

profile edge vector. Each edge vector is used in our system to
extract a number of features that characterize the byte under
probing. These features are then utilized to group multiple
bytes together to a field and further determine the field’s type.

Definitions. To facilitate discussion, we introduce the follow-
ing definitions. Let I be the input – a sequence of len bytes,
each ranging from 0x00 to 0xff , and TI be the output of
the function execute, which runs the target program on I and
returns an edge vector. We have:

I = {0x00, 0x01, ..., 0xff}len, TI = execute(I) (1)

Let I[i]:v be the result of function substitute, which re-
places the i-th byte of I with value v.

I[i]:v = substitute(I, i, v) (2)

For an input byte at offset i that is mutated to value
v, we define two metrics based on edge vectors TI and
TI[i]:v: coverage similarity SI[i]:v and frequency difference
DI[i]:v . The former focuses on measuring the edge coverage
similarity (i.e., without considering the number of times an
edge is taken), while the latter measures if a dominant number
of edges have different execution frequencies. In particular,
SI[i]:v is calculated as the size of the edge coverage intersec-
tion of the two vectors, divided by the size of their union.
DI[i]:v is calculated as the ratio between the number of edges
with different frequencies and the number of edges that have
different coverage (i.e., covered in one but not the other).

SI[i]:v =

∣∣{j| TI [j] ∗ TI[i]:v [j] �= 0}∣∣
∣∣{j| TI [j] + TI[i]:v [j] �= 0}∣∣

DI[i]:v =

∣
∣{j| TI [j] �= TI[i]:v [j] ∧ TI [j] ∗ TI[i]:v [j] �= 0}∣∣
∣∣{j| TI [j] �= TI[i]:v [j] ∧ TI [j] ∗ TI[i]:v [j] = 0}∣∣

(3)

As an example, in the following, we show the edge vectors
TI and TI[0x1c]:0x20 for our example image input, whose
corresponding inputs differ at offset 0x1c with the original
value 0x18 and the mutated value 0x20. We can see that the
two vectors have the same coverage at the edge with index
13 and different coverage at edges 583 and 13052. For edge
34093, both executions cover the edge, but the frequencies are
different. The size of edge coverage intersection and union are
1727 and 1766, respectively. Hence, the coverage similarity is
0.978 (1727/1766). The numbers of different edge frequencies
and different coverage are 1 and 39, respectively. Hence, the
frequency difference is 0.026 (1/39). The two metrics indicate
that the two executions are very similar and the difference
mainly lies in edge coverage rather than edge frequency.

13 583 13052 34093
TI : < ... 1 ... 0 ... 1 ... 4 ... >

TI[0x1c]:0x20 : < ... 1 ... 1 ... 0 ... 8 ... >

STEP I: Feature Extraction. We extract two features for each
byte i as two tuples, each with size 256: FS

i representing
the coverage similarities for mutated values in the range of
[0x00, 0xff ], called the coverage feature; FD

i representing
the frequency differences for the 256 mutated values, called
the frequency feature.

FS
i =

〈
SI[i]:0x00, ..., SI[i]:0xff

〉

FD
i =

〈
DI[i]:0x00, ..., DI[i]:0xff

〉 (4)



To measure the central tendency of a coverage feature FS
i ,

we define its midrange value αi as:

αi =
max(FS

i [·]) +min(FS
i [·])

2
(5)

For easy understanding, we often visualize a coverage
feature FS

i as a bar chart, e.g., Figure 3. The x axis represents
the byte value from 0x00 to 0xff . The y axis represents the
coverage similarity metric corresponding to the byte value. We
refer the readers to Appendix A for the coverage feature of
each byte in the sample image.

STEP II: Field Identification. The goal of field identification
is to group consecutive bytes of the same input type together
as a field. Observe that the target program tend to perform
validation check on a whole input field instead of individual
bytes. Intuitively, if consecutive bytes belong to a same
field, it is very likely that they share a large part of their
mutation features that correspond to invalid (mutated) values.
Specifically, although each byte in a field may have multiple
valid values (e.g., an enumeration field) which often lead to
various execution paths and hence different metrics, the many
invalid values always lead to the same termination path with
an exception, which is the shortest path. As such, these invalid
values must lead to the same coverage and frequency metrics.
Hence, we group bytes at offsets from i to j together as a
field, if condition (6) is satisfied.

∀x, y ∈ [i, j] : min(FS
x [·]) = min(FS

y [·]) (6)
Note that the minimal coverage similarity value corresponds

to the shortest path caused by invalid mutation. Consider the
bytes at offsets 0x1c and 0x1d in our example. The coverage
feature of the byte at offset 0x1c is shown in Figure 3c.
Although the byte may have multiple valid values with high
coverage similarity with the original execution (e.g., value
0x20 having 0.978 similarity and value 0x10 having 0.959
similarity), when given an invalid value its minimum cover-
age similarity is 0.068, which is the same as the minimum
similarity of the byte at 0x1d. Recall that the source code has
a switch case statement on these two bytes such that all invalid
mutations to either byte lead to the same failing path.

STEP III: Field Type Identification. Given a group of
consecutive bytes as an input field, the next step is to determine
the type of the field.

• Assertion Fields. For a field at offsets from i to j, if it
satisfies the condition (7), we consider it an assertion field.
The condition means that for any byte at offset x ∈ [i, j], there
exists one and only one value v for the byte that induces a
similarity score 1. And for any other value, the similarity score
is less than the midrange value.

∀x ∈ [i, j] : ∃v ∈ [0x00, 0xff ] : FS
x [v] = 1;

∀u �= v ∈ [0x00, 0xff ] : FS
x [u] < αx;

(7)

The intuition is that any byte in an assertion field has only
one valid value that allows the program to proceed normally.
Other values will result in the same termination-with-exception
path, leading to low similarity with the original execution.
The midrange value αx can be used to distinguish the original
execution and erroneous executions.

For example, the field at offsets [0x00, 0x01] in Figure 1a
are an assertion field. Figure 3a visualizes the similarity feature
of the byte at 0x00. As we can see, only the value of 0x42
results in a normal execution with the similarity score 1, other
values result in an exception with the similarity score 0.059.
• Raw Data Fields. For a field at offsets from i to j, if it
satisfies the condition (8), we consider it a raw data field.
The condition means that for any byte with offset x ∈ [i, j],
its similarity score compared with the original execution is
always 1 for all values.

∀x ∈ [i, j],∀v ∈ [0x00, 0xff ] : FS
x [v] = 1 (8)

The intuition is that the value of a raw data field must not
affect the control flow of the program. For example, the field
in offsets [0x26, 0x2d] in Figure 1a are treated as a raw data
field. It denotes the image resolution, which has no impact
on control flow of image conversion. Figure 3b visualizes the
similarity feature of byte 0x26.
• Enumeration Fields. An enumeration field satisfies con-
dition (9), which means that there exists a byte at offset
x ∈ [i, j] and a set V S which is a proper subset of the set
{0x00, ..., 0xff} with size larger than 1, such that for any
value v in V S, its similarity score is larger than the midrange
value and for any byte u not in V S, its similarity score is
smaller than the midrange value.

∃x ∈ [i, j], ∃V S ⊂ {0x00, ..., 0xff}, |V S| > 1 :

∀v ∈ V S : FS
x [v] > αx; ∀u /∈ V S : FS

x [u] < αx;
(9)

The intuition is that an enumeration field has a small set of
valid values. For those valid values, the similarity scores are
relatively high, since the program can correctly proceed. For
other values, however, the similarity scores are very low, since
the control flow most likely transfers to error handling code.

The field at [0x1c, 0x1d] in Figure 1a is an enumeration
field (indicating color depth). Figure 3c visualizes the coverage
feature of byte 0x1c. The figure also tells us that the current
implementation of OpenJPEG supports four image formats.
• Loop Count Fields. A loop count field satisfies the condi-
tion (10), meaning that the variance of the coverage similarity
scores is less than β, which is a predefined value indicating
small data variation [28], [29]. The average of frequency
difference is larger than 1, which means frequency difference
is dominating when compared with coverage difference.

∃x ∈ [i, j] : V ariance(FS
x [·]) < β,Average(FD

x [·]) > 1 (10)
The intuition behind this condition is that a loop count value

has substantial impact on edge frequency and negligible impact
on edge coverage. The byte at offset 0x36 in Figure 1a is
a loop count field. It decides the number of bits that need
to be encoded in a loop. Figure 3d visualizes the coverage
feature of the byte. We can see that the similarity scores of
the values are very close to each other, which means they have
little difference in coverage. But when we calculate the ratio
between the number of edges with different frequencies and
the number of edges with different coverage, the mean value
is 7.355, indicating the dominance of the former.
• Offset Fields. An offset field needs to satisfy (11), which
means that there exists a byte at offset x ∈ [i, j] such that
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Fig. 3: Similarity features of each input field type.

the coverage similarity score of value 0 (i.e., the coverage
similarity with the original execution when the byte is mutated
to 0) is larger than the midrange, and there also exists a value
t in range [0x00, 0xff ], such that there are two values u and
v smaller than t have different similarity scores, while any
value w larger than t always has a similarity score less than
the midrange value.

∃x ∈ [i, j] : FS
x [0] > αx; ∃t ∈ [0x00, 0xff ] :

∃u, v ∈ [0, t] : FS
x [u] �= FS

x [v]; ∀w ∈ (t, 0xff ] : FS
x [w] < αx

(11)

The intuition is that the valid range of an offset field is
bounded by the length of the remaining input (i.e., from the
byte next to the field to the end). Mutating the field to any
value larger than the bound may cause out of range access and
hence exception. Mutating the field to any value smaller than
the bound results in different subsequent data being accessed,
which in turn may induce different execution paths. As such,
there are two such values u and v whose coverage similarity
metrics are different. In addition, mutating the field to 0 is
very likely valid as that means the program would access
subsequent data starting right after the field.

For example, the bytes at [0x0a, 0x0d] in Figure 1a are an
offset field that points to a position from which the program
loads the image data. Figure 3e visualizes the coverage feature
of byte 0x0a. We can see that 0x36 is the bound. Beyond the
bound, the coverage similarity metrics are low as the program
terminates with errors, leading to substantial differences from
the original execution. Within the boundary, different offset
values result in different similarity metrics. The coverage
similarity for value 0 is larger than the midrange.

• Size Fields. A size field needs to satisfy a condition similar
to (11) except that there exists a byte at offset x ∈ [i, j] such
that the coverage similarity metric for value 0 is smaller than
the midrange. Intuitively, a size field has similar characteristics
to an offset field as there also exists a bound determined by the
length of the remaining input. The difference is that mutating
an offset field to 0 likely leads to successful execution whereas
mutating a size field to 0 often leads to early termination.

For example, the bytes at [0x16, 0x19] in Figure 1a are a
size field that indicates the image height. Figure 3f visualizes
the coverage feature of byte 0x16. Note that value 0x02 is the
bound as we use a small image as input. The values larger than
the bound have a very small similarity score, indicating early
termination and the score for value 0 is below the midrange.

We distinguish size fields from offset fields as they have
different mutation policies. For example, when increasing an
offset field by 1, we insert a byte right after the field so that

the same original subsequent data is accessed in the mutated
run. In contrast, when increasing a size field by 1, we insert a
byte at the end of input. In the case that the input ends with
an assertion field, the byte is added before the field.

In some cases, an offset/size field may be next to a raw data
field. Identifying the boundary of these fields could be tricky
because mutating the least byte of an offset/size field may
not cause any execution changes, making it indistinguishable
from a raw data byte. We handle the problem by grouping
the identified size/offset bytes with their adjacent raw bytes
as long as the value denoted by the grouped bytes does not
exceed the size of the seed input.

Our experiment shows that our field probing is highly
precise, with only 5.2% false positive rate and 4.5% false
negative rate on average (see Section V-C).

B. Reprobing

During fuzzing, given a new (mutated) input, ProFuzzer
first tries to reuse a probed template whose execution trace is
similar to the execution trace of the input. If there is not such
a template, we consider the mutated input to be a new seed
input and re-probe its fields just like probing of the original
seed input. Before reprobing, ProFuzzer leverages the AFL
built-in input trimming functionality to reduce the input size
as much as possible and prioritize the inputs with small sizes.

The challenge lies in that the new seed input may not lead
to a normal execution, but rather an execution with exception.
Therefore, the basic idea of reprobing is when mutating the
new seed input results in a longer execution than the seed, we
consider the reprobing mutation is getting closer to a valid
input, and hence we replace the current seed with the mutated
seed and continue. Note that a longer execution indicates the
mutated seed gets through more validation checks.

Reprobing Feature Extraction. Due to the invalidity of seed
executions, reprobing has to be based on different execution
feature that measures execution length variation. For a byte
at offset i that is mutated to a value v, we define a reprobing
metric RI[i]:v based on edge vectors TI and TI[i]:v . The metric
measures the ratio between the number of edges taken during
the executions, that is, the number of edges with a non-zero
count in TI and that in TI[i]:v . Then, we extract the reprobing
feature FR

i for a byte at offset i as a tuple of 256 elements,
each of which corresponds to a reprobing metric.

RI[i]:v =

∣∣{j| TI[i]:v [j] �= 0}∣∣
|{j| TI [j] �= 0}|

FR
i =

〈
RI[i]:0x00, ..., RI[i]:0xff

〉
(12)



Field Type Re-Identification. In the following, we explain
how the new feature is used to reprobe assertion fields and
enumeration fields. Reprobing other fields is elided due to
space limitations.
• Reprobing Assertion Fields. For a byte at i, if it satisfies
condition (13), we consider it an assertion field. The condition
means that there exists one and only one value v for the
byte that induces longer execution than the original execution.
And for any other value, the execution is shorter than or
equal to the original execution. After identifying such a value,
we replace the byte with the identified value to allow the
execution to proceed farther. Multiple such bytes are grouped
into an assertion field following the same method described in
Section IV-A.

∃v ∈ [0x00, 0xff ] : FR
i [v] > 1;

∀u �= v ∈ [0x00, 0xff ] : FR
i [u] ≤ 1;

(13)

• Reprobing Enumeration Fields. For a byte at offset i, if it
satisfies condition (14), we consider it a byte belonging to
an enumeration field. The condition means that there exists a
set V S which is a proper subset of the set {0x00, ..., 0xff}
with size larger than 1, such that for any value v in V S, the
resulted execution is longer than the original execution. And
for any other value, the execution is shorter than or equal to
the original one. Multiple such bytes can be grouped to an
enumeration field.

∃V S ⊂ {0x00, ..., 0xff}, |V S| > 1 :

∀v ∈ V S : FR
i [v] > 1; ∀u /∈ V S : FR

i [u] ≤ 1;
(14)

C. Type Guided Mutation

Probed fields are used to guide mutation. The guidance
is provided in two aspects. In the first aspect, it limits the
mutation to all the legitimate values of the field type to
achieve better coverage. We call it exploration mutation. In
the second aspect, ProFuzzer mutates each field to exploit a
set of special values (for the specific field type) that could lead
to potential attacks. We call it exploitation mutation. During
fuzzing, ProFuzzer interleaves these two modes. Intuitively, it
tries to exploit the paths covered by the current seeds. If the
process becomes fruitless, it starts to explore more coverage
by generating more seeds, and so on.
Exploration Mutation. An important advantage of having
field information is that we can apply mutations at the field
level instead of the byte level, which substantially reduces
the number of ineffective mutations. Besides, we applying
the following mutation policies in the exploration stage. (1)
We do not allow any mutation on raw data fields. (2) For
an enumeration field, we assign a value within its valid range
(see Section IV-A) with a high probability (0.9 in our research)
and a value out of the range with a small probability (0.1) to
explore other valid values missed during probing. In particular,
we leverage a technique similar to VUzzer [12] to extract
constants from subject programs (e.g., numbers and strings)
such that those values of the same size as the field are mutation
candidates. (3) Even for an assertion field, which we are
not supposed to change its content during fuzzing, we still
modify it using extracted constants with a small probability

TABLE I: Exploitation rules.

Type Rules

Size

01. [size] = max({[field] | field ∈ SizeField})
02. [size] = min({[field] | field ∈ SizeField})
03. [size] = max({len(field) | field ∈ RawDataField})
04. [size] = min({len(field) | field ∈ RawDataField})
05. [size] = location end(I) − location current(I)
06. [size] = value ∈ BoundaryV alue

Offset

07. [offset] = max({[field] | field ∈ OffsetF ield})
08. [offset] = min({[field] | field ∈ OffsetF ield})
09. [offset] = location end(I) − location current(I)
10. [offset] = location start(I)
11. [offset] = location current(I)
12. [offset] = location end(I)
13. [offset] = value ∈ BoundaryV alue

Loop
Count

14. [count] = max({[field] | field ∈ SizeField})
15. [count] = max({[field] | field ∈ OffsetF ield})
16. [count] = max({len(field) | field ∈ RawDataField})
17. [count] = value ∈ BoundaryV alue

(0.1) in case probing misclassifies the field (e.g., treating an
enumeration field as an assertion). (4) For an offset field, when
mutation increases (or decreases) its value by X , we insert
(or delete) X bytes right after the field. (5) For a size field,
when mutation increases (or decreases) its value by X , we
insert (or delete) X bytes before the last non-assertion field
at the end. The inserted data is randomly generated. (6) For
a loop count field, we perform a binary search to identify its
minimum and maximum valid values. (7) For other fields that
cannot be classified into one of the six types, we perform the
default AFL random per-byte mutation.

Exploitation Mutation. We manually analyzed more than a
hundred of PoCs of known vulnerabilities and found that a
given field type often has a small set of values that could lead
to exploits. Such patterns are application agnostic. Since we
have recognized fields and field types, exploiting these patterns
helps effectively and efficiently discover new vulnerabilities.
Particularly, for each PoC, we used ProFuzzer to probe its field
template and then conducted a manual study of field types and
the corresponding values that lead to exploitation. Currently,
the procedure requires domain knowledge and manual efforts.
We leave the automatic learning of exploitation rules from a
larger pool of PoCs to our future work.

Table I presents our findings for size, offset, and loop
count fields. The others are elided due to space limitations.
Consider Rule 1 which specifies that we may change a size
field to the max value of any size fields ever found for
the program. Intuitively, various size values correspond to
different data structures whose application-specific types we
do not care. The mutation essentially forces the program to
interpret the subsequent data as a different data structure (with
a larger size). If the program has type related bugs such as
type confusion [30], the mutation would help to expose the
problems. Rules 2, 3, 4, 7, 8 have a similar idea. Rule 9 means
that by the specified mutation, we force the program to start
reading beyond the end of input. Note that during exploitation,
our goal is to expose bugs. As such, when increasing an offset
field, we do not need to patch the input with new bytes.

V. EVALUATION

Target Programs. We use 40 popular real-world programs
to study the generality of our assumptions, and select 10 of



them that are commonly used in existing fuzzing projects for
evaluation. The selected programs cover different application
categories including image processing, audio and video de-
coder, PDF reader, and compression library, which have been
used to evaluate other fuzzers [31], [32]. We also compare
ProFuzzer with other fuzzers on standard benchmarks.

Computing Resource. We divide our tasks into two machines.
The first one is used for discovering zero-day vulnerabilities. It
has 32-cores (Intel® XeonTM CPU E5-2690 @ 2.90GHz) with
256G main memory. And the other one runs experiments to
compare ProFuzzer with other fuzzers. The machine has 24-
cores (Intel® XeonTM CPU E5-2630 @ 2.30GHz) and 64G
main memory. Each fuzzing task only takes one CPU core,
except Driller and QSYM, whose tasks use two CPU cores,
one for fuzzing, and the other for symbolic execution.

ASAN Setting. In our evaluation, ASAN was enabled for find-
ing zero-day vulnerabilities (Section V-D), which is a common
practice in real-world testing, and for exposing known vulnera-
bilities (Section V-F), since some of them can only be detected
with ASAN. For each target program, two configurations
were used: the ASAN-disabled version for fuzzing and the
ASAN-enabled version for checking whether a vulnerability is
triggered on the generated test case. The execution of ASAN-
enabled version is on a separate process and hence does not
affect the fuzzing runtime. When evaluating the performance
of ProFuzzer (Section V-G) and comparing with other fuzzers
on standard benchmarks (Section V-E), ASAN was disabled.

A. Generality of Assumptions

We randomly sample 40 popular programs used in AFL [33]
and OSS Fuzz [32] to study the generality of our assumptions
about (1) deterministic execution, (2) the size of initial seed
inputs, and (3) the difference between normal execution and
exceptional execution. For each application, we collect its
initial seed inputs from its test-suite or public seed corpus [34],
[35]. We run each application multiple times to check whether
its execution is deterministic. We also conduct statistical
analysis on the edge count of normal execution and exceptional
execution. The detailed results are presented in Appendix B.
Overall, all the sampled applications are deterministic and
have initial seed inputs of moderate size (ranging from 78 to
1650 bytes). The difference between normal and exceptional
executions is significant, with the edge coverage of the latter
4 times smaller on average.

B. Input Size and Path Coverage

Input Size Distribution. The cost of probing/reprobing is
proportional to input size. ProFuzzer has a few internal mech-
anisms that allow controlling input sizes (without affecting
fuzzing effectiveness). The figure in Appendix C(a) describes
the input size distribution of OpenJPEG. For comparison, the
box on the left illustrates the “interesting inputs” found by
vanilla AFL, which contributed to new coverage. The size
ranges from 4 to 914 bytes. The right shows the sizes of
inputs by ProFuzzer, which largely range from 60 to 80 bytes

TABLE II: Probing accuracy.

Product Actual
ProFuzzer afl-analyze

Inferred Wrong Missed Inferred Wrong Missed
(FP*) (FN**) (FP*) (FN**)

exiv2 20 21 3 (14%) 0 (0%) 16 11 (69%) 15 (75%)
graphicsmagick 17 19 1 (5%) 2 (12%) 7 4 (57%) 14 (82%)

libtiff 20 23 2 (9%) 3 (15%) 17 9 (53%) 12 (60%)
openjpeg 17 17 1 (6%) 0 (0%) 9 4 (44%) 12 (71%)

libav 14 14 1 (7%) 0 (0%) 4 2 (50%) 12 (86%)
libming 14 14 0 (0%) 0 (0%) 3 1 (33%) 12 (86%)
mupdf 52 53 2 (4%) 1 (2%) 34 13 (38%) 31 (60%)
podofo 52 53 1 (2%) 2 (4%) 25 11 (44%) 38 (73%)
lrzip 39 39 0 (0%) 5 (13%) 30 3 (10%) 12 (31%)

zziplib 36 36 2 (6%) 0 (0%) 14 4 (29%) 26 (72%)

* FP = #Wrong / #Inferred ** FN = #Missed / #Actual

with a few outliers more than 350. Even with the smaller
inputs, our approach achieves 93% more path coverage than
AFL, thanks to our strategies of prioritizing small inputs and
reusing templates when possible (Section V-G). Specifically,
we first probe new inputs with smaller sizes. For each input,
ProFuzzer first checks its trace and reuses the template of a
similar execution when possible. In addition, we use the AFL
built-in input trimming functionality to reduce the input size.
Input Size versus Path Coverage. To understand the relation
between input size and path coverage, we divide the generated
test inputs into different groups based on their sizes, and
calculate the average path coverage of each group. The figure
in Appendix C(b) shows the result for OpenJPEG. When the
size is less than 80, the increase of input size improves path
coverage. However, coverage degrades when the size exceeds
80. Two factors lead to the coverage decrease when the size
increases: 1) the larger the input, the more time each execution
takes; 2) the larger the input, the more mutations and time
are needed for validating such mutations. Similar results are
observed on other applications. This supports our strategy of
prioritizing small inputs.

C. Probing Accuracy
The experiment is to measure whether ProFuzzer can cor-

rectly identify fields and their types through probing. We ac-
quire the ground truth by manually checking how applications
handle individual bytes, and then compare the probing results
with the ground truth to measure false positives (wrong fields)
and false negatives (fields missed) by ProFuzzer. We also
compare ProFuzzer with AFL-analyze [19], a simple off-line
file format analysis utility included in AFL, which works by
performing four kinds of mutations for each byte (i.e., xor
with 0xff and 0xfe, add and sub by 10), and classifies
its data type based on simple heuristics (e.g., a size field is
identified if all the four mutations yield different traces from
the original execution and the value is a small integer). It only
recognizes raw data, assertion, and length types.

Table II shows the results. Observe that ProFuzzer has very
few false positives (5.3% on average) and false negatives
(4.6% on average), while AFL-analyze has a relatively high
FPs (42.7% on average) and FNs (69.6% on average). Among
the 276 fields correctly recognized by ProFuzzer, only 97
of them are identified by AFL-analyze. This illustrates the
simple approach by AFL-analyze is ineffective. A close look
at ProFuzzer results shows that it may misclassify a field



when the runtime characteristics of different field types are not
clearly distinguishable during probing. For example, lrzip
computes a checksum on the compressed data. ProFuzzer
decides that the compressed data is a large assertion field as
any change to any single byte causes exception, whereas the
correct type shall be raw data.

D. Finding Zero-day Vulnerabilities

Summary. Table III summarizes the results of using ProFuzzer
to find zero-day vulnerabilities. The ProFuzzer prototype has
run for 2 months before writing the paper. It has found
42 unreported vulnerabilities (column 3); 30 of them have
been assigned a CVE number, and 27 of them have been
confirmed or fixed by the vendors after our reports. Our subject
programs are all widely used, actively maintained and have
been well tested and fuzzed by the developers and security
researchers [17], [36]–[38]. The fact that ProFuzzer is capable
of finding these new vulnerabilities in such a short period of
time demonstrates the effectiveness of our design. The full list
of the zero-day vulnerabilities can be found in Appendix D.
Case Study. We take the discovery of the zero-day vulnerabil-
ity CVE-2017-17725 as an example to demonstrate the effec-
tiveness of ProFuzzer. It is a buffer over-read in Exiv2, which
may cause information leak to facilitate further exploitation
(e.g., bypass address space layout randomization protection).
Exiv2 is a popular open-source image metadata management
library, which is used in many projects including KDE and
Gnome Desktop. The vulnerability can affect the downstream
products depending on the Exiv2 library. Although Exiv2 has
been extensively tested, this vulnerability still fell through the
crack. We reported this vulnerability to Exiv2 vendor. They
acknowledged our finding and fixed it in 3 days.

Figure 4a shows the vulnerable code. The function
readMetadate() allocates a subBox.length+8 bytes
buffer and stores the pointer to data.pData_ (line 273).
Then it calls function getULong() to read 4 bytes from
data.pData_ at the offset 3. The size of the buffer
should be larger than 7 to avoid over-read. The variable
subBox.length (line 273) is read from a certain size
field in the input file. If the input file size is in the range
[0xfffffff8, 0xfffffffe], after 8 is added, there will be
an integer overflow making the allocated buffer smaller than
7 bytes, resulting in buffer over-read.

We investigated the mutation history and found that field
information is critical. Figure 4b shows a mutated input. The
bytes at the offsets from 0x3e to 0x41 are loaded as the
value of subBox.length. ProFuzzer probes that these four
bytes constitute a size field. In the exploration mutation, it
mutates the whole field rather than individual bytes and finally
triggers the vulnerability when mutating the size field to be
a value within [0xfffffff8, 0xfffffffe]. In contrast, it
is very difficult for AFL to discover this case because values
in the range [0xfffffff8, 0xfffffffe] are not common
boundary values. Furthermore, since AFL does not know
which consecutive bytes form a field, it randomly selects
consecutive subsequences. The search space is hence massive.

TABLE III: Vulnerabilities discovered by ProFuzzer.

Category Product SLOC Bugs CVEs Fixes

Image

exiv2 131,993 5 5 5
graphicsmagick 299,186 2 1 1

libtiff 82,484 8 1 1
openjpeg 164,284 3 3 3

Audio & Video libav 703,369 3 2 0
libming 72,747 2 2 2

PDF mupdf 102,824 1 1 1
podofo 78,195 6 6 3

Compression lrzip 19,098 3 3 3
zziplib 12,898 8 6 8

Total 10 1,667,078 42 30 27

File: src/jp2image.cpp
206 void Jp2Image::readMetadata() {
273 DataBuf data(subBox.length+8);
274 io_->read(data.pData_,data.size_);
275 long iccLength = getULong(data.pData_+3, ...);
442 }

(v)
File: src/types.cpp
243 uint32_t getULong(const byte* buf, ...) {
250 return (byte)buf[0] << 24 | (byte)buf[1] << 16
251 | (byte)buf[2] << 8 | (byte)buf[3];
253 }

(a) Vulnerable code.
������������������	��
�����������������������

�����������

������������������������������������������
��
������������
�����������������	��	��	��
��������	����������������������
�������������������������

(b) Mutated input.
Fig. 4: Discovery of CVE-2017-17725.

E. Evaluation on Standard Benchmarks

Benchmarks. LAVA-M dataset [15] and Google fuzzer test-
suite [16] are two real-world standard benchmarks for fuzzer
evaluation. The LAVA-M dataset includes four utilities from
coreutils, each of which is injected with crafted bugs. The
Google fuzzer test-suite contains real-world libraries that have
interesting bugs and hard-to-find code paths.

Fuzzers. We compare ProFuzzer with AFL and its optimized
version AFLFast [7], as well as three state-of-the-art fuzzers
Driller [13], VUzzer [12] and QSYM [14]. AFLFast accel-
erates AFL by prioritizing low-frequency paths to achieve
higher path coverage. Driller enhances AFL through symbolic
execution whenever the fuzzer gets stuck at complicated path
conditions. VUzzer utilizes dynamic tainting to locate interest-
ing bytes (e.g., those related to a certain predicate), and mutate
them to constant values extracted from the binary. QSYM
proposes a tailored concolic executor, which is scale to real-
world applications. Another related fuzzing tool, Angora [39],
which uses gradient descent to guide fuzzing, was not available
at the time of writing this paper.

LAVA-M. LAVA-M identifies input bytes that do not affect
control flow and then injects buggy code guarded by com-
paring those bytes to some magic value. Figure 5 shows an
example. In line 395, buff_data contains data derived from
some inputs bytes. The values of the four consecutive bytes are
stored to a global variable. Then line 71 checks if it matches
a magic value 0x6c617523. If so, the pointer fp is offset to
an invalid address, causing a segment fault.

We ran the fuzzers for five hours on each test program
with the seed inputs provided by VUzzer and by the Angora



TABLE IV: Bugs found in LAVA-M.

Program Listed
Bugs

Found Bugs
ProFuzzer AFL AFLFast Driller VUzzer Angora QSYMori opt ori dict ori dict ori dict

base64 44 11 24 2 14 2 16 4 27 18 48 44
md5sum 57 4 10 0 20 0 16 3 14 20 57 52

uniq 28 13 28 0 18 4 13 2 12 26 28 28
who 2136 17 41 7 44 6 48 7 54 47 1541 1071
Total 2265 45 103 9 96 12 93 16 107 111 1674 1195

File: src/uniq.c
395 int lava_318 = buff_data[0] << (0*8);

lava_318 |= buff_data[1] << (1*8);
lava_318 |= buff_data[2] << (2*8);
lava_318 |= buff_data[3] << (3*8); (vi)
lava_set(318,lava_318);

File: lib/fclose.c
57 FILE *fp;
71 fileno(fp+(lava_get(318))*(0x6c617523==(lava_get(318)));

Fig. 5: An example of injected bug in LAVA-M.
authors in order to faithfully reproduce their results. Table IV
shows our findings. Given the nature of the injected bugs, we
equipped ProFuzzer with a dictionary (i.e., constants extracted
from the binary, which were also used by VUzzer) and further
optimized its mutation policy to focus more on the input fields
that have little impact on edge coverage. Here we report the
results of the original and the optimized ProFuzzer. For AFL,
AFLFast and Driller,the results include the situations with and
without the dictionary. For Angora, we used the result from
the paper since it was not available at the time of writing this
paper.

After customizing the mutation policy, the optimized Pro-
Fuzzer was found to achieve performance comparable with
Driller and VUzzer, when they use dictionaries. Dictionaries
are important because of the simple triggering mechanism of
the injected bugs, which checks whether certain input bytes
equal to a predefined constant. Angora and QSYM have
far better performance than other fuzzers on this dataset. We
believe that this advantage comes from the nature of the
injected bugs that fits their fuzzing strategies very well but
may not reflect real-world situations. Appendix E presents the
list of bugs found by ProFuzzer.

Google Fuzzer Test-suite. Table V shows the results on the
Google fuzzer test-suite that contains more complex programs
than LAVA-M. The objective of this test suite is to see if a
fuzzer can reach certain code locations, which is more realistic
than the injected bugs in LAVA-M as well. The table presents
target program (column 1), target locations (column 2) and
time taken to reach the location for the five fuzzers (columns
3 to 7). Here, we set the timeout to 24 hours. In summary,
ProFuzzer is able to reach 9 out of total 11 locations while
other fuzzers can reach only 6, and all locations hit by other
fuzzers can also be identified by ProFuzzer. For those that
can be reached by ProFuzzer and at least another fuzzer,
ProFuzzer takes the least time except for the target location
in JSON (row 2) and one of the target locations in libpng
(row 7). These two locations are easily to found. ProFuzzer
takes more time due to probing. Considering the cases that
did not timeout, on average ProFuzzer is 3.51 times faster

TABLE V: Evaluation on Google fuzzer test-suite.

Program Location Reaching Time (hours)
ProFuzzer AFL AFLFast Driller VUzzer

guetzli output image.cc:398 0.83 3.64 2.37 3.73 8.60
json fuzzer-... json.cpp:50 0.05 0.02 0.04 0.12 4.26
lcms cmsintrp.c:642 0.67 6.55 3.83 5.31 11.97

libarchive archive ... warc.c:537 1.34 7.88 6.92 6.74 14.42
libjpeg jdmarker.c:659 11.68 T/O T/O T/O T/O

libpng
png.c:1035 1.84 3.37 2.33 4.27 6.06

pngread.c:757 0.03 0.01 0.01 0.02 0.17
pngrutil.c:1393 7.63 T/O T/O T/O T/O

vorbis
codebook.c:479 T/O T/O T/O T/O T/O
codebook.c:407 T/O T/O T/O T/O T/O

res0.c:690 11.76 T/O T/O T/O T/O

than AFL, 2.26 times faster than AFLFast. 3.24 times faster
than Driller, and 8.55 times faster than VUzzer. ProFuzzer
outperforms Driller and VUzzer in more complex programs
with more realistic objectives for the following reasons. (1)
Driller executes programs in the slow QEMU mode due to
the need of collecting symbolic constraints. (2) Each time
when the concolic execution is activated, Driller feeds all seeds
recorded by the fuzzer to its symbolic execution engine, angr,
rendering significant overhead. Many these seeds are rather
complex due to the complexity of the programs. (3) VUzzer
requires heavyweight dynamic taint analysis.

F. Exposing Known Vulnerabilities

We further compare the effectiveness of ProFuzzer with
other fuzzers on real-world known vulnerabilities. From each
application category, we randomly choose a program, and then
manually collect recent vulnerabilities in the programs and run
the five fuzzers on them to see if they can disclose all these
bugs. As shown in Table VI, ProFuzzer exposed 18 out of 20
known vulnerabilities within 24 hours, while AFL, AFLFast,
Driller, VUzzer and QSYM discovered 11, 13, 11, 7 and 15
respectively. On average, ProFuzzer uses 2.63 hours to find a
known vulnerability, about 50%, 73%, 35%, 18% and 70% of
the time used by AFL, AFLFast, Driller, VUzzer and QSYM
respectively. Actually, within 24 hours, among hundreds of
test cases produced by QSYM for openjpeg, libming, podofo
and zziplib each, 2, 16, 45, 21 new test cases were found to
be missed by QSYM’s embedding AFL fuzzing engine.
Case Study. We take the known vulnerability CVE-2017-5975
as an example to demonstrate the effectiveness of ProFuzzer.
It is a buffer over-read in ZzipLib, which is a lightweight
open-source archive library, allowing to extract data from files
archived in a single zip file. It is widely used in popular
software (e.g., PHP 4) and other libraries (e.g., LibClamav).
The vulnerability can affect the downstream software/libraries.

Figure 6a presents the vulnerable code. The function
zzip_mem_entry_extra_block() is called to search
data block of a special data type ZZIP_EXTRA_zip64
(0x01) in the extra data area. The search is implemented in a
while loop (lines 247-259). In each iteration, the cursor moves
forward with a stride decided by an offset field in the input
file (line 256). Once such a block is found, its pointer will be
returned to the caller function zzip_mem_entry_new()
for accessing its z_csize field, whose offset from the block
header is 0x04 (line 221). If a mutated input file has the offset
field pointing to a location whose value is 0x01, indicating the



TABLE VI: Time consumption to expose known bugs.

Product Vulnerability Exposing Time (hours)
ProFuzzer AFL AFLFast Driller VUzzer QSYM

openjpeg

Issue#996 0.20 4.26 2.37 3.53 2.32 2.11
CVE-2016-10504 3.21 6.54 4.82 9.17 T/O 5.02
CVE-2016-10507 0.22 T/O T/O T/O T/O T/O
CVE-2017-12982 2.55 7.13 3.58 10.24 T/O 5.76
CVE-2017-14151 1.13 T/O T/O T/O T/O T/O

libming

CVE-2016-9264 0.73 T/O T/O T/O T/O 5.54
CVE-2016-9266 1.95 0.85 0.97 1.97 3.18 1.03
CVE-2016-9828 5.02 T/O T/O T/O T/O 7.72
CVE-2016-9829 1.07 1.20 1.47 2.31 T/O 1.26
CVE-2017-9989 0.85 0.98 1.18 1.45 1.25 0.92

podofo

CVE-2017-5852 1.57 1.75 1.87 4.08 18.77 1.66
CVE-2017-5886 10.31 T/O 13.82 T/O T/O 12.07
CVE-2017-7378 T/O T/O T/O T/O T/O T/O
CVE-2017-8378 T/O T/O 9.18 T/O T/O T/O
CVE-2017-8787 7.95 T/O T/O T/O T/O T/O

zziplib

CVE-2017-5975 0.03 0.13 0.13 0.13 0.24 0.10
CVE-2017-5976 0.03 0.03 0.02 0.11 0.17 0.02
CVE-2017-5977 8.19 T/O T/O T/O T/O 7.78
CVE-2017-5978 2.23 4.50 2.80 5.63 T/O 3.06
CVE-2017-5980 0.11 0.17 0.13 0.72 0.84 0.15

special data type, and the location itself is less than 0x04 bytes
away from the end of the file (i.e., the data block has an empty
body), a buffer over-read occurs.

Figure 6b show a mutated input by ProFuzzer. The bytes at
0x52 and 0x53 are recognized as an offset, which in fact is
used in the while loop of block searching. In the exploitation
mutation, ProFuzzer applies the Rule 09 presented in Table I
to set its value to be the difference of the current location and
the end of file location. Such mutation results in significant
differences in executions, which in turn trigger reprobing.
During reprobing, the byte at offset 0x6d is mutated with
value ranging from 0x00 to 0xff to collect the features. When
mutated to 0x01, the vulnerability is triggered. We should note
that our PoC is smaller than the PoC provided by the original
discovery of this vulnerability (111 bytes v.s. 151 bytes).

More interestingly, ProFuzzer discovers a zero-day (CVE-
2018-6381) two hours after exposing the known vulnerability.
It is a heap buffer over-read that allows 1024 bytes information
leak. We investigate ProFuzzer’s mutation history and identify
a key mutation step. It increases the value of a certain size
field (file name length) by 0x1c and correspondingly appends
0x1c bytes of random data to the end of the file following
our mutation policies. The appended data is misinterpreted as
the content of a ZZIP_EXTRA_zip64 extra block. As such,
random (added) bytes are interpreted as a size field with a large
value. Finally, this misinterpreted size value is compared with
1024 and the smaller value is used as the size of the data
to be copied in a memcpy call. Note that the misinterpreted
fields and field types are synthesized by ProFuzzer according
to the buggy implementation of the ZzipLib product. It cannot
be generated using the standard zip file format specification.
We reported this vulnerability to the ZzipLib vendor. They
acknowledged our finding and fixed it in 4 days.

G. Performance

Mutations. As discussed in Section IV, one of the disadvan-
tages of existing fuzzers is that the mutations they perform
are largely random due to the lack of input semantics. In the
first experiment, we measure the ratio of effective mutations
over 24 hours. A mutation is effective when it leads to new

File: src/zzip/memdisk.c
167 zzip_mem_entry_new(DISK * disk, ...) {
217 block = zzip_mem_entry_extra_block(entry, 0x01);
221 entry->zz_usize = __zzip_get64(block->z_usize);
234 }

240 zzip_mem_entry_extra_block(entry, datatype) {
245 EXTRA_BLOCK *ext = entry->zz_ext[i]; (vii)
247 while (*(short *) (ext->z_datatype)) {
250 if (datatype == zzip_extra_block_get_datatype(ext))
252 return ext;
256 ext += zzip_extra_block_get_datasize(ext);
259 }
265 }

(a) Vulnerable code.
             0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f
 00000040h  00 00 00 00 00 01 00 00 00 A4 81 00 00 00 00 61
 00000050h  55 54 05 00 03 EC E5 71 5A 50 4B 05 06 00 00 00
 00000060h  00 01 00 01 00 47 00 00 00 21 00 00 00 00 00

19 00 01 00

(b) Mutated input.
Fig. 6: Exposing CVE-2017-5975.

coverage. The ratio is the number of effective mutations over
the total number of mutations. The results of OpenJPEG
are shown in Figure 7a. VUzzer achieves the most effective
mutation ratio, since its taint analysis allows VUzzer to
produce fewer but more effective inputs than all the other
fuzzers that do not use dynamic tainting. ProFuzzer has lower
effective mutation ratios at the beginning because of probing,
which blindly mutates individual bytes from 0x00 to 0xff .
After probing, ProFuzzer has the field information to guide
mutations, whereas AFL, AFLFast and Driller do not. As a
result, their effective mutation ratios drop very quickly, while
ProFuzzer can keep a relatively high ratio. In hours 5 and 10,
a number of new fields are discovered (by reprobing), leading
to the increase of the effective mutation ratio. The experiments
on other target programs show similar results.

Path Coverage. Figure 7b presents the path coverage in the
first 24 hours. In the early stage, the five fuzzers show a similar
path coverage growth. After probing, the path coverage of
ProFuzzer grows very fast along time. Hour 10 in Figure 7b
shows the effect of finding new fields by reprobing. In contrast,
AFL mostly performs random mutations. Hence, it sometimes
cannot find any new paths for a long time (hours 13-18)
until the random walk reaches an interesting space. AFLFast
optimizes AFL by prioritizing the seeds that may lead to new
coverage through statistical analysis. While it does provide im-
provement in many cases, it nonetheless lacks field semantics.
Hence its improvement is limited compared with ProFuzzer.
Driller does not seem to have substantial improvement over
AFL as its symbolic execution engine is less effective on real-
world applications. VUzzer’s performance on path coverage
is not as outstanding as its mutation ratio because the heavy-
weight taint analysis slows down its execution by about 10
times. Overall, ProFuzzer archives 56%, 27%, 49% and 227%
more path coverage than AFL, AFLFast, Driller and VUzzer,
respectively, and spends 60%, 54%, 53% and 79% less time to
reach the same coverage reported for AFL, AFLFast, Driller
and VUzzer in 24 hours. Our evaluation on other target
programs shows similar results, see Appendix F.



(a) Effective mutation ratio. (b) Path coverage. (c) Sensitiveness to seeds.
Fig. 7: Performance comparison.

Sensitiveness to Seed Inputs. To study how different seed
inputs may affect ProFuzzer, we use three different sets of
seeds to evaluate path coverage on OpenJPEG. The first one
has a single valid seed input, the second and third ones have 5
and 10 valid seed inputs with different combinations of color
depth and header size. The result is shown in Figure 7c. As
we can see, there are substantial differences between one-seed
and five-seed. In contrast, the differences between five-seed
and ten-seed are small. Further inspection shows that in one-
seed, seven new fields are found within 5 hours, while the
remaining three new fields could not be found in 24 hours.
With five and ten seeds, these remaining new fields are found
within 3 hours. After all the 10 new fields are discovered, the
five-seed and ten-seed start to have a similar trend.

VI. RELATED WORK

Field Aware Fuzzing. Closely related to ProFuzzer is field
aware fuzzing that tries to understand inputs to help fuzzing.
BuzzFuzz [40] is a pioneering work, which locates input bytes
that reach attack points and mutates them to the values likely
to trigger potential vulnerabilities. Steelix [41] infers magic
value bytes from program execution states and replaces them
with correct values to pass magic value validation. TIFF [42]
performs bug-directed mutations by inferring the program type
(e.g., integer, string, etc) of the input bytes. Angora [39] infers
the shape and type of input bytes by utilizing the semantics of
the instruction that operates on the values (e.g., sign and size
of the operands). The identified shape and type information
can improve the efficiency of gradient-based search. Other
similar works include [10], [43]. ProFuzzer is inspired by field
aware fuzzing. Unlike existing techniques, ProFuzzer includes
a lightweight mechanism to discover the relations between
input bytes and program behaviors by observing the program’s
execution path variations in response to the mutations of input
content, instead of using taint analysis or symbolic execution.
Input Structure Reverse Engineering. Prior approaches use
taint analysis or symbolic execution to track the relations of
input fields to infer file format [44], protocol [45]–[47] or
security configurations [48]. Another line of research infers
the program type of a variable (e.g., int and char) by observing
its propagation through instructions and system calls (e.g.,
TIE [25] and REWARDS [24]) or extracts data structures
(e.g., struct, array and string) from the memory access patterns
during program execution (Howard [26]). These techniques

recover types and data structures that are not fuzzing-specific.
Consider the variable header.biBitCount presented in
Code (ii) of Section IV. It will be recognized as an integer
by TIE and REWARDS, while it is labeled as an enumeration
with four valid values by ProFuzzer.

Hybrid Fuzzing. Recent studies [13], [49] combine fuzzing
with concolic execution to address limitations of each individ-
ual approach. However, they still face the challenges in scaling
to real-world applications due to the performance bottlenecks
in their concolic executors. QSYM [14] proposes a practical
concolic executor tailored to hybrid fuzzing, which optimizes
symbolic emulation and loosens the soundness of constraint
solving. Our study shows that ProFuzzer complements QSYM:
our exploration and exploitation strategies help to explore
more paths and exploit mutation patterns more likely to trigger
vulnerabilities. QSYM helps to get through the paths guarded
by complex predicate conditions.

Boosting Fuzzing. A number of existing works aim to boost
fuzzing by improving seed selection [27], [50], optimizing
fuzzing guidance by using statistical metrics [7], [8], [51], [52]
or semantics information [53], leveraging fundamental appli-
cation properties [12] and vulnerability specific patterns [54],
reducing path collisions [31], providing new OS level primi-
tives [55], or integrating fuzzing with deep learning [6], [9].

VII. CONCLUSION

We show that on-the-fly precise input field discovery and
semantic understanding can be transparently integrated into
regular fuzzing. With the information recovered from probing,
field-specific mutations can be performed, leading to improve-
ment of fuzzing performance. Our results show that ProFuzzer
substantially outperforms AFL, its optimized version AFLFast,
as well as two start-of-art smart fuzzers Driller and VUzzer,
and complements a recent work QSYM. It discovers 42 zero-
days in two months including 30 new CVEs.
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APPENDIX

A. Coverage Features

(a) 0x00. (b) 0x01. (c) 0x02 - 0x09.

(d) 0x0a. (e) 0x0b - 0x0d. (f) 0x0e.

(g) 0x0f - 0x11. (h) 0x12. (i) 0x13 - 0x15.

0.532

0.064

(j) 0x16. (k) 0x17 - 0x19. (l) 0x1a - 0x1b.

(m) 0x1c. (n) 0x1d. (o) 0x1e - 0x21.

(p) 0x22 - 0x35. (q) 0x36 - 0x38, 0x3a - 0x3c. (r) 0x39, 0x3d.



B. Samples of Real-World Programs

Product Version SLOC Deter- Initial Seeds Size (bytes) Edge Count
ministic Minimum Maximum Median Average Normal Exceptional Similarity

binutils 2.30 388,891 Y 56 256 132 147 256 34 0.111
brotli 1.0.4 35,770 Y 38 1,245 89 184 1,292 51 0.076

elfutils 0.170 115,330 Y 56 256 132 147 629 154 0.187
exiv2 0.26 131,993 Y 108 430 408 376 4,741 1,353 0.287
file 5.33 17,941 Y 5 1,280 10 78 1,762 1,042 0.561

freetype2 2.9.1 2,807 Y 540 1,072 836 809 3,712 1,423 0.212
giflib 5.1.4 8,209 Y 14 1,304 198 507 632 368 0.532

gifsicle 1.91 17,190 Y 14 1,304 198 507 1,635 908 0.398
graphicsmagick 1.3.29 299,186 Y 576 1,024 630 663 3,181 2,511 0.65

guetzli 1.1.0 9,431 Y 107 1,239 285 435 19,584 160 0.012
jasper 2.0.14 41,067 Y 107 1,239 285 435 3,031 343 0.127
jhead 3.0 4,880 Y 107 1,239 285 435 324 47 0.150
json-c 0.13.1 9,009 Y 289 854 501 522 635 53 0.120
json 3.1.2 80,358 Y 289 854 501 522 782 213 0.077
lame 3.100 52,143 Y 462 1,915 879 950 3,434 1,020 0.313
lcms 2.9 43,146 Y 158 3,240 310 1,002 868 117 0.111

libarchive 3.3.2 185,739 Y 10 280 66 91 2,122 1,012 0.360
libav 12.3 703,369 Y 843 2,366 1,493 1,650 7,680 4,459 0.455

libexif 0.6.21 14,032 Y 107 1,239 285 435 224 121 0.347
libjpeg-turbo 1.5.90 63,114 Y 107 1,239 285 435 1,979 133 0.071

libming 0.4.8 72,747 Y 462 1,915 879 950 139 12 0.130
libplist 2.0.0 8,097 Y 56 363 284 251 939 31 0.059
libpng 1.6.34 28,189 Y 67 790 216 264 1,427 256 0.187
libtiff 4.0.9 82,484 Y 108 430 408 376 2,546 107 0.035

libxml2 2.9.7 288,312 Y 7 925 235 329 3,244 1,025 0.367
libyaml 0.1.7 13,529 Y 19 356 34 131 963 123 0.146

lrzip 0.631 19,098 Y 73 1,238 260 575 523 69 0.143
msgpack-c 3.0.1 104,660 Y 240 2,087 420 792 450 39 0.080

mupdf 1.9 102,824 Y 130 758 731 490 14,912 3,013 0.180
nasm 2.13.03 102,523 Y 56 256 132 147 1,074 128 0.288

openjpeg 2.3.0 164,284 Y 576 1,024 630 663 3,543 136 0.050
ots 6.1.1 177,844 Y 540 1,072 836 809 2,864 150 0.037

podofo 0.9.5 78,195 Y 130 758 731 490 3,977 1,062 0.265
tinyxml2 6.2.0 7,560 Y 7 925 235 329 591 52 0.107
udis86 1.7.2 11,083 Y 56 256 132 147 703 208 0.396
vorbis 1.3.6 61,990 Y 462 1,915 879 950 3,974 1,092 0.462
yara 3.7.1 50,983 Y 56 256 132 147 132 37 0.464
zlib 1.2.9 29,675 Y 42 253 70 100 126 80 0.573

zlib-ng 1.0 18,831 Y 41 98 50 62 305 118 0.364
zziplib 0.13.69 12,898 Y 82 162 111 124 166 100 0.350

C. Size Distribution and Path Coverage

(a) Size distribution (openjpeg). (b) Size and coverage (openjpeg).



D. Zero-day Vulnerability List

Product Version Vulnerability Type Vulnerable Function Discovery Date CVE Status

exiv2

0.26 heap-buffer-overflow byteSwap4 2017-12-10 CVE-2017-17723 Fixed
0.26 heap-buffer-overflow printStructure 2017-12-10 CVE-2017-17724 Fixed
0.26 heap-buffer-overread getULong 2017-12-12 CVE-2017-17725 Fixed
0.26 uncontrolled-recursion printIFDStructure 2018-01-17 CVE-2018-5772 Fixed
0.26 reachable-assertion-failure readHeader 2017-12-10 CVE-2017-17722 Fixed
0.26 integer-overflow floatToRationalCast 2018-01-22

graphicsmagick 1.3.27 infinite-loop ReadBMPImage 2018-01-13 CVE-2018-5685 Fixed
1.3.27 integer-overflow ReadBMPImage 2018-01-12

libtiff

4.0.9 uncontrolled-resource-consumption TIFFSetDirectory 2018-01-18 CVE-2018-5784 Confirmed
4.0.9 uncontrolled-memory-allocation cpDecodedStrips 2017-12-05
4.0.9 heap-buffer-overflow extractContigSamples24bits 2017-12-05
4.0.9 uncontrolled-memory-allocation t2p readwrite pdf image 2017-12-05
4.0.9 heap-buffer-overflow PSDataColorContig 2017-12-05
4.0.9 uncontrolled-memory-allocation readSeparateTilesIntoBuffer 2017-12-06
4.0.9 uncontrolled-memory-allocation TIFFReadRawData 2017-12-06
4.0.9 uncontrolled-memory-allocation cpStrips 2017-12-07

openjpeg
2.3 integer-overflow opj j2k setup encoder 2018-01-18 CVE-2018-5785 Confirmed
2.3 integer-overflow opj t1 encode cblks 2018-01-12 CVE-2018-5727 Confirmed
2.3 excessive-iteration opj t1 encode cblks 2018-02-04 CVE-2018-6616 Confirmed

libav
12.1 invalid-memcpy ff mov read stsd entries 2018-01-12 CVE-2018-5684
12.1 infinite-loop event loop 2018-01-18
12.1 invalid-memcpy av packet ref 2018-01-18 CVE-2018-5766

libming 0.4.8 integer-overflow readUInt32 2018-01-05 CVE-2018-5294 Fixed
0.4.8 integer-overflow readSBits 2018-01-03 CVE-2018-5251 Fixed

mupdf 1.12.0 infinite-loop pdf parse array 2018-01-13 CVE-2018-5686 Fixed

podofo

0.9.5 integer-overflow ReadObjectsFromStream 2018-01-08 CVE-2018-5309 Confirmed
0.9.5 integer-overflow ParseStream 2018-01-06 CVE-2018-5295 Fixed
0.9.5 uncontrolled-memory-allocation ReadXRefSubsection 2018-01-06 CVE-2018-5296
0.9.5 uncontrolled-memory-allocation PdfVecObjects::Reserve 2018-01-18 CVE-2018-5783
0.9.5 invalid-memcpy PdfMemoryOutputStream::Write 2018-01-08 CVE-2018-5308 Fixed
0.9.5 excessive-iteration PdfParser::ReadObjectsInternal 2018-01-26 CVE-2018-6352

lrzip
0.631 infinite-loop unzip match 2018-01-11 CVE-2018-5650 Confirmed
0.631 use-after-free ucompthread 2018-01-17 CVE-2018-5747 Confirmed
0.631 infinite-loop get fileinfo 2018-01-19 CVE-2018-5786 Confirmed

zziplib

0.13.67 memory-alignment-error zzip fetch disk trailer 2018-01-31 CVE-2018-5650 Fixed
0.13.67 memory-alignment-error zzip disk findfirst 2018-02-01 CVE-2018-5641 Fixed
0.13.67 memory-alignment-error zzip fetch disk trailer 2018-01-31 CVE-2018-6484 Fixed
0.13.67 memory-alignment-error zzip disk findfirst 2018-02-01 CVE-2018-6542 Fixed
0.13.67 infinite-loop unzzip cat file 2018-01-26 Fixed
0.13.67 out-of-bounds read main 2018-01-26 Fixed
0.13.67 out-of-bounds read zzip disk fread 2018-01-28 CVE-2018-6381 Fixed
0.13.68 uncontrolled-memory-allocation zzip parse root directory 2018-02-08 CVE-2018-6869 Fixed

E. Bugs Found in LAVA-M

Original ProFuzzer
Program Bugs ID

base64 1, 222, 235, 284, 386, 774, 778, 786, 804, 805, 806
md5sum 270, 353, 380, 549

uniq 112, 166, 215, 222, 318, 321, 322, 346, 347, 393, 396, 443, 447
who 1, 3, 7, 8, 14, 18, 20, 26, 79, 83, 138, 319, 474, 587, 1816, 3800, 4358

Optimized ProFuzzer
Program Bugs ID

base64 1, 222, 235, 253, 276, 278, 284, 386, 554, 556, 560, 576, 583, 584, 774, 786, 788, 805, 806, 813, 815, 817, 841, 843
md5sum 1, 268, 269, 270, 335, 341, 353, 380, 549, 571

uniq 112, 130, 166, 169, 170, 171, 215, 222, 293, 296, 297, 318, 321, 322, 346, 347, 368, 371, 372, 393, 396, 397, 443, 446, 447, 468, 471, 472

who 1, 3, 4, 5, 7, 8, 9, 10, 14, 18, 20, 22, 26, 55, 57, 59, 60, 61, 62, 75, 79, 83, 87, 89, 137, 138, 150, 159, 319, 341, 474, 475, 587, 985,
1804, 1816, 3800, 3967, 4358, 4362, 4364



F. Performance Details

(a) Effective mutation ratio (openjpeg). (b) Path coverage (openjpeg). (c) Sensitiveness to seeds (openjpeg).

(d) Path coverage (exiv2). (e) Path coverage (graphicsmagick). (f) Path coverage (libtiff).

(g) Path coverage (libav). (h) Path coverage (libming). (i) Path coverage (mupdf).

(j) Path coverage (podofo). (k) Path coverage (lrzip). (l) Path coverage (zziplib).


