
An Extensive Formal Security Analysis of the
OpenID Financial-grade API

Daniel Fett
yes.com AG

mail@danielfett.de

Pedram Hosseyni
University of Stuttgart, Germany

pedram.hosseyni@sec.uni-stuttgart.de

Ralf Küsters
University of Stuttgart, Germany

ralf.kuesters@sec.uni-stuttgart.de

Abstract—Forced by regulations and industry demand, banks
worldwide are working to open their customers’ online banking
accounts to third-party services via web-based APIs. By using
these so-called Open Banking APIs, third-party companies, such
as FinTechs, are able to read information about and initiate
payments from their users’ bank accounts. Such access to
financial data and resources needs to meet particularly high
security requirements to protect customers.

One of the most promising standards in this segment is the
OpenID Financial-grade API (FAPI), currently under develop-
ment in an open process by the OpenID Foundation and backed
by large industry partners. The FAPI is a profile of OAuth 2.0
designed for high-risk scenarios and aiming to be secure against
very strong attackers. To achieve this level of security, the FAPI
employs a range of mechanisms that have been developed to
harden OAuth 2.0, such as Code and Token Binding (including
mTLS and OAUTB), JWS Client Assertions, and Proof Key for
Code Exchange.

In this paper, we perform a rigorous, systematic formal analy-
sis of the security of the FAPI, based on an existing comprehensive
model of the web infrastructure—the Web Infrastructure Model
(WIM) proposed by Fett, Küsters, and Schmitz. To this end, we
first develop a precise model of the FAPI in the WIM, including
different profiles for read-only and read-write access, different
flows, different types of clients, and different combinations of
security features, capturing the complex interactions in a web-
based environment. We then use our model of the FAPI to
precisely define central security properties. In an attempt to
prove these properties, we uncover partly severe attacks, breaking
authentication, authorization, and session integrity properties.
We develop mitigations against these attacks and finally are able
to formally prove the security of a fixed version of the FAPI.

Although financial applications are high-stakes environments,
this work is the first to formally analyze and, importantly, verify
an Open Banking security profile.

By itself, this analysis is an important contribution to the
development of the FAPI since it helps to define exact security
properties and attacker models, and to avoid severe security risks
before the first implementations of the standard go live.

Of independent interest, we also uncover weaknesses in the
aforementioned security mechanisms for hardening OAuth 2.0.
We illustrate that these mechanisms do not necessarily achieve
the security properties they have been designed for.

I. INTRODUCTION

Delivering financial services has long been a field exclusive
to traditional banks. This has changed with the emergence of
FinTech companies that are expected to deliver more than 20%
of all financial services in 2020 [1]. Many FinTechs provide
services that are based on access to a customers online banking

account information or on initiating payments from a customers
bank account.

For a long time, screen scraping has been the primary
means of these service providers to access the customer’s
data at the bank. Screen scraping means that the customer
enters online banking login credentials at the service provider’s
website, which then uses this data to log into the customer’s
online banking account by emulating a web browser. The
service provider then retrieves account information (such as
the balance or recent activities) and can trigger, for example, a
cash transfer, which may require the user to enter her second-
factor authentication credential (such as a TAN) at the service
provider’s web interface.

Screen scraping is inherently insecure: first of all, the service
provider gets to know all login credentials, including the
second-factor authentication of the customer. Also, screen
scraping is prone to errors, for example, when the website
of a bank changes.

Over the last years, the terms API banking and Open
Banking have emerged to mark the introduction of standardized
interfaces to financial institutions’ data. These interfaces enable
third parties, in particular FinTech companies, to access users’
bank account information and initiate payments through well-
defined APIs. All around the world, API banking is being
promoted by law or by industry demand: In Europe, the
Payment Services Directive 2 (PSD2) regulation mandates
all banks to introduce Open Banking APIs by September
2019 [2]. The U.S. Department of the Treasury recommends
the implementation of such APIs as well [3]. In South Korea,
India, Australia, and Japan, open banking is being pushed by
large financial corporations [4].

One important open banking standard currently under de-
velopment for this scenario is the OpenID Financial-grade
API (FAPI).1 The FAPI [5] is a profile (i.e., a set of concrete
protocol flows with extensions) of the OAuth 2.0 Authorization
Framework and the identity layer OpenID Connect to provide
a secure authorization and authentication scheme for high-
risk scenarios. The FAPI is under development at the OpenID
Foundation and supported by many large corporations, such
as Microsoft and the largest Japanese consulting firm, Nomura
Research Institute. The OpenID Foundation is also cooperating

1In its current form, the FAPI does not (despite its name) define an API
itself, but defines a security profile for the access to APIs.



with other banking standardization groups: The UK Open
Banking Implementation Entity, backed by nine major UK
banks, has adopted the FAPI security profile.

The basic idea behind the FAPI is as follows: The owner
of the bank account (resource owner, also called user in what
follows) visits some website or uses an app which provides
some financial service. The website or app is called a client
in the FAPI terminology. The client redirects the user to the
authorization server, which is typically operated by the bank.
The authorization server asks for the user’s bank account
credentials. The user is then redirected back to the client with
some token. The client uses this token to obtain bank account
information or initiate a payment at the resource server, which
is typically also operated by the bank.

The FAPI aims to be secure against much stronger attackers
than its foundations, OAuth 2.0 and OpenID Connect: the FAPI
assumes that sensitive tokens leak to an attacker through the
user’s browser or operating system, and that endpoint URLs
can be misconfigured. On the one hand, both assumptions
are well motivated by real-world attacks and the high stakes
nature of the environment where the FAPI is to be used. On
the other hand, they directly break the security of OAuth 2.0
and OpenID Connect.

To provide security against such strong attackers, the FAPI
employs a range of OAuth 2.0 security extensions beyond those
used in plain OAuth 2.0 and OpenID Connect: the FAPI uses
the so-called Proof Key for Code Exchange (PKCE)2 extension
to prevent unauthorized use of tokens. For client authentication
towards the authorization server, the FAPI employs JWS Client
Assertions or mutual TLS. Additionally, OAuth token binding3

or certificate-bound access tokens4 can be used as holder-of-
key mechanisms. To introduce yet another new feature, the
FAPI is the first standard to make use of the so-called JWT
Secured Authorization Response Mode (JARM).

The FAPI consists of two main so-called parts, here also
called modes, that stipulate different security profiles for read-
only access to resource servers (e.g., to retrieve bank account
information) and read-write access (e.g., for payment initiation).
Both modes can be used by confidential clients, i.e., clients
that can store and protect secrets (such as web servers), and
by public clients that cannot securely store secrets, such
as JavaScript browser applications. Combined with the new
security features, this gives rise to many different settings and
configurations in which the FAPI can run (see also Figure 3).

This, the expected wide adoption, the exceptionally strong
attacker model, and the new security features make the FAPI
a particularly interesting, challenging, and important subject
for a detailed security analysis. While the security of (plain)
OAuth 2.0 and OpenID Connect has been studied formally
and informally many times before [6]–[21], there is no such
analysis for the FAPI—or any other open banking API—so
far. In particular, there are no results in the strong attacker

2Pronounced pixie, RFC 7636.
3https://tools.ietf.org/html/draft-ietf-oauth-token-binding-07
4https://tools.ietf.org/html/draft-ietf-oauth-mtls-11

model adopted for the FAPI, and there has been no formal
security analysis of the additional OAuth security mechanisms
employed by the FAPI (PKCE, JWS Client Assertions, mTLS
Client Authentication, OAuth Token Binding, Certificate-
Bound Access Tokens, JARM), which is of practical relevance
in its own right.

In this paper, we therefore study the security of the FAPI
in-depth, including the OAuth security extensions. Based on a
detailed formal model of the web, we formalize the FAPI with
its various configurations as well as its security properties. We
discover four previously unknown and severe attacks, propose
fixes, and prove the security of the fixed protocol based on
our formal model of the FAPI, again considering the various
configurations in which the FAPI can run. Importantly, this also
sheds light on new OAuth 2.0 security extensions. In detail,
our contributions are as follows:

Contributions of this Paper: We build a detailed formal
model of the FAPI based on a comprehensive formal model
of the web infrastructure proposed by Fett et al. in [22], which
we refer to as the Web Infrastructure Model (WIM). The WIM
has been successfully used to find vulnerabilities in and prove
the security of several web applications and standards [6], [7],
[22]–[24]. It captures a wide set of web features from DNS
to JavaScript in unrivaled detail and comprehensiveness. In
particular, it accounts for the intricate inner workings of web
browsers and their interactions with the web environment. The
WIM is ideally suited to identify logical flaws in web protocols,
detect a range of standard web vulnerabilities (like cross-site
request forgery, session fixation, misuse of certain web browser
features, etc.), and even to find new classes of web attacks.

Based on the generic descriptions of web servers in the WIM,
our models for FAPI clients and authorization servers contain
all important features currently proposed in the FAPI standards.
This includes the flows from both parts of the FAPI, as well
as the different options for client authentication, holder-of-key
mechanisms, and token binding mentioned above.

Using this model of the FAPI, we define precise security
properties for authorization, authentication, and session in-
tegrity. Roughly speaking, the authorization property requires
that an attacker is unable to access the resources of another
user at a bank, or act on that user’s behalf towards the bank.
Authentication means that an attacker is unable to log in at
a client using the identity of another user. Session integrity
means that an attacker is unable to force a user to be logged
in at a client under the attackers identity, or force a user to
access (through the client) the attacker’s resources instead of
the user’s own resources (session fixation).

During our first attempts to prove these properties, we
discovered four unknown attacks on the FAPI. With these
attacks, adversaries can gain access to the bank account of
a user, break session integrity, and, interestingly, circumvent
certain OAuth security extensions, such as PKCE and Token
Binding, employed by the FAPI.

We notified the OpenID FAPI Working Group of the attacks
and vulnerabilities found by our analysis and are working
together with them to fix the standard. To this end, we first



developed mitigations against the vulnerabilities. We then,
as another main contribution of our work and to support
design decisions during the further development of the FAPI,
implemented the fixes in our formal model and provided the
first formal proof of the security of the FAPI (with our
fixes applied) within our model of the FAPI, including all
configurations of the FAPI and the various ways in which the
new OAuth security extensions are employed in the FAPI (see
Figure 3). This makes the FAPI the only open banking API to
enjoy a thorough and detailed formal security analysis.

Our findings also show that (1) several OAuth 2.0 security
extensions do not necessarily achieve the security properties
they have been designed for and that (2) combining these
extensions in a secure way is far from trivial. These results are
relevant for all web applications and standards which employ
such extensions.

Structure of this Paper: We first, in Section II, recall
OAuth 2.0 and OpenID Connect as the foundations of the
FAPI. We also introduce the new defense mechanisms that
set the FAPI apart from “traditional” OAuth 2.0 and OpenID
Connect flows. This sets the stage for Section III where we go
into the details of the FAPI and explain its design and features.
In Section IV, we present the attacks on the FAPI (and the
new security mechanisms it uses), which are the results of our
initial proof attempts, and also present our proposed fixes. The
model of the FAPI and the analysis are outlined in Section V,
along with a high-level introduction to the Web Infrastructure
Model we use as the basis for our formal model and analysis of
the FAPI. We conclude in Section VI. The appendix contains
further details. Full details and proofs are provided in our
technical report [25].

II. OAUTH AND NEW DEFENSE MECHANISMS

The OpenID Financial-grade API builds upon the OAuth 2.0
Authorization Framework [26]. Compared to the original
OAuth 2.0 protocol, the FAPI aims at providing a much higher
degree of security. For achieving this, the FAPI security profiles
incorporate mechanisms defined in OpenID Connect [27]
(which itself builds upon OAuth 2.0), and importantly, security
extensions for OAuth 2.0 developed only recently by the IETF
and the OpenID Foundation.

In the following, we give a brief overview of both OAuth 2.0
and OpenID Connect, and their security extensions used
(among others) within the FAPI, namely Proof Key for Code
Exchange, JWS Client Assertions, OAuth 2.0 Mutual TLS for
Client Authentication and Certificate Bound Access Tokens,
OAuth 2.0 Token Binding and the JWT Secured Authorization
Response Mode. The FAPI itself is presented in Section III.

A. Fundamentals of OAuth 2.0 and OpenID Connect

OAuth 2.0 and OpenID Connect are widely used for various
authentication and authorization tasks. In what follows, we first
explain OAuth 2.0 and then briefly OpenID Connect, which
is based on OAuth 2.0.

1 POST /startPOST /start

2 ResponseResponse

Redirect to AS /authorization_endpointRedirect to AS /authorization_endpoint
(client_id, redirect_uri, state)(client_id, redirect_uri, state)

3 GET /authorization_endpoint (Authorization Request)GET /authorization_endpoint (Authorization Request)

(client_id, redirect_uri, state)(client_id, redirect_uri, state)

4 resource owner authenticatesresource owner authenticates

5 ResponseResponse

Redirect to C /redirect_uri (code, state)Redirect to C /redirect_uri (code, state)

6 GET /redirect_uri (Authorization Response)GET /redirect_uri (Authorization Response)

(code, state)(code, state)

7 POST /token_endpoint (Token Request)POST /token_endpoint (Token Request)

(code, client_id, [client authentication])(code, client_id, [client authentication])

8 ResponseResponse

(access token)(access token)

9 GET /resourceGET /resource

(access token)(access token)

10 ResponseResponse

(resource)(resource)

Browser (B) Client (C) Authorization Server (AS)

Authorization Server (AS)

Resource Server (RS)

Client (C) Resource Server (RS)Browser (B)

Figure 1. Overview of the OAuth Authorization Code Flow

1) OAuth 2.0: On a high level, OAuth 2.0 allows a resource
owner, or user, to enable a client, a website or an application,
to access her resources at some resource server. In order for
the user to grant the client access to her resources, the user
has to authenticate herself at an authorization server.

For example, in the context of the FAPI, resources include
the user’s account information (like balance and previous trans-
actions) at her bank or the initiation of a payment transaction
(cash transfer). The client can be a FinTech company which
wants to provide a financial service to the user via access to
the user’s bank account. More specifically, the client might
be the website of such a company (web server client) or
the company’s app on the user’s device. The resource and
authorization servers would typically be run by the user’s bank.
One client can make use of several authorization and resource
servers.

RFC 6749 [26] defines multiple modes of operation for
OAuth 2.0, so-called grant types. We here focus on the
authorization code grant since the other grant types are not
used in the FAPI.

Figure 1 shows the authorization code grant, which works
as follows: The user first visits the client’s website or opens



the client’s app on her smartphone and selects to log in or to
give the client access to her resources (Step 1 ). The client
then redirects the user to the so-called authorization endpoint
at the authorization server (AS) in Steps 2 and 3 . (Endpoints
are URIs used in the OAuth flow.) In this redirection, the client
passes several parameters to the AS, for example, the client
id which identifies the client at the AS, a state value that
is used for CSRF protection,5 a scope parameter (not shown
in Figure 1) that describes the permissions requested by the
client, and a redirection URI explained below. Note that if
the client’s app is used, the redirection from the app to the
AS (Step 2 ) is done by opening the website of the AS in a
browser window. The AS authenticates the user (e.g., by the
user entering username and password) in Step 4 and asks for
her consent to give the client access to her resources. The
AS then creates a so-called authorization code (typically a
nonce) and redirects the user back to the so-called redirection
endpoint of the client via the user’s browser in Steps 5 and

6 . (If the client’s app is used, a special redirect URI scheme,
e.g., some-app://, is used which causes the operating system
to forward the URI to the client’s app.) At the AS, one or
more redirection endpoints for a client are preregistered.6 In
Step 2 , the client chooses one of these preregistered URIs. The
authorization response (Step 5 ) is a redirection to this URI,
with the authorization code, the state value from the request,
and optionally further values appended as URI parameters.

When receiving the request resulting from the redirection in
Step 6 , the client first checks that the state value is the same
as the one in the authorization request, typically by looking
it up in the user’s session with the client. If it is not the
same, then the client suspects that an attacker tried to inject an
authorization code into the client’s session (cross-site request
forgery, CSRF) and aborts the flow (see also Footnote 5).
Otherwise, the client now exchanges the code for an access
token at the so-called token endpoint of the AS in Steps 7 and

8 . For this purpose, the client might be required to authenticate
to the AS (see below). With this access token, the client can
finally access the resources at the resource server (RS), as
shown in Steps 9 and 10 .

The RS can use different methods to check the validity
of an access token presented by a client. The access token
can, for example, be a document signed by the AS containing
all necessary information. Often, the access token is not a
structured document but a nonce. In this case, the RS uses
Token Introspection [28], i.e., it sends the access token to the
introspection endpoint of the AS and receives the information
associated with the token from the AS. An RS typically has
only one (fixed) AS, which means that when the RS receives
an access token, it sends the introspection request to this AS.

5The state value is a nonce. The client later ensures that it receives the same
nonce in the authorization response. Otherwise, an attacker could authenticate
to the AS with his own identity and use the corresponding authorization
response for logging in an honest user under the attacker’s identity with a
CSRF attack. This attack is also known as session swapping.

6Without preregistration, a malicious client starting a login flow with the
client id of an honest client could receive a code associated with the honest
client.

Public and Confidential Clients: Depending on whether a
client can keep long-term secrets, it is either called a public
or a confidential client. If the client is not able to maintain
secrets, as is typically the case for applications running on end-
user devices, the client is not required to authenticate itself
at the token endpoint of the AS. These kinds of clients are
called public clients. Clients able to maintain secrets, such as
web server clients, must authenticate to the token endpoint (in
Step 7 of Figure 1) and are called confidential clients.

For confidential clients, client authentication ensures that
only a legitimate client can exchange the authorization code
for an access token. OAuth 2.0 allows for several methods for
client authentication at the token endpoint, including sending
a password or proving possession of a secret [26, Section 2.3].
For public clients, other measures are available, such as PKCE
(see below), to obtain a sufficient level of security.

2) OpenID Connect: OAuth 2.0 is built for authorization
only, i.e., the client gets access to the resources of the user
only if the user consented to this access. It does not per se
provide authentication, i.e., proving the identity of the user to
the client. This is what OpenID Connect [27] was developed
for. It adds an id token to OAuth 2.0 which is issued by the
AS and contains identity information about the end-user. ID
tokens can be issued in the response from the authorization
endpoint (Step 5 of Figure 1) and/or at the token endpoint
(Step 8 of Figure 1). They are signed by the AS and can be
bound to other parameters of the response, such as the hash
of authorization codes or access tokens. Therefore, they can
also be used to protect responses against modification.

B. Proof Key for Code Exchange

The Proof Key for Code Exchange (PKCE) extension (RFC
7636) was initially created for OAuth public clients and
independently of the FAPI. Its goal is to protect against the use
of intercepted authorization codes. Before we explain how it
works, we introduce the attack scenario against which PKCE
should protect according to RFC 7636.

This attack starts with the leakage of the authorization
code after the browser receives it in the response from the
authorization endpoint (Step 5 of Figure 1). A multitude of
problems can lead to a leak of the code, even if TLS is used
to protect the network communication:

• On mobile operating systems, multiple apps can register
themselves onto the same custom URI scheme (e.g.,
some-app://redirection-response). When receiving the au-
thorization response, the operating system may forward
the response (and the code) to a malicious app instead of
the honest app (see [29, Section 1] and [30, Section 8.1]).

• Mix-up attacks, in which a different AS is used than the
client expects (see [6] for details), can be used to leak an
authorization code to a malicious server.

• As highlighted in [7], a Referer header can leak the code
to an adversary.

• The code can also appear in HTTP logs that can be
disclosed (accidentally) to third parties or (intentionally)
to administrators.



In a setting with a public client (i.e., without client authenti-
cation at the token endpoint), an authorization code leaked to
the attacker can be redeemed directly by the attacker at the
authorization server to obtain an access token.

RFC 7636 aims to protect against such attacks even if not
only the authorization response leaks but also the authorization
request as well. Such leaks can happen, for example, from
HTTP logs (Precondition 4b of Section 1 of RFC 7636) or
unencrypted HTTP connections.

PKCE works as follows: Before sending the authorization
request, the client creates a random value called code verifier.
The client then creates the code challenge by hashing the
verifier7 and includes the challenge in the authorization request
(Step 2 of Figure 1). The AS associates the generated
authorization code with this challenge. Now, when the client
redeems the code in the request to the token endpoint (Step 7

of Figure 1), it includes the code verifier in the token request.
This message is sent directly to the AS and protected by TLS,
which means that the verifier cannot be intercepted. The idea is
that if the authorization code leaked to the attacker, the attacker
still cannot redeem the code to obtain the access token since
he does not know the code verifier.

C. Client Authentication using JWS Client Assertions

As mentioned above, the goal of client authentication is to
bind an authorization code to a certain confidential client such
that only this client can redeem the code at the AS. One method
for client authentication is the use of JWS Client Assertions
[27, Section 9], which requires proving possession of a key
instead of sending a password directly to the authorization
server, as in plain OAuth 2.0.

To this end, the client first generates a short document
containing its client identifier and the URI of the token
endpoint. Now, depending on whether the client secret is a
private (asymmetric) or a symmetric key, the client either signs
or MACs this document. It is then appended to the token
request (Step 7 of Figure 1). As the document contains the URI
of the receiver, attacks in which the attacker tricks the client
into using a wrong URI are prevented, as the attacker cannot
reuse the document for the real endpoint (cf. Section III-C4).
Technically, the short document is encoded as a JSON Web
Token (JWT) [31] to which its signature/MAC is attached to
create a so-called JSON Web Signature (JWS) [32].

D. OAuth 2.0 Mutual TLS

OAuth 2.0 Mutual TLS for Client Authentication and Cer-
tificate Bound Access Tokens (mTLS) [33] provides a method
for both client authentication and token binding.

OAuth 2.0 Mutual TLS Client Authentication makes use of
TLS client authentication8 at the token endpoint (in Step 7

of Figure 1). In TLS client authentication, not only the server

7If it is assumed that the authorization request never leaks to the attacker,
it is sufficient and allowed by RFC 7636 to use the verifier as the challenge,
i.e., without hashing.

8As noted in [33], Section 5.1 this extension supports all TLS versions with
certificate-based client authentication.

authenticates to the client (as is common for TLS) but the client
also authenticates to the server. To this end, the client proves
that it knows the private key belonging to a certificate that is
either (a) self-signed and preconfigured at the respective AS
or that is (b) issued for the respective client id by a predefined
certificate authority within a public key infrastructure (PKI).

Token binding means binding an access token to a client
such that only this client is able to use the access token at
the RS. To achieve this, the AS associates the access token
with the certificate used by the client for the TLS connection
to the token endpoint. In the TLS connection to the RS (in
Step 9 of Figure 1), the client then authenticates using the
same certificate. The RS accepts the access token only if the
client certificate is the one associated with the access token.9

E. OAuth 2.0 Token Binding

OAuth 2.0 Token Binding (OAUTB) [34] is used to bind
access tokens and/or authorization codes to certain TLS
connections. It is based on the Token Binding protocol [35]–
[38] and can be used with all TLS versions. In the following,
we first sketch token binding in general before we explain
OAuth 2.0 Token Binding.

1) Basics: For simplicity of presentation, in the following,
we assume that a browser connects to a web server. The
protocol remains the same if the browser is replaced by another
server. (In the context of OAuth 2.0, in some settings in fact
the client takes the role of the browser as explained below.)

At its core, token binding works as follows: When a web
server indicates (during TLS connection establishment) that
it wants to use token binding, the browser making the HTTP
request over this TLS connection creates a public/private key
pair for the web server’s origin. It then sends the public key to
the server and proves possession of the private key by using
it to create a signature over a value unique to the current TLS
connection. Since the browser re-uses the same key pair for
future connections to the same origin, the web server will be
able to unambiguously recognize the browser in future visits.

Central for the security of token binding is that the private
key remains secret inside the browser. To prevent replay attacks,
the browser has to prove possession of the private key by
signing a value that is unique for each TLS session. To this
end, token binding uses the Exported Keying Material (EKM)
of the TLS connection, a value derived from data of the TLS
handshake between the two participants, as specified in [38].
As long as at least one party follows the protocol, the EKM
will be unique for each TLS connection.

We can now illustrate the usage of token binding in the
context of a simplified protocol in which a browser B requests
a token from a server S: First, B initiates a TLS connection
to S, where B and S use TLS extensions [36] to negotiate the
use of token binding and technical details thereof. Browser B
then creates a public/private key pair (kB,S,k′B,S) for the origin
of S, unless such a key pair exists already. The public key kB,S

9As mentioned above, the RS can read this information either directly from
the access token if it is a signed document, or uses token introspection to
retrieve the data from the AS.



(together with technical details about the key, such as its bit
length) is called Token Binding ID (for the specific origin).

When sending the first HTTP request over the established
TLS connection, B includes in an HTTP header the so-called
Token Binding Message:

TB-Msg[kB,S,sig(EKM,k′B,S)] (1)

It contains both the Token Binding ID (i.e., essentially kB,S) and
the signed EKM value from the TLS connection, as specified
in [39]. The server S checks the signature using kB,S as included
in this message and then creates a token and associates it with
the Token Binding ID as the unique identifier of the browser.

When B wants to redeem the token in a new TLS connection
to S, B creates a new Token Binding Message using the same
Token Binding ID, but signs the new EKM value:

TB-Msg[kB,S,sig(EKM,k′B,S)] (2)

As the EKM values are unique to each TLS connection, S
concludes that the sender of the message knows the private
key of the Token Binding ID, and as the sender used the same
Token Binding ID as before, the same party that requested the
token in the first request is using it now.

The above describes the simple situation that B wants to
redeem the token received from S again at S, i.e., from the
same origin. In this case, we call the token binding message
in (1) a provided token binding message. If B wants to redeem
the token received from S at another origin, say at C, then
instead of just sending the provided token message in (1), B
would in addition also send the so-called referred token binding
message, i.e., instead of (1) B would send

TB-prov-Msg[kB,S,sig(EKM,k′B,S)],
TB-ref-Msg[kB,C,sig(EKM,k′B,C)].

(3)

Note that the EKM is the same in both messages, namely the
EKM value of the TLS connection between B and S (rather
than between B and C, which has not happened yet anyway).
Later when B wants to redeem the token at C, B would use
kB,C in its (provided) token message to C.

2) Token Binding for OAuth: In the following, we explain
how token binding is used in OAuth in the case of app clients.
The case of web server clients is discussed below.

The flow is shown in Figure 2. Note that in this case, token
binding is used between the OAuth client and the authorization
and resource servers; the browser in Figure 1 is not involved.

The client has two token binding key pairs, one for the AS
and one for the RS (if these key pairs do not already exist,
the client creates them during the flow). When sending the
authorization request (Step 2 of Figure 2), the client includes
the hash of the Token Binding ID it uses for the AS as a PKCE
challenge (cf. Section II-B). When exchanging the code for
an access token in Step 7 , the client proves possession of the
private key of this Token Binding ID, and the AS only accepts
the request when the hash of the Token Binding ID is the
same as the PKCE challenge. Therefore, the code can only be
exchanged by the participant that created the authorization

1 POST /startPOST /start

2 ResponseResponse

Redirect to AS /authorization_endpointRedirect to AS /authorization_endpoint
(client_id, . . . , hash(kC,AS))(client_id, . . . , hash(kC,AS))

3 GET /authorization_endpointGET /authorization_endpoint

(client_id, . . . , hash(kC,AS))(client_id, . . . , hash(kC,AS))

4 resource owner authenticatesresource owner authenticates

5 ResponseResponse

Redirect to C /redirect_uri (code, state)Redirect to C /redirect_uri (code, state)

6 GET /redirect_uriGET /redirect_uri

(code, state)(code, state)

7 POST /token_endpointPOST /token_endpoint

(code, . . . ,(code, . . . ,
TB-prov-Msg[kC,AS,sig1], TB-ref-Msg[kC,RS,sig′1])TB-prov-Msg[kC,AS,sig1], TB-ref-Msg[kC,RS,sig′1])

8 ResponseResponse

(access token)(access token)

9 GET /resourceGET /resource

(access token, TB-prov-Msg[kC,RS,sig2])(access token, TB-prov-Msg[kC,RS,sig2])

10 ResponseResponse

(resource)(resource)

Browser Client Authorization Server

Create (kC,AS,k′C,AS)Create (kC,AS,k′C,AS)

Create (kC,RS,k′C,RS)Create (kC,RS,k′C,RS)

Authorization Server

Resource Server

Client Resource ServerBrowser

Figure 2. OAUTB for App Clients

request. Note that for this purpose the AS only takes the
provided token binding message sent to the AS in Step 7

into account. However, the AS also checks the validity of the
referred token binding message (using the same EKM value)
and associates kC,RS with the token issued by the AS in Step 8 .

The token binding ID kC,RS is used in Step 9 by the client to
redeem the token at the RS. The RS then checks if this is the
same token binding ID that is associated with the access token.
This information can be contained in the access token if it is
structured and readable by the RS or via token introspection.

Altogether, Token Binding for OAuth (in the case of app
clients) is supposed to bind both the authorization code and
the access token to the client. That is, only the client who
initiated the flow (in Step 2 ) can redeem the authorization
code at the AS and the corresponding access token at the RS,
and hence, get access to the resource at the RS.

3) Binding Authorization Codes for Web Server Clients:
In the case that the client is a web server, the binding of
the authorization code to the client is already done by client



authentication, as a web server client is always confidential (cf.
Section II-A1). Therefore, the client does not include the hash
of a Token Binding ID in the authorization request (Step 2 of
Figure 2). Instead, the mechanism defined in OAUTB aims at
binding the authorization code to the browser/client pair. (The
binding of the access token to the client is done in the same
way as for an app client).

More precisely, for web server clients, the authorization code
is bound to the token binding ID that the browser uses for the
client. For this purpose, the client includes an additional HTTP
header in the first response to the browser (Step 2 of Figure 2),
which signals the browser that it should give the token binding
ID it uses for the client to the authorization server. When
sending the authorization request to the authorization server in
Step 3 , the browser thus includes a provided and a referred
token binding message, where the referred message contains
the token binding ID, that the browser later uses for the
client (say, kB,C). When generating the authorization code, the
authorization server associates the code with kB,C.

When redirecting the code to the client in Step 6 , the
browser includes a token binding message for kB,C, thereby
proving possession of the private key.

When sending the token request in Step 7 , the client
includes kB,C. We highlight that the client does not send a
token binding message for kB,C since the client does not know
the corresponding private key (only the browser does).

The authorization server checks if this key is the same
token binding ID it associated the authorization code with, and
therefore, can check if the code was redirected to the client
by the same browser that made the authorization request. In
other words, by this the authorization code is bound to the
browser/client pair.

F. JWT Secured Authorization Response Mode

The recently developed JWT Secured Authorization Re-
sponse Mode (JARM) [40] aims at protecting the OAuth
authorization response (Step 5 of Figure 1) by having the AS
sign (and optionally encrypt) the response. The authorization
response is then encoded as a JWT (see Section II-C). The
JARM extension can be used with any OAuth 2.0 flow.

In addition to the regular parameters of the authorization
response, the JWT also contains its issuer (identifying the AS)
and its audience (client id). For example, if combined with
the Authorization Code Flow, the response JWT contains the
issuer, audience, authorization code, and state values.

By using JARM, the authorization response is integrity pro-
tected and injection of leaked authorization codes is prevented.

III. THE OPENID FINANCIAL-GRADE API

The OpenID Financial-grade API [5] currently comprises
two implementer’s drafts. One defines a profile for read-
only access, the other one for read-write access. Building on
Section II, here we describe both profiles and the various
configurations in which these profiles can run (see Figure 3).
Furthermore, we explain the assumptions made within the FAPI
standard and the underlying OAuth 2.0 extensions.

Read-Only

JWS mTLS

OAUTB

Web Server TB

mTLSClient
Authentication

JWS

Holder of Key
Mechanism

OAUTB for
Code Binding

App

Web Server

JARM (Code Flow) Hybrid FlowCode Flow

PKCE

FAPI

Read-Write

pub

App TB

pubconf conf

OAUTB mTLS

App TB

Figure 3. Overview of the FAPI. One path (terminated by a box with
rounded corners) describes one possible configuration of the FAPI.
The paths marked with PKCE use PKCE. JARM and Hybrid flows
both allow for the configurations shown.

A. Financial-grade API: Read-Only Profile

In the following, we explain the Read-Only flow as described
in [41]. The Read-Only profile aims at providing a secure way
for accessing data that needs a higher degree of protection
than regular OAuth, e.g., for read access to financial data.

The Read-Only flow is essentially an OAuth Authorization
Code flow (cf. Section II). Additionally, the client can request
an ID Token (see Section II-A2) from the token endpoint by
adding a scope parameter to the authorization request (Step 2

of Figure 1) with the value openid.
In contrast to regular OAuth and OpenID Connect, the client

is required to have a different set of redirection URIs for
each authorization server. This separation prevents mix-up
attacks, where the authorization response (Step 6 in Figure 1)
comes from a different AS than the client expects (see [6] and
[42] for more details on mix-up attacks). When receiving the
authorization response, the client checks if the response was
received at the redirection URI specified in the authorization
request (Step 2 in Figure 1).

One of the main additions to the regular OAuth flow is
the use of PKCE as explained in Section II-B. The PKCE
challenge is created by hashing a nonce.

The FAPI furthermore requires confidential clients to
authenticate at the token endpoint (in Step 7 of Figure 1)
using either JWS Client Assertions (cf. Section II-C) or
Mutual TLS (cf. Section II-D). Public clients do not use client
authentication.

B. Financial-grade API: Read-Write Profile

The Read-Write profile [43] aims at being secure under
stronger assumptions than the Read-Only profile, in order to



be suitable for scenarios such as write access to financial data.
The full set of assumptions is described in Section III-C.

The flow can be either an OpenID Connect (OIDC)
Hybrid flow, which means that both the authorization response
(Step 5 in Figure 1) and the token response (Step 8 in
Figure 1) contain an id token (see Section II-A2), or any other
OAuth-based flow used together with JARM (see Section II-F).
When using the Hybrid flow, the FAPI profile also requires
that the hash of the state value is included in the first id token.

In addition to the parameters of the Read-Only flow, the au-
thorization request prepared by the client (Step 2 of Figure 1)
is required to contain a request JWS, which is a JWT, signed
by the client, containing all request parameters together with
the audience of the request (cf. Section II-C).

One of the main security features of the profile is the
binding of the authorization code and the access token
to the client, which is achieved by using either mTLS
(cf. Section II-D) or OAUTB (OAuth 2.0 Token Binding, see
Section II-E). A public client is required to use OAUTB, while
a confidential client can use either OAUTB or mTLS.

If the client is a confidential client using mTLS, the request
does not contain a PKCE challenge. When using OAUTB, the
client uses a variant of PKCE, depending on whether the
client is a web server client or an app client (cf. Section II-E).

In the case of a confidential client, the client authentication
at the token endpoint is done in the same way as for the
Read-Only flow, i.e., by using either JWS Client Assertions
(cf. Section II-C) or Mutual TLS (cf. Section II-D).

C. Overview of Assumptions and Mitigations

In the following, we explain the conditions under which
the FAPI profiles and the OAuth extensions aim to be secure
according to their specifications.

1) Leak of Authorization Response: As described in Sec-
tion II-B in the context of PKCE, there are several scenarios
in which the authorization response (Step 6 of Figure 1), and
hence, the authorization code, can leak to the attacker (in clear),
in particular in the case of app clients. In our model of the
FAPI, we therefore assume that the authorization response is
given to the attacker if the client is an app. At first glance,
leakage of the authorization code is indeed mitigated by the
use of PKCE since an attacker does not know the code verifier,
and hence, cannot redeem the code at the AS. However, our
attack described in Section IV-C shows that the protection
provided by PKCE can be circumvented.

2) Leak of Authorization Request: The Read-Only profile
of the FAPI explicitly states that the PKCE challenge should
be created by hashing the verifier. The use of hashing should
protect the PKCE challenge even if the authorization request
leaks (e.g., by leaking HTTP logs, cf. Section II-B), and
therefore, we assume in our model that the authorization
request (Step 2 of Figure 1) leaks to the attacker.

3) Leak of Access Token: In the Read-Write profile, it is
assumed that the access token might leak due to phishing [43,
Section 8.3.5]. In our model, we therefore assume that the
access token might leak in Step 5 of Figure 1. This problem

is seemingly mitigated by using either mTLS or OAUTB,
which bind the access token to the legitimate client, and hence,
only the legitimate client should be able to redeem the access
token at the RS even if the access token leaked. The FAPI
specification states: “When the FAPI client uses MTLS or
OAUTB, the access token is bound to the TLS channel, it is
access token phishing resistant as the phished access tokens
cannot be used.” [43, Section 8.3.5]. However, our attack
presented in Section IV-A shows that this is not the case.

4) Misconfigured Token Endpoint: An explicit design deci-
sion by the FAPI working group was to make the Read-Write
profile secure even if the token request (Step 7 of Figure 1)
leaks. The FAPI specification describes this attack as follows:
“In this attack, the client developer is social engineered into
believing that the token endpoint has changed to the URL that
is controlled by the attacker. As the result, the client sends
the code and the client secret to the attacker, which will be
replayed subsequently.” [43, Section 8.3.2].

Therefore, we make this assumption also in our FAPI
model. Seemingly, this problem is mitigated by code binding
through client authentication or OAUTB, which means that
the attacker cannot use the stolen code at the legitimate token
endpoint. “When the FAPI client uses MTLS or OAUTB, the
authorization code is bound to the TLS channel, any phished
client credentials and authorization codes submitted to the
token endpoint cannot be used since the authorization code is
bound to a particular TLS channel.” [43, Section 8.3.2]. Note
that in the FAPI the client does not authenticate by using the
client secret as a password, but by proving possession (either
using JWS Client Assertions or mTLS), which means that the
attacker cannot reuse credentials.

However, our attack presented in Section IV-B shows that
this intuition is misleading.

IV. ATTACKS

As already mentioned in the introduction, in Section V we
present our rigorous formal analysis of the FAPI based on
the Web Infrastructure Model. Through this formal analysis of
the FAPI with the various OAuth 2.0 extensions it uses, we
not only found attacks on the FAPI but also on some of the
OAuth 2.0 extensions, showing that (1) these extensions do
not achieve the security properties they have been designed
for and (2) that combining these extensions in a secure way is
far from trivial. Along with the attacks, we also propose fixes
to the standards. Our formal analysis presented in Section V
considers the fixed versions.

We start by describing two attacks on Token Binding,
followed by an attack on PKCE, and one vulnerability hidden
in the assumptions of PKCE.

We emphasize that our attacks work even if all communica-
tion uses TLS and even if the attacker is merely a web attacker,
i.e., does not control the network but only certain parties.

As already mentioned in the introduction, we notified the
OpenID FAPI Working Group of the attacks found by our
analysis and are working together with them to fix the standard.



A. Cuckoo’s Token Attack

As explained in Section III-C3, the Read-Write profile of the
FAPI aims at providing security even if the attacker obtains an
access token, e.g., due to phishing. Intuitively, this protection
seems to be achieved by binding the access token to the client
via mTLS (see Section II-D) or OAUTB (see Section II-E).

However, these mechanisms prevent the attacker only from
directly using the access token in the same flow. As illustrated
next, in a second flow, the attacker can inject the bound access
token and let the client (to which the token is bound) use this
token, which enables the attacker to access resources belonging
to an honest identity.

This attack affects all configurations of the Read-Write
profile (see Figure 3). Also, the Read-Only profile is vulnerable
to this attack; this profile is, however, not meant to defend
against stolen access tokens.

We note that the underlying principle of the attack should
be relevant to other use-cases of token binding as well, i.e.,
whenever a token is bound to a participant, the involuntary
use of a leaked token (by the participant to which the token
is bound) should be prevented.

1 POST /startPOST /start

2 ResponseResponse

Redirect to AS (client_id, redirect_uri, state)Redirect to AS (client_id, redirect_uri, state)

3 GET /redirect_uriGET /redirect_uri

(code, state, id token1)(code, state, id token1)

4 POST /token_endpointPOST /token_endpoint

(code, client_id)(code, client_id)

5 ResponseResponse

(access token, id token2)(access token, id token2)

6 GET /resourceGET /resource

(access token)(access token)

7 ResponseResponse

resourceresource

Attacker (User) Client Attacker (AS)

Attacker (AS)

Resource Server

Attacker (User) Client Resource Server

Figure 4. Cuckoo’s Token Attack

Figure 4 depicts the attack for the OIDC Hybrid Flow,
i.e., when both responses of the AS contain id tokens (see
Section III-B). The attack works analogously for the code flow
in combination with JARM (see Section III-B).

As explained, we assume that the attacker already obtained
(phished) an access token issued by an honest AS to an honest
client for accessing resources of an honest user. We also
assume that the honest client supports the use of several ASs (a

common setting in practice, as already mentioned in Section II),
where in this case one of the ASs is dishonest.10

First, the attacker starts the flow at the client and chooses his
own AS. Since he is redirected to his own AS in Step 2 , he can
skip the user authentication step and return an authorization
response immediately. Apart from that, the flow continues
normally until Step 4 , where the client sends the code to the
attacker AS. In Step 5 , the attacker AS returns the previously
phished access token together with the second id token.

Until here, all checks done by the client pass successfully,
as the attacker AS adheres to the protocol. The only difference
to an honest authorization server is that the attacker AS returns
a phished access token. In Step 6 , the resource server receives
the (phished) access token and provides the client access to
the honest resource owner’s resources for the phished access
token,11 which implies that now the attacker has access to
these resources through the client.

To prevent the use of leaked access tokens, the client should
include, in the request to the RS, the identity of the AS the
client received the access token from. The client can take
this value from the second id token. Now, the RS would only
continue the flow if its belief is consistent with the one of the
RS. We apply an analogous fix for flows with JARM. These
fixes are included in our model and shown to work in Section V.

B. Access Token Injection with ID Token Replay

As described in Section III-C3, the Read-Write profile aims
to be secure if an attacker acquires an access token for an
honest user. The profile also aims to be secure even if the token
endpoint URI is changed to an attacker-controlled URI (see
Section III-C4). Now, interestingly, these two threat scenarios
combined in this order are the base for the attack described
in the following. In this attack, the attacker returns an access
token at the misconfigured token endpoint. While the attack
looks similar to the previous attack at first glance, here the
attacker first interacts with the honest AS and later replays
an id token at the token endpoint. Both attacks necessitate
different fixes. The outcome, however, is the same, and, just
as the previous attack, this attack affects all configurations of
the Read-Write profile, even if JARM is used. We explain the
attack using the Hybrid Flow.

Figure 5 shows how the attack proceeds. The attacker
initiates the Read-Write flow at the client and follows the
regular flow until Step 6 . As the authorization response was

10We highlight that we do not assume that the attacker controls the AS that
issued the access token (i.e., the AS at which the honest user is registered). This
means that the (honest) user uses an honest client and an honest authorization
server.

11Which RS is used in combination with an AS depends on the configuration
of the client, which is acquired through means not defined in OAuth. Especially
in scenarios where this configuration is done dynamically, a dishonest AS
might be used in combination with an honest RS. But also if the client is
configured manually, as is often the case today, it might be misconfigured or
social engineered into using specific endpoints. Recall from Section II-A that
the access token might be a document signed by the (honest) AS containing
all information the RS needs to process the access token. Alternatively, and
more common, the RS performs token introspection, if the access token is
just a nonce. The RS typically uses only one AS (in this case, the honest AS)
to which it will send the introspection request.



1 POST /startPOST /start

2 ResponseResponse

Redirect to AS /authorization_endpointRedirect to AS /authorization_endpoint
(client_id, redirect_uri, state)(client_id, redirect_uri, state)

3 GET /authorization_endpointGET /authorization_endpoint

(client_id, redirect_uri, state)(client_id, redirect_uri, state)

4

attacker authenticatesattacker authenticates

5 ResponseResponse

Redirect to C /redirect_uri (code, state, id token)Redirect to C /redirect_uri (code, state, id token)

6 GET /redirect_uriGET /redirect_uri

(code, state, id token)(code, state, id token)

7 POST /token_endpointPOST /token_endpoint

(code, client_id, [client authentication])(code, client_id, [client authentication])

8 ResponseResponse

(access token, id token)(access token, id token)

9 GET /resourceGET /resource

access tokenaccess token

10 ResponseResponse

resourceresource

Attacker (User) Client Authorization Server

Authorization Server

Attacker (Token EP)

Attacker (Token EP)

Resource Server

Client Resource ServerAttacker (User)

Figure 5. Access Token Injection with ID Token Replay Attack

created by the honest AS, the state and all values of the id token
are correct and the client accepts the authorization response.

In Step 7 , the client sends the token request to the
misconfigured token endpoint controlled by the attacker. The
value of the code and the checks regarding client authentication
and proof of possession of keys are not relevant for the attacker.

In Step 8 , the attacker sends the token response containing
the phished access token. As the flow is an OIDC Hybrid Flow,
the attacker is required to return an id token. Here, he returns
the same id token that he received in Step 5 , which is signed
by the honest AS. The client is required to ensure that both
id tokens have the same subject and issuer values, which in
this case holds true since they are identical.

The client sends the access token to the honest resource
server, by which the attacker gets read-write access to the
resource of the honest resource owner through the client.

As we show in our security analysis (see Section V), this
scenario is prevented if the second id token is required to

contain the hash of the access token that is returned to the
client, as the attacker cannot create id tokens with a valid
signature of the AS. A similar fix also works for flows with
JARM. The fixes are already included in our model.

C. PKCE Chosen Challenge Attack

As detailed in Section III-C1, the FAPI uses PKCE in
order to protect against leaked authorization codes. This is
particularly important for public clients as these clients, unlike
confidential ones, do not authenticate to an AS when trying to
exchange the code for an access token.

Recall that the idea of PKCE is that a client creates a PKCE
challenge (hash of a nonce), gives it to the AS, and when
redeeming the authorization code at the AS, the client has to
present the correct PKCE verifier (the nonce). This idea works
when just considering an honest flow in which the code leaks
to the attacker, who does not know the PKCE verifier. However,
our attack shows that the protection can be circumvented by
an attacker who pretends to be an honest client.

This attack affects public clients who use the Read-Only
profile of the FAPI. It works as follows (see Figure 6): As
in RFC 7636, two apps are installed on a user’s device, an
honest app and a malicious app. The honest app is a client
of an honest AS with the client identifier hon_client_id and
the redirection URI hon_redir_uri. The malicious app is not
registered at the AS.

The Read-Only flow starts at the malicious app, which
prompts the user to log in. Now, the malicious app prepares an
authorization request containing the client id and a redirect URI
of the honest client (Step 2 ). At this point, the malicious app
also creates a PKCE verifier and includes the corresponding
challenge in the authorization request.

The flow continues until the browser receives the autho-
rization response in Step 5 . As the redirection URIs are
preregistered at the AS, the redirection URI in the authorization
request was chosen from the set of redirect URIs of the honest
app, and therefore, the authorization response is redirected to
the honest client after the browser receives it.

As described in Sections II-B and III-C1, at this point, the
authorization response with the authorization code might leak
to the attacker (Step 6 ). The malicious app is now able to
exchange the code (associated with the honest client) at the
token endpoint in Steps 7 and 8 , as it knows the correct
PKCE verifier and, as the honest app is a public client, without
authenticating to the AS.

To prevent this scenario, an honest AS must ensure that
the PKCE challenge was created by the client with the id
hon_client_id. To achieve this, for public clients in the Read-
Only flow we use the same mechanism that the FAPI uses for
public clients in the Read-Write flow, namely the authorization
request should contain a signed JWT (see also Section II-C,
although JWTs are now used in a different way). This ensures
that the client stated in the request actually made the request,
and hence, no other client should know the PKCE verifier. Note
that by using signed JWTs for public clients the FAPI assumes
that public clients can store some secrets (which might, for



1 POST /startPOST /start

2 ResponseResponse

Redirect to ASRedirect to AS
(hon_client_id, hon_redirect_uri, pkce_cc)(hon_client_id, hon_redirect_uri, pkce_cc)

3 GET /authorization_endpointGET /authorization_endpoint

(hon_client_id, hon_redirect_uri, pkce_cc)(hon_client_id, hon_redirect_uri, pkce_cc)

4

honest user authenticateshonest user authenticates

5 ResponseResponse

Redirect to Client (code, state)Redirect to Client (code, state)

6 LeakageLeakage

code, statecode, state

7 POST /token_endpointPOST /token_endpoint

(code, pkce_cv)(code, pkce_cv)

8 ResponseResponse

access tokenaccess token

9 GET /resourceGET /resource

access tokenaccess token

10

resourceresource

Browser Attacker (Client) Authorization Server

Authorization Server

Resource Server

Browser Resource ServerAttacker (Client)

Figure 6. PKCE Chosen Challenge Attack

example, be protected by user passwords). Our fix is already
included in the model and our analysis (Section V) shows that
it works.

D. Authorization Request Leak Attacks

As explained in Section III-C2, the PKCE challenge is
created such that PKCE is supposed to work even if the
authorization request leaks (see also Section II-B).

However, if a leak of the authorization request occurs not
only the PKCE challenge leaks to the attacker but also the
state value, since both values are contained in the authorization
request. Our attack shows that an attacker who knows the state
value can circumvent the CSRF protection the state value was
supposed to provide. As a result of the attack, the honest user
is logged in under the identity of the attacker and uses the
resources of the attacker, which breaks session integrity. The
details of this attack are presented in Appendix A.

This is a well-known class of attacks for plain OAuth
flows [44], but it is important to highlight that the protections
designed into the FAPI do not sufficiently protect most flows
against such attacks, even though PKCE explicitly foresees the
attack vector.

To prevent this attack, one essentially has to prevent CSRF
forgery in this context. However, this is non-trivial because of
the very strong attacker model considered by the OpenID FAPI
Working Group: leaks and misconfigurations are assumed to
occur at various places. As further explained in Appendix A,
just assuming that the authorization request does not leak to
the attacker would not fix the problem in general; one at
least would have to assume that the authorization response
does not leak either. Making these assumptions, however,
of course contradicts the OpenID FAPI Working Group’s
intention, namely providing security even in the presence of
very strong attackers.

Fortunately, we can prove that regular FAPI web server
clients which use OAUTB are not vulnerable to this attack
even in the presence of the strong attackers assumed by the
OpenID FAPI Working Group and throughout this paper. More
specifically, we can prove session integrity of the FAPI for such
clients (and strong attackers), which in particular excludes the
above attack (see Section V). For all other types of clients, our
attack works, and there does not seem to be a fix which would
not massively change the flows, and hence, the standards, as
argued in Appendix A. In this sense, our results for session
integrity appear to be the best we can obtain for the FAPI.

V. FORMAL SECURITY ANALYSIS

In this section, we present our formal analysis of the FAPI.
We start by very briefly recalling the Web Infrastructure Model
(WIM), followed by a sketch of our formal model of the
FAPI, which as already mentioned uses the WIM as its basic
web infrastructure model. We then introduce central security
properties the FAPI is supposed to satisfy, along with our main
theorem stating that these properties are satisfied.

Since we cannot present the full formal details here, we
provide some more details in the appendix, with full details
and proofs provided in our technical report [25]. This includes
the precise formalization of clients, authorization servers, and
resource servers, as well as full detailed proofs.

A. The Web Infrastructure Model

The Web Infrastructure Model (WIM) was introduced by
Fett, Küsters, and Schmitz in [22] (therefore also called the
FKS model) and further developed in subsequent work. The
appendix of [45] provides a detailed description of the model; a
comparison with other models and a discussion of its scope and
limitations can be found in [22]–[24]. We here only give a brief
overview of the WIM following the description in [7], with
some more details presented in Appendix B. As explained there,
we slightly extend the WIM, among others to model OAUTB.
We choose the WIM for our work because, as mentioned in
the introduction, the WIM is the most comprehensive model
of the web infrastructure to date.

The WIM is designed independently of a specific web
application and closely mimics published (de-facto) standards
and specifications for the web, for example, the HTTP/1.1 and
HTML5 standards and associated (proposed) standards. Among



others, HTTP(S) requests and responses,12 including several
headers, such as cookie, location, referer, authorization, strict
transport security (STS), and origin headers, are modeled. The
model of web browsers captures the concepts of windows,
documents, and iframes, including the complex navigation
rules, as well as modern technologies, such as web storage, web
messaging (via postMessage), and referrer policies. JavaScript
is modeled in an abstract way by so-called scripts which can
be sent around and, among others, can create iframes, access
other windows, and initiate XMLHttpRequests.

The WIM defines a general communication model, and,
based on it, web systems consisting of web browsers, DNS
servers, and web servers as well as web and network attackers.
The main entities in the model are (atomic) processes, which
are used to model browsers, servers, and attackers. Each
process listens to one or more (IP) addresses. Processes
communicate via events, which consist of a message as well
as a receiver and a sender address. In every step of a run, one
event is chosen non-deterministically from a “pool” of waiting
events and is delivered to one of the processes that listens to the
event’s receiver address. The process can then handle the event
and output new events, which are added to the pool of events,
and so on. The WIM follows the Dolev-Yao approach (see,
e.g., [46]). That is, messages are expressed as formal terms
over a signature Σ which contains constants (for addresses,
strings, nonces) as well as sequence, projection, and function
symbols (e.g., for encryption/decryption and signatures).

A (Dolev-Yao) process consists of a set of addresses the
process listens to, a set of states (terms), an initial state, and
a relation that takes an event and a state as input and (non-
deterministically) returns a new state and a sequence of events.
The relation models a computation step of the process. It is
required that the output can be computed (formally, derived in
the usual Dolev-Yao style) from the input event and the state.

The so-called attacker process records all messages it
receives and outputs all events it can possibly derive from
its recorded messages. Hence, an attacker process carries out
all attacks any Dolev-Yao process could possibly perform.
Attackers can corrupt other parties, browsers, and servers.

A script models JavaScript running in a browser. Scripts
are defined similarly to Dolev-Yao processes, but run in and
interact with the browser. Similar to an attacker process, an
attacker script can (non-deterministically) perform every action
a script can possibly perform within a browser.

A system is a set of processes. A configuration of a system
is a tuple of the form (S,E,N) where S maps every process
of the system to its state, E is the pool of waiting events,
and N is a sequence of unused nonces. In what follows, sp

0
denotes the initial state of process p. Systems induce runs,
i.e., sequences of configurations, where each configuration
is obtained by delivering one of the waiting events of the
preceding configuration to a process, which then performs a
computation step.

12We note that the WIM models TLS at a high level of abstraction such
that messages are exchanged in a secure way.

A web system formalizes the web infrastructure and web
applications. It contains a system consisting of honest and
attacker processes. Honest processes can be web browsers, web
servers, or DNS servers. Attackers can be either web attackers
(who can listen to and send messages from their own addresses
only) or network attackers (who may listen to and spoof all
addresses and therefore are the most powerful attackers). A
web system further contains a set of scripts (comprising honest
scripts and the attacker script).

In our FAPI model, we need to specify only the behavior
of servers and scripts. These are not defined by the WIM
since they depend on the specific application, unless they
become corrupted, in which case they behave like attacker
processes and attacker scripts. We assume the presence of a
strong network attacker which also controls all DNS servers
(but we assume a working PKI).

B. Sketch of the Formal FAPI Model

A FAPI web system (with a network attacker), denoted by
FAPI , is a web system (as explained in Section V-A) and can
contain an unbounded finite number of clients, authorization
servers, resource servers, browsers, and a network attacker.
Note that a network attacker is the most powerful attacker,
which subsumes all other attackers. Except for the attacker, all
processes are initially honest and can become (dynamically)
corrupted by the attacker at any time.

In a FAPI web system, clients, authorization servers, and
resource servers act according to the specification of the FAPI
presented in Section III. (As mentioned in Section V-A, the
behavior of browsers is fixed by the standards. Their modeling
is independent of the FAPI and already contained in the
WIM.) Our models for clients and servers follow the latest
recommendations regarding the security of OAuth 2.0 [42] to
mitigate all previously known attacks. The model also contains
the fixes pointed out in Section IV, as otherwise, we would not
be able to prove the desired security properties (see below).

The primary goal of the FAPI is to provide a high degree of
security. Its flows are intended to be secure even if information
leaks to an attacker. As already outlined in Section III-C, we
model this by sending the authorization response (in the case
of an app client), the access token (in the case of a Read-
Write flow), and the authorization request to an arbitrary (non-
deterministically chosen) IP address. Furthermore, in the Read-
Write profile, the token request can be sent to an arbitrary URI.

Importantly, one FAPI web system contains all possible
settings in which the FAPI can run, as depicted in Figure 3, in
particular, we consider all OAuth 2.0 extensions employed in
the FAPI. More precisely, every client in a FAPI web system
runs one of the possible configurations (i.e., it implements
on one path in Figure 3). Different clients may implement
different configurations. Every authorization and resource
server in a FAPI web system supports all configurations at
once. When interacting with a specific client, a server just
chooses the configuration the client supports. In our model,
the various endpoints (authorization, redirection, token), the
information which client supports which FAPI configuration,



client credentials, etc. are preconfigured and contained in the
initial states of the processes. How this information is acquired
is out of the scope of the FAPI.

We emphasize that when proving security properties of the
FAPI, we prove these properties for all FAPI web systems,
where different FAPI web systems can differ in the number of
clients and servers, and their preconfigured information.

Furthermore, we note that there is no notion of time
in the WIM, hence, tokens do not expire. This is a safe
overapproximation as it gives the attacker more power.

To give a feel for our formal FAPI model, an excerpt of the
model is provided in Appendix C.

C. Security Properties and Main Theorem

In the following, we define the security properties the FAPI
should fulfill, namely authorization, authentication, and session
integrity. These properties have been central to also OAuth 2.0
and OpenID Connect [6], [7]. But as mentioned, the FAPI
has been designed to fulfill these properties under stronger
adversaries, therefore using various OAuth extensions. While
our formulations of these properties are inspired by those for
OAuth 2.0 and OpenID Connect, they had to be adapted and
extended for the FAPI, e.g., to capture properties of resource
servers, which previously have not been modeled. We also
state our main theorem.

We give an overview of each security property. For the
authorization property, we provide an in-depth explanation,
together with the formal definition. Appendix D contains a
proof sketch for the authorization property. Full details and
proofs of all properties are given in our technical report [25].

1) Authorization: Informally speaking, for authorization we
require that an attacker cannot access resources belonging to
an honest user (browser). A bit more precise, we require that
in all runs ρ of a FAPI web system FAPI if an honest resource
server receives an access token that is associated with an honest
client, an honest authorization server, and an identity of an
honest user, then access to the corresponding resource is not
provided to the attacker in any way. We highlight that this
does not only mean that the attacker cannot access the resource
directly at the resource server, but also that the attacker cannot
access the resource through a client.

In order to formalize this property, we first need to define
what it means for an access token to be associated with a client,
an AS, and a user identity (see below for an explanation of
this definition).

Definition 1 (Access Token associated with C, AS and ID).
Let c be a client with client id clientId issued to c by
the authorization server as, and let id ∈ IDas, where IDas

denotes the set of identities governed by as. We say that
an access token t is associated with c, as and id in state
S of the configuration (S,E,N) of a run ρ of a FAPI web
system, if there is a sequence s ∈ S(as).accessTokens such
that s ≡ 〈id,clientId, t,r〉, s ≡ 〈MTLS, id,clientId, t,key,rw〉 or
s ≡ 〈OAUTB, id,clientId, t,key′,rw〉, for some key and key′.

Intuitively, an access token t is associated with a client c,
authorization server as, and user identity id, if t was created
by the authorization server as and if the AS has created t for
the client c and the identity id.

More precisely, the access token is exchanged for an
authorization code (at the token endpoint of the AS), which
is issued for a specific client. This is also the client to which
the access token is associated with. The user identity with
which the access token is associated is the user identity that
authenticated at the AS (i.e., logged in at the website of the
AS). In the model, the AS associates the access token with
the client identifier and user identity by storing a sequence
containing the identity, the client identifier and the access
token (i.e., 〈id,clientId, t,r〉, 〈MTLS, id,clientId, t,key,rw〉 or
〈OAUTB, id,clientId, t,key′,rw〉). Furthermore, the last entry of
the sequence indicates if the client is using the Read-Only or
the Read-Write flow. In addition to this, for the Read-Write
flow, the AS stores whether the access token is bound via
mTLS or OAUTB (along with the corresponding key with
which the access token is associated).

We can now define authorization formally, again the expla-
nation of this definition follows below.

Definition 2 (Authorization Property). We say that the FAPI
web system with a network attacker FAPI is secure w.r.t. au-
thorization iff for every run ρ of FAPI , every configuration
(S,E,N) in ρ , every authorization server as ∈ AS that is
honest in S with sas

0 .resource_servers being domains of
honest resource servers used by as, every identity id ∈ IDas

for which the corresponding browser, say b, is honest in S,
every client c ∈ C that is honest in S with client id clientId
issued to c by as, every resource server rs ∈ RS that is
honest in S such that id ∈ srs

0 .ids (set of IDs handled by rs),
srs

0 .authServ∈ dom(as) (set of domains controlled by as) and
with domrs ∈ sas

0 .resource_servers (with domrs ∈ dom(rs)),
every access token t associated with c, as and id and every
resource access nonce r ∈ srs

0 .rNonce[id]∪ srs
0 .wNonce[id] it

holds true that:
If r is contained in a response to a request m sent to rs with

t ≡ m.header[Authorization], then r is not derivable from
the attackers knowledge in S.

As outlined above, the authorization property states that if
the honest resource server receives an access token associated
with a client identifier, authorization server, and user identifier,
then the corresponding resource access is not given to the
attacker. Access to resources is modeled by nonces called
resource access nonces. For each user identity, there is one set
of nonces representing read access, and another set representing
write access. In our model of the FAPI, when a resource server
receives an access token associated with a user from a client,
the resource server returns to the client one of the resource
access nonces of the user, which in turn the client forwards
to the user’s browser. The above security property requires
that the attacker does not obtain such a resource access nonce
(under the assumptions state in the property). This captures
that there should be no direct or indirect way for the attacker



to access the corresponding resource. In particular, the attacker
should not be able to use a client such that he can access the
resource through the client.

For the authorization property to be meaningful, we require
that the involved participants are honest. For example, we
require that the authorization server at which the identity is
registered is honest. If this is not the case (i.e., the attacker
controls the AS), then the attacker could trivially access
resources. The same holds true for the client for which the
access token is issued: If the user chooses a client that is
controlled by the attacker, then the attacker can trivially access
the resource (as the user authorized the attacker client to do so).
In our model of the FAPI, the client (non-deterministically)
chooses a resource server that the authorization server supports
(this can be different for each login flow). As in the Read-Only
flow, the access token would trivially leak to the attacker if the
resource server is controlled by the attacker, we require that the
resource servers that the AS supports are honest. Furthermore,
in the WIM, the behavior of the user is subsumed in the
browser model, therefore, we require that the browser that
is responsible for the user identity that is involved in the flow
should be honest. Otherwise, the attacker could trivially obtain
the credentials of the user.

2) Authentication: Informally speaking, the authentication
property states that an attacker should not be able to log in at
a client under the identity of an honest user. More precisely,
we require that in all runs ρ of a FAPI web system FAPI
if in ρ a client considers an honest user (browser) whose ID
is governed by an honest AS to be logged in (indicated by
a service token which a user can use at the client), then the
adversary cannot obtain the service token.

3) Session Integrity: There are two session integrity prop-
erties that capture that an honest user should not be logged in
under the identity of the attacker and should not use resources
of the attacker. As shown in Section IV-D, session integrity is
not given for all configurations available in the FAPI. Therefore,
we show a limited session integrity property that captures
session integrity for web server clients that use OAUTB.

Nonetheless, our session integrity property here is stronger
than those used in [6], [7] in the sense that we define (and
prove) session integrity not only in the presence of web
attackers, but also for the much stronger network attacker.
(This is enabled by using the __Secure- prefix for cookies.)

Session Integrity for Authorization for Web Server Clients
with OAUTB: Intuitively, this property states that for all runs
ρ of a FAPI web system FAPI , if an honest user can access
the resource of some identity u (registered at AS as) through
the honest web server client c, where c uses OAUTB as the
holder of key mechanism, then (1) the user started the flow at
c and (2) if as is honest, the user authenticated at the as using
the identity u.

Session Integrity for Authentication for Web Server Clients
with OAUTB: Similar to the previous property, this property
states that for all runs ρ of a FAPI web system FAPI , if an
honest user is logged in at the honest client c under some
identity u (registered at AS as), with c being a web server

client using OAUTB as the holder of key mechanism, then (1)
the user started the flow at c and (2) if as is honest, the user
authenticated at the as using the identity u.

By Session Integrity for Web Server Clients with OAUTB
we denote the conjunction of both properties.

Now, our main theorem says that these properties are
satisfied for all FAPI web systems.

Theorem 1. Let FAPI be a FAPI web system with a network
attacker. Then, FAPI is secure w.r.t. authorization and authen-
tication. Furthermore, FAPI is secure w.r.t. session integrity
for web server clients with OAUTB.

We emphasize that the FAPI web systems take into account
the strong attacker the FAPI is supposed to withstand as
explained in Section III-C. Such attackers immediately break
plain OAuth 2.0 and OpenID Connect. This, together with the
various OAuth 2.0 security extensions which the FAPI uses
and combines in different ways, and which have not formally
been analyzed before, makes the proof challenging.

VI. CONCLUSION

In this paper, we performed the first formal analysis of
an Open Banking API, namely the OpenID Financial-grade
API. Based on the Web Infrastructure Model, we built a
comprehensive model comprising all protocol participants
(clients, authorization servers, and resource servers) and all
important options employed in the FAPI: clients can be app
clients or web server clients and can make use of either the
Read-Only or the Read-Write profile. We modeled all specified
methods for authenticating at the authorization server and both
mechanisms for binding tokens to the client, namely, Mutual
TLS and OAuth 2.0 Token Binding. We also modeled PKCE,
JWS Client Assertions, and the JWT Secured Authorization
Response Mode (JARM).

Based on this model, we then defined precise security
properties for the FAPI, namely authorization, authentication,
and session integrity. While trying to prove these properties for
the FAPI, we found several vulnerabilities that can enable an
attacker to access protected resources belonging to an honest
user or perform attacks on session integrity. We developed
fixes against these attacks and formally verified the security
of the (fixed) OpenID FAPI.

This is an important result since the FAPI enjoys wide
industry support and is a promising candidate for the future
lead in open banking APIs. Financial-grade applications entail
very high security requirements that make a thorough formal
security analysis, as performed in this paper, indispensable.

Our work also constitutes the very first analysis of various
OAuth security extensions, namely PKCE, OAuth mTLS,
OAUTB, JARM, and JWS Client Assertions.
Acknowledgements. This work was partially supported by
Deutsche Forschungsgemeinschaft (DFG) through Grant KU
1434/10-2.



REFERENCES

[1] “Blurred Lines: How FinTech Is Shaping Financial Services,” 2016. PwC
Global Fin-Tech Report.

[2] European Union, “DIRECTIVE (EU) 2015/2366 OF THE EUROPEAN
PARLIAMENT AND OF THE COUNCIL.” https://eur-lex.europa.eu/
legal-content/EN/TXT/HTML/?uri=CELEX:32015L2366&from=DE.

[3] S. T. Mnuchin and C. S. Phillips, “A Financial System That Creates
Economic Opportunities – Nonbank Financials, Fintech, and Innovation.”
https://home.treasury.gov/sites/default/files/2018-08/A-Financial-
System-that-Creates-Economic-Opportunities---Nonbank-Financials-
Fintech-and-Innovation_0.pdf.

[4] M. Leszcz, “The UK Open Banking Implementation Entity Adopts
the OpenID Foundation Financial-Grade API (FAPI) Specification
& Certification Program.” https://openid.net/2018/07/12/the-uk-open-
banking-implementation-entity-adopts-the-openid-foundation-financial-
grade-api-fapi-specification-certification-program/.

[5] OpenID Financial-grade API Working Group, “OpenID Foundation
Financial-grade API (FAPI).” Aug. 23, 2018. https://bitbucket.org/openid/
fapi/src/ceb0f829bc532e9c540efaa94f6f96d007371ca2/.

[6] D. Fett, R. Küsters, and G. Schmitz, “A Comprehensive Formal Security
Analysis of OAuth 2.0,” in Proceedings of the 23nd ACM SIGSAC
Conference on Computer and Communications Security (CCS 2016),
pp. 1204–1215, ACM, 2016.

[7] D. Fett, R. Küsters, and G. Schmitz, “The Web SSO Standard OpenID
Connect: In-Depth Formal Security Analysis and Security Guidelines,”
in IEEE 30th Computer Security Foundations Symposium (CSF 2017),
IEEE Computer Society, 2017.

[8] A. Kumar, “Using automated model analysis for reasoning about security
of web protocols,” in Proceedings of the 28th Annual Computer Security
Applications Conference on - ACSAC’12, Association for Computing
Machinery (ACM), 2012.

[9] C. Bansal, K. Bhargavan, and S. Maffeis, “Discovering Concrete Attacks
on Website Authorization by Formal Analysis,” in 25th IEEE Computer
Security Foundations Symposium, CSF 2012 (S. Chong, ed.), pp. 247–
262, IEEE Computer Society, 2012.

[10] C. Bansal, K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis, “Discov-
ering Concrete Attacks on Website Authorization by Formal Analysis,”
Journal of Computer Security, vol. 22, no. 4, pp. 601–657, 2014.

[11] R. Wang, Y. Zhou, S. Chen, S. Qadeer, D. Evans, and Y. Gurevich,
“Explicating SDKs: Uncovering Assumptions Underlying Secure Authen-
tication and Authorization,” in Proceedings of the 22th USENIX Security
Symposium, Washington, DC, USA, August 14-16, 2013, pp. 399–314,
USENIX Association, 2013.

[12] S. Pai, Y. Sharma, S. Kumar, R. M. Pai, and S. Singh, “Formal
Verification of OAuth 2.0 Using Alloy Framework,” in CSNT ’11
Proceedings of the 2011 International Conference on Communication
Systems and Network Technologies, pp. 655–659, Proceedings of the
International Conference on Communication Systems and Network
Technologies, 2011.

[13] S. Chari, C. S. Jutla, and A. Roy, “Universally Composable Security
Analysis of OAuth v2.0,” IACR Cryptology ePrint Archive, vol. 2011,
p. 526, 2011.

[14] S.-T. Sun and K. Beznosov, “The Devil is in the (Implementation) Details:
An Empirical Analysis of OAuth SSO Systems,” in ACM Conference
on Computer and Communications Security, CCS’12 (T. Yu, G. Danezis,
and V. D. Gligor, eds.), pp. 378–390, ACM, 2012.

[15] W. Li and C. J. Mitchell, “Security issues in OAuth 2.0 SSO implemen-
tations,” in Information Security - 17th International Conference, ISC
2014, Hong Kong, China, October 12-14, 2014. Proceedings, pp. 529–
541, 2014.

[16] R. Yang, G. Li, W. C. Lau, K. Zhang, and P. Hu, “Model-based
Security Testing: An Empirical Study on OAuth 2.0 Implementations,”
in Proceedings of the 11th ACM on Asia Conference on Computer and
Communications Security, AsiaCCS 2016, Xi’an, China, May 30 - June
3, 2016, pp. 651–662, ACM, 2016.

[17] E. Shernan, H. Carter, D. Tian, P. Traynor, and K. R. B. Butler, “More
Guidelines Than Rules: CSRF Vulnerabilities from Noncompliant OAuth
2.0 Implementations,” in Detection of Intrusions and Malware, and
Vulnerability Assessment - 12th International Conference, DIMVA 2015,
Milan, Italy, July 9-10, 2015, Proceedings, vol. 9148 of Lecture Notes
in Computer Science, pp. 239–260, Springer, 2015.

[18] E. Y. Chen, Y. Pei, S. Chen, Y. Tian, R. Kotcher, and P. Tague, “OAuth
Demystified for Mobile Application Developers,” in Proceedings of

the 2014 ACM SIGSAC Conference on Computer and Communications
Security - CCS ’14, pp. 892–903, 2014.

[19] M. Shehab and F. Mohsen, “Towards Enhancing the Security of
OAuth Implementations in Smart Phones,” in 2014 IEEE International
Conference on Mobile Services, Institute of Electrical & Electronics
Engineers (IEEE), 6 2014.

[20] W. Li and C. J. Mitchell, “Analysing the Security of Google’s Imple-
mentation of OpenID Connect,” in Proceedings of the 13th International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA), vol. 9721, pp. 357–376, 2016.

[21] V. Mladenov, C. Mainka, J. Krautwald, F. Feldmann, and J. Schwenk,
“On the security of modern Single Sign-On Protocols: Second-Order
Vulnerabilities in OpenID Connect,” CoRR, vol. abs/1508.04324v2, 2016.

[22] D. Fett, R. Küsters, and G. Schmitz, “An Expressive Model for the
Web Infrastructure: Definition and Application to the BrowserID SSO
System,” in 35th IEEE Symposium on Security and Privacy (S&P 2014),
pp. 673–688, IEEE Computer Society, 2014.

[23] D. Fett, R. Küsters, and G. Schmitz, “SPRESSO: A Secure, Privacy-
Respecting Single Sign-On System for the Web,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security, Denver, CO, USA, October 12-6, 2015, pp. 1358–1369, ACM,
2015.

[24] D. Fett, R. Küsters, and G. Schmitz, “Analyzing the BrowserID SSO
System with Primary Identity Providers Using an Expressive Model of
the Web,” in Computer Security - ESORICS 2015 - 20th European Sym-
posium on Research in Computer Security, Vienna, Austria, September
21-25, 2015, Proceedings, Part I, vol. 9326 of Lecture Notes in Computer
Science, pp. 43–65, Springer, 2015.

[25] D. Fett, P. Hosseyni, and R. Küsters, “An Extensive Formal Se-
curity Analysis of the OpenID Financial-grade API,” Tech. Rep.
arXiv:1901.11520, arXiv, 2019. Available at http://arxiv.org/abs/1901.
11520.

[26] D. Hardt (ed.), “RFC6749 – The OAuth 2.0 Authorization Framework.”
IETF. Oct. 2012. https://tools.ietf.org/html/rfc6749.

[27] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and C. Mortimore,
“OpenID Connect Core 1.0 incorporating errata set 1.” OpenID Foun-
dation. Nov. 8, 2014. http://openid.net/specs/openid-connect-core-1_0.
html.

[28] J. Richer (ed.), “RFC7662 – OAuth 2.0 Token Introspection.” IETF. Oct.
2015. https://tools.ietf.org/html/rfc7662.

[29] N. Sakimura (Ed.), J. Bradley, and N. Agarwal, “Proof Key for Code
Exchange by OAuth Public Clients.” RFC 7636 (Proposed Standard),
Sept. 2015.

[30] W. Denniss and J. Bradley, “OAuth 2.0 for Native Apps,” RFC, vol. 8252,
pp. 1–21, 2017.

[31] M. Jones, J. Bradley, and N. Sakimura, “RFC7519 – JSON Web Token
(JWT).” IETF. May 2015. https://tools.ietf.org/html/rfc7519.

[32] M. Jones, J. Bradley, and N. Sakimura, “RFC7515 – JSON Web
Signature (JWS).” IETF. May 2015. https://tools.ietf.org/html/rfc7515.

[33] B. Campbell, J. Bradley, N. Sakimura, and T. Lodderstedt, “OAuth 2.0
Mutual TLS Client Authentication and Certificate Bound Access Tokens,”
Internet-Draft draft-ietf-oauth-mtls-09, Internet Engineering Task Force,
June 2018. Work in Progress.

[34] M. Jones, B. Campbell, J. Bradley, and W. Denniss, “OAuth 2.0 Token
Binding - draft-ietf-oauth-token-binding-07.” https://www.ietf.org/id/
draft-ietf-oauth-token-binding-07.txt.

[35] A. Popov, M. Nystrom, D. Balfanz, A. Langley, and J. Hodges, “The
Token Binding Protocol Version 1.0.” RFC 8471, Oct. 2018.

[36] A. Popov, M. Nystrom, D. Balfanz, and A. Langley, “Transport Layer
Security (TLS) Extension for Token Binding Protocol Negotiation.” RFC
8472, Oct. 2018.

[37] A. Popov, M. Nystrom, D. Balfanz, A. Langley, N. Harper, and J. Hodges,
“Token Binding over HTTP.” RFC 8473, Oct. 2018.

[38] E. Rescorla, “Keying Material Exporters for Transport Layer Security
(TLS).” RFC 5705, Mar. 2010.

[39] A. Popov, M. Nystrom, D. Balfanz, A. Langley, N. Harper, and J. Hodges,
“Token Binding over HTTP,” internet-draft, Internet Engineering Task
Force, June 2018. Work in Progress.

[40] T. Lodderstedt (ed.), “JWT Secured Authorization Response Mode
for OAuth 2.0 (JARM).” Aug. 23, 2018. https://bitbucket.org/openid/
fapi/src/ceb0f829bc532e9c540efaa94f6f96d007371ca2/Financial_API_
JWT_Secured_Authorization_Response_Mode.md.

[41] OpenID Financial-grade API Working Group, “Financial API - Part
1: Read-Only API Security Profile.” Aug. 23, 2018. https://bitbucket.



org/openid/fapi/src/ceb0f829bc532e9c540efaa94f6f96d007371ca2/
Financial_API_WD_001.md.

[42] T. Lodderstedt, J. Bradley, A. Labunets, and D. Fett, “OAuth 2.0 Security
Best Current Practice,” 10 2018. https://tools.ietf.org/html/draft-ietf-
oauth-security-topics.

[43] OpenID Financial-grade API Working Group, “Financial API - Part 2:
Read and Write API Security Profile.” Aug. 23, 2018. https://bitbucket.
org/openid/fapi/src/ceb0f829bc532e9c540efaa94f6f96d007371ca2/
Financial_API_WD_002.md.

[44] T. Lodderstedt (ed.), M. McGloin, and P. Hunt, “RFC6819 – OAuth
2.0 Threat Model and Security Considerations.” IETF. Jan. 2013. https:
//tools.ietf.org/html/rfc6819.

[45] D. Fett, R. Küsters, and G. Schmitz, “The Web SSO Standard OpenID
Connect: In-Depth Formal Analysis and Security Guidelines,” Tech. Rep.
arXiv:1704.08539, arXiv, 2017. Available at http://arxiv.org/abs/1704.
08539.

[46] M. Abadi and C. Fournet, “Mobile Values, New Names, and Secure
Communication,” in Proceedings of the 28th ACM Symposium on
Principles of Programming Languages (POPL 2001), pp. 104–115, ACM
Press, 2001.

[47] A. Barth and M. West, “Cookies: HTTP State Management Mechanism.”
https://httpwg.org/http-extensions/rfc6265bis.html.

APPENDIX A
AUTHORIZATION REQUEST LEAK ATTACK – DETAILS

We here provide further details about the authorization
request leak attack, which was only sketched in Section IV-D.

A concrete instantiation of this attack is shown in Figure 7,
where the scenario is based on the Read-Only flow of a public
client. As explained below, similar attacks also work for all
other configurations of the FAPI (except for web server clients
which use OAUTB, for which, as mentioned, we show that
they are not susceptible in Section V).

In the Authorization Request Leak Attack, the client sends
the authorization request to the browser in Step 2 , where it
leaks to the attacker in Step 3 . From here on, the attacker
behaves as the browser and logs himself in (Step 5 ), hence,
the authorization code received in Step 6 is associated with
the identity of the attacker.

The state value used in the authorization request aims
at preventing Cross-Site Request Forgery (CSRF) attacks.
However, as the state value leaks, this protection does not
work. For showing that this is the case, we assume that a CSRF
attack happens. If, for example, the user is visiting a website
that is controlled by the attacker, then the attacker can send,
from the browser of the user, a request to the AS containing
the code and the state value (Step 8 ). As the state received
by the client is the same that it included in the authorization
request, the client continues the flow and uses the code to
retrieve an access token in Steps 9 and 10 .

This access token is associated with the attacker, which
means that the honest user is accessing resources belonging to
the attacker.

As a result, the honest user can be logged in under the
identity of the attacker if the authorization server returns an
id token. In the case of the Read-Write flow, the honest user
can modify resources of the attacker: for example, she might
upload personal documents to the account of the attacker.

As noted above, this attack might happen for all configura-
tions, except for the Read-Write flow when the client is a web
server client using OAUTB (see Figure 3).

1 POST /startPOST /start

2 ResponseResponse

Redirect to AS (client_id, redirect_uri, state)Redirect to AS (client_id, redirect_uri, state)

3 LeakageLeakage

(client_id, redirect_uri, state)(client_id, redirect_uri, state)

4 GET /authorization_endpointGET /authorization_endpoint

(client_id, redirect_uri, state) (Authorization Request)(client_id, redirect_uri, state) (Authorization Request)

5

attacker authenticatesattacker authenticates

6 ResponseResponse

Redirect to C (code, state)Redirect to C (code, state)

7 CSRFCSRF

Redirect to C (code, state)Redirect to C (code, state)

8 GET /redirect_uriGET /redirect_uri

(code, state)(code, state)

9 POST /tokenPOST /token

(code)(code)

10 ResponseResponse

(access token)(access token)

AttackerBrowser Client Authorization Server

Attacker Client Authorization ServerBrowser

Figure 7. Leakage of Authorization Request Attack

In all other configurations, this attack can happen as the
attacker can behave exactly like the browser of the honest
user, i.e., after receiving the authorization request, the attacker
can send this request to the AS, log in under his own identity,
and would then receive a response that the client accepts. The
only flow in which this is different is the Read-Write flow
where the client is a web server and uses OAUTB, as here,
the browser (and therefore, also the attacker) needs to prove
possession of a key pair (i.e., the key pair used for the client).
As the attacker cannot prove possession of the private key of
the key pair which the browser uses for the client, the AS
would then stop the flow. (In the other flows, the AS does not
check if the response was sent by the browser that logged in
the user.)

If we say that the FAPI is not required to be secure if the
authorization request leaks (i.e., if we remove the assumption
that the authorization request leaks), then the flow is still not
secure, as the authorization response might still leak to the
attacker (see Section III-C1), which also contains the state
value. More precisely, the authorization response might leak
in the case of app clients due to the operating system sending
the response to the attacker app (for details, see Section II-B).
After receiving the authorization response, the attacker app
knows the state value and can start a new flow using this
value. The attacker can then continue from Step 3 (Figure 7),
and when receiving the authorization response (which is a URI



containing the OAuth parameters), he could, using his own app
that runs on the device of the victim, call the legitimate client
app with this URI (i.e., with the code that is associated with the
identity of the attacker and the state value with which the client
started the flow). The effect of this is that the legitimate app,
at which the honest user started the flow, would continue the
flow using an authorization code associated with the attacker.
Therefore, the honest user would either be logged in with the
identity of the attacker or use the resources of the attacker.

We note that even encrypting the state value contained
in the authorization request does not solve the problem, as
the attacker is using the whole authorization request. (Strictly
speaking, he acts as the browser of the honest user).

APPENDIX B
THE WIM: SOME BACKGROUND

We here provide more details about the Web Infrastructure
Model.

a) Signature and Messages: As mentioned, the WIM
follows the Dolev-Yao approach where messages are expressed
as formal terms over a signature Σ. For example, in the WIM
an HTTP request is represented as a term r containing a nonce,
an HTTP method, a domain name, a path, URI parameters,
request headers, and a message body. For instance, an HTTP
request for the URI http://ex.com/show?p=1 is represented
as r := 〈HTTPReq,n1,GET,ex.com,/show,〈〈p,1〉〉,〈〉,〈〉〉 where
the body and the list of request headers is empty. An HTTPS
request for r is of the form enca(〈r,k′〉,pub(kex.com)), where
k′ is a fresh symmetric key (a nonce) generated by the sender
of the request (typically a browser); the responder is supposed
to use this key to encrypt the response.

The equational theory associated with Σ is defined as
usual in Dolev-Yao models. The theory induces a congru-
ence relation ≡ on terms, capturing the meaning of the
function symbols in Σ. For instance, the equation in the
equational theory which captures asymmetric decryption is
deca(enca(x,pub(y)),y) = x. With this, we have that, for
example, deca(enca(〈r,k′〉,pub(kex.com)),kex.com)≡ 〈r,k′〉 , i.e.,
these two terms are equivalent w.r.t. the equational theory.

b) Scripts: A script models JavaScript running in a
browser. Scripts are defined similarly to Dolev-Yao processes.
When triggered by a browser, a script is provided with state
information. The script then outputs a term representing a new
internal state and a command to be interpreted by the browser
(see also the specification of browsers below). Similarly to
an attacker process, the so-called attacker script outputs
everything that is derivable from the input.

c) Running a system: As mentioned, a run of a system
is a sequence of configurations. The transition from one
configuration to the next configuration in a run is called
a processing step. We write, for example, Q = (S,E,N) −→
(S′,E ′,N′) to denote the transition from the configuration
(S,E,N) to the configuration (S′,E ′,N′), where S and S′ are
the states of the processes in the system, E and E ′ are pools of
waiting events, and N and N′ are sequences of unused nonces.

d) Web Browsers: An honest browser is thought to be
used by one honest user, who is modeled as part of the browser.
User actions, such as following a link, are modeled as non-
deterministic actions of the web browser. User credentials are
stored in the initial state of the browser and are given to
selected web pages when needed. Besides user credentials,
the state of a web browser contains (among others) a tree
of windows and documents, cookies, and web storage data
(localStorage and sessionStorage).

A window inside a browser contains a set of documents (one
being active at any time), modeling the history of documents
presented in this window. Each represents one loaded web
page and contains (among others) a script and a list of
subwindows (modeling iframes). The script, when triggered
by the browser, is provided with all data it has access to,
such as a (limited) view on other documents and windows,
certain cookies, and web storage data. Scripts then output a
command and a new state. This way, scripts can navigate or
create windows, send XMLHttpRequests and postMessages,
submit forms, set/change cookies and web storage data, and
create iframes. Navigation and security rules ensure that scripts
can manipulate only specific aspects of the browser’s state,
according to the relevant web standards.

A browser can output messages on the network of different
types, namely DNS and HTTP(S) (including XMLHttpRe-
quests), and it processes the responses. Several HTTP(S)
headers are modeled, including, for example, cookie, location,
strict transport security (STS), and origin headers. A browser,
at any time, can also receive a so-called trigger message upon
which the browser non-deterministically chooses an action,
for instance, to trigger a script in some document. The script
now outputs a command, as described above, which is then
further processed by the browser. Browsers can also become
corrupted, i.e., be taken over by web and network attackers.
Once corrupted, a browser behaves like an attacker process.

As detailed in our technical report [25], we extended the
browser model of the WIM slightly in order to incorporate
OAUTB in the browser model. We furthermore added the
behavior of the __Secure- prefix of cookies to the model, which
specifies that such cookies shall only be accepted when they are
transmitted over secure channels [47]. Note that for the FAPI,
mTLS is only needed between clients and servers. Therefore,
mTLS has been modeled on top of the WIM, i.e., as part of the
modeling of FAPI clients and servers. The servers we modeled
for the FAPI of course also support OAUTB.

APPENDIX C
EXCERPT OF CLIENT MODEL

In this section, we provide a brief excerpt of the client model
in order to give an impression of the formal model. See our
technical report [25] for the full formal model of the FAPI.

The excerpt given in Algorithm 1 shows how the client
prepares and sends the token request to the authorization server,
i.e., the part in which the client sends the authorization code
in exchange for an access token (and depending on the flow,
also an id token).



This function is called by the client. The first two inputs
are the session identifier of the session (i.e., the session of the
resource owner at the client) and the authorization code that
the client wants to send to the AS. The value responseValue
contains information related to mTLS or OAUTB (if used for
the current flow). The last input is the current state of the
client.

In Lines 5 to 8, the client chooses either the token endpoint
of the AS or some URL that was chosen non-deterministically.
This models the assumption shown in Section III-C4, which
requires the Read-Write profile of the FAPI to be secure even
if the token endpoint is misconfigured.

Starting from Line 15, the function chooses the parameters
of the request that depend on the flow and configuration (see
Figure 3).

If the client uses the Read-Only profile, the token request
always contains the PKCE verifier (Line 15). For a confidential
client (which means that the client has to authenticate at the
token endpoint), the client either authenticates using JWS
Client Assertions (Line 20, see also Section II-C), or with
mTLS (Line 26; for details on our model of mTLS refer to
our technical report [25]).

If the client uses the Read-Write profile, the client uses
either mTLS (again Line 26) or OAUTB (Line 32; for details
on our model of OAUTB refer to our technical report [25]).

APPENDIX D
PROOF SKETCH OF THEOREM 1, AUTHORIZATION

We here provide a proof sketch of Theorem 1 that is con-
cerned with the authorization property. The complete formal
proof of this theorem is given in the technical report [25].

For proving the authorization property, we show that when
a participant provides access to a resource, i.e., by sending
a resource access nonce, this access is not provided to the
attacker:

a) Resource server does not provide the attacker access to
resources: We show that the resource server does not provide
the attacker access to resources of an honest user.

In case of the Read-Only flow, we show that an access
token associated with an honest client, an honest authorization
server, and an honest identity does not leak to the attacker,
and therefore, the attacker cannot obtain access to resources.

In case of the Read-Write flow, such an access token might
leak to the attacker, but this token cannot be used by the
attacker at the resource server due to Token Binding, either
via OAUTB or mTLS.

b) Web server client does not provide the attacker access
to resources: App clients are only usable via the device they
are running on, i.e., they are not usable over the network (by
which we mean that if, for example, the user wants to view
one of her documents with an app client, she does this directly
using the device). Therefore, we only look at the case of web
server clients, as such a client can be used over the network,
e.g., by the browser of the end-user or by the attacker.

In the following, we show that honest web server clients do
not provide the attacker access to resources belonging to an

Algorithm 1: Client Rc – Request to token endpoint.

1: function SEND_TOKEN_REQUEST(sessionId, code,
responseValue, s′)

2: let session := s′.sessions[sessionId]
3: let identity := session[identity]
4: let issuer := s′.issuerCache[identity]
5: if session[misconfiguredTEp]≡	 then
6: let url := session[token_ep]
7: else
8: let url := s′.oidcConfigCache[issuer][token_ep]
9: let credentials := s′.clientCredentialsCache[issuer]

10: let clientId := credentials[client_id]
11: let clientType := credentials[client_type]
12: let profile := credentials[profile]
13: let isApp := credentials[is_app]
14: let body := [grant_type:authorization_code,code:code,

↪→ redirect_uri:session[redirect_uri],
↪→ client_id:clientId]

15: if profile ≡ r then
16: let body[pkce_verifier] := session[pkce_verifier]
17: if profile ≡ r∧ clientType ≡ pub then
18: let message := 〈HTTPReq,ν2,POST,url.domain,url.path,

url.parameters,⊥,body〉
19: call HTTPS_SIMPLE_SEND([responseTo:TOKEN,

↪→ session:sessionId], message, s′)
20: else if profile ≡ r∧ clientType ≡ conf_JWS then
21: let clientSecret := credentials[client_secret]
22: let jwt := [iss:clientId,aud:url.domain]
23: let body[assertion] := mac(jwt,clientSecret)
24: let message := 〈HTTPReq,ν2,POST,url.domain,url.path,

url.parameters,⊥,body〉
25: call HTTPS_SIMPLE_SEND([responseTo:TOKEN,

↪→ session:sessionId], message, s′)
26: else if clientType ≡ conf_MTLS then → both profiles
27: if responseValue[type] �≡ MTLS then
28: stop
29: let body[TLS_AuthN] := responseValue[mtls_nonce]
30: let message := 〈HTTPReq,ν2,POST,url.domain,url.path,

url.parameters,⊥,body〉
31: call HTTPS_SIMPLE_SEND([responseTo:TOKEN,

↪→ session:sessionId], message, s′)
32: else → rw with OAUTB
33: if responseValue[type] �≡ OAUTB then
34: stop
35: let ekm := responseValue[ekm]
36: let TB_AS := s′.TBindings[url.host] → priv. key
37: let TB_RS := s′.TBindings[session[RS]] → priv. key
38: let TB_Msg_prov := [id:pub(TB_AS),

↪→ sig:sig(ekm,TB_AS)]
39: let TB_Msg_ref := [id:pub(TB_RS),sig:sig(ekm,TB_RS)]
40: let headers := [Sec-Token-Binding:[prov:TB_Msg_prov,

↪→ ref:TB_Msg_ref ]]
41: if clientType ≡ conf_OAUTB then → client authentication
42: let clientSecret := credentials[client_secret]
43: let jwt := [iss:clientId,aud:url.domain, ]
44: let body[assertion] := mac(jwt,clientSecret)
45: if isApp ≡⊥ then → W.S. client: TBID used by browser
46: let body[pkce_verifier] := session[browserTBID]
47: let message := 〈HTTPReq,ν2,POST,url.domain,url.path,

url.parameters,headers,body〉
48: call HTTPS_SIMPLE_SEND([responseTo:TOKEN,

↪→ session:sessionId], message, s′)



honest identity. We show this for all possible configurations that
could trick the client into doing so, e.g., with a misconfigured
token endpoint or with an authorization server controlled by
the attacker that returns a leaked access token.

The access to the resource is provided to the sender of the
redirection request. To access a resource, this means that the
attacker must have sent the request to the redirection endpoint
of the client.

For a Read-Only flow, the token endpoint is configured
correctly. This means that the attacker must include a code in
the request such that the client can exchange it for an access
token. We show that such a code (associated with an honest
identity and the client) does not leak to an attacker.

For a Read-Write flow, the token endpoint can be mis-
configured such that it is controlled by the attacker, and
we also assume that access tokens leak to the attacker (see
Section III-C).

We show that a leaked access token cannot be used at the
client by the attacker. If only the token endpoint is controlled
by the attacker, he must include an id token (when using
the OIDC Hybrid flow, see below for the Authorization Code
flow with JARM) in the token response such that it contains
the hash of the access token and be signed by the honest
authorization server (the hash of the access token was not
included in the original draft and was included by us as a
mitigation in Section IV-B). However, such an id token does
not leak to the attacker, which prevents the use of leaked access
tokens at misconfigured token endpoints. For the Authorization

Code flow with JARM, the attacker would need a response
JWS. As in the case of the Hybrid flow, we show that the
response JWS needed by the client for accessing resources of
an honest identity does not leak.

A leaked access token can also be used by the attacker if
the client chooses an authorization server under the control of
the attacker. Here, the id tokens are created by the attacker and
accepted by the client. For preventing the use of this access
token, the client includes the issuer of the second id token (or
of the response JWS defined by JARM) in the request to the
resource server, as detailed in Section IV-A. As each resource
server has one preconfigured authorization server, the resource
server does not provide access to a resource in this case.

The only remaining case is that the attacker includes a
code associated with the honest user in the request to the
redirection endpoint of the client. For the Hybrid flow, both
id tokens contained in the authorization response and in the
token response are required to have the same subject attribute
and the same issuer value, which means that they are both
signed by the authorization server. However, such an id token
does not leak to the attacker, which means that the client will
stop the flow when receiving the second id token contained in
the token response. When using JARM, this would require the
attacker to send a response JWS signed by the authorization
server that contains the code that belongs to an honest client
and an honest user identity. In the technical report [25], we
show that such a response JWS does not leak to the attacker.


