
F-BLEAU: Fast Black-box Leakage Estimation
Giovanni Cherubin

EPFL
giovanni.cherubin@epfl.ch

Konstantinos Chatzikokolakis
University of Athens

kostasc@di.uoa.gr

Catuscia Palamidessi
INRIA, École Polytechnique
catuscia@lix.polytechnique.fr

Abstract—We consider the problem of measuring how much a
system reveals about its secret inputs. We work in the black-box
setting: we assume no prior knowledge of the system’s internals,
and we run the system for choices of secrets and measure its
leakage from the respective outputs. Our goal is to estimate the
Bayes risk, from which one can derive some of the most popular
leakage measures (e.g., min-entropy leakage).

The state-of-the-art method for estimating these leakage
measures is the frequentist paradigm, which approximates the
system’s internals by looking at the frequencies of its inputs and
outputs. Unfortunately, this does not scale for systems with large
output spaces, where it would require too many input-output
examples. Consequently, it also cannot be applied to systems with
continuous outputs (e.g., time side channels, network traffic).

In this paper, we exploit an analogy between Machine Learning
(ML) and black-box leakage estimation to show that the Bayes
risk of a system can be estimated by using a class of ML methods:
the universally consistent learning rules; these rules can exploit
patterns in the input-output examples to improve the estimates’
convergence, while retaining formal optimality guarantees. We
focus on a set of them, the nearest neighbor rules; we show
that they significantly reduce the number of black-box queries
required for a precise estimation whenever nearby outputs tend
to be produced by the same secret; furthermore, some of them
can tackle systems with continuous outputs. We illustrate the
applicability of these techniques on both synthetic and real-
world data, and we compare them with the state-of-the-art tool,
leakiEst, which is based on the frequentist approach.

I. INTRODUCTION

Measuring the information leakage of a system is one
of the founding pillars of security. From side-channels to
biases in random number generators, quantifying how much
information a system leaks about its secret inputs is crucial
for preventing adversaries from exploiting it; this has been the
focus of intensive research efforts in the areas of privacy and
of quantitative information flow (QIF). Most approaches in the
literature are based on the white-box approach, which consists
in calculating analytically the channel matrix of the system,
constituted by the conditional probabilities of the outputs given
the secrets, and then computing the desired leakage measures
(for instance, mutual information [1], min-entropy leakage [2],
or g-leakage [3]). However, while one typically has white-
box access to the system they want to secure, determining
a system’s leakage analytically is often impractical, due to
the size or complexity of its internals, or to the presence of
unknown factors. These obstacles led to investigate methods
for measuring a system’s leakage in a black-box manner.

Until a decade ago, the most popular measure of leakage
was Shannon mutual information (MI). However, in his semi-

nal paper [2] Smith showed that MI is not appropriate to repre-
sent a realistic attacker, and proposed a notion of leakage based
on Rényi min-entropy (ME) instead. Consequently, in this
paper we consider the general problem of estimating the Bayes
risk of a system, which is the smallest error achievable by
an adversary at predicting its secret inputs given the outputs.
From the Bayes risk one can derive several leakage measures,
including ME and the additive and multiplicative leakage [4].
These measures are considered by the QIF community among
the most fundamental notions of leakage.

To the best of our knowledge, the only existing approach
for the black-box estimation of the Bayes risk comes from a
classical statistical technique, which refer to as the frequentist
paradigm. The idea is to run the system repeatedly on chosen
secret inputs, and then count the relative frequencies of the
secrets and respective outputs so to estimate their joint prob-
ability distribution; from this distribution, it is then possible
to compute estimates of the desired leakage measure. Leak-
Watch [5] and leakiEst [6], two well-known tools for black-box
leakage estimation, are applications of this principle.

Unfortunately, the frequentist approach does not always
scale for real-world problems: as the number of possible input
and output values of the channel matrix increases, the number
of examples required for this method to converge becomes too
large to gather. For example, LeakWatch requires a number
of examples that is much larger than the product of the size
of input and output space. For the same reason, this method
cannot be used for systems with continuous outputs; indeed,
it cannot even be formally constructed in such a case.

Our contribution

In this paper, we show that machine learning (ML) methods
can provide the necessary scalability to black-box measure-
ments, and yet maintain formal guarantees on their estimates.
By observing a fundamental equivalence between ML and
black-box leakage estimation, we show that any ML rule
from a certain class (the universally consistent rules) can
be used to estimate with arbitrary precision the leakage of
a system. In particular, we study rules based on the nearest
neighbor principle – namely, Nearest Neighbor (NN) and kn-
NN, which exploit a metric on the output space to achieve a
considerably faster convergence than frequentist approaches.
In Table I we summarize the number of examples necessary for
the estimators to converge, for the various systems considered
in the paper. We focus on nearest neighbor methods, among
the existing universally consistent rules, because: i) they are



TABLE I
NUMBER OF EXAMPLES REQUIRED FOR CONVERGENCE OF THE ESTIMATES. “X” MEANS AN ESTIMATE DID NOT CONVERGE.

System Dataset frequentist NN kn-NN

Random 100 secrets, 100 obs. 10 070 10 070 10 070
Geometric (ν = 0.1) 100 secrets, 10K obs. 35 016 333 458
Geometric (ν = 0.02) 100 secrets, 10K obs. 152 904 152 698 68 058
Geometric (ν = 2) 10K secrets, 1K obs. 95 500 94 204 107 707
Multimodal Geometric (ν = 0.1) 100 secrets, 10K obs. 44 715 568 754
Spiky (contrived example) 2 secrets, 10K obs. 22 908 29 863 62 325

Planar Geometric ν = 2 Gowalla checkins in San Francisco area X X 19 948
Laplacian ν = 2 " N/A X 19 961
Blahut-Arimoto ν = 2 " 1 285 1 170 1 343

The proposed tool, F-BLEAU, is the combination of frequentist, NN, and kn-NN estimates, as an alternative to the frequentist paradigm.

simple to reason about, and ii) we can identify the class of
systems for which they will excel, which happens whenever
the distribution is somehow regular with respect to a metric
on the output (e.g., time side channels, traffic analysis, and
most mechanisms used for privacy). Moreover, some of these
methods can tackle directly systems with continuous output.

We evaluate these estimators on synthetic data, where we
know the true distributions and we can determine exactly
when the estimates converge. Furthermore, we use them for
measuring the leakage in a real dataset of users’ locations,
defended with three state-of-the-art mechanisms: two geo-
indistinguishability mechanisms (planar geometric and planar
Laplacian) [7], and the method by Oya et al. [8], which we
refer to as the Blahut-Arimoto mechanism. Crucially, the pla-
nar Laplacian is real-valued, which kn-NN methods can tackle
out-of-the box, but the frequentist method cannot. Results in
both synthetic and real-world data show our methods give a
strong advantage whenever there is a notion of metric in the
output that can be exploited. Finally, we compare our methods
with leakiEst on the problem of estimating the leakage of
European passports [6], [9], and on the location privacy data.

As a further evidence of their practicality, we use them in
Appendix G to measure the leakage of a time side channel in
a hardware implementation of finite field exponentiation.

No Free Lunch

A central takeaway of our work is that, while all the
estimators we study (including the frequentist approach) are
asymptotically optimal in the number of examples, none of
them can guarantee on its finite sample performance; indeed,
no estimator can. This is a consequence of the No Free Lunch
theorem in ML [10], which informally states that all learning
rules are equivalent among the possible distributions of data.
This rules out the existence of an optimal estimator.

In practice, this means that we should always evaluate
several estimators, and select the one that converged faster.
Fortunately, our main finding (i.e., any universally consistent
ML rule is a leakage estimator) adds a whole new class of
estimators, which one can use in practical applications.

We therefore propose a tool, F-BLEAU (Fast Black-box
Leakage Estimation AUtomated), which computes nearest
neighbor and frequentist estimates, and selects the one con-
verging faster. We release it as Open Source software1, and
we hope in the future to extend it to support several more
estimators based on UC ML rules.

Nearest Neighbor rules

Nearest neighbor rules excel whenever there is a notion of
metric on the output space, and the output distributions is
“regular” (in the sense that it does not change too abruptly
between two neighboring points). We expect this to be the
case for several real-world systems, such as: side channels
whose output is time, an electromagnetic signal, or power
consumption; for traffic analysis on network packets; and for
geographic location data. Moreover, most mechanisms used
in privacy and QIF use smooth noise distributions. Suitable
applications may also come from recent attacks to ML models,
such as model inversion [11] and membership inference [12].

Furthermore, we observe that even when there is no metric,
or when the output distribution is irregular, (e.g., a system
whose internal distribution has been randomly sampled), these
rules are equivalent to the frequentist approach. Indeed, the
only case we observe when they are misled is when the system
is crafted so that the metric contributes against classification
(e.g., see “Spiky” example in Table I).

II. RELATED WORK

Chatzikokolakis et al. [13] introduced methods for mea-
suring the leakage of a deterministic program in a black-box
manner; these methods worked by collecting a large number of
inputs and respective outputs, and by estimating the underlying
probability distribution accordingly; this is what we refer to as
the frequentist paradigm. A fundamental development of their
work by Boreale and Paolini [14] showed that, in the absence
of significant a priori information about the output distribution,
no estimator does better than the exhaustive enumeration of
the input domain. In line with this work, section IV will show
that, as a consequence of the No Free Lunch theorem in ML,

1https://github.com/gchers/fbleau.



TABLE II
SYMBOLS TABLE.

Symbol Description

s ∈ S A secret
o ∈ O An object/black-box output

(s, o) ∈ S× O An example
(π, Cs,o) A system, given a set of priors π and channel matrix C

μ Distribution induced by a system on S× O

f : S �→ O A classifier
� Loss function w.r.t. which we evaluate a classifier
Rf The expected misclassification error of a classifier f
R∗ Bayes risk

no leakage estimator can claim to converge faster than any
other estimator for all distributions.

The best known tools for black-box estimation of leakage
measures based on the Bayes risk (e.g., min-entropy) are
leakiEst [6], [15] and LeakWatch [5], [16], both based on the
frequentist paradigm. The former also allows a zero-leakage
test for systems with continuous outputs. In section VIII we
provide a comparison of leakiEst with our proposal.

Cherubin [17] used the guarantees of nearest neighbor
learning rules for estimating the information leakage (in terms
of the Bayes risk) of defenses against website fingerprinting
attacks in a black-box manner.

Shannon mutual information (MI) is the main alternative to
the Bayes risk-based notions of leakage in the QIF literature.
Although there is a relation between MI and Bayes risk [18],
the corresponding models of attackers are very different: the
first corresponds to an attacker who can try infinitely many
times to guess the secret, while the second has only one try at
his disposal [2]. Consequently, MI and Bayes-risk measures,
such as ME, can give very different results: Smith [2] shows
two programs that have almost the same MI, but one has an
ME several orders of magnitude larger than the other one;
conversely, there are examples of two programs such that ME
is 0 for both, while the MI is 0 in one case and strictly positive
(several bits) in the other one.

In the black-box literature, MI is usually computed by using
Kernel Density Estimation, which although only guarantees
asymptotic optimality under smoothness assumptions on the
distributions. On the other hand, the ML literature offered
developments in this area: Belghazi et al. [19] proposed an
MI lower bound estimator based on deep neural networks,
and proved its consistency (i.e., it converges to the true MI
value asymptotically). Similarly, other works constructed MI
variational lower bounds [20], [21].

III. PRELIMINARIES

We define a system, and show that its leakage can be
expressed in terms of the Bayes risk. We then introduce ML
notions, which we will later use to estimate the Bayes risk.

A. Notation

We consider a system (π, Cs,o), that associates a secret input
s to an observation (or object) o in a possibly randomized way.
The system is defined by a set of prior probabilities π(s) :=

P (s), s ∈ S, and a channel matrix C of size |S| × |O|, for
which Cs,o := P (o|s) for s ∈ S and o ∈ O. We call S×O the
example space. We assume the system does not change over
time; for us, S is finite, and O is finite unless otherwise stated.

B. Leakage Measures

The state-of-the-art in QIF is represented by the leakage
measures based on g-vulnerability, a family whose most rep-
resentative member is min-vulnerability [2], the complement
of the Bayes risk. This paper is concerned with finding tight
estimates of the Bayes risk, which can then be used to estimate
the appropriate leakage measure.

a) Bayes risk: The Bayes risk, R∗, is the error of the
optimal (idealized) classifier for the task of predicting a secret
s given an observation o output by a system. It is defined with
respect to a loss function � : S × S �→ R≥0, where �(s, s′) is
the risk of an adversary predicting s′ for an observation o,
when its actual secret is s. We focus on the 0-1 loss function,
�(s, s′) := I(s �= s′), taking value 1 if s �= s′, 0 otherwise.
The Bayes risk of a system (π, Cs,o) is defined as:

R∗ := 1−
∑
o∈O

max
s∈S

Cs,oπ(s) . (1)

b) Random guessing: A baseline for evaluating a system
is the error committed by an idealized adversary who knows
priors but has no access to the channel, and who’s best strategy
is to always output the secret with the highest prior. We call
the error of this adversary random guessing error:

Rπ := 1−max
s∈S

π(s) . (2)

C. Black-box estimation of R∗

This paper is concerned with estimating the Bayes risk given
n examples sampled from the joint distribution μ on S × O

generated by (π, Cs,o). By running the system n times on
secrets s1, . . . , sn ∈ S, chosen according to π, we generate
a sequence of corresponding outputs o1, . . . , on, thus forming
a training set2 of examples {(o1, s1), ..., (on, sn)}. From these
data, we aim to make an estimate close to the real Bayes risk.

D. Learning Rules

We introduce ML rules (or, simply, learning rules), which
are algorithms for selecting a classifier given a set of training
examples. In this paper, we will use the error of some ML
rules as an estimator of the Bayes risk.

Let F := {f | f : O �→ S} be a set of classifiers. A learning
rule is a possibly randomized algorithm that, given a training
set {(o1, s1), ..., (on, sn)}, returns a classifier f ∈ F , with the
goal of minimizing the expected loss E �(f(o), s) for a new
example (o, s) sampled from μ [22]. In the case of the 0-1
loss function, the expected loss coincides with the expected
probability of error (expected error for short), and if μ is

2In line with the ML literature, we call the training or test “set” what is
technically a multiset; also, we loosely use the set notation “{}” for both sets
and multisets when the nature of the object is clear from the context.



generated by a system (π, Cs,o), then the expected error of a
classifier f : O �→ S is:

Rf = 1−
∑
o∈O

Cf(o),oπ(f(o)) (3)

where f(o) is the secret predicted for object o. If O is infinite
(and μ is continuous) the summation is replaced by an integral.

E. Frequentist estimate of R∗

The frequentist paradigm [13] for measuring the leakage of
a channel consists in estimating the probabilities Cs,o by count-
ing their frequency in the training data (o1, s1), ..., (on, sn):

P (o|s) ≈ Ĉs,o :=
|i : oi = o, si = s|

|i : si = s| . (4)

We can obtain the frequentist error from Equation 3:

RFreq = 1−
∑
o

CfFreq(o),o π(fFreq(o)) (5)

where fFreq is the frequentist classifier, namely:

fFreq(o) =

{
argmaxs(Ĉs,o π̂(s)) if o in training data
argmaxs π̂(s) otherwise ,

(6)

where π̂ is estimated from the examples: π̂(s) = |i:si=s|/n.
Consider a finite example space S × O. Provided with

enough examples, the frequentist approach always converges:
clearly, Ĉ → C as n → ∞, because events’ frequencies
converge to their probabilities by the Law of Large Numbers.

However, there is a fundamental issue with this approach.
Given a training set {(o1, s1), ..., (on, sn)}, the frequentist
classifier can tell something meaningful (i.e., better than
random guessing) for an object o ∈ O, only as long as o
appeared in the training set; but, for very large systems (e.g.,
those with a large object space), the probability of observing
an example for each object becomes small, and the frequentist
classifier approaches random guessing. We study this matter
further in subsection VI-D and Appendix E.

IV. NO FREE LUNCH IN LEARNING

The frequentist approach performs well only for objects it
has seen in the training data; in the next section, we will
introduce estimators that aim to provide good predictions even
for unseen objects. However, we shall first answer an important
question: is there an estimator that is “optimal” for all systems?

A negative answer to this question is given by the so-
called “No Free Lunch” (NFL) theorem by Wolpert [10]. The
theorem is formulated for the expected loss of a learning rule
on unseen objects (i.e., that were not in the training data),
which is referred to as the off-training-set (OTS) loss.

Theorem 1 (No Free Lunch). Let A1 and A2 be two learning
rules, � a cost function, and μ a distribution on S × O. We
indicate by Ei(� | μ, n) the OTS loss of Ai given μ and
n, where the expectation is computed over all the possible
training sets of size n sampled from μ. Then, if we take the
uniform average among all possible distributions μ, we have

E1(� | μ, n) = E2(� | μ, n) . (7)

Intuitively, the NFL theorem says that, if all distributions
(and, therefore, all channel matrices) are equally likely, then
all learning algorithms are equivalent. Remarkably, this holds
for any strategy, even if one of the rules is random guessing.

An important implication of this for our purposes is that
for every two learning rules A and B there will always exist
some system for which rule A converges faster than B, and
vice versa there will be a system for which B outperforms A.

From the practical perspective of black-box security, this
demonstrates that we should always test several estimators and
select the one that converges faster. Fortunately, the connection
between ML and black-box security we highlight in this paper
results in the discovery of a whole class of new estimators.

V. MACHINE LEARNING ESTIMATES OF THE BAYES RISK

In this section, we define the notion of a universally
consistent learning rule, and show that the error of a classifier
selected according to such a rule can be used for estimating the
Bayes risk. Then, we introduce various universally consistent
rules based on the nearest neighbor principle.

Throughout the section, we use interchangeably a system
(π, Cs,o) and its corresponding joint distribution μ on S×O.
Note that there is a one-to-one correspondence between them.

A. Universally Consistent Rules

Consider a distribution μ and a learning rule A selecting a
classifier fn ∈ F according to n training examples sampled
from μ. Intuitively, as the available training data increases, we
would like the expected error of fn for a new example (o, s)
sampled from μ to be minimized (i.e., to get close the Bayes
risk). The following definition captures this intuition.

Definition 1 (Consistent Learning Rule). Let μ be a distribu-
tion on S×O and let A be a learning rule. Let fn ∈ F be
a classifier selected by A using n training examples sampled
from μ. Let (π, Cs,o) be the system corresponding to μ, and
let Rfn be the expected error of fn, as defined by (3). We say
that A is consistent if Rfn → R∗ as n → ∞.

The next definition strengthens this property, by asking the
rule to be consistent for all distributions:

Definition 2 (Universally Consistent (UC) Learning Rule). A
learning rule is universally consistent if it is consistent for any
distribution μ on S×O.

By this definition, the expected error of a classifier selected
according to a universally consistent rule is also an estimator
of the Bayes risk, since it converges to R∗ as n → ∞.

In the rest of this section we introduce Bayes risk estimates
based on universally consistent nearest neighbor rules; they
are summarized in Table III together with their guarantees.

B. NN estimate

The Nearest Neighbor (NN) is one of the simplest ML
classifiers: given a training set and a new object o, it predicts
the secret of its closest training observation (nearest neighbor).
It is defined both for finite and infinite object spaces, although
it is UC only in the first case.



TABLE III
ESTIMATES’ GUARANTEES AS n → ∞

Method Guarantee Space O

frequentist → R∗ finite
NN → R∗ finite
kn-NN → R∗ infinite, (d,O) separable
NN Bound+ ≤ R∗ infinite, (d,O) separable

+NN Bound is discussed in Appendix A.

We introduce a formulation of NN, which can be seen as an
extension of the frequentist approach, that takes into account
ties (i.e., neighbors that are equally close to the new object o),
and which guarantees consistency when O is finite.

Consider a training set {(o1, s1), ..., (on, sn)}, an object o,
and a distance metric d : O × O �→ R≥0. The NN classifier
predicts a secret for o by taking a majority vote over the set of
secrets whose objects have the smallest distance to o. Formally,
let Imin(o) = {i | d(o, oi) = minj=1...n d(o, oj)} and define:

NN (o) = sh(o) (8)

where

h(o) = argmax
i∈Imin(o)

|{j ∈ Imin(o) | sj = si}| . (9)

We show that NN is universally consistent for finite S×O.

Theorem 2 (Universal consistency of NN). Consider a dis-
tribution on S×O, where S and O are finite. Let RNN

n be the
expected error of the NN classifier for a new observation o.
As the number of training examples n → ∞:

RNN
n → R∗. (10)

Sketch proof. For an observation o that appears in the training
set, the NN classifier is equivalent to the frequentist approach.
For a finite space S × O, as n → ∞, the probability that
the training set contains all o ∈ O approaches 1. Thus, the
NN rule is asymptotically (in n) equivalent to the frequentist
approach, which means its error also converges to R∗.

C. kn-NN estimate

Whilst NN guarantees universal consistency in finite exam-
ple spaces, this does not hold for infinite O. In this case, we
can achieve universal consistency with the k-NN classifier, an
extension of NN, for appropriate choices of the parameter k.

The k-NN classifier takes a majority vote among the secrets
of its neighbors. Breaking ties in the k-NN definition requires
more care than with NN. In the literature, this is generally
done via strategies that add randomness or arbitrariness to the
choice (e.g., if two neighbors have the same distance, select
the one with the smallest index in the training data) [23]. We
use a novel tie-breaking strategy, which takes into account
ties, but gives more importance to the closest neighbors. In
early experiments, we observed this strategy had a faster
convergence than standard approaches.

Consider a training set {(o1, s1), ..., (on, sn)}, an object to
predict o, and some metric d : O×O �→ R≥0. Let o(i) denote
the i-th closest object to o, and s(i) its respective secret. If
ties do not occur after the k-th neighbor (i.e., if d(o, o(k)) �=
d(o, o(k+1))), then k-NN outputs the most frequent among the
secrets of the first k neighbors:

k-NN (o) = sh(o) (11)

where

h(o) = argmax
i=1,...,k

|{j ∈ Imin(o) | s(j) = s(i)}| . (12)

If ties exist after the k-th neighbor, that is, for k′ ≤ k < k′′:

d(o, o(k′)) = ... = d(o, o(k)) = ... = d(o, o(k′′)) , (13)

we proceed as follows. Let ŝ be the most frequent secret in{
s(k′), ..., s(k′′)

}
; k-NN predicts the most frequent secret in

the following multiset, truncated at the tail to have size k:

s(1), s(2), ..., s(k′−1), ŝ, ŝ..., ŝ .

We now define kn-NN, a universally consistent learning rule
that selects a k-NN classifier for a training set of n examples
by choosing k as a function of n.

Definition 3 (kn-NN rule). Given a training set of n examples,
the kn-NN rule selects a k-NN classifier, where k is chosen
such that kn → ∞ and kn/n → 0 as n → ∞.

Stone proved that kn-NN is universally consistent [24]:

Theorem 3 (Universal consistency of the kn-NN rule). Con-
sider a probability distribution μ on the example space S×O,
where μ has a density. Select a distance metric d such that
(d,O) is separable3. Then the expected error of the kn-NN
rule converges to R∗ as n → ∞.

This holds for any distance metric. In our experiments, we
will use the Euclidean distance, and we will evaluate kn-NN
rules for kn = log n (natural logarithm) and kn = log10 n.

The ML literature is rich of UC rules and other useful tools
for black-box security; we list some of them in Appendix A.

VI. EVALUATION ON SYNTHETIC DATA

In this section we evaluate our estimates on several synthetic
systems for which the channel matrix is known. For each
system, we sample n examples from its distribution, and
then compute the estimate on the whole object space as in
Equation 3; this is possible because O is finite. Since for
synthetic data we know the real Bayes risk, we can measure
how many examples are required for the convergence of each
estimate. We do this as follows: let Rf

n be an estimate of R∗,
trained on a dataset of n examples. We say the estimate δ-
converged to R∗ after n examples if its relative change from
R∗ is smaller than δ: ∣∣Rf

n −R∗∣∣
R∗ < δ . (14)

3A separable space is a space containing a countable dense subset; e.g.,
finite spaces and the space of q-dimensional vectors Rq with Euclidean metric.



TABLE IV
SYNTHETIC SYSTEMS.

Name Privacy parameter |S| |O| R∗

Geometric 1.0 100 10K ∼ 0
Geometric 0.1 100 10K 0.007
Geometric 0.01 100 10K 0.600
Geometric 0.2 100 1K 0.364
Geometric 0.02 100 10K 0.364
Geometric 0.002 100 100K 0.364
Geometric 2 100K 100K 0.238
Geometric 2 100K 10K 0.924
Multimodal 1.0 100 10K 0.450
Multimodal 0.1 100 10K 0.456
Multimodal 0.01 100 10K 0.797
Spiky N/A 2 10K 0
Random N/A 100 100 0.979

While relative change has the advantage of taking into account
the magnitude of the compared values, it is not defined when
the denominator is 0; therefore, when R∗ ≈ 0 (Table IV), we
verify convergence with the absolute change:∣∣Rf

n −R∗∣∣ < δ . (15)

The systems used in our experiments are briefly discussed
in this section, and summarized in Table IV; we detail them
in Appendix B. A uniform prior is assumed in all cases.

A. Geometric systems

We first consider systems generated by adding geometric
noise to the secret, one of the typical mechanisms used to
implement differential privacy [25]. Their channel matrix has
the following form:

Cs,o = P (o | s) = λ exp (−ν| g(s)− o |) , (16)

where ν is a privacy parameter, λ a normalization factor, and
g a function S �→ O; a detailed description of these systems
is given in in Appendix B.

We consider the following three parameters:
• the privacy parameter ν,
• the ratio |O|/|S|, and
• the size of the secret space |S|.

We vary each of these parameters one at a time, to isolate
their effect on the convergence rate.

1) Variation of the privacy parameter ν: We fix |S| = 100,
|O| = 10K, and we consider three cases ν = 1.0, ν = 0.1 and
ν = 0.01. The results for the estimation of the Bayes risk and
the convergence rate are illustrated in Figure 1 and Table V
respectively. In the table, results are reported for convergence
level δ ∈ {0.1, 0.05, 0.01, 0.005}; an “X” means a particular
estimate did not converge within 500K examples; a missing
row for a certain δ means no estimate converged.

The results indicate that the nearest neighbor methods
have a much faster convergence than the standard frequentist
approach, particularly when dealing with large systems. The
reason is that geometric systems have a regular behavior with
respect to the Euclidean metric, which can be exploited by
NN and kn-NN to make good predictions for unseen objects.

TABLE V
CONVERGENCE OF THE ESTIMATES WHEN VARYING ν , FIXED

|S| × |O| = 100× 10K

kn-NN
System δ Freq. NN log10 log

Geometric
ν = 1.0

0.1 1 994 267 396 679
0.05 4 216 325 458 781
0.01 19 828 425 633 899

0.005 38 621 439 698 904

Geometric
ν = 0.1

0.1 18 110 269 396 673
0.05 35 016 333 458 768
0.01 127 206 439 633 899

0.005 211 742 4 844 698 904

Geometric
ν = 0.01

0.1 105 453 103 357 99 852 34 243
0.05 205 824 205 266 205 263 199 604

TABLE VI
CONVERGENCE OF THE ESTIMATES WHEN VARYING |O|/|S|.

kn-NN
System δ Freq. NN log10 log

Geometric
100x1K
ν = 0.2

0.1 8 679 8 707 7 108 2 505
0.05 14 823 14 853 14 853 7 673
0.01 51 694 60 796 60 796 60 796
0.005 71 469 71 469 71 469 71 469

Geometric
100x10K
ν = 0.02

0.1 85 912 85 644 71 003 11 197
0.05 152 904 152 698 151 153 68 058

Geometric
100x100K
ν = 0.002

0.1 X X 413 974 2 967

2) Variation of the ratio |O|/|S|: Now we fix |S| = 100,
and we consider three cases |O|/|S| = 10, |O|/|S| = 100, and
|O|/|S| = 1K. (Note that we want to keep the ratio ν/Δg fixed,
see Appendix B; as a consequence ν has to vary: we set ν to
0.2, 0.02, and 0.002, respectively.) Results in Figure 2 and
Table VI show how the nearest neighbor methods become
much better than the frequentist approach as |O|/|S| increases.
This is because the larger the object space, the larger the
number of unseen objects at the moment of classification,
and the more the frequentist approach has to rely on random
guessing. The nearest neighbor methods are not that much
affected because they can rely on the proximity to outputs
already classified.

3) Case |S| ≥ |O|: We fix ν = 2, and we consider two
cases: |S| = |O| and |S| > |O|. It should be noted that
the formulation of geometric systems prohibits the number
of secrets to exceed the number of outputs; for this reason,
in the system |S| > |O| some secrets are associated with the
same distribution over the output space (Appendix B).

The results in Figure 3 and Table VII indicate that NN and
frequentist are mostly equivalent: this is because they both
need to observe at least one example for each secret. kn-NN
rules, on the other hand, show poor performances, due to the
fact that they would need at least kn examples for each secret.
A natural extension of our work is to look at notions of metric
also in the secret space for improving convergence.



Fig. 1. Estimates’ convergence for geometric systems when varying their privacy parameter ν. The respective distributions are shown in the top figure for
two adjacent secrets s1 ∼ s2.

Fig. 2. Estimates’ convergence for geometric systems when varying the ratio |O|/|S|. The respective distributions are shown in the top figure for two adjacent
secrets s1 ∼ s2.

B. Multimodal geometric system

We now evaluate the estimators on systems with a multi-
modal distribution. In particular, we create multimodal geo-
metric systems by summing two geometric probability distri-
butions, appropriately normalized and shifted by some param-
eter. We provide the details of this distribution in Appendix B.

1) Evaluation: Results are reported in Figure 4. As ex-
pected, we observe that nearest neighbor rules improve on the
frequentist approach; the reason is that, even for multimodal
distributions, there exists a metric on the outputs which they

can exploit. Detailed δ-convergence results are in Appendix C.

C. Spiky system: When kn-NN rules fail

Nearest neighbor rules take advantage of the metric on the
object space to improve their convergence considerably. How-
ever, as a consequence of the NFL theorem, there exist systems
for which the frequentist approach outperforms NN and kn-
NN. Investigating the form of such systems is important to
understand when these methods fail.

We craft one such system, the Spiky system, where the
metric misleads predictions. The Spiky system is such that



Fig. 3. Estimates’ convergence for geometric systems when |S| ≥ |O|. The
distributions are shown in the top figure for two adjacent secrets s1 ∼ s2. In
the case |S| > |O| (right) there are 10 = 10K/1K identical distributions that
coincide on s1, and 10 identical distributions on s2.

TABLE VII
CONVERGENCE OF THE ESTIMATES WHEN |S| ≥ |O|, ν = 2.

kn-NN
System δ Freq. NN log10 log

Geometric
10Kx10K

0.1 74 501 73 085 88 296 140 618
0.05 95 500 94 204 107 707 155 403
0.01 137 099 137 348 144 846 192 014

0.005 153 370 153 370 159 075 203 363

Geometric
10Kx1K

0.1 5 5 5 5
0.05 721 514 2 309 5 977
0.01 5 595 6 171 7 330 12 354
0.005 10 770 10 797 11 037 14 575

neighboring points are associated with different secret. This
means that NN and kn-NN rules will tend to predict the
wrong secret, until enough examples are available. We detail
its construction in Appendix B.

a) Discussion: We conducted experiments for a Spiky
system of size |O| = 10K. Results in Figure 5 confirm the
hypothesis: nearest neighbor rules are misled for this system.

Interestingly, while the NN estimate keeps decreasing as the
number of examples n increases, there is a certain range of
n’s where the kn-NN estimates become worse than random
guessing. Intuitively, this is because when n becomes larger
than |O|, all elements in O tend to be covered by the examples.
For every i ∈ O there are two neighbors, i− 1 and i+1, that
belong to the class opposite to the one of i, so if k is not too
small with respect to n, it is likely that in the multiset of the k
closest neighbors of i, the number of i−1’s and i+1’s exceeds
the number of i’s, which means that i will be misclassified.
As n increases, however, the ratio between k and the number
of i’s in the examples tends to decrease (because k/n → 0 as
n → ∞), hence at some point we will have enough i’s to win

the majority vote in the k neighbors (i’s are considered before
than i− 1’s and i+1’s, by the nearest neighbor definition) so
i will not be misclassified anymore.

Concerning the comparison between the NN and frequentist
estimates, we can do it analytically. We start by computing the
expected error of the NN method on the spiky system in terms
of the number of training examples n. Let Tn be a training set
of examples of size n. Given a new object i, let us consider
the NN estimate rn(i) of r∗ for i, i.e., the expected probability
of error in the classification of i. This is the probability that
the element o closest to i that appears in the training set has
odd distance from i (i.e., d(i, o) = 2� + 1, for some natural
number �). Namely it is the probability that:

• i is not in the training data but either i+ 1 or i− 1 are,
or

• i, i± 1, i± 2 are not in the training data but either i+ 3
or i− 3 are, or

• . . . etc.
Hence we have:

r(i) = P (d(i, o) = 2l + 1) = (17)
=P (i /∈ Tn, i+ 1 ∈ Tn) + P (i /∈ Tn, i− 1 ∈ Tn) + . . .

(18)

=2 ·
q/4−1∑
�=0

a4�+1(1− a), (19)

where a = (1 − 1/q)n is the probability that an element e ∈
O does not occur in any of the n examples of the training
set. (Thus a4�+1 represents the probability that none of the
elements i, i±1, i±2, i±2s, with � = 2s, appear in the training
set, and 1−a represents the probability that the element 2s+1
(resp. 2s− 1 ) appears in the training set.) By using the result
of the geometric series

m∑
t=0

at =
1− am+1

1− a
, (20)

we obtain:
rn(i) = 2a

1− aq

(1 + a2)(1 + a)
. (21)

Since we assume that the distribution on O is uniform, we
have RNN

n = rn(i).
We want to study how the error estimate depends on the

relative size of the training set with respect to the size of O.
Hence, let x = n/q. Then we have a = (1− 1/q)qx, which, for
large q, becomes a ≈ e−x. Therefore:

RNN
x ≈ 2e−x 1− e−qx

(1 + e−2x)(1 + e−x)
. (22)

It is easy to see that RNN
x → 1/2 for x → 0, and RNN

x → 0
for x → ∞, as expected.

Consider now the frequentist estimate RFreq
x . In this case,

given an element i ∈ O, the classification is done correctly
if i appears in the training set. Otherwise, we do random
guessing, which gives a correct or wrong classification with



Fig. 4. Estimates’ convergence for multimodal geometric systems when varying the privacy parameter ν. The distributions are shown in the top figure for
two adjacent secrets s1 ∼ s2.

Fig. 5. Estimates’ convergence for a Spiky system (2x10K).

equal probability. Only the latter case contributes to the prob-
ability of error, hence the error estimate is half the probability
expectation that i does not belong to the training set:

RFreq
x =

1

2
(1− 1

q
)n ≈ 1

2
e−x (23)

Therefore, RNN
x is always above RFreq

x .

D. Random System

In the previous sections, we have seen cases when our
methods greatly outperform the frequentist approach, and
a contrived system example for which they fail. We now
consider a system generated randomly to evaluate their per-
formances for an “average” system.

a) System description: We construct the channel matrix
of a Random system by drawing its elements from the uniform
distribution, Cs,o ←$ Uni(0, 1), and normalizing its rows.

TABLE VIII
RANDOM: EXAMPLES REQUIRED FOR δ-CONVERGENCE.

kn-NN
δ Freq. NN log10 log

0.05 5 5 5 5
0.01 82 139 202 500
0.005 10 070 10 070 10 070 10 070

Fig. 6. Estimates’ convergence for a Random system (100× 100).

b) Evaluation: We consider a Random system with |S| =
|O| = 100 and count the number of examples required for δ-
convergence, for many δ’s. Table VIII reports the results.

The frequentist estimate is slightly better than NN and kn-
NN for δ = 0.01. However, for stricter convergence require-
ments (δ = 0.001), all the methods require the same (large)
number of examples. Figure 6 shows that indeed the methods
begin to converge similarly already after 1K examples.

c) Discussion: Results showed that nearest neighbor esti-
mates require significantly fewer examples than the frequentist



approach when dealing with medium or large systems; how-
ever, they are generally equivalent to the frequentist approach
in the case of small systems.

To better understand why this is the case, we provide a
crude approximation of the frequentist Bayes risk estimate.

RFreq
n ≈ R∗

(
1−

(
1− 1

|O|
)n)

+Rπ

(
1− 1

|O|
)n

. (24)

This approximation, derived and studied in Appendix E,
makes the very strong assumption that all objects are equally
likely, i.e.: P (o) = 1

|O| . However, this is enough to give us
an insight on the performance of the frequentist approach:(
1− 1

|O|
)n

is the probability that some object does not appear
within a training set of size n. This weighs the value of the
frequentist estimate between the optimal R∗, used when the
object appears in the training data, and random guessing Rπ:
while the estimate converges asymptotically to the Bayes risk,
the probability of observing an object – often related to the
the size |O|, has a major influence on its convergence rate.

VII. APPLICATION TO LOCATION PRIVACY

Fig. 7. Area of San Francisco considered for the experiments. The input
locations correspond to the inner square, the output locations to the outer
one. The colored cells represent the distribution of the Gowalla checkins.

We show that F-BLEAU can be successfully applied to
estimate the degree of protection provided by mechanisms
such as those used in location privacy. Since the purpose
of this paper is to evaluate the precision of F-BLEAU, we
consider basic mechanisms for which the Bayes risk can also
be computed directly. Of course, the intended applications
of F-BLEAU are mechanisms or situations where the Bayes
risk cannot be computed directly, either because this is too
complicated, or because of the presence of unknown factors.
Examples abound; for instance, the availability of additional
information, like the presence of points of interest (e.g., shops,
churches), or geographical characteristics of the area (e.g.,
roads, lakes) can affect the Bayes risk in ways that are
impossible to evaluate formally.

We will consider the planar Laplacian and the planar geo-
metric, which are the typical mechanisms used to obtain geo-
indistinguishability [7], and one of the optimal mechanisms
proposed by Oya et al. [8] as a refinement of the optimal mech-
anism by Shokri et al. [26]. The construction of the last relies

on an algorithm that was independently proposed by Blahut
and by Arimoto to solve the information theory problem of
achieving an optimal trade-off between the minimization of the
distortion rate and the the mutual information [27]. From now
on, we shall refer to this as the Blahut-Arimoto mechanism.
Note that the Laplacian is a continuous mechanism (i.e., its
outputs are on a continuous plane); the other two are discrete.

In these experiments we also deploy the method that F-
BLEAU uses in practice to compute the estimate of the Bayes
risk: we first split the data into a training set and a hold-out
set; then, for an increasing number of examples n = 1, 2, ...
we train the classifier on the first n examples on the training
set, and then estimate its error on the hold-out set.

A. The Gowalla dataset

We consider real location data from the Gowalla
dataset [28], [29], which contains users’ checkins and their
geographical location. We use a squared area in San Francisco,
centered in the coordinates (37.755, -122.440), and extending
for 1.5 Km in each direction. This input area corresponds to
the inner (purple) square in Figure 7. We discretize the input
using a grid of 20 × 20 cells of size 150 × 150 Sq m; the
secret space S of the system thus consists of 400 locations. The
prior distribution on the secrets is derived from the Gowalla
checkins, and it is represented in Figure 7 by the different color
intensities on the input grid. The output area is represented in
Figure 7 by the outer (blue) square. It extends 1050 m (7 cells)
more than the input square on every side. We consider a larger
area for the output because the planar Laplacian and Geometric
naturally expand outside the input square.4 Since the planar
Laplacian is continuous, its output domain O is constituted by
all the points of the outer square. As for the planar Geometric
and the Blahut-Arimoto mechanisms, which are discrete, we
divide the output square in a grid of 340 × 340 cells of size
15× 15 Sq m; therefore, |O| = 340× 340 = 115, 600.

B. Defenses

The planar Geometric mechanism is characterized by a
channel matrix Cs,o, representing the conditional probability
of reporting the location o when the true location is s:

Cs,o = λ exp

(
− ln ν

100
d(s, o)

)
, (25)

where ν is a parameter controlling the level of noise, λ is a
normalization factor, and d is the Euclidean distance.

The planar Laplacian is defined by the same equation,
except that o belongs to a continuous domain, and the equation
defines a probability density function.

As for the Blahut-Arimoto, it is obtained as the result of an
iterative algorithm, whose definition can be found in [27].

4In fact these functions distribute the probability on the infinite plane, but
on locations very distant from the origin the probability becomes negligible.



Fig. 8. Estimates’ convergence speed for the planar Geometric defense applied to the Gowalla dataset, for ν = 2, ν = 4 and ν = 8, respectively. Above
each graph is represented the distribution of the geometric noise for two adjacent input cells.

C. Results

We evaluated the estimates’ convergence as a function of
the number of training examples n and for different values of
the noise level: ν = {2, 4, 8}. We randomly split the dataset
(100K examples) into training (75%) and hold-out (25%) sets,
and then evaluated the convergence of the estimators on an
increasing number of training examples, 5, 6, ...75K.

Results for the geometric noise (Figure 8) indicate faster
convergence when ν is higher (which means less noise and
lower Bayes risk), in line with the results for the synthetic sys-
tems of the previous section. In all cases, the nearest neighbor
methods outperform the frequentist one, as we expected given
the presence of a large number of outputs. Table IX shows the
number of examples required to achieve δ-convergence from
the Bayes risk. The symbol “X” means we did not achieve a
certain level of approximation with 75K examples.

The corresponding results for the Laplacian noise are shown
in Figure 8 and in Table X. In this case, the frequentist
approach is not applicable, but the kn-NN rule can still
approximate the Bayes risk for some approximation levels.

The case of the Blahut-Arimoto mechanism is quite dif-
ferent: surprisingly, the output probability concentrates on a
small number of locations. For instance, in the case ν = 2,
with 100K sampled pairs we obtained only 19 different output
locations (which reduced to 14 after we mapped them on the
20× 20 grid). Thanks to the small number of actual outputs,
all the methods converge very fast. The results are shown in
Figure 10 and in Table XI.

VIII. COMPARISON WITH LEAKIEST

LeakWatch [5] and leakiEst [6] are the major existing black-
box leakage measurement tools, both based on the frequentist
approach. LeakWatch is an extension of leakiEst, which uses

TABLE IX
CONVERGENCE FOR THE PLANAR GEOMETRIC FOR VARIOUS ν .

kn-NN
ν δ frequentist NN log 10 log

2 0.1 X X 25 795 1 102
0.05 X X X 55 480

4 0.1 X X 36 735 2 820
0.05 X X X 59 875

8 0.1 X X 15 253 5 244
0.05 X X X 19 948

TABLE X
CONVERGENCE FOR THE PLANAR LAPLACIAN FOR VARIOUS ν .

kn-NN
ν δ frequentist NN log 10 log

2 0.1 N/A X X 259
4 0.1 N/A X X 4 008
8 0.1 N/A X X 6 135

0.05 N/A X X 19 961

the latter as a subroutine, but leakiEst is more feature rich: both
tools compute Shannon mutual information (MI) and min-
entropy leakage (ME) on the finite-output case, but leakiEst
can also perform tests in the continuous output case. We
compare leakiEst with our methods, for a time side channel
in the RFID chips of the European passports and for the
Gowalla examples of the previous section.

LeakiEst performs two functions: i) a statistical test, de-
tecting if there is evidence of leakage (here referred to as
leakage evidence test), and ii) the estimation of ME (discrete)
or MI (discrete and continuous output). The leakage evidence



Fig. 9. Estimates’ convergence speed for the planar Laplacian defense applied to the Gowalla dataset, for ν = 2, ν = 4 and ν = 8, respectively. Above
each graph is represented the distribution of the geometric noise for two adjacent input cells.

Fig. 10. Estimates’ convergence speed for the Blahut-Arimoto defense applied to the Gowalla dataset, for ν = 2, ν = 4 and ν = 8, respectively. Above
each graph is represented the distribution of the output probability as produced by the mechanism. All the outputs with non-null probability turn out to be
inside the input square. The outputs are points on the 340× 340 grid, but here are mapped on the coarser 20× 20 grid for the sake of visual clarity.

test generates a “no leakage” distribution via a bootstrapping
variant, it estimates the leakage measure on it, and it compares
this estimate with the measure computed on the original
data: if its value is far from the former (w.r.t. some defined
confidence level), then the tool declares there is evidence of
leakage. The second function estimates the distribution with
an appropriate method (frequentist, for finite outputs, Kernel
Density Estimation, for continuous outputs).

A. Time side channel on e-Passports’ RFID chips

Chothia et al. [9] discovered a side-channel attack in the
way the protocols of various European countries’ passports
exchanged messages some years ago. (The protocols have been
corrected since then.) The problem was that, upon receiving
a message, the e-Passport would first check the Message
Authentication Code (MAC), and only afterwards verify the
nonce (so to assert the message was not replayed). Therefore,
an attacker who previously intercepted a valid message from
a legitimate session could replay the message and detect a



TABLE XI
CONVERGENCE FOR THE BLAHUT-ARIMOTO FOR VARIOUS ν .

kn-NN
ν δ frequentist NN log 10 log

2 0.1 37 37 37 37
0.05 135 135 135 135
0.01 1 671 1 664 1 408 1 408

0.005 6 179 6 179 1 671 1 671
4 0.1 220 220 220 257

0.05 503 502 509 703
0.01 2 029 1 986 2 055 2 404

0.005 2 197 2 055 2 280 2 658

8 0.1 345 401 553 1 285
0.05 1 285 1 170 1 343 1 679
0.01 2 104 2 017 2 495 4 190

0.005 2 231 2 231 3 881 6 121

TABLE XII
LEAKAGE OF EUROPEAN PASSPORTS

Passport leakiEst: Leakage evidence F-BLEAU: R∗

British yes 0.383
German no 0.490
Greek no 0.462
Irish yes 0.350

Random guessing baseline is Rπ = 0.5.

difference between the response time of the victim’s passport
and any other passport; this could be used to track the victim.
As an initial solution, Chothia et al. [6] proposed to add
padding to the response time, and they used leakiEst to look
for any evidence of leakage after such a defense.

We compared F-BLEAU and leakiEst on the padded timing
data [30]. The secret space contains answers to the binary
question: “is this the same passport?”; the dataset is balanced,
hence Rπ = 0.5. We make this comparison on the basis that,
if leakiEst detects no leakage, then the Bayes risk should be
maximum: no leakage happens if and only if R∗ = Rπ . We
compute ME from the Bayes risk as:

ME := − log2(1−Rπ) + log2(1−R∗) . (26)

For F-BLEAU, we randomly split the data into training
(75%) and hold-out sets, and then estimated R∗ on the latter;
we repeated this for 100 different random initialization seeds,
and averaged the estimates. Results in Table XII show two
cases where leakiEst did not find enough evidence of leakage,
while F-BLEAU indicates non-negligible leakage. Note that,
because F-BLEAU’s results are based on an actual classifier,
they implicitly demonstrate there exists an attack that succeeds
with accuracy 51% and 54%. We attribute this discrepancy
between the tools to the fact that the dataset is small (≈1K
examples), and leakiEst may not find enough evidence to reject
the hypothesis of “no leakage”; indeed, leakiEst sets a fairly
high standard for this decision (95% confidence interval).

TABLE XIII
ESTIMATED LEAKAGE OF PRIVACY MECHANISMS ON GOWALLA DATA

leakiEst
Mechanism ν L.E. ME F-BLEAU: ME True ME

B.-Arimoto 2 no* 1.481 1.479 1.501
4 no* 2.305 2.310 2.304
8 no* 2.738 2.746 2.738

Geometric 2 no 2.585 1.862 1.988
4 no 2.859 2.591 2.638
8 no 3.105 2.983 2.996

Mechanism ν leakiEst: L.E. F-BLEAU: ME True ME

Laplacian 2 no 1.802 1.987
4 no 2.550 2.631
8 no 2.970 3.003

L.E.: leakage evidence test

B. Gowalla dataset

We compare F-BLEAU and leakiEst on the location privacy
mechanisms (section VII): Blahut-Arimoto, planar Geometric,
and planar Laplacian. The main interest is to verify whether
the advantage of F-BLEAU w.r.t. the frequentist approach,
which we observed for large output spaces, translates into an
advantage also w.r.t. leakiEst. For the first two mechanisms
we also compare the ME estimates. For the Laplacian case
(continuous), we only use leakiEst’s leakage evidence test.

We run F-BLEAU and leakiEst on the datasets as in
section VII. Results in Table XIII show that, in the cases of
planar Geometric and Laplacian distributions, leakiEst does
not detect any leakage (the tool reports “Too small sample
size”); furthermore, the ME estimates it provides for the
planar Geometric distribution are far from their true values. F-
BLEAU, however, is able to produce more reliable estimates.

The Blahut-Arimoto results are more interesting: because
of the small number of actual outputs, the ME estimates of
F-BLEAU and leakiEst perform equally well. However, even
in this case leakiEst’s leakage evidence test reports “Too small
sample size”. We think the reason is that leakiEst takes into
account the declared size of the object space rather then the
effective number of observed individual outputs; this problem
should be easy to fix by inferring the output size from the
examples (this is the meaning of the “*” in Table XIII).

IX. CONCLUSION AND FUTURE WORK

We showed that the black-box leakage of a system, mea-
sured until now with classical statistics paradigms (frequentist
approach), can be effectively estimated via ML techniques.
We considered a set of such techniques based on the nearest
neighbor principle (i.e., close observations should be assigned
the same secret), and evaluated them thoroughly on synthetic
and real-world data. This allows to tackle problems that were
impractical until now; furthermore, it sets a new paradigm
in black-box security: thanks to an equivalence between ML
and black-box leakage estimation, many results from the ML
theory can be now imported into this practice (and vice versa).



Empirical evidence shows that the nearest neighbor tech-
niques we introduce excel whenever there is a notion of
metric they can exploit in the output space: whereas for
unseen observations the frequentist approach needs to take
a guess, nearest neighbor methods can use the information
of neighboring observations. We also observe that whenever
the output distribution is irregular, they are equivalent to the
frequentist approach, but for maliciously crafted systems they
can be misled. Even in those cases, however, we remark that
asymptotically they are equivalent to the frequentist approach,
thanks to their universal consistency property.

We also indicated that, as a consequence of the No Free
Lunch (NFL) theorem in ML, no estimate can guarantee op-
timal convergence. We therefore proposed F-BLEAU, a com-
bination of frequentist and nearest neighbor rules, which runs
all these techniques on a system, and selects the estimate that
converges faster. We expect this work will inspire researchers
to explore new leakage estimators from the ML literature; in
particular, we showed that any “universally consistent” ML
rule can be used to estimate the leakage of a system. Future
work may focus on other rules from which one can obtain
universal consistency (e.g., Support Vector Machine (SVM)
and neural networks); we discuss this further in Appendix A.

A crucial advantage of the ML formulation, as opposed to
the classical approach, is that it gives immediate guarantees
for systems with a continuous output space. Future work may
extend this to systems with continuous secret space, which in
ML terms would be formalized as regression (as opposed to
the classification setting we considered here).

A current limitation of our methods is that they do not
provide confidence intervals. We leave this as an open prob-
lem. We remark, however, that for continuous systems it
is not possible to provide confidence intervals (or to prove
convergence rates) under our weak assumptions [23]; this
constraint applies to any leakage estimation method.

We reiterate, however, the great advantage of ML methods:
they allow tackling systems for which until now we could not
measure security, with a strongly reduced number of examples.
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APPENDIX A
ADDITIONAL TOOLS FROM ML

The ML literature can offer several more tools to black-
box security. We now enumerate additional UC rules, a lower
bound of the Bayes risk, and a general way of obtaining
estimates that converge from below.

The family of UC rules is fairly large. An overview of them
is by Devroye et al. [23], who, in addition to nearest neighbor
methods, report histogram rules and kinds of neural networks;
these are UC under requirements on their parameters. Stein-
wart proved that Support Vector Machine (SVM) is also UC
for some parameter choices, in the case |S| = 2 [31]; to the

best of our knowledge, attempts to construct an SVM that is
UC when |S| > 2 have failed so far (e.g., [32])

In applications with strict security requirements, a (pes-
simistic) lower bound of the Bayes risk may be desirable. From
a result by Cover and Hart one can derive a lower bound on
the Bayes risk based on the NN error, RNN [33]: as n → ∞:

|S| − 1

|S|

(
1−

√
1− |S|

|S| − 1
RNN

)
≤ R∗ . (27)

This was used as the basis for measuring the black-box
leakage of website fingerprinting defenses [17].

Finally, one may obtain estimators that converge to the
Bayes risk in expectation from below, for example, by esti-
mating the error of a kn-NN rule on its training set [17], [34].

APPENDIX B
DESCRIPTION OF THE SYNTHETIC SYSTEMS

A. Geometric system

Geometric systems are typical in differential privacy and
are obtained by adding negative exponential noise to the
result of a query. The reason is that the property of DP is
expressed in terms of a factor between the probability of a
reported answer, and that of its immediate neighbor. A similar
construction holds for the geometric mechanism implementing
geo-indistinguishability. In that case the noise is added to the
real location to report an obfuscated location. Here we give an
abstract definition of a geometric system, in terms of secrets
(e.g., result of a query / real location) and observables (e.g.,
reported answer / reported location).

Let S and O be sets of consecutive natural numbers, with
the standard notion of distance. Two numbers s, s′ ∈ S are
called adjacent if s = s′ + 1 or s′ = s+ 1.

Let ν be a real non-negative number and consider a function
g : S �→ O. After adding negative exponential noise to the
output of g, the resulting geometric system is described by
the following channel matrix:

Cs,o = P (o | s) = λ exp (−ν| g(s)− o |) , (28)

where λ is a normalizing factor. Note that the privacy level is
defined by ν/Δg, where Δg is the sensitivity of g:

Δg = max
s1∼s2∈S

(g(s1)− g(s2)) , (29)

where s1 ∼ s2 means s1 and s2 are adjacent. Now let S =
{1, . . . , w}, O = {1, ..., w′}, we select g to be g(s) = s·w′/w.
We define

λ =

{
eν/(eν + 1) if o = 1 or o = w′

(eν − 1)/(eν + 1) otherwise ,
(30)

so to truncate the distribution at its boundaries.
This definition of Geometric system prohibits the case |S| >

|O|. To consider such case, we generate a repeated geometric
channel matrix, such that

C′
s,o = Cs′,o s′ = s mod |O| , (31)

where Cs,o is the geometric channel matrix described above.



B. Multimodal geometric system

We construct a multimodal distribution as the weighted sum
of two geometric distributions, shifted by some shift param-
eter. Let Cs,o be a geometric channel matrix. The respective
multimodal geometric channel, for shift parameter σ, is:

CM
s,o = w1Cs,o + w2Cs+2σ,o . (32)

In experiments, we used σ = 5 and weights w1 = w2 = 0.5.

C. Spiky system

Consider an observation space constituted of q consecutive
integer numbers O = {0, ..., q − 1}, for some even positive
integer q, and secrets space |S| = 2. Assume that O is a
ring with the operations + and − defined as the sum and the
difference modulo q, respectively, and consider the distance on
O defined as: d(i, j) = |i−j|. (Note that (O, d) is a “circular”
structure, that is, d(q − 1, 0) = 1.) The Spiky system has
uniform prior, and channel matrix constructed as follows:

Cs,o =

[
2/q 0 2/q . . . 0
0 2/q 0 . . . 2/q

]
. (33)

APPENDIX C
DETAILED CONVERGENCE RESULTS

Convergence for multimodal geometric systems, when vary-
ing ν and for fixed |S| × |O| = 100× 10K.

kn-NN
System δ Freq. NN log10 log

Multimodal
ν = 1.0

0.1 3 008 369 478 897
0.05 5 938 495 754 1 267
0.01 26 634 765 1 166 1 487

0.005 52 081 765 1 166 1 487

Multimodal
ν = 0.1

0.1 24 453 398 554 821
0.05 44 715 568 754 1 175
0.01 149 244 4 842 1 166 1 487
0.005 226 947 79 712 1 166 1 487

Multimodal
ν = 0.01

0.1 27 489 753 900 381
0.05 103 374 101 664 92 181 31 452

Detailed convergence results for a Spiky system of size
|S| = 2 and |O| = 10K.

kn-NN
δ Freq. NN log10 log

0.1 15 953 22 801 52 515 99 325
0.05 22 908 29 863 62 325 112 467
0.01 38 119 44 841 81 925 137 969
0.005 44 853 51 683 91 661 147 593

APPENDIX D
UNIFORM SYSTEM

We measured convergence of the methods for a uniform
system; this system is constructed so that all secret-object
examples are equally likely, that is μ(s, o) = μ(s′, o′) for all
s, o ∈ S×O. The Bayes risk in this case is R∗ = 1− 1/|S|.

Figure 11 shows that even in this case all rules are equiv-
alent. Indeed, because the system leaks nothing about its

Fig. 11. Convergence for a Uniform system of size 100× 100.

Fig. 12. Approximation of the frequentist estimate as n grows for R∗ ≈ 0.08,
|O| = 10K, and |S| = 1K; the approximation is compared with the real
frequentist estimate RFreq

n .

secrets, all the estimators need to randomly guess; but because
for this system the Bayes risk is identical to random guessing
error (R∗ = 1 − 1/|S| = Rπ), all the estimators converge
immediately to its true value.

APPENDIX E
APPROXIMATION OF THE FREQUENTIST ESTIMATE

To better understand the behavior of the frequentist ap-
proach for observations that were not in the training data, we
derive a crude approximation of this estimate in terms of the
size of training data n. The approximation makes the following
assumptions:

1) each observation o ∈ O is equally likely to appear in
training data (i.e., P (o) = 1− 1

|O| );
2) if an observation appears in the training data, the

frequentist approach outputs the secret minimizing the
Bayes risk;

3) the frequentist estimate knows the real priors π;
4) if an observation does not appear in the training data,

then the frequentist approach outputs the secret with the
maximum prior probability.

The first two assumptions are very strong, and thus this is just
an approximation of the real trend of such estimate. However,
in practice it approximates well the real trend Figure 12.

Let An(o) denote the event “observation o appears in
a training set of n examples”; because of assumption 1),



P (An(o)) = 1 −
(
1− 1

|O|
)n

. The conditional Bayes risk
estimated with a frequentist approach given n examples is:

rn(o) =rn(o|An(o))P (An(o)) + rn(o|¬An(o))P (¬An(o)) =

=

(
1−max

s∈S

Ĉs,oπ̂(s)
P (o)

)
P (An(o))+

+ (1−max
s∈S

π̂(s))P (¬An(o)) ≈

≈
(
1−max

s∈S

Cs,oπ(s)
P (o)

)
P (An(o))+

+ (1−max
s∈S

π(s))P (¬An(o))

Assumptions 2) and 3) were used in the last step. From this
expression, we derive the frequentist estimate of R∗ t step n:

RFreq
n = Ern =

=
∑
o∈O

P (o)

(
1−max

s∈S

Cs,oπ(s)
P (o)

)
P (An(o))+

+
∑
o∈O

P (o)(1−max
s∈S

π(s))P (¬An(o)) =

= P (An(o))

⎛
⎝∑

o∈O

P (o)−
∑
o∈O

max
s∈S

Cs,oπ(s))
⎞
⎠+

+ P (¬An(o))(1−max
s∈S

π(s))
∑
o∈O

P (o) =

= P (An(o))

⎛
⎝1−

∑
o∈O

max
s∈S

Cs,oπ(s))
⎞
⎠+

+ P (¬An(o))(1−max
s∈S

π(s)) =

= P (An(o))R
∗ + P (¬An(o))R

π =

= R∗
(
1−

(
1− 1

|O|
)n)

+Rπ

(
1− 1

|O|
)n

.

Note that in the second step we used P (An(o)) as a constant,
which is allowed by assumption 1).

The expression of Rn indicates that P (An(o)) weights
between random guessing according to priors-based random
guessing and the Bayes risk; when P (An(o)) ≥ P (¬An(o)),
which happens for n ≥ − log 2

log(1− 1
|O| )

the frequentist approach

starts approximating using the actual Bayes risk (Figure 12).

APPENDIX F
GOWALLA DETAILS

We report in Table XIV the real Bayes risk estimated
analytically for the Gowalla dataset defended using the
various mechanisms, and their respective utility.

APPENDIX G
APPLICATION TO TIME SIDE CHANNEL

We use F-BLEAU to measure the leakage in the running
time of the square-and-multiply exponentiation algorithm in
the finite field F2w ; exponentiation in F2w is relevant, for
example, for the implementation of the ElGamal cryptosystem.

TABLE XIV
TRUE BAYES RISK AND UTILITY FOR GOWALLA DATASET DEFENDED

USING VARIOUS LOCATION PRIVACY MECHANISMS.

Mechanism ν R∗ Utility

Blahut-Arimoto 2 0.760 334.611
4 0.571 160.839
8 0.428 96.2724

Geometric 2 0.657 288.372
4 0.456 144.233
8 0.308 96.0195

Laplacian 2 0.657 288.66
4 0.456 144.232
8 0.308 96.212

TABLE XV
NUMBER OF UNIQUE SECRETS AND OBSERVATIONS FOR THE TIME SIDE

CHANNEL TO FINITE FIELD EXPONENTIATION.

Operands’ size |S| |O|
4 bits 24 34
6 bits 26 123
8 bits 28 233

10 bits 210 371
12 bits 212 541

We consider a hardware-equivalent implementation of the
algorithm computing ms in F2w . We focus our analysis on
the simplified scenario of a “one-observation” adversary, who
makes exactly one measurement of the algorithm’s execution
time o, and aims to predict the corresponding secret key s.

A similar analysis was done by Backes and Köpf [35] by
using a leakage estimation method based on the frequentist ap-
proach. Their analysis also extended to a “many-observations
adversary”, that is, an adversary who can make m observations
(o1, ..., om), all generated from the same secret s, and has to
predict s accordingly.

A. Side channel description

Square-and-multiply is a fast algorithm for computing ms

in the finite field F2w , where w here represents the bit size
of the operands m and s. It works by performing a series
of multiplications according to the binary representation of
the exponent s, and its running time is proportional to the
number of 1’s in s. This fact was noticed by Kocher [36],
who suggested side channel attacks to the RSA cryptosystem
based on time measurements.

B. Message blinding

We assume the system implements message blinding, a
technique which hides to an adversary the value m for which
ms is computed. Blinding was suggested as a method for
thwarting time side channels [36], which works as follows.
Consider, for instance, decryption for the RSA cryptosystem:
md(modN), for some decryption key d; the system first
computes m · re, where e is the encryption key and r is



Fig. 13. Convergence of the estimates for the time side channel attack to the exponentiation algorithm as the bit size of the operands increases.

some random value; then it computes (mre)d, and returns the
decrypted message after dividing the result by r.

Message blinding has the advantage of hiding information
to an adversary; however, it was shown that it is not enough
for preventing time side channels (e.g., [35]).

C. Implementation and results
We consider a Gezel implementation of finite field expo-

nentiation. Gezel is a description language for clocked hard-
ware, equipped with a simulation environment whose execu-
tions preserve the corresponding circuit’s timing information.
This means that the time measurements (i.e., clock cycles) we
make reflect the corresponding circuit implementation [37].

We compare the performances of the frequentist and nearest
neighbor approaches in terms of the number of black-box
examples required for convergence. For each bit size w ∈
{4, 6, .., 12}, and for all the values (mi, si) ∈ {0, ..., 2w−1}2,
we run the exponentiation algorithm to compute ms, and

measure its execution time oi. As with our application to
location privacy (section VII), we estimate the Bayes risk by
training a classifier on a set of increasing examples n and by
computing its error on a hold-out set. We set the size of the
hold-out set to min(0.2 · 22w, 250 000).

Results in Figure 13 show that, while for small bit sizes the
frequentist approach outperforms nearest neighbor rules, as
w increases, the frequentist approach requires a much larger
number of examples. Nevertheless, in these experiments we
did not notice a substantial advantage in nearest neighbor
rules, even though the output space is equipped with a notion
of metric. Table XV helps interpreting this result: for larger
bit sizes w of the exponentiation operands, the possible
output values (i.e., clock cycles) only increase minimally; this
confirms that, as noticed in our previous experiments, nearest
neighbor and frequentist estimates tend to perform similarly
for systems with small output space.


