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Abstract—We have analyzed the hardware full-disk encryption
of several solid state drives (SSDs) by reverse engineering their
firmware. These drives were produced by three manufacturers
between 2014 and 2018, and are both internal models using the
SATA and NVMe interfaces (in a M.2 or 2.5" traditional form
factor) and external models using the USB interface.

In theory, the security guarantees offered by hardware encryp-
tion are similar to or better than software implementations. In
reality, we found that many models using hardware encryption
have critical security weaknesses due to specification, design,
and implementation issues. For many models, these security
weaknesses allow for complete recovery of the data without
knowledge of any secret (such as the password).

BitLocker, the encryption software built into Microsoft Win-
dows will rely exclusively on hardware full-disk encryption if
the SSD advertises support for it. Thus, for these drives, data
protected by BitLocker is also compromised.

We conclude that, given the state of affairs affecting roughly
60% of the market, currently one should not rely solely on
hardware encryption offered by SSDs and users should take
additional measures to protect their data.

I. INTRODUCTION

In recent years, the protection of sensitive data has received
increased attention. Protection of digital data has become a
necessity, certainly in the light of the new European Data
Protection Regulation. Technically, encryption is the go-to
protection mechanism; it may be implemented in software or
hardware (or both). It can be applied on the level of files, or
the entire drive, which is called full-disk encryption. Full-disk
encryption is often the solution of choice as it takes away
concerns of sensitive data leakage through, e.g. temporary
files, page files, and caches. Several software solutions for full-
disk encryption exist, and modern operating systems typically
integrate it. Purely software-based encryption has inherent
weaknesses, such as the encryption key being present in RAM
at all times and performance drawbacks.

In an attempt to address these weaknesses, hardware full-
disk encryption is often proposed; the encryption is performed
within the drive itself, thereby confining the encryption key
exclusively to the drive. Typically, the encryption itself is
performed by a dedicated AES co-processor, whereas the
software on the drive (firmware) takes care of the key man-
agement. It is often regarded as the successor of software

full-disk encryption. Full-disk encryption software, especially
those integrated in modern operating systems, may decide to
rely solely on hardware encryption in case it detects support
by the storage device. In case the decision is made to rely on
hardware encryption, typically software encryption is disabled.
As a primary example, BitLocker, the full-disk encryption
software built into Microsoft Windows, switches off software
encryption and completely relies on hardware encryption by
default if the drive advertises support.

Contribution. This paper evaluates both internal and external
storage devices, from three vendors, adhering to standards
for secure storage. The vendors combined produce roughly
60% of the SSDs sold between 2014 and 2018 [1]. An
overview is given of possible flaws that apply in particular
to hardware-based full-disk encryption (Section IV), and a
methodology is provided for the analysis (Section V). We
have analyzed firmware from different SSD models offering
hardware encryption, focusing on these flaws (see Section VI
and Table I). The analysis uncovers a pattern of critical issues
across vendors. For multiple models, it is possible to bypass
the encryption entirely, allowing for a complete recovery of
the data without any knowledge of passwords or keys. The
situation is worsened by the delegation of encryption to the
drive by BitLocker. Due to the default policy, many BitLocker
users are unintentionally using hardware encryption, exposing
them to the same threats. We should reconsider how we view
hardware encryption: as a layered defense, or exclusively in
charge of protecting data (without active software encryption).

Related work. In 2013 the possibility of debugging a hard
drive through JTAG (hardware debug port which can control
the processor and memory) was demonstrated and created
possibly the first public hard drive firmware rootkit [2].
Domburg’s work has inspired more research around anti-
forensics such as [3], [4]. Background on reverse engineering
embedded devices such as SSDs and PLCs can be found in [5].
Leaked documents indicate that even the NSA is using these
techniques [6]. Besides, proprietary cryptographic systems
have often shown to be much weaker in practice than stan-
dardized publicly available alternatives once implementation
details are uncovered [7]. Within the scope of storage devices
with integrated hardware encryption, serious vulnerabilities



have also previously been identified in external drives using
proprietary protection schemes. An example is the external
Secustick, which unlocks by simply sending a command (not
containing a password) [8]. Another example is the Western
Digital MyPassport family of external drives, which suffers
from RAM leakage, weak key attacks, or even hardcoded
keys [9]. However these findings are isolated incidents limited
to proprietary solutions, and neither consider implementations
of established standards for secure storage nor consider these
issues across multiple vendors. We focus on an offline attack
where an attacker has physical control of a switched off drive.
Online attacks against SSDs are shown to be possible [10].

Responsible disclosure. After discovering these vulnerabil-
ities, we followed a process of responsible disclosure. In
this case, the National Cyber Security Center (NCSC) of
the Netherlands was informed first, which assisted in the
responsible disclosure process, by setting up the contact with
the manufacturers involved. We cooperated with Microsoft,
Crucial, Samsung, and Western Digital/Sandisk to fix their
products and agreed not to disclose the vulnerabilities for
up to six months. The parties involved were notified at the
beginning of 2018 (and released to the public on November 5,
2018), except for Western Digital/Sandisk which was notified
in December of 2018 due to new findings. These vendors have
confirmed the reported issues. For models being supported,
firmware updates are either released or in development.

II. BACKGROUND

A. Software vs Hardware Encryption

To avoid negatively impacting the data throughput when
encryption is switched on, SSDs with encryption support
or self-encrypting drives (SEDs) always house a dedicated
AES co-processor that provides for the encryption. Therefore,
data encryption is essentially ‘free’ in terms of computational
resources. These drives encrypt all data stored on them with
the disk encryption key (DEK), even in the case when the data
is not password-protected. All drives considered in this paper
use this approach. This essentially transforms the problem of
protecting the data into protecting the DEK, introducing two
benefits: the data stored can be wiped instantly by erasing the
DEK, and setting or changing the password does not require
re-encryption of all user data.

B. Hardware encryption standards

ATA Security: The standard for ATA (AT Attachment, with
AT being a reference to the IBM PC/AT) storage devices [11]
defines the security feature set, which allows for locking and
unlocking with a password. The goal of the ATA security
feature set was limited to access control: it did not aim to stop
a well-motivated attacker with physical access. At the time
SEDs were first created, it made sense to re-purpose the ATA
security password for encryption. However, since the feature
set already existed, ATA does not standardize cryptographic
primitives or even state that encryption should be used.

SED manufacturers commonly advertise that their products
use strong cryptography, such as AES-256. Unfortunately,

drive manufacturers typically do not provide encryption im-
plementation details, or in case of ATA security, even state
whether encryption is used at all. In our opinion, it is rea-
sonable to assume so. However, the standard is not violated
in any way in case the password is used for access control
alone. From the ATA standard [11]: "If security is enabled
on the device, the use of the Master password is indicated
by the MASTER PASSWORD CAPABILITY bit. The MASTER
PASSWORD CAPABILITY bit represents High or Maximum as
described in this subclause. The MASTER PASSWORD CAPA-
BILITY bit is modified during the processing of a SECURITY
SET PASSWORD command that specifies a User password. If
the MASTER PASSWORD CAPABILITY bit is set to High (i.e.,
zero), either the User password or Master password are used
interchangeably. If the MASTER PASSWORD CAPABILITY bit
is set to Maximum (i.e., one), the Master password is not
used with the SECURITY DISABLE PASSWORD command and
SECURITY UNLOCK command. The SECURITY ERASE UNIT
command, however, uses either a valid User password or
Master password."

By default, the Master password is set by the manufacturer.
In case the user sets a password, he must take care to
either also change the Master password, or set the MASTER
PASSWORD CAPABILITY bit to Maximum. If he fails to do
so, the Master password allows anyone with knowledge of the
factory-default password to access his data.

TCG Opal: TCG Opal [12] is a newer specification for
SEDs. It encompasses a communication protocol that is lay-
ered on top of ATA or NVMe (Non Volatile Memory express,
a recent storage interface). Furthermore, Opal mandates the
use of either AES-128 or AES-256. The encryption should
meet the bandwidth capability of the storage device. Opal
compliant drives allow multiple passwords (credentials in Opal
terminology) to be defined. Each can be assigned to perform
various actions within the Opal subsystem. Special Admin
credentials are used to perform provisioning and configuration.

A storage device can be divided into multiple locking
ranges, that can be locked or unlocked independently. Each
locking range is encrypted with a different DEK (Media
Encryption Key in Opal terminology), and each locking range
can be erased independently of the others. A range can be
erased by generating a new DEK for that range. A special
global range is defined as the range that covers all sectors
of the disk not covered in other ranges. Multiple passwords
can be assigned permission to unlock a particular range.
Additionally, a single password can be assigned permission to
unlock multiple ranges. Phrased differently: a many-to-many
relation exists between passwords and locking ranges.

A scheme supporting all of the aforementioned properties,
and cryptographically enforces them, is complex to implement.
On top of that, no reference implementation by the Trusted
Computing Group exists. Consequently, drive manufacturers
all have to design and implement encryption (schemes) them-
selves. Finally, compliance tests do not reveal design and im-
plementation weaknesses, as they only verify whether the drive
behaves as expected given certain sequences of commands. We



believe that these circumstances combined are likely to be the
root cause of several implementation weaknesses.

Proprietary alternatives: Several proprietary alternatives
to TCG Opal exist. Examples are Seagate DriveTrust, the
Western Digital MyPassport family of drives and Samsung’s
portable SSDs. Manufacturers may opt for a proprietary
solution for example because the standard may have been
introduced before Opal came into existence, or because a
simpler scheme is preferred over Opal.

III. ATTACKER MODEL

Here we list the attacker models relevant to full-disk en-
cryption. In the rest of this article, we will only be concerned
with the last one, as the implications of the first two are
roughly equivalent when offsetting software against hardware
encryption. We do, however, list them all here because it is in
our opinion important to state why they are equivalent.
Machine off, no awareness. The adversary has momentary
physical access to the powered-down machine, and the victim
is unaware of this, creating an opportunity for the so-called evil
maid attack. The encounter is used to install data exfiltration
software or hardware on the victim’s machine. In case of a
hardware modification, e.g. a physical key logger device, to the
best of our knowledge, no meaningful countermeasure exists
today. For software modifications, the story is more nuanced.
PCs fitted with a Trusted Platform Module (TPM) can take
advantage of the sealing functionality, where cryptographic
key material is bound to the software and hardware. Hardware
full-disk encryption does not mitigate the evil maid scenario in
a meaningful way. Hence, this attacker model is out of scope.
Machine on. The adversary has physical access to a powered-
on machine while the encryption containers are unlocked.
Software-based encryption solutions typically keep the crypto-
graphic key in RAM, which is vulnerable to cold boot attacks,
DMA attacks, or any other means of data exfiltration, including
physical removal and readout with an external device. How-
ever, it is worth mentioning that software encryption exists
that defends against such attacks, by storing the secret keys in
CPU registers [13], [14].

An argument that is often put forward in favor of hardware
encryption is that the secret key is not stored in RAM, and
therefore is not vulnerable to the aforementioned attacks. In
reality, this argument is invalid for several reasons.

First, the software running on the host PC controlling the
hardware encryption, typically does keep a secret key in RAM,
in order to support Suspend-to-RAM (S3), a low-power state
wherein all peripheral devices are shut down. Since the SSD is
powered down, it must be unlocked again once the system is
resumed, and therefore either the operating system must retain
a copy of the secret key at all times, or the user must enter
it again. In virtually all implementations, including BitLocker,
the former approach is chosen [15].

Second, the burden of keeping the secret key is moved to the
SSD, not eliminated. The SSD typically keeps the key in the
main memory of its controller. SSDs are not security-hardened
devices by any standard. In fact, many have a debugging

interface exposed on their PCB, allowing one to attach a
debugging device and extract the secret key. Several means of
obtaining code execution on the drive exist (see Section V-B2).

Third, a memory readout attack against software encryption
requires physical access. Given this, the attacker also has the
opportunity to carry out a hot-plugging attack against hardware
encryption. This has been demonstrated in practice [15].

As with the previous attacker model, opportunities and sub-
sequent impact are roughly equivalent compared to software
encryption. Therefore, this attacker model is also out of scope.
Machine off, awareness. The adversary has physical access
to a powered-down machine, and the victim is aware of this
(such as during a border-control search in a back room).
Therefore, from that point onward, the victim is unwilling to
enter key information into the machine. In this scenario, given
that the implementation is sound, software full-disk encryption
offers full confidentiality of the data, and hardware encryption
supposedly does so as well. In this paper, we focus on this
attacker model.

IV. POSSIBLE SECURITY ISSUES WITH HARDWARE
ENCRYPTION

Properly implementing a hardware full disk encryption
scheme is not trivial, as can be seen by the following list of
possible pitfalls. We divide these issues in three categories:
specification, design and implementation issues. The issues
presented in the remainder of this section are used as a
guideline in Section VI in order to assess how well hardware
encryption is implemented.

A. Specification issues

Both lack of specification and too detailed specification
can have an impact on the difficulty to implement a standard
properly. An example of lack of specification and misuse can
be seen in the ATA security standard, and an example of too
detailed specifications is TCG Opal, both discussed below.

The purpose of the ATA security feature set is limited to
access control only. It was never intended to be used for
encryption. Nevertheless, manufacturers decided to use it for
this purpose. The ATA standard offers no implementation
guidance of any kind on how the data is stored securely.

The TCG Opal standard, being specifically designed for
the purpose of encryption, addresses this issue. However,
it specifies a large feature set, of which the added value
is debatable (multiple passwords per range, multiple ranges,
see Section II-B for details), in particular, if we take the
complexity of correctly implementing such a feature set into
account. On top of that, the specification offers no guidance
on how the key derivation scheme should be designed that
supports this feature set. This lack of guidance combined with
many required features is a source of issues, listed below.

1) DEKs are not derived from the passwords: Obviously,
the password should be required in order to obtain the DEK,
and this requirement should be cryptographically enforced by
deriving the encryption key from the password. The absence
of this property results in a situation where the confidentiality



of user data no longer depends on secrets. All the information
required to recover the user data is stored on the drive itself
and can be retrieved. We believe that the complexity of TCG
Opal in combination with the absence of implementation
guidance contributes to conceiving a design in which the DEK
ultimately does not depend on the user password.

2) Single DEK used for the whole disk: A naive imple-
mentation of the Opal standard uses a single DEK for the
entire drive, and store an encrypted variant of it for each
password, whereas a proper implementation produces different
DEKs for each range. On the surface, doing so may seem
only a minor issue. Indeed, access to at least one range is
still required. However, the (probably) most popular Opal
management software, BitLocker, leaves the global range un-
protected in order to allow the partition table to be accessible.
Consequently, no secret (password) is needed to access the
DEK and can potentially be retrieved from the device, in effect
compromising the other ranges. The Opal standard is the root
cause of this class of issues since it is the only standard that
specifies multiple independent ranges.

3) ATA Master password re-enabling: The ATA security
feature set defines both a User and Master password (see
section II-B), with the possibility to revoke the Master pass-
word’s permission to access the drive’s contents, i.e. by
setting the MASTER PASSWORD CAPABILITY bit to Maximum.
Ideally, doing so would trigger the erasure of all key material
allowing the DEK to be derived from the Master password.
The aforementioned permission can also be reinstated using
the User password. As such, the key material should also be
restored. However, at that particular point in time, the drive
does not have the possession of the cleartext Master password,
rendering this operation nontrivial to implement. Theoretically,
the issue can be addressed, e.g. by keeping an encrypted copy
of the aforementioned key material using the User password as
the key. However, doing so prevents the Master password from
being changed independently of the User password. This can
again be addressed by introducing another constant key and
encrypting it using the Master password. In practice, however,
all drives included in our study simply keep the key material
available at all times.

B. Design issues

The issues listed in this category are design issues of which
we believe do not arise from (a lack of) specification.

1) Wear leveling: SSDs use flash memory for data storage.
A property of flash memory is that it can be subject to a limited
number of write-erase-cycles before becoming unreliable. In
order to prolong the service life of the device, wear leveling
is applied. It works by arranging data so that erasures and re-
writes are evenly distributed across the medium. Thus, mul-
tiple writes to the same logical sector typically trigger writes
to different physical sectors. Older copies of a sector remain
stored until overwritten (although not directly retrievable by
the end user). Wear-levelling can be applied to key information
as well. Suppose that the DEK is stored unprotected, after
which a password is set by the end user, overwriting the

unprotected DEK with an encrypted variant. Due to wear
leveling, the unprotected variant may still be retrievable.

2) Power-saving mode: DEVSLP: DEVSLP is a feature that
allows SATA drives to go into a low power ‘device sleep’
mode when sent the appropriate signal. The ATA standard is
not explicit about how power consumption reduction is to be
achieved. A manufacturer may freely choose, for example, to
have the drive write its internal state to non-volatile storage
and subsequently power down the RAM. The drive complies
to the standard as long as it can become operational within
20ms of receiving the wake-up signal. Suppose that a drive
indeed writes its internal state to non-volatile memory. Then
care must be taken that the state from non-volatile memory
is erased upon wake-up, or else an attacker may be able to
extract the DEK from the last stored state.

C. Implementation issues

Lastly, we list issues that are not inherently caused by the
design. Rather, they are issues that potentially occur due to
implementation mistakes.

1) Lack of entropy in randomly generated DEKs: The only
way for the end user to affect the DEK is by triggering
randomization of it. This raises the question if sufficient
random entropy is available during the DEK generation. Prin-
cipally, the environment wherein SSDs are deployed allows
for sufficient entropy to be acquired [16]. Example entropy
sources include the drive’s temperature sensor and I/O requests
from the host PC. Storing and restoring the random pool
upon reboots should not be an issue since we are concerned
with storage devices. However, random number generators in
embedded devices have seen a number of issues. [17].

2) General implementation issues: All the issues depicted
above in this section apply in particular to hardware-based
disk encryption. However, potential implementation issues in
software-based encryption may also apply. Examples include
re-use of the initialization vectors and using an insecure
mode of operation. Many software-based solutions, such as
VeraCrypt and later versions of Microsoft BitLocker, use
the XTS mode of operation. A description of XTS is given
below. The XTS, or XEX Tweakable Block Cipher with Ci-
phertext Stealing [18], mode of operation was designed for
cryptographic protection of data on storage devices of fixed
length data units. It is an instantiation of Rogaway’s XEX
(XOR Encrypt XOR) tweakable block cipher [19], extended
with ciphertext stealing to support arbitrary length inputs.
Furthermore, XEX mode uses a single key for both encryption
and tweaking, whereas XTS mode uses two independent keys.
XTS mode provides confidentiality for the protected data.
Authentication is not provided, because one of the design goals
is to provide encryption without data expansion. In the absence
of authentication or access control, the best one can do is to
ensure that any alteration of the ciphertext will completely
randomize the plaintext, and rely on the application that uses
this transform to include sufficient redundancy in its plaintext
to detect and discard such random plaintexts. In light of



this, XTS provides more protection than other confidentiality-
only modes against manipulation of the encrypted data. The
XTS mode of operation has received criticism [20], [21]. An
important point is that the granularity to which an attacker
has the ability to randomize plaintexts must equal the cipher’s
block size which is in the case of AES 16 bytes. Ferguson has
designed a native diffuser function that addresses this problem
for application in BitLocker [22]. In the same publication, XTS
is not mentioned, but LRW mode with the same limitation is
criticized.

V. METHODOLOGY

In order to assess how well hardware encrpytion in SSDs
performs in practice, we argue that we should analyze its
implementations. This is, in our opinion, the most realistic
measure. Such an analysis is inherently a somewhat ad-hoc
process, since implementations vary wildly among manu-
facturers and models. However, to the extent possible, we
document a generic approach that is applied to every device
subject to analysis. We will describe each step:

A. Obtaining a firmware image

The difficulty of obtaining a firmware image from an SSD
varies greatly among manufacturers and models. Below, we
list a few examples.

1) Downloading a firmware update: Most manufacturers
distribute firmware updates for their SSDs, by making them
available for download from their website or through their SSD
management utility. For all the drives we studied, firmware up-
dates consist of the entire firmware image. Firmware updates
downloaded from a manufacturer’s website often comprise of a
bootable ISO image, containing an operating system, firmware
update utility, and the firmware image itself. A special com-
mand is used by the update utility to apply the update, for ATA
it is the 0X92 DOWNLOAD MICROCODE command. Extracting
the firmware from the ISO image is typically straightforward.
Obtaining a firmware image distributed through SSD manage-
ment utility typically requires more effort, but is certainly not
impossible. For example, the utility may apply obfuscation
on its communication channels and/or firmware images that
require some reverse engineering in order to remove. Some
manufacturers use encrypted firmware images; the image is
transferred to the drive, and subsequently decrypted by the
drive itself. We can let the drive decrypt these images, and
retrieve the decrypted image from the drive (see V-A2).

2) Extract the running firmware: Sometimes, a copy of the
running firmware can be extracted. This can be achieved e.g.
by using the device’s debugging capabilities (see below), or by
exploiting a vulnerability in the handling of storage interface
commands. In effect, this allows one to extract the currently
running firmware from the device’s RAM.

B. Gaining low level control over the device

A firmware image allows for static analysis. However,
the possibility of dynamic analysis through e.g. JTAG is a
significant advantage. It allows us to quickly confirm (or

refute) assumptions and findings resulting from static analysis.
Furthermore, in case weaknesses are found in the crypto-
graphic scheme, a means of low level control is often required
in order to exploit them.

1) JTAG: JTAG allows full control over a device. We
can halt/resume the CPU, read/modify registers, place break-
points, read/write arbitrarily within the address space, and
execute arbitrary code. Some SSDs expose a JTAG debug-
ging interface on their PCBs. Standardized pin layouts exist,
though, manufacturers may opt for a proprietary one. The
JTAGulator [23] allows us to automatically determine whether
a set of pins speak the JTAG protocol.

2) Unsigned code execution: Some SSD manufacturers dis-
able the JTAG feature of the storage controller. In the absence
of JTAG, a suitable alternative is the ability to execute arbitrary
code on the storage controller, as it allows for essentially
the same capabilities. However, all drives in our study have
countermeasures in place to prevent this, such as cryptographic
signature verification of firmware updates.

Still, various means of gaining code execution exist, such as
vendor-specific commands, memory corruption, storage chip
access, or a fault-injection attack. These are described below.
Vendor-specific commands Most manufacturers implement
vendor-specific commands for diagnostic purposes. Through
static analysis of firmware images, we found examples in
which a command exists that allows for arbitrary values to be
written to a memory address of choice. This can be leveraged
into code execution, e.g. by overwriting a function pointer.
Memory corruption Memory corruption vulnerabilities can
in many situations be leveraged into unsigned code execution,
a stack-based buffer overflow is an example of this.
Storage chip access A more invasive technique for gaining
unsigned code execution is by using an external reader device
to make modifications to the currently installed firmware.

The NAND flash chips usually contain the user-accessible
storage and firmware. They typically come as BGA packages,
requiring them to be desoldered from the PCB in order
to attach them to a reader. Alternatively, many SSDs also
contain NOR flash, connected through SPI (Serial Peripheral
Interface). SPI flash chips usually expose their pins on the out-
side, therefore not requiring them to be desoldered. Typically,
the NOR flash contains the drive’s capacity, serial number,
error logs, and more. In some occasions, it contains the boot
loader. Unsigned code execution becomes possible by making
modifications to it.
Fault injection attack Finally, although beyond the scope
of this paper, a fault injection attack may be used to achieve
unsigned code execution. E.g., a clock glitch during a cryp-
tographic signature check can be introduced by physical
interference (power or electro-magnetic), tricking the drive
into accepting a firmware update with an invalid signature. In
order to successfully mitigate such an attack, both hardware
and software countermeasures are necessary. To the best of our
knowledge, no SSD on the market has these countermeasures.



C. Analyzing the firmware
Once a firmware image for a particular drive is acquired,

we analyze it. The file format used for firmware images
differs between manufacturers. The images are usually divided
in sections. Section information, such as the size, memory
address, and offset in the file, is usually contained within
the image header. In some cases, the section information
is immediately apparent by inspection. In other cases, some
reverse engineering is needed. Once the sector information is
uncovered, the firmware image can be loaded into a disassem-
bler and analysis tool, such as IDA Pro.

When reverse engineering SSD firmwares, a good starting
point is identifying the ATA dispatch table, i.e. an array of
data structures containing at least the ATA opcode and the
address of the function that implements it. All drives in our
study implement the ATA standard in a way similar to this.
Once the table is identified, the implementation of any desired
command can be studied by analyzing the code located at the
respective address.

For each of the possible issues given in Section IV, we
attempt to find out whether the drive is susceptible to it by
studying the relevant code.

VI. CASE STUDIES

A. Crucial MX100
The Crucial (Micron) MX100 is a SATA SSD released in

2014. It supports ATA security, as well as TCG Opal, both
version 1 and 2. The controller used is the Marvell 88SS9189,
which houses a dual-core ARM CPU. Firmware updates are
available for download through Micron’s website. They come
as a Linux-based bootable ISO image. The firmware image is
stored within the ISO image, and is sent unmodified to the
drive. The firmware image is cryptographically signed using
2048-bit RSA and SHA256. The signature verification is based
on mbedTLS’s rsa_pkcs1_verify function. The MX100
has a JTAG interface that can be used to connect a debugging
device. The standardized ARM14 JTAG pin layout is used.

Findings: In this section, we present our findings with
respect to both ATA security and TCG Opal.
ATA security. We found that the implementation of the
ATA F2h SECURITY UNLOCK command passes the incoming
password to the SHA256 hash function, and compares the
output to another buffer. If they match, the drive unlocks.
However, the original password buffer remains unused during
this process. Hence, the DEK is not derived from the password.
TCG Opal. The TCG Opal implementation works in
a similar fashion; i.e. no derivation of the DEK from the
password. Each locking range is encrypted with a unique key.
These keys are stored encrypted using a single key, effectively
negating the potential advantages of unique per-range keys.
Other findings All key material is generated by entropy
generating hardware, which the firmware refers to as a TRNG.
All information related to full-disk encryption is stored in SPI
flash, with no wear leveling applied. Several vendor-specific
commands were encountered that allow engineers to diagnose
the device. A non-exhaustive list is given in Appendix A.

Security evaluation: The MX100 has critical security issues
in both the ATA security and TCG Opal implementation.
Namely, the DEK is not derived from the password. We
demonstrated in practice that, by modifying the password
validation routine in RAM through JTAG, the MX100 unlocks
with any password. This applies to both ATA security and
TCG Opal. With the current key derivation scheme, per-range
keys are encrypted using a single key. Thus, introducing a
cryptographic dependency on the password would still allow
any credential to unlock all ranges. No random entropy issues
nor wear leveling issues were identifed.

Furthermore, a vendor-specific command allows for arbi-
trary modifications within the address space. This enables
malware with remote access to the host PC to infect the
drive’s firmware, allowing it to hide itself and/or to survive
re-installation of the host PC’s OS.

Attack strategy: In order to to recover the data from a locked
MX100 drive, we connect a JTAG debugging device. Then, we
use it to modify the password validation routine in RAM so
that it always validates successfully. Finally, we unlock the
drive as normal, with an arbitrary password. The strategy is
the same for both ATA security and TCG Opal.

B. Crucial MX200

The Crucial MX200 is a SATA SSD released in 2015.
It is essentially an MX100 with some write performance
advantages. The MX200 is built around the same 88SS9189
controller. The firmware is very similar to that of the MX100.
In terms of the issues listed in section IV, the MX200
performs identical to the MX100. It too suffers from the lack
of derivation of the DEK from the password. Furthermore,
the vendor-specific commands found in the MX100 are also
present in the MX200 (see Appendix A).

Attack strategy: The attack strategy is identical to that of
the MX100. See Section VI-A.

C. Crucial MX300

The Crucial MX300 is a SATA SSD released in 2016.
Similar to both its predecessors, it supports the ATA security
feature set, as well as TCG Opal version 1 and 2. The MX300
is fitted with a Marvell 88SS1074 controller, the successor to
the 88SS9189. The MX300 differs from its predecessors in
some aspects, including the controller’s JTAG feature being
switched off, and the code related to cryptography being
subject to a major revision.

Debugging: A firmware image can be obtained through
Micron’s website. Hence, it can be analyzed. As stated in
Section V-A2, JTAG allows for low level monitoring and
control of the storage controller’s CPU. It significantly aids
the analysis, as it allows for verification of assumptions and
findings, and possibly exploitation of weaknesses. Hence,
absence of this feature is problematic. Therefore, we used the
strategies listed in Section V-B2 in order to gain arbitrary
code execution on the device. We found that the vendor-
specific commands present in the MX100 and MX200 are still
present. However, since the MX300, the unlock mechanism
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Fig. 1. Crucial MX300 boot process.

is replaced by one that relies on asymmetric cryptographic
signatures. Hence, the vendor commands no longer serve
as a vehicle for unsigned code execution. Furthermore, we
identified several memory corruption vulnerabilities, however
we could not exploit them to gain control over the execution.
We have acquired arbitrary code execution by manipulating
the device’s SPI flash, which is described below.

Findings: We used an external SPI communication device
to communicate with the drive’s SPI flash chip, allowing its
contents to be retrieved and manipulated. In order to leverage
this into unsigned code execution, we must first understand the
drive’s boot process, which we reverse engineered. A diagram
depicting the boot process is given in Figure 1. Once the
storage controller is powered on, the first instructions executed
by its CPU are located in a ROM, embedded within the
controller. The ROM code loads its next stage, which we refer
to as stage 2, from the SPI flash, located on the drive’s PCB.
Stage 2 is responsible for retrieving the drive’s firmware from
NAND, and then transfering control to it. Hence, by modifying
the stage 2 code, one can (indirectly) change the behavior
of the drive’s firmware. I.e., by injecting code at a particular
location so that it runs after the firmware is retrieved from
NAND, but before transfering control to it. This way, one can,
for example, remove cryptographic signature checks applied
during a firmware update.

Ideally, we would like to have the capability of reading,
writing and executing arbitrarily within the drive’s address
space. We crafted a modified firmware image, which includes
these capabilities, and installed it by means of the aforemen-
tioned cryptographic signature circumvention technique. Once
the process is completed, we have these capabilities.
Key derivation scheme We have reverse engineered the key
derivation scheme of the MX300. It is depicted in Figure 2.
Unlike its predecessors, the MX300 derives the DEK from the
password.

Each MX300 drive has a per-device unique key, which
we refer to as the device key. It is stored in one-time-
programmable memory contained within the controller. As
such, an attacker is unable to obtain it, unless he has the ability
to execute arbitrary code on the controller’s CPU.

As is mandated by Opal, the scheme allows for multiple
credentials and ranges. Each credential has a data structure
associated stored within the SPI flash. This is what we
refer to as the credential table. Entries within this table are
encrypted using the device key. Each entry contains a salt and
a ciphertext. The random salt and the user-supplied password
are fed to PBKDF2. The result is then used as a key in an
attempt to decrypt the ciphertext. If the password is correct,
the decrypted result is the RDS key (referred to by the firmware

Credential table

Range key (DEK) table

Stored Credential#0

Stored Credential#1

Stored Credential#2

Stored Credential#3

Stored Credential#4

...

Salt#2 Ciphertext#2

Decrypt

Incoming Password#2 PBKDF2 Key#2

Decrypt

RDS Key

Protected Range Key#0

Protected Range Key#1

Protected Range Key#2

Protected Range Key#3

Unprotected Range Key#4

...

Decrypt

Range Key#3

Device Key Decrypt Range Key#4

Fig. 2. Scheme used to obtain a range key (DEK) from the user-supplied
password. In this example, credential #2 is used to unlock range #3.

as such). All stored credentials yield the same RDS key.
Each locking range is protected with its own unique DEK.

The DEKs are stored in the, what we refer to as, range key ta-
ble. All keys corresponding to protected ranges (i.e. requiring
a password before becoming accessible) are encrypted using
the RDS key. All other DEKs are encrypted using the device
key and are therefore always accessible.

From the description given above, we can already see that
the RDS key can be obtained once only a single password
is known. Subsequently, the RDS key allows access to all
protected ranges. The drive will refuse to unlock a range for
a user who does not have permission to access it. However,
this check is not cryptographically enforced. This is already a
weakness in the design of the key derivation scheme. However,
we found that even a single password need not be known,
which we explain in detail below.
Opal Setup During the set-up phase of TCG Opal, the
credential table and range key table are populated. In order
to better understand this process, we used our arbitrary write
capabilities to inject tracing functionality at various places
in the firmware. The execution trace generated during the
BitLocker set-up phase is given in Appendix D. If sedutil
is used instead of BitLocker, the result is similar. Pseudocode
for some of the routines captured is given in Appendix C.
From the execution trace, we can clearly see that once the
BitLocker set-up phase is completed, the RDS key is protected
(encrypted) with a zero buffer as a password, and stored in all
credential table slots between 11 and 29, with the exception
of slot 15. Hence, the RDS key can be recovered from any of
these slots, by invoking the VerifyPasswd on one of them. We
use our unsigned code execution capability to do so. As such,
this allows any DEK to be decrypted without a password.
ATA security As stated in Section II-B, the MASTER
PASSWORD CAPABILITY bit determines whether the factory-
set Master password may unlock the drive. In order for
the end user to prevent using the Master password, (s)he
either has to set the MASTER PASSWORD CAPABILITY bit to
Maximum, or change the Master password. In the case of the
MX300, the former approach is insufficient. We found that



the Master password allows for successful decryption of the
RDS key, regardless of the MASTER PASSWORD CAPABILITY
bit. Hence, in case the end user has set it to Maximum, but
has not changed the Master password, the drive’s contents is
still accessible to anyone in possession of the default Master
password. In the case of the MX300, this is an empty string.
Other findings Similar to the MX100 and MX200, keys
are randomly generated by a hardware RNG. All information
related to full-disk encryption is stored in SPI flash, with no
wear leveling applied.

Attack strategy: In order to recover the data from a locked
MX300 drive, we first install a modified firmware that in-
cludes arbitrary read/write/execute capabilities. The process
is described in detail in Section VI-C. The following steps
describe how to recover the data from a drive that is set up
through TCG Opal, or ATA security, respectively.
TCG Opal We use our custom firmware’s arbitrary write
and execute capability in order to write executable code in the
device’s address space and execute it. Our code invokes the
VerifyPasswd function with a zero buffer as password, using
credential slot 11 and with bExtractRdsKey set to true. At
this point, the RDS key is recovered, allowing for all DEKs
to be decrypted. By using the arbitrary write capability once
more, we modify the VerifyPasswd function such that it always
returns SUCCESS. Note that by doing so, the function will
no longer affect the global RDS key buffer, which is desired
behavior since it already contains the correct key. At this point,
any password can be used to ‘authenticate’ successfully. Note
that permission checks are still enforced. However, we can
impersonate any desired user.
ATA security We use the arbitrary write capability in order
to change the MASTER PASSWORD CAPABILITY bit in RAM
from Max (1) to High (0). Then, we authenticate to the drive
as normal, using an empty string as the Master password, and
unlock the drive. Note that this approach will not work in
case ATA security is used instead of Opal, with the Master
password changed rather than disabled. However, we believe
only a small minority of full-disk encryption users will fall
under this category.

D. Sandisk X600

The Sandisk X600 is a SATA SSD released in Decem-
ber 2017. It is built around the same Marvell 88SS1074
controller as the Crucial MX300. The X600 supports both
ATA security and TCG Opal version 2. Firmware updates
are distributed through Sandisk’s SSD Dashboard tool. By
reverse engineering this tool we gained the opportunity to
download firmware images for all Sandisk SSDs, including the
X600. However, the X600’s firmware image is encrypted and
decryption is performed within the drive itself. The controller’s
JTAG feature is switched off by Sandisk, thus recovery of the
encryption keys is not straightforward.

Since the X600 is built around the same controller as the
Crucial MX300, its boot process is similar: a bootstrap image
located in ROM retrieves stage 2 from an SPI flash chip
(see Figure 1). By manipulating the stage 2 code with an

external reader, the drive can be re-programmed to expose
its firmware encryption keys, or its main firmware as a whole.
Contrary to the MX300, however, the X600 has the controller’s
cryptographic signature validation feature enabled over stage
2. Therefore, modifying it will invalidate its signature, and the
controller will refuse to execute it.

We obtained a copy of the 88SS1074 boot ROM by extract-
ing it from our Crucial MX300. Subsequent analysis revealed
a weakness, which exists within all 88SS1074 controllers, that
allows us to bypass this cryptographic signature validation. As
such, unsigned code execution can be obtained on all drives
based on this controller, including the X600. No further details
about this weakness will be disclosed in this paper, as they are
under responsible disclosure embargo at time of publication.

We extracted the firmware from the drive by exploiting the
abovementioned weakness (combined with injecting additional
code) so that, once the firmware has been retrieved from flash
and decrypted, it is copied into the SPI flash. The firmware
can then be retrieved with an external reader.

Findings: As stated above, the boot-time cryptographic
signature validation feature can be bypassed. This can not only
be leveraged into obtaining a copy of the firmware, but also
into full control over the device. We used the opportunity of
manipulating stage 2 to insert modifications into the firmware,
so that the device accepts an ATA command allowing for
reading, writing, and executing within the device’s address
space. This functionality greatly benefits our analysis, as it
allows the device’s memory to be inspected and manipulated
at runtime. We found that the X600 derives the DEK from the
user password. However, other severe issues exist allowing for
the full-disk encryption to be compromised in many situations.
TCG Opal. Although the X600 shares no code with the
Crucial MX300, the design pattern behind its Opal imple-
mentation is similar: all passwords allow for a single key
(RDS key in Crucial terminology, we continue to use this
term here) to be obtained, which allows the DEK associated
with any range to be decrypted (see Figure 2). Contrary to
the MX300, the code does not follow alternative paths for
protected versus unprotected ranges. Thus, in case one or more
unprotected ranges exists, the RDS key must be available in
order to support this use case. The drive does this by keeping
a so-called anonymous key-encrypting-key (KEK), which is
essentially the RDS key encrypted with a zero buffer. We
found that the anonymous KEK is absent only in case a the
global range is the only range defined, and it is password
protected. Any other configuration causes the anonymous KEK
to be present, effectively reducing the security to the equivalent
of no encryption.
ATA security. We found that, in case the drive’s full-disk
encryption is configured by means of ATA security, the user-
supplied password (be it a user or master password) is used in
a scheme that yields the RDS key. However, we also found that
the anonymous KEK remains present within file 97 (see below)
at all times. As such, no password is required in order to access
the drive’s contents. Moreover, in case the user upgrades from
high to max mode, cryptographic key information allowing



the RDS key to be derived from the master password is not
erased. Therefore, the master password still serves as a means
to access the drive’s contents.
Wear leveling The X600 stores settings and other internal
data in a small internal file system. The file system uses file
numbers rather than names, but apart from this pecularity,
functionality seems to be similar to any other file system. The
file system has a wear leveling feature built-in. File number
97 contains all information related to cryptography.

We used our arbitrary write primitive to alter the behavior
of a function issued by the file system driver that retrieves
data from the raw flash. We did so such that, besides its
normal behavior, its arguments (block number, die number,
plane number, etc.) are stored in a buffer, so that they can
later be inspected. Through this we learned that each time file
97 is written to, its physical location within flash changes.
However, in case the anonymous KEK is removed from file
97, the drive immediately issues a routine referred to as file
system compaction, which erases previous copies of any file
from its flash chips. We confirmed that no previous copy of
file 97 exist once the process is completed. Other operations
causing file 97 to be changed (i.e. changing a password) do
not trigger the file system compaction, and hence a previous
version can be recovered. However, this is only useful to an
attacker in case a previous password is either known or easy to
guess. We found that previous copies of file 97 can typically
be recovered, until a file system compaction is issued. Besides
explicitly (as seen previously), this also happens in case the
file system runs out of free space. However, to the best of
our knowledge, no files are modified under normal behavior
limited to unlocking and reading/writing. Hence, these copies
are likely to linger for a significant amount of time.
Cryptographically signed firmware updates In addition to
information related to drive encryption, file 97 also contains
two secret keys for the encryption and signature verification
of firmware updates. Both schemes are based on symmetric
cryptography. Thus, once these keys are obtained, they can
be used by an attacker to encrypt and sign custom firmware
updates, which will subsequently be accepted by all X600
drives. Sandisk seems to rely on the premise that it is infeasible
to obtain these keys and therefore sacrifices the security
benefits of asymmetric cryptographic signatures in exchange
for performance.
Other findings We found that all encryption key material is
generated by means of a hardware RNG.

Attack strategy: In many cases, the contents stored on a
Sandisk X600 can be retrieved without a password. We make
a distinction between the case wherein only the global range is
defined and password protected, and otherwise. In both cases,
we assume the drive runs a modified firmware that allows for
arbitrary modifications in the device’s address space, achieved
either by bypassing the signature verification in the boot ROM,
or by any other means listed in Section V-B2.

Suppose that drive encryption is configured through ATA
security, or at least a single range is defined besides the global
range. Then the RDS key, and hence all DEKs, are recoverable

by decrypting the anonymous KEK, located in file 97, with a
zero buffer as the key. This is already done during the drive’s
startup procedure. Thus, in order to access any protected range,
only the password validation routine need be modified so that
it accepts any password. Furthermore, some adjustments are
required in order to prevent the correct RDS key to become
overwritten with the result of a decryption with an incorrect
password. Finally, the protected range can be unlocked with
an arbitrary password.

In the other case, the anonymous KEK is absent from file
97, and all previous copies of it are erased from flash. In this
case, the data on the drive is likely secure. However, in case the
user changed the password because it was compromised, the
data can likely be recovered using the compromised password.
This can be done by scanning through the raw flash, looking
for previous copies of file 97. Once found, the current version
can be replaced with the previous one, and subsequently, the
drive can be unlocked using the compromised password.

E. Samsung 840 EVO

The Samsung 840 EVO is a SATA SSD released in 2013. It
supports ATA security, as well as TCG Opal version 2. At its
core is Samsung’s own MEX controller, built around a triple-
core Cortex R4 (ARM).

Firmware updates are downloadable through Samsung’s
website. They come as bootable ISO images. The firmware
image can be found within the ISO image, albeit in an
obfuscated form. De-obfuscation is performed by the update
utility itself. Hence, recovery of the obfuscation algorithm is
straightforward. The obfuscation algorithm has been previ-
ously reverse engineered [24]. Once de-obfuscated, the image
is transferred to the drive using the ATA 92h DOWNLOAD
MICROCODE opcode. From this point onward, the firmware
update process takes place on the drive itself. The firmware
image is cryptographically signed with ECDSA. The curve
and its exact parameters are yet to be determined. The hash
function used is SHA256.

The 840 EVO has a JTAG interface with a proprietary pin
layout. It was found with help of the JTAGulator [23]. It was
independently found by [25].

Findings: Key derivation scheme Firstly, a data structure
is used by the firmware that provides for both password valida-
tion and key derivation. It contains two salts and a hash result.
Entries in the password storage table shown in Figure 3 are of
this structure. Password validation is performed by computing
PBKDF2, with the user-supplied password as key, over the first
salt, Saltverif. If the output matches the hash result contained
within the data structure, validation succeeds. Subsequently,
the derived key is obtained by computing another PBKDF2
using the same password, over the second salt, Saltderiv.
TCG Opal Samsung’s Opal implementation allows for a
total number of 9 ranges and 14 credentials to be specified.
For all 14 credentials, a table entry exists containing the
aforementioned password validation/derivation data structure.
Once the user-supplied password is validated against one of
the entries, the derived key is then used to decrypt an entry in



Password storage (14 entries)
Password ↔ range

mapping table
(14 × 9 entries)

Encrypted DEKs
(9 entries)

Password Key 1 Key 2 DEK
Derive Decrypt Decrypt

#0 Saltverif Saltderiv Hash

#1 Saltverif Saltderiv Hash

#2 Saltverif Saltderiv Hash

...
#13 Saltverif Saltderiv Hash

0

1

2

...
125

0

1

2

...
8

Fig. 3. Relation between password and DEK on the Samsung 840 EVO

a table that maps credentials to ranges, i.e. this table is 9×14
entries wide. Permission of a certain credential to access a
particular range is determined by the existence of an entry
in this table. Finally, the decrypted result is then used as a
key to decrypt an entry in the DEK table. This final step is
required in order to support erasure of independent ranges
by re-generating its corresponding DEK, without requiring
knowledge of all passwords that unlock it. As such, all Opal
properties are cryptographically enforced. All the data required
in order to support this scheme is contained within a 64 KB
binary blob, which we refer to as, the crypto blob.
Vendor-unique commands The 840 EVO features several
vendor-specific commands. They are listed in Appendix B.
ATA security The DEK may be cryptographically tied to
the ATA password. This depends on the value of the MASTER
PASSWORD CAPABILITY bit during the ATA security setup. In
case it is set to Maximum, the DEK cryptographically depends
on the User password. In High mode, however, there is no
dependency. Thus, this allows the encryption to be bypassed.
TCG Opal After reverse engineering and carefully studying
the design of the key derivation scheme used in the drive TCG
Opal implementation, we have not identified any weaknesses.
Random entropy The 840 EVO has a hardware RNG.
However, in many situations, a pseudo RNG is used, which
works by encrypting an incrementing counter using the AES
co-processor. The pseudo RNG is seeded with data supplied
by the hardware RNG. All key material related to full-
disk encryption is also generated by the hardware RNG. We
assume that the output generated by the hardware RNG is
cryptographically secure.
Wear leveling The Samsung 840 EVO stores its crypto blob
within the device’s NAND flash, within a region designated for
internal data structures. Despite this, the crypto blob storage
is wear-leveled. Suppose that at time t0, the drive is in an
unprotected state, i.e. neither ATA security nor TCG Opal is
set up. In this state, the drive has a single locking range defined
that covers the entire user-accessible storage. The DEK for
this range is contained unprotected within the crypto blob. At
time t0, the crypto blob is stored at physical sector s0 in flash.
Subsequently, at time t1, a password is set, either through ATA
security, with the MASTER PASSWORD CAPABILITY bit set to
Maximum, or through TCG Opal. As such, the password is
required in order to obtain the DEK from the crypto blob. The
updated crypto blob is stored at sector s1 in flash.

Due to the wear leveling mechanism, s0 = s1 is not
guaranteed. Therefore, from time t1 onward, the DEK can be
recovered by retrieving the crypto blob from physical sector

s0. This is mitigated again as soon as s0 is overwritten. We
have successfully demonstrated this attack in practice. Once
a previous revision of the crypto-blob has been recovered, it
can be made active through a vendor-specific command (see
Appendix B).

Empirical measurements indicate that s0 �= s1 occurs
approximately 1 in every 20 times the crypto-blob is stored
(i.e. every time crypto related information is updated). Fur-
thermore, s0 is overwritten within roughly one week of casual
office use. As such, the attack vector is mostly theoretical, as
finding previous copies of the crypto blob at an arbitrary point
in time is very unlikely.

Attack strategy: Suppose that we want to recover the data
from a locked 840 EVO drive. The approach taken depends on
whether the drive is protected with the ATA security feature
set, with the MASTER PASSWORD CAPABILITY bit set to High.
If this is the case, then the DEK does not cryptographically
depend on the password. Hence, the only barrier we have to
overcome is the password validation routine. We connect a
JTAG debugging device and modify the password validation
routine such that it always validates successfully. Finally, we
unlock the drive as normal, with an arbitrary password.

If ATA security (with the MASTER PASSWORD CAPABILITY
bit set to Maximum) or TCG Opal is used, then the DEK is
cryptographically tied to the password. However, due to the
wear-leveling issue pointed out in Section VI-E, there is a
slight chance that the data on the drive can still be recovered
by reverting to a previous version of the crypto blob that was
used while the drive was in an unprotected state.

In order to do this, first, we craft code that searches the
raw NAND flash for crypto blobs, at the region designated for
internal data structures. Through JTAG, we load the code into
the device’s address space and execute it. For all crypto blobs
found, we determine whether it contains the unprotected DEK.
In case we find a crypto blob with this property, we have all
the cryptographic secrets needed for a full recovery. Having
the previous version of the crypto blob at our disposal, the
next step is to instantiate it. A vendor-specific command exists
(see Appendix B) that conveniently allows us to do so. At this
point, in case the drive was protected through ATA security,
the contents are accessible. In the case of TCG Opal, the drive
still demands a password. However, this can be overcome by,
once more, crippling the password validation routine. Finally,
the drive can be unlocked with any password.

F. Samsung 850 EVO

The Samsung 850 EVO is a SATA SSD released in 2014.
Similar to the 840 EVO, it supports TCG Opal version 2. It
is based around Samsung’s MGX controller, which, contrary
to the 840 EVO, is a dual-core Cortex R4.

Similar to the 840 EVO, downloadable firmware images are
obfuscated. Although the obfuscation function is different, de-
obfuscation is still performed on the host PC. The firmware
image is again cryptographically signed with ECDSA. The
implementation is likely a copy of that of the 840 EVO. The
850 EVO has the same JTAG pin layout as the 840 EVO.
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Fig. 4. Samsung 850 EVO boot process.

Findings: The motivation for analyzing the 850 EVO in-
ternals is twofold. Firstly, it is valuable to verify whether the
weaknesses identified in the 840 EVO are also present in its
successor. Secondly, the 850 EVO supports DEVSLP, and other
drives of the same family likely use the same or a very similar
implementation. In case DEVSLP is not implemented carefully,
it may compromise the encryption (see section IV-B2).
Key derivation scheme The Opal key derivation scheme
has not changed significantly since the 840 EVO. The im-
plementation is still based around a crypto blob, although its
size has doubled, resulting in a 128 KB crypto blob. The
exact reason for this remains to be researched. The Opal key
derivation scheme is identical. Furthermore, the vendor-unique
commands listed in Appendix B have remained unaltered.
DEVSLP mode In case the DEVSLP signal is received, all
secret key information present in SRAM is encrypted using a
hardcoded key. The result is copied to DRAM. Subsequently,
four ‘magic’ numbers are written to DRAM, and finally, the
cores and SRAM are powered down.

In order to determine whether portions of secret key infor-
mation reach non-volatile storage, we reverse engineered the
boot process of the drive. A diagram picturing the code flow
during the boot process is given in Figure 4.

The first portion of code is, what we refer to as, the Stage 1
boot loader. Essentially, its purpose is to retrieve Stage 2 from
NAND and execute it. However, in case the emergency pin is
grounded, or in case the firmware cannot be retrieved, the drive
goes into an emergency state. In this state, the drive accepts
firmware images through a proprietary protocol layered over
UART. The protocol was reverse engineered by [25].

Once Stage 2 is reached, the DRAM is initialized. Shortly
after, the decision is made to either resume from a previous
state, or to perform a normal startup procedure. The decision
is made based on hardware I/O address 0x10050040, bit 3.
Before reverting to the previous state, a check is performed on
whether the magic numbers written to RAM previously have
remained unaltered.

No I/O addresses related to NAND are interacted with,
indicating that the DRAM is kept powered during DEVSLP.
We devised the following steps in order to confirm it:

(i) Modify a firmware image, such that within the Stage 2
boot loader, all references to 0x10050040 are replaced
so that a DEVSLP resumption scenario is simulated.
Furthermore, at the point in the code where the magic
numbers are checked, an infinite loop is inserted.

(ii) Modify the currently running firmware in RAM such that
it accepts firmware updates with invalid signatures.

(iii) Flash the modified firmware image through the ATA

0X92 DOWNLOAD MICROCODE command. The drive
will not reboot.

(iv) Send the DEVSLP signal. The drive goes into DEVSLP
mode.

(v) Power up the drive by sending the DEVSLP signal again.
(vi) The execution is stuck at the point where the infinite loop

is inserted. Halt the execution and verify that the magic
numbers in DRAM are present.

(vii) Power down the drive by removing the power plug.
(viii) Power it up again. The execution is stuck at the same

point. In case the magic numbers still exist in DRAM,
they must have originated from non-volatile storage. If
absent, either the non-volatile storage device is erased
during (v), or volatile storage is used.

(ix) Use the emergency mode to flash an unmodified version
of the firmware, repeat all previous steps and omit (v)
and (vi). Absence of the magic values in DRAM confirms
that volatile storage is used.

By pursuing the above steps, we confirmed that the secret key
information is indeed kept in volatile storage. The reason for
encrypting it with a hardcoded key remains unclear.

Security evaluation: The implementations of full-disk en-
cryption in the 850 EVO and the 840 EVO are very similar.
Using the ATA security mode the drive can be tricked into
granting access to its contents, in case the MASTER PASSWORD
CAPABILITY bit is set to High, just as with the 840 EVO.

Since TCG Opal implementation is mostly identical to its
predecessor, no weaknesses have been identified. As is the case
with the 840 EVO, the 850 EVO features a hardware RNG,
with the added possibility to use a PRNG based on AES.
Wear leveling Unfortunately, despite numerous efforts, we
were unable to identify the routines responsible for storing/re-
trieving the crypto blob from NAND flash. However, during
the responsible disclosure trajectory, a contact at Samsung
informed us that from the 850 EVO series onward, the crypto
blob storage is no longer wear leveled. Instead, a fixed
physical address in NAND is used for the crypto blob storage.
Therefore, contrary to its predecessor, the 850 EVO is not
vulnerable to the crypto blob recovery attack (see 840 EVO).

Attack strategy: The attack strategy is identical to that of
the 840 EVO, with the exception of the wear leveling issue
not being present. See Section VI-E for further details.

G. Samsung 950 PRO

The Samsung 950 PRO is an NVMe SSD released in late
2015. It supports TCG Opal version 2. The controller is, again,
developed in-house: the Samsung UBX. Except for the switch
from SATA to NVMe, the controller and firmware share many
commonalities with the 850 EVO. As such, the move to NVMe
does not seem to provoke any other major revision to the
architecture of an SSD.

The firmware image file format is also similar to that of
the 850 EVO, however, besides the host-side obfuscation, an
additional layer of encryption is applied, which is removed
by the drive itself during the firmware update process. The



drive has a JTAG debugging interface, thus the firmware can
be extracted from RAM.

Findings and Attack strategy: We found that the implemen-
tation of the cryptography is very similar, if not identical,
to that of the 850 EVO. This entails all the points listed
in section IV, including the vulnerable implementation of
ATA security. As such, the attack strategy is also the same.
Interestingly, ATA security can be used through NVMe, even
though it is an extension of ATA. However, we believe it is
unlikely that a substantial share of 950 PRO users are affected,
since for full disk encryption, TCG Opal is likely the preferred
solution, and legacy implementations do not exist since NVMe
was standardized later than Opal.

H. Samsung T3 portable

The Samsung T3 portable SSD is an external drive con-
nected through USB-3.1 Gen 1. It offers optional password
protection through a proprietary command set. The drive
comes with a tool that allows the user to set or remove a
password, lock and unlock.

Physically opening the drive uncovers that it is essentially an
850 EVO mSATA behind a USB to mSATA bridge, albeit fitted
with a special firmware supporting the proprietary command
set. No firmware update for this drive is available. Fortunately,
the firmware can be extracted from RAM through JTAG.

Capturing USB packets with the help of Wireshark during
locking and unlocking of the drive reveals that the ATA
opcode 8Eh (vendor-specific) is used for both operations.
Analysis of the firmware reveals that the implementation of
the operations is built upon the ATA security functionality of
the 850 EVO. However, it resembles the behavior observed
when the MASTER PASSWORD CAPABILITY bit is set to High.
Thus, the password is not cryptographically linked to the DEK.

Attack strategy: Similar to an 850 EVO set up using ATA
security with the MASTER PASSWORD CAPABILITY bit set to
High. The password validation routine can be crippled through
JTAG, allowing one to unlock the drive with any password.

I. Samsung T5 portable

The Samsung T5 portable SSD is the successor of the T3. It
uses the same MGX controller found in the 850 EVO and the
T3. A notable difference between the T5 and its predecessor is
that its USB to mSATA converter support for USB-3.1 Gen 2.

Another important difference is that the JTAG feature is
disabled. Additionally, the emergency pin is also no longer
functional. Finally, no firmware updates for the T5 are avail-
able for download. Hence, for this drive, we do not have a
firmware image at our disposal.

The T5 features the same vendor-specific commands found
in all other Samsung SSDs (Appendix B). Thus, despite the
lack of a firmware image and debugging capabilities, the
crypto blob can still be transferred from/to the device.

We retrieved a copy of the crypto blob by means of the
vendor command both before and after setting a password,
and inspected the differences. We refer to these blobs as
B0 and B1, respectively. The crypto blobs are encrypted

(obfuscated) with a per-device one-time-programmable key
stored within the controller. As such, it can not be extracted
without JTAG or unsigned code execution, both of which
we do not have. However, since XTS mode is used, we can
observe whether or not the two blobs differ on a per-block (16
bytes) granularity. By studying the T3 firmware, and assuming
the implementation is broadly the same, we found that the
differences between B0 and B1 are explained by the following
modifications to the plain-text crypto blob:

(i) The crypto blob revision number.
(ii) A data allocation bitmap determining for each slot

whether or not it is in use.
(iii) The key storage data structure (Fig. 3).
(iv) The so-called ‘security state’ byte (referred to in the

firmware as such).
In the absence of proper derivation of the disk encryption key,
the security state byte alone likely determines the locking state
of the drive, and reverting it to its previous state will result
in the drive being unlocked. We create a new crypto blob B′

1,
which is constructed by taking B1 and selectively reverting
the 16-byte block containing the security state byte by taking
its ciphertext value from B0. Subsequently we upload the B′

1

crypto blob to the drive through the designated vendor-specific
command. We found that the drive successfully unlocks after
pursuing the steps above, confirming that the password is
indeed not used to derive the DEK.

Attack strategy: Although the steps given above confirm
that the T5 lacks derivation of the DEK from the password,
the steps themselves do not serve as an attack strategy, as
(a portion of) the crypto blob from a previous state, B0, is
needed. However, as we confirmed, protection of the user data
is not cryptographically enforced. Hence, a means of low level
control over the device, e.g. unsigned code execution, will
allow us to bypass it.

Acquiring unsigned code execution on the device is con-
siderably time-consuming and labor-intensive. Given that we
exploited the issue in practice on the T5’s predecessor, the T3,
and given that the exact same issue is confirmed to exist in the
T5, it is in our opinion justified to skip the act of acquiring
code execution on the T5, solely for the purpose of developing
an exploit for this issue.

For completeness: unsigned code execution may by accom-
plished via one of the methods described in Section V-B2.
Once accomplished, one can deploy the same strategy as
with the T3 (Section VI-H), i.e. modifying the password
validation routine in RAM so that it accepts any password, and
subsequently unlocking the drive as normal with any password.

VII. DISCUSSION

A non-exhaustive overview of possible flaws in hardware-
based full-disk encryption was given, categorized in specifica-
tion, design and implementation issues (Section IV). We have
analyzed the hardware full-disk encryption of several SSDs
by reverse engineering their firmware, focussing on finding
these possible flaws. These drives were produced by three
manufacturers and sold between 2014 and 2018, have a SATA,



Drive 1 2 3 4 5 6 7 8 9 Impact
Crucial MX100
(all)

� � � � � � Compromised

Crucial MX200
(all)

� � � � � � Compromised

Crucial MX300
(all)

� � � � � � � Compromised

Sandisk X600
(SATA)

� � � � � � � Probably compromised

Samsung 840
EVO (SATA)

� � � � � � Depends

Samsung 850
EVO (SATA)

� � � � � � � Depends

Samsung 950
PRO (NVMe)

� � � � � � � Probably safe

Samsung T3
(USB)

� � � Compromised

Samsung T5
(USB)

� � � Compromised

1 Derivation of the DEK from the password in ATA Security (High mode)
2 Derivation of the DEK from the password in ATA Security (Max mode)
3 Derivation of the DEK from the password in TCG Opal
4 Derivation of the DEK from the password in proprietary standard
5 No single key for entire disk
6 Not vulnerable to ATA Master password re-enabling (only if derivation is present)
7 Randomized DEK on sanitize and sufficient random entropy
8 No wear leveling related issues
9 No DEVSLP related issues

TABLE I
OVERVIEW OF CASE STUDY FINDINGS.

NVMe, or USB interface, and have a M.2, traditional 2.5", or
external form factor. The analysis uncovers a pattern of critical
issues across vendors, due to problems in all three categories.
For multiple models, it is possible to bypass the encryption
entirely, allowing for a complete recovery of the data without
any knowledge of passwords or keys. Table I gives an overview
of the models studied, and the flaws found.

The situation is worsened by software solutions delegating
encryption to the drive. As a primary example, BitLocker does
this delegation for supported drives and disables its software
encryption, relying entirely on the hardware implementation.
As this is the default policy, many BitLocker users are unin-
tentionally using hardware encryption, exposing them to the
same threats as when using a hardware encryption only setup.

The results presented in this paper show that one should
not rely solely on hardware encryption as offered by SSDs for
confidentiality. Since the encryption in these drives is always
performed, disabling hardware encryption (equaling to storing
the DEK unprotected) offers no performance benefits. Thus,
users currently relying on these features may continue using
them. However, we strongly encourage users that depend on
hardware encryption implemented in SSDs to install an open
source, preferably audited, disk encryption software solution
as soon as possible. In particular, VeraCrypt allows for in-
place encryption while the operating system is running, and
can co-exist with hardware encryption. Based on our vulnera-
bility disclosure, additional information has been released by
Microsoft [26] and Samsung [27], however Crucial did not.
Sandisk (Western Digital) may release information in a later
stage (when their disclosure period ends).

As for recommendations, we have structured them accord-
ing to the categories of issues we have found. Based on early
feedback we have received, we want to make clear these issues
are not exhaustive but are exemplary of the underlying issues.

The specification issues found can be addressed by making
simpler standards, with a clearer guide on how to implement

them correctly. From a security perspective, standards should
favor simplicity over a high number of features. The com-
plexity of storage standards such as TCG Opal contributes
vastly to the difficulty of implementing the cryptography
in SEDs. A modern standard for self-encrypting drives that
is simpler to implement is highly preferable over Opal. In
particular, the requirement of multiple ranges is a needlessly
complex feature and should be removed. Doing so implies
that a scheme supporting a many-to-many relation is no
longer necessary. In fact, such a standard already exists today.
Opalite [28] defines a subset of Opal’s features and it is also
authored by the Trusted Computing Group. Unfortunately, to
the best of our knowledge, drives that support it are extremely
rare. Standard organizations such as TCG should publish a
reference implementation of their standards (such as Opal)
to aid implementors of the standard, which should be made
available for public scrutiny. If additional requirements are
needed (such as multiple ranges), they should be implemented
as an additional layer.

We found several design issues. There is not much public in-
formation available on how to design crypto schemes with the
requirements as set out in the standards. Therefore, hardware
encryption currently comes with the drawback of having to
rely on proprietary, non-public, hard-to-audit crypto schemes
designed by their manufacturers. Designs should be audited
and subject to as much public scrutiny as possible. Manufac-
turers that take data confidentiality and security seriously want
to publish their crypto schemes (and corresponding code) so
that security claims can be verified. Any design should take
into account that wear-leveling is applied to the storage.

We did not find any implementation issues in the analyzed
drives. However, we do note that any compliance tests that are
made available for standards should also cover the implemen-
tation of the cryptography, to keep avoiding these problems in
the future. These tests too should be independently assessed.

In general, we can ask ourselves what problem SEDs
are trying to address. SEDs do not offer any meaningful
mitigations in situations where software encryption falls short
(see Section III). However, as demonstrated, in situations
where software encryption offers full data confidentiality,
hardware encryption often does not. Hence, at best, the data
confidentiality guarantees of SEDs are similar to that of
software encryption, and often much less. The traditional
advantage of SEDs was performance, but this is no longer
the case as the AES-NI extension on x86 CPUs has become
mainstream. Therefore, the industry should reevaluate any
preference for hardware encryption, as software encryption
has the benefit that its workings are easier to verify and
audit. This hold especially for open-source software solutions,
but also proprietary ones as reverse engineering software-only
solutions take less effort as opposed to reverse engineering the
works of SEDs. A start of this reevaluation has been made, as
since our public release Microsoft has made available a new
preview version (build 18317) of the next Windows 10 version
(19H1). In that version, the default behavior of BitLocker is
to not delegate (and trust) the encryption of data to the drives.
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Algorithm 1 ProtectPasswd
Require: abRdsKey, abDeviceKey, aabCredentialTable
Ensure: Credential szPasswd is stored in aabCredentialTable at dwSlotNo

procedure PROTECTPASSWD(szPasswd, bStoreRdsKey, dwSlotNo)
if bStoreRdsKey then

abPlaintext ← abRdsKey
else

abPlaintext ← [0x00× 32] � abPlaintext is a zero buffer
abSalt ← RANDOM(32 bytes)
abKey ← PBKDF2(szPasswd, abSalt)
abCiphertext ← ENCRYPT(abKey, abPlaintext)
stProtectedPasswd ← (abSalt, abCiphertext)
abOutput ← ENCRYPT(abDeviceKey, stProtectedPasswd)
aabCredentialTable[dwSlotNo] ← abOutput

APPENDIX A
VENDOR COMMANDS AVAILABLE ON THE CRUCIAL

MX100 AND MX200

The Crucial MX100 and MX200 feature several vendor-
specific commands that allow engineers to diagnose the device.
The commands must be unlocked before they can be used. The
list of commands presented below is far from exhaustive.
Unlocking. Unlocking the vendor-specific features is done by
issuing a FDh (vendor-specific) ATA command, with feature
code 55h. Setting the LBA to 306775h, and the block count
to 65h will unlock the vendor-specific commands.
SPI flash functions. Both the MX100 and the MX200 have a
NOR flash connected through the SPI bus. It contains, among
other things, the drive’s capacity, serial number, error logs, and
boot loader (see Section VI-C). Vendor-specific ATA command
FAh, with feature code D2h reads a page from the SPI flash
and returns the result. The LBA represents the page number
that is to be retrieved. Likewise, command FCh, feature E2h
erases a page. Command FBh, feature D2h writes data to the
SPI flash.
Arbitrary memory write. The MX100 allows one to write
arbitrary data to any desired address within the address space.
The opcode is FBh, feature code 23h. The command expects
a concatenated list of address-value tuples.

APPENDIX B
VENDOR COMMANDS AVAILABLE ON THE SAMSUNG

840EVO

The 840 EVO features several vendor-specific commands.
As is the case with the Crucial drives, these commands require
unlocking. Only a small subset of commands are analyzed,
since the vast majority are not security related.

Unlocking the vendor-specific features is done by issuing a
85h (vendor-specific) ATA command with feature code 46h.
The payload is a single block (512 bytes) with the last 16
bytes set to

C7D0B1B3C1BEC0CCB6AFB6AFBEEEBCAD
The crypto blob can be retrieved by issuing a 83h (vendor-

specific) ATA command, with feature code 12h. Likewise, the
crypto blob can be overwritten with command 83h, feature
code 13h.

Security evaluation: We managed to identify several im-
plementation mistakes, two of which, depending on the cir-
cumstances, can be leveraged into full recovery of the data.

APPENDIX C
PSEUDOCODE OF VARIOUS ROUTINES IN THE CRUCIAL

MX300 FIRMWARE.

The ProtectPasswd function (Algorithm 1) takes a password
and stores it in the credential table so that an incoming
password can be checked for validity at a later point in time.
The bStoreRdsKey parameter determines whether the stored
credential should encapsulate the RDS key. In that case, the
credential allows access to protected ranges (see Figure 2).

The function VerifyPasswd (Algorithm 2) is the inverse of
ProtectPasswd. It has two purposes: checking the validity of a
password, and, in case the bExtractRdsKey parameter is set,
using the password to decrypt the RDS key and copying it to
the global RDS key buffer, allowing other functions to use it.

Algorithm 2 VerifyPasswd
Require: abRdsKey, abDeviceKey, aabCredentialTable
Ensure: Verify szPasswd and set global RDS key if bExtractRdsKey = true

function VERIFYPASSWD(szPasswd, bExtractRdsKey, dwSlotNo)
abInput ← aabCredentialTable[dwSlotNo]
stProtectedPasswd ← DECRYPT(abDeviceKey, abInput)
if decrypt failed then

return ERROR
(abSalt, abCiphertext) ← stProtectedPasswd
abKey ← PBKDF2(szPasswd, abSalt)
abPlaintext ← DECRYPT(abKey, abCiphertext)
if decrypt failed then

return ERROR
if bExtractRdsKey then

abRdsKey ← abPlaintext
return SUCCESS

Furthermore, the UnwrapDek function (Algorithm 3) takes
an entry from the range key table, and decrypts it using either
the RDS key, or the device key (for protected and unprotected
ranges, respectively), as determined by the bIsProtectedRange
parameter. Obviously, for protected ranges, the RDS key must
be decrypted, prior to invoking UnwrapDek.

Algorithm 3 UnwrapDek
Require: abRdsKey, abDeviceKey, aabRangeKeyTable,

aabUnwrappedRangeKeyTable
Ensure: Range key dwRangeNo is unwrapped

function UNWRAPDEK(dwRangeNo, bIsProtectedRange)
if bIsProtectedRange then

abKey ← abRdsKey
else

abKey ← abDeviceKey
abCiphertext ← aabRangeKeyTable[dwSlotNo]
abPlaintext ← DECRYPT(abKey, abCiphertext)
if decrypt failed then

return ERROR
aabUnwrappedRangeKeyTable[dwSlotNo] ← abPlaintext
return SUCCESS

Finally, we implicitly define the functions WrapDek, Copy-
Credential, GenerateRandomDekAndWrap, and StoreCrypto-
ContextInSpiFlash as their functionality is clear from their
names.



APPENDIX D
EXECUTION TRACE CAPTURED ON A CRUCIAL MX300 DRIVE DURING THE BITLOCKER SET-UP PHASE.

VerifyPasswd(szPasswd="AEGIS_ACADIA_MSID_12456789012345", bExtractRdsKey=true, dwSlotNo=2)
VerifyPasswd(szPasswd="AEGIS_ACADIA_MSID_12456789012345", bExtractRdsKey=true, dwSlotNo=2)
CopyCredential(dwSourceSlot=2, dwDestinationSlot=10)
ProtectPasswd(szPasswd=[0x00× 32], bStoreRdsKey=true, dwSlotNo=11) � szPasswd is zero buffer
CopyCredential(dwSourceSlot=11, dwDestinationSlot=12)
CopyCredential(dwSourceSlot=11, dwDestinationSlot=13)
CopyCredential(dwSourceSlot=11, dwDestinationSlot=14)
CopyCredential(dwSourceSlot=11, dwDestinationSlot=15)
CopyCredential(dwSourceSlot=11, dwDestinationSlot=16)
CopyCredential(dwSourceSlot=11, dwDestinationSlot=17)
CopyCredential(dwSourceSlot=11, dwDestinationSlot=18)
CopyCredential(dwSourceSlot=11, dwDestinationSlot=19)
CopyCredential(dwSourceSlot=11, dwDestinationSlot=20)
CopyCredential(dwSourceSlot=11, dwDestinationSlot=21)
CopyCredential(dwSourceSlot=11, dwDestinationSlot=22)
CopyCredential(dwSourceSlot=11, dwDestinationSlot=23)
CopyCredential(dwSourceSlot=11, dwDestinationSlot=24)
CopyCredential(dwSourceSlot=11, dwDestinationSlot=25)
CopyCredential(dwSourceSlot=11, dwDestinationSlot=26)
CopyCredential(dwSourceSlot=11, dwDestinationSlot=27)
CopyCredential(dwSourceSlot=11, dwDestinationSlot=28)
CopyCredential(dwSourceSlot=11, dwDestinationSlot=29)
StoreCryptoContextInSpiFlash()
VerifyPasswd(szPasswd="AEGIS_ACADIA_MSID_12456789012345", bExtractRdsKey=true, dwSlotNo=2)
VerifyPasswd(szPasswd="AEGIS_ACADIA_MSID_12456789012345", bExtractRdsKey=true, dwSlotNo=10)
VerifyPasswd(szPasswd="AEGIS_ACADIA_MSID_12456789012345", bExtractRdsKey=true, dwSlotNo=2)
ProtectPasswd(szPasswd=«BitLocker SID password», bStoreRdsKey=true, dwSlotNo=2))
StoreCryptoContextInSpiFlash()
VerifyPasswd(szPasswd="AEGIS_ACADIA_MSID_12456789012345", bExtractRdsKey=true, dwSlotNo=10)
ProtectPasswd(szPasswd=«BitLocker SID password», bStoreRdsKey=true, dwSlotNo=10)
StoreCryptoContextInSpiFlash()
VerifyPasswd(szPasswd=[0x00× 32], bExtractRdsKey=true, dwSlotNo=15)
GenerateRandomDekAndWrap(dwRangeNo=1, bIsProtectedRange=false)
VerifyPasswd(szPasswd=[0x00× 32], bExtractRdsKey=true, dwSlotNo=15)
StoreCryptoContextInSpiFlash()
UnwrapDek(dwRangeNo=1, bIsProtectedRange=false)
VerifyPasswd(szPasswd=[0x00× 32], bExtractRdsKey=true, dwSlotNo=15)
VerifyPasswd(szPasswd=[0x00× 32], bExtractRdsKey=true, dwSlotNo=15)
VerifyPasswd(szPasswd=[0x00× 32], bExtractRdsKey=true, dwSlotNo=15)
VerifyPasswd(szPasswd=[0x00× 32], bExtractRdsKey=true, dwSlotNo=15)
VerifyPasswd(szPasswd=[0x00× 32], bExtractRdsKey=true, dwSlotNo=15)
VerifyPasswd(szPasswd=[0x00× 32], bExtractRdsKey=true, dwSlotNo=15)
VerifyPasswd(szPasswd=[0x00× 32], bExtractRdsKey=true, dwSlotNo=15)
VerifyPasswd(szPasswd=[0x00× 32], bExtractRdsKey=true, dwSlotNo=15)
UnwrapDek(dwRangeNo=1, bIsProtectedRange=false)
WrapDek(dwRangeNo=1, bIsProtectedRange=true)
VerifyPasswd(szPasswd=[0x00× 32], bExtractRdsKey=true, dwSlotNo=15)
ProtectPasswd(szPasswd=«BitLocker user password», bStoreRdsKey=true, dwSlotNo=15)
StoreCryptoContextInSpiFlash()
VerifyPasswd(szPasswd=«BitLocker user password», bExtractRdsKey=true, dwSlotNo=15)
VerifyPasswd(szPasswd=«BitLocker user password», bExtractRdsKey=true, dwSlotNo=15)


