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Abstract—Hybrid testing combines fuzz testing and concolic
execution. It leverages fuzz testing to test easy-to-reach code
regions and uses concolic execution to explore code blocks
guarded by complex branch conditions. As a result, hybrid testing
is able to reach deeper into program state space than fuzz
testing or concolic execution alone. Recently, hybrid testing has
seen significant advancement. However, its code coverage-centric
design is inefficient in vulnerability detection. First, it blindly
selects seeds for concolic execution and aims to explore new code
continuously. However, as statistics show, a large portion of the
explored code is often bug-free. Therefore, giving equal attention
to every part of the code during hybrid testing is a non-optimal
strategy. It slows down the detection of real vulnerabilities by
over 43%. Second, classic hybrid testing quickly moves on after
reaching a chunk of code, rather than examining the hidden
defects inside. It may frequently miss subtle vulnerabilities
despite that it has already explored the vulnerable code paths.

We propose SAVIOR, a new hybrid testing framework pi-
oneering a bug-driven principle. Unlike the existing hybrid
testing tools, SAVIOR prioritizes the concolic execution of the
seeds that are likely to uncover more vulnerabilities. Moreover,
SAVIOR verifies all vulnerable program locations along the
executing program path. By modeling faulty situations using
SMT constraints, SAVIOR reasons the feasibility of vulnerabil-
ities and generates concrete test cases as proofs. Our evaluation
shows that the bug-driven approach outperforms mainstream
automated testing techniques, including state-of-the-art hybrid
testing systems driven by code coverage. On average, SAVIOR
detects vulnerabilities 43.4% faster than DRILLER and 44.3%
faster than QSYM, leading to the discovery of 88 and 76 more
unique bugs, respectively. According to the evaluation on 11 well
fuzzed benchmark programs, within the first 24 hours, SAVIOR
triggers 481 UBSAN violations, among which 243 are real bugs.

I. INTRODUCTION

Software inevitably contains defects [14, 64]. A large
amount of these defects are security vulnerabilities that can
be exploited for malicious purposes [54]. This type of vulner-
able code has become a fundamental threat against software
security. Contributed from both academia and industry, au-
tomated software testing techniques have gained remarkable
advances in finding software vulnerabilities. In particular,
people have widely used fuzz testing [2, 68] and concolic
execution [51, 59] to disclose a great amount of vulnerabilities
every year. Nevertheless, the inherent limitations of these two
techniques impede their further applications. On one hand,
fuzz testing quickly tests a program, but it hardly explores
code regions guarded by complex conditions. On the other
hand, concolic execution excels at solving path conditions
but it frequently directs the execution into code branches
containing a large number of execution paths (e.g., loop).
Due to these shortcomings, using fuzz testing or concolic

execution alone often ends with large amounts of untested code
after exhausting the time budget. To increase code coverage,
recent works have experimented the idea of hybrid testing,
which combines both fuzz testing and concolic execution
[47, 66, 73].

The goal of hybrid testing is to utilize fuzzing in path
exploration and leverage concolic execution to solve hard-
to-resolve conditions. A hybrid approach typically lets fuzz
testing run as much as possible. When the fuzzer barely makes
any progress, the hybrid controller switches to the concolic
executor which re-runs the generated seeds from fuzzing.
During the run, the concolic executor checks each conditional
branch to see whether its sibling branches remain untouched.
If so, the concolic executor solves the constraints of the new
branch and contributes a new seed for fuzzing. In general, this
hybrid approach guides the fuzzer to new regions for deeper
program space exploration.

As shown in recent works [66, 73], hybrid testing creates
new opportunities for higher code coverage. However, its
coverage-driven principle unfortunately results in inefficiency
when the end goal is vulnerability detection. Two key issues
cause such inefficiency. First, existing approaches value all
the seeds from fuzzing equally. However, the code regions
reachable by a number of seeds might lack vulnerabilities
and testing them is expensive (e.g., constraint solving and
extra fuzzing). Consequently, hybrid testing often exhausts the
assigned time budget way before it finds any vulnerability.
Second, hybrid testing could fail to identify a vulnerability
even if it reaches the vulnerable code via the correct path. This
is because hybrid testing primarily concentrates on covering
the encountered code blocks in the manner of random exercise.
This strategy oftentimes has low chances to satisfy the subtle
conditions to reveal a vulnerability.

In this work, we design and implement SAVIOR (ab-
breviation for Speedy-Automatic-Vulnerability-Incentivized-
ORacle), a hybrid, bug-driven testing method. To fulfill this
goal, we use two novel techniques in SAVIOR:

Bug-driven prioritization: Instead of running all seeds with-
out distinction in concolic execution, SAVIOR prioritizes
those that have higher possibilities of leading to vulnerabilities.
Specifically, before the testing, SAVIOR analyzes the source
code and statically labels the potentially vulnerable locations
in the target program. Here SAVIOR follows existing meth-
ods [21, 35] to conservatively label all suspicious locations.
Moreover, SAVIOR computes the set of basic blocks reach-
able from each branch. During dynamic testing, SAVIOR
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1 define void @bug(%struct.msg_ds* %msg) #0 {
2 entry:
3 %msg.addr = alloca %struct.msg_ds*, align 8
4 %sz = alloca i64, align 8
5 %buf = alloca i8*, align 8
6 store %struct.msg_ds* %msg, %struct.msg_ds**

%msg.addr, align 8,!
7 %0 = load %struct.msg_ds*, %struct.msg_ds**

%msg.addr, align 8,!
8 %msg_sz = getelementptr inbounds %struct.msg_ds,

%struct.msg_ds* %0, i32 0, i32 4,!
9 %1 = load i64, i64* %msg_sz, align 8

10 %2 = call { i64, i1 }
@llvm.uadd.with.overflow.i64(i64 24, i64 %1),!

11 %3 = extractvalue { i64, i1 } %2, 0
12 %4 = extractvalue i64, i1 %2, 1

13 %5 = xor i1 %4, true, !saviorBugNum !1 ; label
of integer overflow,!

14 br i1 %5, label %cont, label
%handler.add_overflow, !prof !2,
!saviorBugNum !1

,!
,!

15
16 handler.add_overflow: ;

preds = %entry,!
17 call void @__ubsan_handle_add_overflow(i8*

bitcast ({ { [6 x i8]*, i32, i32 }, { i16,
i16, [16 x i8] }* }* @1 to i8*), i64 24, i64
%1) #7, !saviorBugNum !1

,!
,!
,!

18 br label %cont, !saviorBugNum !1
19
20 cont: ;

preds = %handler.add_overflow, %entry,!
21 store i64 %3, i64* %sz, align 8
22 %6 = load i64, i64* %sz, align 8
23 %call = call noalias i8* @malloc(i64 %6) #7
24 store i8* %call, i8** %buf, align 8
25 %7 = load i64, i64* %sz, align 8
26 call void @llvm.memset.p0i8.i64(i8* bitcast (void

(%struct.msg_ds*)* @bug to i8*), i8 0, i64
%7, i32 4, i1 false)

,!
,!

27 ret void
28 }

1 int parse_pcap(){
2 int link_type;
3 /*read link-layer type from input*/
4 read(input_fd, &link_type, sizeof(int));
5 /*select a handler based on link_type*/
6 if(link_type == LINKTYPE1){
7 pcap_handler1();
8 return 0;
9 }

10 if(link_type == LINKTYPE2){
11 pcap_handler2();
12 return 0;
13 }
14 ...
15 return -1;
16 }
17 int pcap_handler1(){
18 int packet_type;
19 read(input_fd, &packet_type, sizeof(int));
20 if(packet_type == PACKET1){
21 packet_handler1();
22 return 0;
23 }
24 ...
25 return -1;
26 }

5

(a) A simplified version of the packet-parsing code in
tcpdump-4.9.2, in which pcap_handler2 con-
tains vulnerabilities.

4. read( input_fd,
&link_type… )

6. if( link_type … )
7. pcap_handler1()

19. read( input_fd,
&packet_type…)

20. if(packet_type...)

25. return -1

15. return -1

22. packet_handler1()

(b) The path followed by a seed that
matches LINKTYPE1 but mismatches
PACKET1.

4. read(input_fd,
&link_type…)

6. if(link_type ==
LINKTYPE1)

10. if(link_type ==
LINKTYPE2)

15. return -1 11. pcap_handler2()

(c) The path followed by a seed
that matches neither LINKTYPE1 nor
LINKTYPE2.

Fig. 1: A demonstrative example of hybrid testing. Figure 1a presents the code under test. Figure 1b and 1c are the paths
followed by two seeds from the fuzzer. Their execution follows the red line and visits the grey boxes. Note that the white
boxes connected by dotted lines are non-covered code.

prioritizes the concolic execution seeds that can visit more
important branches (i.e., branches whose reachable code has
more vulnerability labels). Intuitively, those branches may
guard higher volumes of vulnerabilities and hence, prioritizing
them could expedite the discovery of new vulnerabilities. As
we will show in Section V, this prioritization enables SAVIOR
to outperform DRILLER [66] and QSYM [73] with a 43.4%
and 44.3% increase in bug discovering rate, respectively.

Bug-guided verification: Aside from accelerating vulnerabil-
ity detection, SAVIOR also verifies the labeled vulnerabilities
along the program path traversed by the concolic executor.
Specifically, SAVIOR synthesizes the faulty constraint of
triggering each vulnerability on the execution path. If such
constraint under the current path condition is satisfiable,
SAVIOR solves the constraint to construct a test input as
the proof. Otherwise, SAVIOR proves that the vulnerability
is infeasible on this path, regardless of the input. This SMT-
solving based strategy, as demonstrated in Section V, enables
DRILLER, QSYM, and SAVIOR to disclose not only all the
listed bugs but also an additional group of bugs in LAVA-
M [36]. Besides, it facilitates the three hybrid tools to find at
least 22.2%, 25%, 4.5% more UBSan violations.

This work is not the first one that applies hybrid testing to
vulnerability detection. However, to the best of our knowledge,
SAVIOR is the first work that explores bug-driven hybrid
testing. On one hand, SAVIOR concentrates on software code
that contains more potential vulnerabilities. This design not
only brings faster coverage of vulnerabilities but also decreases
the testing cost of the code that is less likely vulnerable. On
the other hand, SAVIOR validates the vulnerabilities by the
objective proofs of existence. In contrast, traditional hybrid
testing methods can easily miss subtle cases. Moreover, the
two proposed techniques are not limited to SAVIOR itself
since they are general enough for other systematic software
analysis methods. We will discuss the details in Section III.
In summary, we make the following contributions.

• We design SAVIOR, a bug-driven hybrid testing tech-
nique. It substantially enhances hybrid testing with bug-
driven prioritization and bug-guided verification.

• We build SAVIOR and show that our implementation
can scale to a diverse set of real-world software.

• We demonstrate the effectiveness of SAVIOR by a
comprehensive evaluation. In total, SAVIOR discov-
ers 481 unique security violations in 11 well-studied
benchmarks. On average, SAVIOR detects vulnerabilities
43.4% faster than DRILLER and 44.3% faster than
QSYM, leading to the discovery of 88 and 76 more
security violations in 24 hours.

The rest of this paper is organized as follows. Section II
states the background of hybrid testing and motivates our
research. Section III and Section IV present the design and
implementation of SAVIOR in detail. Section V evaluates
the core techniques of SAVIOR. Section VI summarizes the
related work. Finally, we conclude this work in Section VII.

II. BACKGROUND AND MOTIVATION

This work is motivated by the limitations of hybrid testing
in vulnerability detection. In this section, we first introduce
the background of hybrid testing and then demonstrate the
limitations by two examples.

A. Hybrid Testing

Hybrid testing combines fuzz testing and concolic execution
to achieve high code coverage. For the ease of understanding,
we use the example in Figure 1 to explain how it works. The
explanation is based on Driller [66] since it has been the de
facto implementation of hybrid testing.

The example in Figure 1 is taken from tcpdump-4.9.2.
Figure 1a shows the code — it first uses the link-layer
type from input to select a pcap handler and then uses the
handler to dissect packets. Our objective is to test the entry
function parse_pcap and reach the vulnerable function
pcap_handler2.

1581



In the test, we assume hybrid testing starts with a seed that
executes the path shown in Figure 1b. After that, the fuzzer
mutates the seed to run a second path shown in Figure 1c. It
then, however, fails to synthesize inputs that match the packet
type at line 20 and the link-layer type at line 10, due to the
huge mutation space (232 possibilities). This situation prevents
the fuzzer from testing the remaining code and makes hybrid
testing switch to concolic execution.

After executing the seed that covers the path in Figure 1b,
the concolic executor backtracks to the branch statement at
line 20. Solving the input packet_type to PACKET1 by
a SMT solver, the executor generates a new seed to cover
that branch. Then, the hybrid controller suspends the concolic
execution and resumes the fuzzer. Guided by the new seed,
the fuzzer tests packet_handler1 and switches back to
concolic execution after that. This time, the concolic executor
runs the seed, following the path in Figure 1c. After solving
the branch condition at line 10, it generates a seed for the
flow from line 10 to line 11. Further fuzz testing can finally
reach the vulnerable code in pcap_handler2.

Note that the testing processes by different hybrid tools may
vary from the above description. For instance, QSYM [73]
keeps running concolic execution instead of invoking it in an
interleaved manner. Despite those implementation differences,
existing tools share a similar philosophy on scheduling the
seeds to concolic execution. That is, they treat the seeds
indiscriminately [66, 73], presumably assuming that these
seeds have equal potentials in contributing to new coverage.

B. Motivation

Inefficiency in Covering Vulnerable Code: Although hybrid
testing specializes in coverage-driven testing, it still needs
substantial time to saturate hard-to-reach code compartments,
which often overspends the time budget. To discover more
vulnerabilities in a limited time frame, an intuitive way is to
prioritize the testing of vulnerable code. However, the current
hybrid testing method introduced in Section II-A does not meet
this requirement.

Consider the example in Figure 1, where concolic execution
chronologically runs the seeds to explore the paths shown
in Figure 1b and Figure 1c. This sequence indeed postpones
the testing of the vulnerable function pcap_handler2. The
delay can be significant, because concolic execution runs
slowly and the fuzz testing on packet_handler1 may last
a long time. In our experiments1, DRILLER spends minutes on
reaching pcap_handler2 with the aforementioned sched-
ule. However, if it performs concolic execution first on the
path in Figure 1c, the time can reduce to seconds.

Not surprisingly, the delayed situations frequently happen in
practice. As we will show in Section V, on average this defers
DRILLER and QSYM to cover vulnerabilities by 43.4% and
44.3%, leading to reduced efficiency in vulnerability finding.

1SAVIOR is customized to do this test since DRILLER cannot run on
tcpdump. More details can be found in Section V

1 /* len is propagated from a field in the input */
2 void ahcp_print( ... u_char *cp, const u_int len){
3
4 uint8_t version;
5 ...
6 version = EXTRACT_U_1(cp);
7 cp += 1;
8 switch (version) {
9 ...

10 /*blocking condition 1*/
11 case AHCP_VERSION_1: {
12 /*blocking condition 2*/
13 if (len < AHCP1_HEADER_FIX_LEN)
14 goto invalid;
15
16 /* dominate XXX basic blocks*/
17 ahcp1_body_print(ndo, cp, ep);
18 ...
19 break;
20 }
21 default:
22 ND_PRINT(...);
23 break;
24 }
25 return;
26 invalid:
27 ND_PRINT(...);
28 ...
29 return;
30 ...
31 }

1 static bfd_boolean load_specific_debug_section(enum
dwarf_section_display_enum debug, asection
*sec, void *file){

,!
,!

2
3 dwarf_section *section =

&debug_displays[debug].section;,!
4
5 if (section->start != NULL){
6 if (streq (...)
7 return TRUE;
8 free (section->start);
9 }

10 ...
11 /*section->size is copied from input */
12 section->size = bfd_get_section_size (sec);
13
14 /*setting section->size as 0xffffffffffffffff

on 64-bit systems or 0xffffffff on 32-bit
systems, malloc will return a zero-byte
buffer, leading to out of bound access */

,!
,!
,!

15 section->start = malloc(section->size + 1);
16 ...
17 }

1 typedef struct msg_ds{
2 char str[2]; int magic,ver,secret_num;
3 } msg_t;
4
5 int main(){
6 msg_t msg;
7 read(STDIN, &msg, sizeof(msg_t));
8
9 if(msg.ver == 0xFFFFAB)

10 log_msg(msg);
11 if(msg.str[0] != 'h')
12 return -1;
13 if(msg.str[1] != 'i')
14 return -1;
15 if(msg.magic != 0x12FF6EF)
16 return -1;
17
18 bug();
19 return 0;
20 }

2

Fig. 2: A demonstrative example of limitation in finding
defects by existing hybrid testing. This defect comes from
objdump-2.29 [15].

Deficiency in Vulnerability Detection: Hybrid testing often
fails to identify a vulnerability even if it approaches the vulner-
able location along the right path. Figure 2 demonstrates an
integer overflow in objdump-2.29. At line 12, the program
copies a value from sec to section→size. Next, this
value is used as the size of a memory allocation request at
line 15. By carefully handcrafting the input, an adversary can
make section→size be the value 232-1 on 32-bit systems
or 264-1 on 64-bit systems. This wraps section→size+1
around to 0 and makes malloc return a zero-byte buffer.
When the buffer is further used, a segfault or a memory leak
would occur.

In this example, hybrid testing can quickly generate a seed
to hit line 15. However, it could barely trigger the integer
overflow. As the program enforces no constraints on the input
bytes that propagate to section→size, hybrid testing can
only do random mutation to synthesize the extreme value(s).
Taking into account the tremendous possibility space (232 or
264), the mutation is unlikely to succeed.

III. DESIGN

A. Core Techniques

The design of SAVIOR is bug-driven, aiming to find bugs
faster and more thoroughly. We propose two techniques to
achieve the goal: bug-driven prioritization and bug-guided
verification. Below we present an overview of our techniques.

Bug-driven prioritization: Recall that classic hybrid testing
blindly schedules the seeds for concolic execution, without
weighing their bug-detecting potentials. This can greatly defer
the discovery of vulnerabilities. To remedy this limitation,
SAVIOR collects information from the target source code
to prioritize seeds which have higher potentials to trigger
vulnerabilities. This approach, however, needs to predict the
amount of vulnerabilities that running concolic execution on a
seed could expose. The prediction essentially depends on two
prerequisites: R1 – A method to assess the reachable code
regions after the concolic execution on a seed and R2 – A
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b1

b2

b3

b4

b5

b6

b8b7
reachable labels: L2
solve attempts: S2

reachable labels: L1
solve attempts: S1

Fig. 3: An example showing how to estimate the bug-detecting
potential of a seed. In this example, the seed follows the path
b1->b2->b3->b4. Basic block b5 and b7 are unexplored
and they can reach L1 and L2 UBSan labels, respectively. They
have been attempted by constraint solving for S1 and S2 times.
The final score for this seed is e−0.05S1×L1+e−0.05S2×L2

2 .

metric to quantify the amount of vulnerabilities in a chunk of
code. SAVIOR fulfills them as follows.

To meet R1, SAVIOR approximates the newly explorable
code regions based on a combination of static and dynamic
analysis. During compilation, SAVIOR statically computes
the set of reachable basic blocks from each branch. At run-
time, SAVIOR identifies the unexplored branches on the
execution path of a seed and calculates the basic blocks that
are reachable from those branches. We deem that these blocks
become explorable code regions once the concolic executor
runs that seed.

To meet R2, SAVIOR utilizes UBSan [21] to annotate three
types of potential bugs (as shown in Table I) in the program
under testing. It then calculates the UBSan labels in each
code region as the quantitative metric for R2. As UBSan’s
conservative instrumentation may generate dummy labels,
SAVIOR incorporates a static filter to safely remove useless
labels. We discuss the details of this method in Section III-B1.

The above two solutions together ensure a sound analysis
for identifying potential bugs. First, our static reachability
analysis, as described in Section III-B1, is built upon a
sound algorithm. It over-approximates all the code regions that
may be reached from a branch. Moreover, UBSan adopts a
conservative design, which counts all the operations that may
lead to the undefined behavior issues listed in Table I [21, 35].
Facilitated by the two aspects of soundness, we can avoid
mistakenly underrating the bug-detecting potential of a seed.

Following the two solutions, SAVIOR computes the impor-
tance score for each seed as follows. Given a seed with n unex-
plored branches {e1, e2, . . . , en}, SAVIOR calculates the UB-
San labels in the code that are reachable from these branches,
respectively denoted as {L1, L2, . . . , Ln}. Also note that, in
the course of testing, SAVIOR has made {S1, S2, . . . , Sn}
attempts to solve those branches. With these pieces of infor-
mation, SAVIOR evaluates the importance score of this seed
with a weighted average 1

n×
∑n

i=1 e
−0.05Si×Li. Li represents

the potential of the ith unexplored branch. We penalize Li with
e−0.05Si to monotonically decrease its weight as the attempts
to solve this branch grow. The rationale is that more failed

\xfb\xfb\xf4\xf1 \xxx\xxx\xxx\xxx \xfb\xf4\xf1\xf1

section->size

Overflow Condition:
section->size + 1 < section->size

\xfb\xfb\xf4\xf1 \xff \xff \xff \xff \xfb\xf4\xf1\xf1

section->size

solvesection->size+1 > 0xffffffff 

Fig. 4: Solving the integer overflow in Figure 2. This shows
the case in a 32-bit system, but it applies to 64-bit as well.

attempts (usually from multiple paths) indicate a low success
possibility on resolving the branch. Hence, we decrease its
potential so that SAVIOR can gradually de-prioritize hard-
to-solve branches. Lastly, SAVIOR takes the average score
of each candidate branches in order to maximize the bug
detection gain per unit of time. To better understand this
scoring method, we show an example and explain the score
calculation in Figure 3.

This scoring method is to ensure that SAVIOR always
prioritizes seeds leading to more unverified bugs, while in
the long run it would not trap into those with hard-to-solve
branch conditions. First, it conservatively assesses a given
seed by the results of sound reachability and bug labeling
analysis. A seed which leads to more unexplored branches
where more unverified bugs can be reached from will earn a
higher score. Second, it takes into account runtime information
to continuously improve the precision of the assessment. This
online refinement is important because statically SAVIOR
may hardly know whether a branch condition is satisfiable
or not. Utilizing the history of constraint solving attempts,
SAVIOR can decide whether a seemingly high-score branch
is worth more resources in the future. As shown by our evalua-
tion in Section V, this scoring scheme significantly accelerates
the detection of UBSan violations, which empirically supports
the effectiveness of our design.

Referring to our motivating example in Figure 1, the
function packet_handler1 has few UBSan labels while
pcap_handler2 contains hundreds of labels. Hence, the
seed following Figure 1b has a lower score compared to the
other seed which runs the path in Figure 1c. This guides
SAVIOR to prioritize the latter seed, which can significantly
expedite the exploration of vulnerable code.

Bug-guided verification: This technique also ensures a sound
vulnerability detection on the explored paths that reach the
vulnerable sites. Given a seed from fuzz testing, SAVIOR
executes it and extracts the label of each vulnerability along
the execution path. After that, SAVIOR verifies the predicates
implanted in each label by checking the satisfiability under the
current path condition — if the predicate is satisfiable then its
corresponding vulnerability is valid. This enables SAVIOR
to generate a proof of either vulnerability or non-existence
along a specific program path. Note that in concolic execution,
many new states with new branch constraints will be created.
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q Analysis
q Instrument (AFL)

q Fuzzing

q Coverage Test
q Bug-driven

Prioritization

(KLEE)
q Constraint Solving
q Bug-guided

VerificationTarget
Program

AFL binary SAVIOR binary
Label info

KLEE bc

seeds ktests

testcasesnew seeds

Clang + LLVM Fuzzer Coordinator Concolic Executor

Fig. 5: System architecture of SAVIOR.

SAVIOR will prioritize the constraint solving for states who
require bug-guided verification.

Going back to the example in Figure 2, classic hybrid
testing misses the integer overflow at line 15. In contrast,
SAVIOR is able to identify it with bug-guided verification.
Aided by the Clang sanitizer [21], SAVIOR instruments
the potential overflows in a solver-friendly way (i. e., the
predicate of triggering this overflow is section->size +
1 > 0xffffffff). Due to the limited space, we present
the instrumented IR code in Figure 10 at Appendix A. As
demonstrated in Figure 4, following a seed to reach the
integer overflow location, SAVIOR tracks that the value of
section->size relies on a four-byte field in the input.
By solving the vulnerability predicate, SAVIOR generates a
witness value 0xffffffff and triggers the vulnerability.

B. System Design

Figure 5 depicts the overall architecture of SAVIOR. It
consists of a compiling tool-chain built upon Clang and
LLVM, a fuzzer derived from AFL, a concolic executor
ported from KLEE, and a hybrid coordinator responsible for
the orchestration. We explain these components in details in
the following sections.

1) The Compilation Tool-chain: SAVIOR’s compilation
tool-chain has multiple purposes including vulnerability label-
ing, control flow reachability analysis, and the targets building
of different components.

Sound Vulnerability Labeling: In our design, we use Clang’s
Undefined Behavior Sanitizer (UBSan) [21] to label different
families of potential bugs2. Table I summarizes those families
used in SAVIOR and the operations pertaining to them.

We ignore other bug types listed in UBSan (e.g., misaligned
reference) since they are less likely to cause security issues.
For each inserted label, we patch the Clang front-end to attach
a !saviorBugNum metadata, aiding the reachability analysis
that we will shortly discuss.

As explained in Section III-A, UBSan over-approximates
the potential vulnerabilities. This approximation ensures
soundness since it never misses true bugs. UBSan also models
the conditional triggers of the labeled bugs as shown in Table I.
E.g., out-of-bound (OOB) array access happens when the
index x is not between zero and array size minus 1. At the time
of bug-guided verification, SAVIOR solves each triggering
condition to produce a witness of the bug or, prove that the
bug never happens on current path in terms of the unsatisfiable

2Clang supports enabling checks on each individual bug family.

UB Families UBSan Labeling Details
Operation Condition

Out-of-bound array access array[x] x < 0 ∨ x ≥ size(array)
Oversized shift x� y, x� y y < 0 ∨ y ≥ n

Signed integer overflow x ops y x ops y /∈ [−2n−1, 2n−1 − 1]
Unsigned integer overflow x opu y x opu y > 2n − 1

TABLE I: Families of potential bugs that SAVIOR enables
UBSan to label. Here, x, y are n-bit integers; array is an
array, the size of which is specified as size(array); ops and
opu refers to binary operators +,−,×,÷,% over signed and
unsigned integers, respectively.

condition. In Figure 10 at Appendix A, we present the IR with
instrumented UBSan checks for the defect shown in Figure 2.

SAVIOR uses UBSan by default, while other labeling
methods may also apply if they meet the following two prop-
erties. First, they can comprehensively annotate the potential
vulnerabilities. Second, they can synthesize the triggering con-
dition of each labeled vulnerability. Note that such condition
must have data dependency on the program input. Otherwise,
our concolic execution cannot correlate the input with the
vulnerable conditions and hence, has no guidance for bug-
guided verification. For instance, the AddressSanitizer [62]
builds checks upon the status of its own red-zone, which is
not applicable to SAVIOR at the moment.

UBSan’s conservative approximation inevitably introduces
false positives and might mislead SAVIOR’s prioritization.
In practice, we incorporate a static counter-measure to reduce
fake labels. Specifically, we trim a label when all the following
requirements hold: 1) The label’s parent (basic block) is its
immediate dominator [65]; 2) The IR variables involved in the
vulnerability conditions are not re-defined between the label
and its parent; 3) The parent basic block has constraints that
conflict with the vulnerability conditions, and these constraints
are enforced by constant values. The first two points ensure
that the constraints added by the parent will persist upon
reaching the label, and the third point indicates that the conflict
always arises, regardless of the input and the execution path.
Therefore, we can safely remove this label.

1 char array[MAX]; // 0 < MAX < INT_MAX
2 for(int i = 0; i < MAX;){
3 array[i] = getchar();//LABEL: OOB access
4 i++;//LABEL: integer-overflow
5 }

For instance, the code above has two labels that meet the three
requirements. In this example, the variable i ranges from 0
to MAX, meaning that neither the array access at line 3 can
be out-of-bound nor the self increment at line 4 can cause an
integer overflow. SAVIOR hence removes the two labels. In
Table IX at Appendix A, we summarize the number of labels
that are removed from each of our benchmark programs. On
average, we can conservatively reduce 5.36% of the labels.

Reachability Analysis: This analysis counts the number of
vulnerability labels that can be forwardly reached by each
basic block in the program control flow graph (CFG). It
proceeds with two phases. The first step constructs an inter-
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procedure CFG. The construction algorithm is close to the
method implemented in SVF [67]. It individually builds intra-
procedure CFGs for each function and then bridges function-
level CFGs by the caller-callee relation. To resolve indirect
calls, our algorithm iteratively performs Andersen’s point-to
analysis and expands the targets of the calls. This prevents
SAVIOR from discarding aliasing information of indirect
calls and therefore, our prioritization would not miscount the
number of vulnerability labels. By examining the CFGs, we
also extract the edge relations between a basic block and its
children for further use in the hybrid coordinator.

BB
Bug#: 3

UBSan…

…UBSan …

UBSan… …

Reachablecode

Fig. 6: A demonstrative ex-
ample of reachability analysis.
The target BB can “reach” 3
UBSan labels.

The second step is to
calculate the UBSan la-
bels that are reachable from
each basic block in the
constructed inter-procedure
CFG. Specifically, we iden-
tify the regions of code that
a basic block can reach and
count the number of UB-
San labels in those regions.
In SAVIOR, we deem this
number as the importance
metric of that basic block
and use it for bug-driven prioritization. For example, in
Figure 6 the basic block BB can reach 8 other basic blocks
while 3 of them have UBSan labels. Thereby we output 3 as
the number of reachable UBSan labels for BB. Note that each
basic block at most has one label after Clang’s compilation.

Target Building: After the labeling and the reachability
analysis, SAVIOR’s compiling tool-chain begins its building
process. It compiles three binaries from the source code
— a fuzzing-binary for the fuzzer, a SAVIOR-binary for
the coordinator, and a LLVM bitcode file for the concolic
executor. In particular, the SAVIOR-binary is instrumented
to print the unique IDs of the executed basic blocks. With
this design, SAVIOR completely decouples the fuzzer, the
concolic executor and the coordinator, thus it supports quick
replacement of any components.

2) The Coordinator: The coordinator bridges the fuzzer
and the concolic executor. It keeps polling seeds from the
fuzzer’s queue and prioritizes those with higher importance
for concolic execution. We explain the details as follows.

Bug-driven Prioritization: In a polling round, the coordi-
nator operates the new seeds in the fuzzer’s queue after
last round. Each seed is fed to the SAVIOR-binary and
the coordinator updates two pieces of information based
on the execution result. First, it updates the global cov-
erage information. The coverage computation here follows
AFL’s original approach. That is, we take the hit counts
of an edge in the following ranges as different cover-
age: [1], [2], [3], [4, 7], [8, 15], [16, 31], [32, 127], [128,∞). Sec-
ond, the coordinator records the sequence of basic blocks

…
LoadAndLink()
Initialization()
TakeSeed()
ConcolicExe()
OutputAndClean()
…

S0S1S2S3…

seed queue

KLEE
Fig. 7: Fork server mode in KLEE. In this mode, KLEE only
performs initialization once and reuses the same executor for
all the received seeds.

visited by each seed. Using the updated coverage information,
the coordinator assigns a score to each seed following the
scheme presented in Section III-A. Here, we re-score all the
seeds except those already tested by our concolic executor,
since the coverage information is dynamically adjusted.

Finally, the coordinator selected the top-ranked seeds and
feed them into the input queue of the concolic executor. If
two seeds have the same score, the coordinator prefers the
seed with the +cov property. +cov indicates that the seed
brings new code coverage.

Post-processing of Concolic Execution: Going beyond seed
scheduling for concolic execution, the coordinator also need
to triage the new seeds generated by the concolic executor for
the fuzzer. First, it re-runs the new seeds and retains those
who provide new coverage or can reach uncovered bug labels.
As a result, SAVIOR transfers the valuable test cases from
the concolic executor to the fuzzer.

Second, the coordinator updates the number of solving
attempts upon uncovered branches. If a branch remains
uncovered, its solving attempts would be increased by 1. As
such, a branch having a much higher solving attempt value
will be de-prioritized.

3) The Concolic Executor: The concolic executor replays
the seeds scheduled by the coordinator and chooses to solve
branch conditions based on coverage information. In addition,
it also performs bug-guided verification.

Independent Coverage Scheme: When encountering a branch
instruction the concolic executor needs to decide whether to
solve this branch’s condition. An intuitive design is to reuse
the coverage information from the coordinator. However, since
our coverage scheme is ID based, yet as KLEE invokes a
group of transformations on the target bitcode, this leads to
numerous mismatches between the edge IDs in the SAVIOR-
binary and the KLEE bitcode. To tackle this problem, we opt to
use KLEE’s internal coverage information to better decouple
the concolic executor and other components.

Fork Server Mode: Before running a seed, KLEE needs to
perform a group of initialization, including bitcode loading,
library bitcode linking, and global data preparation to place
the program under testing into the virtual machine. This
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initialization process, however, typically takes a long time
on large bitcode files. For instance, the initialization time
for tcpdump is usually several times longer than the actual
concolic execution time. To address this issue, we introduce
an optimization named fork server mode for the KLEE con-
colic executor (as shown in Figure 7). Technical details are
explained in Section IV.

Bug-guided Verification: Our concolic executor also performs
bug-guided verification. Once an non-covered vulnerability
label is reached, we endeavor to solve the triggering constraint
following the current path. If the solving succeeds, KLEE
generates a seed as the proof of the vulnerability.

In certain cases, the path constraints may conflict with
the vulnerability triggering conditions, while that vulnerability
can indeed happen following the same path (with fewer
constraints). QSYM [73] summarizes this issue as the over-
constraint problem. We adopt QSYM’s optimistic solving
strategy only on solving the vulnerability conditions. However,
the relaxed-constraint may also produce a false positive, and
we do not count a vulnerable label as being covered through
relaxed-constraint solving.

Timeout on Concolic Execution: To prevent the concolic
execution from hanging on localized code regions (e.g., , deep
loops and blocking IO), the concolic executor usually needs
a time threshold while running a seed. QSYM adjusts this
timing budget by watching AFL’s status. If the number of
hanging seeds increases, QSYM increases the timeout (up to
10 minutes). We set the timeout to be proportional to the
number of uncovered branches that a seed can reach. The
rationale is that those seeds need more time for constraint
solving and such setting benefits higher bug coverage.

IV. IMPLEMENTATION

We have implemented SAVIOR, which can be applied
to software as sophisticated as Baidu’s Apollo Autonomous
Driving System [5, 37]. SAVIOR consists of four major
components: a compiling tool-chain built on top of Clang and
LLVM-4.0, a fuzzing component based on AFL-2.5b [2], a
concolic executor built atop KLEE [27] (with LLVM-3.6), and
a python middle-ware which coordinates the fuzzing compo-
nent and the concolic executor. In total, our implementation
has about 3.3K lines of python code and 4K lines of C/C++
code. SAVIOR can run on both 32-bit and 64-bit systems, and
it can support both 32-bit and 64-bit targets. In the following,
we discuss the important implementation details.

Concolic Executor: We develop our concolic executor based
on KLEE-3.6. The original KLEE aims at full symbolic
execution, and it does not support concolic execution. We
port a concolic executor from KLEE’s symbolic executor.
Specifically, the concolic executor attaches the concrete input
as the assignment property in the initial state. It then sym-
bolically interprets each instruction as KLEE originally does.
On reaching a conditional statement, it always follows the
branch that matches the concrete input. For the other branch,

if not covered, the concolic executor solves the conditions and
generate a corresponding testcase. The state following that
branch is then immediately terminated. When generating the
seed, our concolic executor copies the un-constrained bytes
from the input, instead of padding with random values.

Another limitation of KLEE is that the initialization phase is
notoriously time-consuming. To overcome this, we introduce a
fork server mode. In a run, KLEE first sets up the environments
with bitcode loading, library linking, and preparing for globals
and constants. These are then followed by the initialization
of an Executor. By default, the Executor executes one
seed and then destructs itself. In our implementation, after
the execution of one seed, we clean up any stateful changes
introduced in last execution (including destructing the memory
manager, clearing the global data objects, and erasing all the
remaining states). Then we reuse the Executor to run a new
seed from the input queue. In this mode, we avoid repeating
the lengthy environments setup.

Recall that we invoke UBSan to label potentially vulnerable
operations. At the IR level, UBSan replaces those operations
with LLVM intrinsic functions, which are incomprehensible
by KLEE. We replace those intrinsic functions with general
LLVM IR so that KLEE can execute without exceptions. The
replacements follow those that KLEE already enforced [10].

By default, KLEE redirects un-modeled external functions
(e.g., system calls) to the native code. This causes two issues.
First, KLEE is unaware of their effects on the symbolic address
space, which can interrupt memory operations. For instance,
the function strdup allocates a new buffer and copies data
from the source to this buffer. However, KLEE cannot capture
this allocation due to the lack of modeling. On future accesses
to this buffer, KLEE will throw an out-of-bound access error.
There are many similar cases, such as getenv. We extend
KLEE’s environment model to include the symbolic versions
of those functions. Second, KLEE concretizes the data passed
to the external functions and adds constant constraints on such
data for future execution. However, this may over-constraint
the concretized variables. For instance, KLEE concretizes the
data written to standard output or files. This leads to over-
constraints – When the concretized data is later used in
constraint solving, KLEE will not be able to find a satisfying
solution. To address this issue, we prevent KLEE from adding
constraints on concretization. This scheme, following the
design of S2E [31] and QSYM [73], ensures that we never
miss solutions for non-covered branches.

Last but not least, stock KLEE provides limited support
for software written in C++. Since a lot of the C++ programs
rely on the standard C++ library (e.g., libstdc++ on Linux) but
KLEE neither models this library nor supports the semantics
of calls to this library. Therefore, KLEE frequently aborts the
execution in the early stage of running a C++ program. We
customize the GNU libstdc++ library to make it compilable
and linkable to KLEE. Considering that many libstdc++ func-
tions also access in-existent devices (e.g., Random), we also
build models of those devices.

1586



Fuzzers Setup
Source Instances Note

AFL [2] 1 AFL master; 2 AFL slaves N/A
AFLGO [1] 1 AFLGo master; 2 AFLGo slaves Use in-lined lava_get as target locations of guided fuzzing
TFUZZ [19] 3 AFL jobs (adjust default argument to Fuzzer) Use the docker environment prepared at [19] for evaluation
ANGORA [3] 3 Angora threads (with option "-j 3") Patch Lava to support Angora, as suggested by the developers [18]
DRILLER Self-developed 1 concolic executor; 1 AFL master; 1 AFL slave Follow the original Driller in scheduling concolic execution [7]
QSYM [17] 1 concolic executor; 1 AFL master; 1 AFL slave N/A
SAVIOR Self-developed 1 concolic executor; 1 AFL master; 1 AFL slave Use in-lined lava_get as labels of vulnerabilities

TABLE II: Fuzzer specific settings in evaluation with Lava-M.

V. EVALUATION

SAVIOR approaches bug-driven hybrid testing with the
key techniques of bug-driven prioritization and bug-guided
verification. In this section, we evaluate these techniques and
our evaluation centers around two questions:
• With bug-driven prioritization, can hybrid testing find

vulnerabilities quicker?
• With bug-guided verification, can hybrid testing find

vulnerabilities more thoroughly?
To support our evaluation goals, we prepare two groups

of widely-used benchmarks. The first group is the LAVA-M
data-set [36]. This data-set comes with artificial vulnerabilities,
and the ground truth is provided. The second group includes
a set of 8 real-world programs. Details about these programs
are summarized in Table V. All these programs have been
extensively tested in both industry [16] and academia [57, 66,
73]. In addition, they represent a higher level of diversity in
functionality and complexity.

Using the two benchmarks, we compare SAVIOR with
the most effective tools from related families. To be specific,
we take AFL [2] as the baseline of coverage-based testing.
As SAVIOR performs testing in a directed manner, we also
include the state-of-the-art directed fuzzer, AFLGO [25]. To
handle complex conditions, recent fuzzing research introduces
a group of new techniques to improve code coverage. From
this category, we cover TFUZZ [56] and ANGORA [29], be-
cause they are open-sourced and representatives of the state-of-
the-art. Finally, we also consider the existing implementations
of hybrid testing, DRILLER [66] and QSYM [73].

Note that the original DRILLER has problems of running
many of our benchmarks, due to lack of system-call modeling
or failure to generate test cases (even with the patch [6] to
support input from files). This aligns with the observations
in [73]. In the evaluation, we re-implement DRILLER on
the top of SAVIOR. More specifically, it runs AFL as the
fuzzing component and it invokes the concolic executor once
the pending_favs attribute in AFL drops to 0. These
implementations strictly follow the original DRILLER [7].
Similar to the Angr-based concolic executor in DRILLER,
our KLEE-based concolic executor focuses on generating new
seeds to cover untouched branches. In addition, we keep the
relaxed constraint solving and the fork-server mode. These two
features increase the effectiveness and efficiency of DRILLER
without introducing algorithmic changes.

In the following, we will explain the experimental setups
and evaluation results for the two groups of benchmarks.

A. Evaluation with LAVA-M

1) Experimental Setup: In this evaluation, we run each
of the fuzzers in Table II with the four LAVA-M programs
and we use the seeds shipped with the benchmark. For
consistency, we conduct all the experiments on Amazon EC2
instances (Intel Xeon E5 Broadwell 64 cores, 256GB RAM,
and running Ubuntu 16.04 LTS), and we sequentially run all
the experiments to avoid interference. In addition, we assign
each fuzzer 3 free CPU cores to ensure fairness in terms
of computation resources. Each test is run for 24 hours. To
minimize the effect of randomness in fuzzing, we repeat each
test 5 times and report the average results.

In Table II, we also summarize the settings specific to
each fuzzer, including how we distribute the 3 CPU cores
and the actions we take to accommodate those fuzzers. In
LAVA-M, each artificial vulnerability is enclosed and checked
in a call to lava_get (in-lined in our evaluation). We use
these calls as the targets to guide AFLGO and we mark them
as vulnerability labels to enable bug-driven prioritization in
SAVIOR. In addition, as the vulnerability condition is hard-
coded in the lava_get function, we naturally have support
for bug-guided verification. Finally, for ANGORA, we adopt
the patches as suggested by the developers [18].

2) Evaluation Results: In the left column of Figure 8,
we show how many vulnerabilities are reached over time
by different fuzzers. The results demonstrate that all the
fuzzers can instantly cover the code with LAVA vulnerabilities.
However, as presented in the right column of Figure 8, TFUZZ,
ANGORA, DRILLER, QSYM, and SAVIOR are able to trigger
most (or all) of the vulnerabilities while AFL and AFLGO can
trigger few. The reason behind is that the triggering conditions
of LAVA vulnerabilities are all in the form of 32-bit magic
number matching. Mutation-based fuzzers, including AFL and
AFLGo, can hardly satisfy those conditions while the other
fuzzers are all featured with techniques to solve them.

Vulnerability Finding Efficiency: Despite TFUZZ, ANGORA,
DRILLER, QSYM, and SAVIOR all trigger large numbers
of LAVA vulnerabilities, they differ in terms of efficiency.
TFUZZ quickly covers the listed vulnerabilities in base64
and uniq. This is attributable to that (1) TFUZZ can reach all
the vulnerabilities with several initial seeds and (2) TFUZZ can
transform the program to immediately trigger the encountered
vulnerabilities. Note that we do not show the results of
TFUZZ on md5sum and who, because TFUZZ gets interrupted
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(h) Number of bugs triggered in who

Fig. 8: Evaluation results with LAVA-M. The left column
shows the number of Lava bugs reached by different fuzzers
and the right column shows the number of LAVA bugs
triggered by the fuzzers. For TFUZZ, we only present the
number of triggered bugs in base64 and uniq, as the other
results are not reliable due to a broken third-party dependency.

because of a broken dependency 3. For all the cases, ANGORA
triggers the vulnerabilities immediately after its start. The
main reason is that the “black-box function” pertaining to all
LAVA vulnerabilities is f(x) = x and the triggering condi-
tions are like f(x) == CONSTANT. ANGORA always starts
evaluating such functions with x = CONSTANT and hence,
it can instantly generate seeds that satisfy the vulnerability
conditions. In the case of who, ANGORA does not find all
the vulnerabilities because of its incomplete dynamic taint
analysis.

3The broken component is the QEMU based tracer in Angr [4]. This has
been confirmed with the developers.

Fuzzers Fuzzing results
base64 uniq md5sum who

AFL 0 (0%) 0 (0%) 0 (0%) 0 (0%)
AFLGO 2 (5%) 1 (4%) 0 (0%) 0 (0%)
TFUZZ 47 (100%) 29 (100%) N/A N/A
ANGORA 47 (100%) 28 (100%) 54 (95%) 1743 (79%)
DRILLER 48 (100%) 28 (100%) 58 (100%) 1827 (78%)
QSYM 47 (100%) 29 (100%) 58 (100%) 1244 (53%)
SAVIOR 48 (100%) 29 (100%) 59 (100%) 2213 (92%)
Listed 44 28 57 2136

TABLE III: LAVA-M Bugs triggered by different fuzzers
(before bug-guided verification). “X%” indicates that X% of
the listed LAVA bugs are triggered.

Fuzzers Fuzzing results
base64 uniq md5sum who

AFL 48 (100%) 29 (100%) 59 (100%) 2357 (96.3%)
AFLGO 48 (100%) 29 (100%) 59 (100%) 2357 (96.3%)
TFUZZ 47 (100%) 29 (100%) N/A N/A
ANGORA 48 (100%) 29 (100%) 59 (100%) 2357 (96.3%)
DRILLER 48 (100%) 29 (100%) 59 (100%) 2357 (96.3%)
QSYM 48 (100%) 29 (100%) 59 (100%) 2357 (96.3%)
SAVIOR 48 (100%) 29 (100%) 59 (100%) 2357 (96.3%)
Listed 44 28 57 2136

TABLE IV: LAVA-M Bugs triggered by different fuzzers (after
bug-guided verification). “X%” indicates that X% of the listed
LAVA bugs are triggered.

Regarding the three hybrid tools, they trigger every vulner-
ability that their concolic executors encounter. In the cases of
base64, uniq, and md5sum, their concolic executors can
reach all the vulnerabilities with initial seeds. This explains
why they all quickly trigger the listed vulnerabilities, regard-
less of their seed scheduling.

In the case of who, even though the fuzzing component
quickly generates seeds to cover the vulnerable code, the
concolic executor takes much longer to run those seeds.
For instance, while executing the inputs from AFL, QSYM
needs over 72 hours of continuous concolic execution to
reach all the LAVA bugs in who. Differing from DRILLER
and QSYM, SAVIOR prioritizes seeds that have a higher
potential of leading to Lava bugs. As demonstrated by the
results of who in Table III, our technique of bug-driven
prioritization indeed advances the exploration of code with
more vulnerabilities. Note that DRILLER (with a random seed
scheduling) moves faster than QSYM. This is because QSYM
prioritizes concolic execution on small seeds, while reaching
the vulnerabilities in who needs seeds with a larger size.

Vulnerability Finding Thoroughness: We further evaluate
our bug-guided verification design. Specifically, we run the
seeds generated by all the fuzzers with our concolic executor.
In this experiment, we only perform constraint solving when a
vulnerability condition is encountered. As shown in Table IV,
bug-guided verification facilitates all the fuzzers to not only
cover the listed LAVA bugs but also disclose an extra group of
Lava bugs. Due to limited space, those additionally identified
bugs are summarized in Table X at Appendix. Such results
strongly demonstrate the promising potential of bug-guided
verification to benefit fuzzing tools in vulnerability findings.
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Programs Settings
Name Version Driver Source Seeds Options
libpcap 4.9.2/1.9.0 tcpdump [20] build-in -r @@
libtiff 4.0.10 tiff2ps [12] AFL @@
libtiff 4.0.10 tiff2pdf [12] AFL @@
binutils 2.31 objdump [8] AFL -D @@
binutils 2.31 readelf [8] AFL -A @@
libxml2 2.9.7 xmllint [13] AFL @@
libjpeg 9c djpeg [11] AFL
jasper master jasper [9] AFL -f @@ -T pnm

TABLE V: Real-world benchmark programs and evaluation
settings. In the column for Seeds, AFL indicates we reuse
the testcases provided in AFL and build-in indicates that
we reuse the test cases shipped with the program.

B. Evaluation with Real-world Programs

1) Experimental Setup: In this evaluation, we prepare 8
programs. Details about these programs and the test settings
are summarized in Table V. All the programs have been
extensively tested by both industry [16] and academic re-
searches [57, 66, 73]. Since different seed inputs and execution
options could lead to varying fuzzing results [49, 58], we
follow existing works to use the seeds shipping with AFL
or the vendors, as well as to configure the fuzzing options.
Similar to our evaluation with LAVA-M, we conduct all the
experiments on Amazon EC2 instances. To reduce randomness
during testing, we run each test 5 times and report the average
results. In addition, we leverage Mann Whitney U-test [53] to
measure the significance of our improvements, following the
suggestion by George etc [49].

In this evaluation, we also prepare the setups that are
specific to each fuzzing tool. These setups mostly follow
Table II except the following. First, we use UBSan labels as
the target locations for AFLGO and as the guidance of bug-
driven prioritization in SAVIOR. Second, to prevent ANGORA
from terminating the fuzzing process once it encounters un-
instrumented library functions, we follow suggestions from
the developers and add the list of un-instrumented func-
tions into ANGORA’s dfsan_abilist.txt configuration
file. Third, we do not include TFUZZ, because it does not
function correctly on our benchmark programs due to issues
in the aforementioned third-party component. Furthermore,
we prepare these benchmark programs such that they are
instrumented with UBSan for all fuzzers to ensure a fair
comparison. This also means that bug-guided verification is
enabled by default in DRILLER, QSYM, and SAVIOR.

2) Evaluation Results: In Figure 9, we summarize the re-
sults of our second experiment. It shows the outputs over time
from two metrics, including the number of triggered UBSan
bugs and basic block coverage. In addition, we calculate the
p-values for Mann Whitney U-test of SAVIOR vs. DRILLER
and SAVIOR vs. QSYM. Note that we use the IDs of UBSan
labels for de-duplication while counting the UBSan bugs, as
each UBSan label is associated with a unique potential defect.
In the following, we delve into the details and explain how
these results testify our design hypotheses.

Vulnerability Finding Efficiency: As shown in Figure 9

(the left column of each program), SAVIOR triggers UBSan
violations with a pace generally faster than all the other
fuzzers. In particular, it outperforms DRILLER and QSYM in
all the cases except djpeg. On average, SAVIOR discovers
vulnerabilities 43.4% faster than DRILLER and 44.3% faster
than QSYM. The low p-values (< 0.05)4 of Mann Whitney
U-test well support that these improvements are statistically
significant. Since the three hybrid tools only differ in the way
of seed scheduling, these results strongly demonstrate that the
scheduling scheme in SAVIOR— bug-driven prioritization —
accelerates vulnerability finding. In the case of djpeg, all
six fuzzers trigger the same group of UBSan violations. This
is because djpeg has a tiny code base, with which these
fuzzers quickly saturate on code exploration. In addition, the
conditions of those UBSan violations are simple that even
mutation-based approaches can solve. For a better reference,
we also summarize the number of triggered violations at the
end of 24 hours in Table XII at Appendix A-D.

Going beyond, we examine the number of labels that
are reached by different fuzzers. In Table VI, we list the
average results from our 24-hour tests. Not surprisingly, the
hybrid tools cover higher volumes of UBSan labels than the
ordinary fuzzers. This is likely because a hybrid tool can
solve complex conditions, enabling the coverage on the code
and labels behind. Among the hybrid tools, SAVIOR reaches
19.68% and 15.18% more labels than DRILLER and QSYM,
respectively. Such results are consistent with the number of
triggered UBSan violations. This also signifies that our bug-
driven prioritization guides SAVIOR to spend more resources
on code with richer UBSan labels. In the case of djpeg,
SAVIOR nearly ties with the other tools. This is due to a
similar reason as explained above.

We further find that the efficiency boost of SAVIOR in vul-
nerability finding is not due to high code coverage. As shown
in Figure 9 (the right column for each program), we compare
the code coverage of the six fuzzers. As demonstrated by the
results, the efficiency of code coverage and UBSan violation
discovery are not positively correlated. Particularly, in the case
of tcpdump, libxml, tiff2pdf, objdump and jasper,
SAVIOR covers code in a similar or even slower pace than
DRILLER and QSYM (the high p-values also support that
SAVIOR is not quicker). However, SAVIOR triggers UBSan
violations significantly quicker in these cases. Such results
validate the above hypothesis with high confidence.

Vulnerability Finding Thoroughness: In this experiment, we
also measure the performance of bug-guided verification in en-
hancing the thoroughness of vulnerability finding. Specifically,
we re-run the seeds from all the fuzzers with our concolic
executor. In this test, we enable SAVIOR to do constraint
solving only when encountering un-solved UBSan labels.

In Table VII, we summarize the comparison results. For all
the 8 programs, bug-guided verification facilitates different

4The p-values of readelf and objdump are larger than 0.05 but they
are at the level of quasi-significance. In the two programs, the variances are
mainly due to randomness.
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(c) Number of UBSan violations
triggered in tiff2ps (p1=0.005,
p2=0.046).
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(e) Number of UBSan violations
triggered in readelf (p1=0.098,
p2=5.63 ∗ e−5).
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0 2 4 6 8 10 12 14 16 18 20 22 24
Time (hour)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

# 
of

 U
BS

an
 v

io
la

tio
ns

AFL
AFLGO
ANGORA
DRILLER
QSYM
SAVIOR

(g) Number of UBSan violations
triggered in libxml (p1=7.04 ∗
e−5, p2=2.15 ∗ e−7).
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(p1=0.042,p2=0.094).

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (hour)

0

20

40

60

80

100

120

140

# 
of

 U
BS

an
 v

io
la

tio
ns

AFL
AFLGO
ANGORA
DRILLER
QSYM
SAVIOR

(i) Number of UBSan
violations triggered in djpeg
(p1=0.777,p2=0.203).
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reached in djpeg (p1=3.28 ∗
e−7,p2=3.79 ∗ e−6).
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olations triggered in tiff2pdf
(p1=0.002,p2=3.95 ∗ e−6).

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (hour)

0

1000

2000

3000

4000

5000

6000

7000

# 
of

 c
ov

er
ed

 b
as

ic 
bl

oc
ks

AFL
AFLGO
ANGORA
DRILLER
QSYM
SAVIOR
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(p1=0.009,p2=0.807).
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(m) Number of UBSan
violations triggered in jasper
(p1=0.010,p2=0.002).
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Fig. 9: Evaluation results with real-world programs. Each program takes two columns, respectively showing the number of
triggered UBSan violations and the amount of covered basic blocks by the fuzzers over 24 hours. p1 and p2 are the p-values
for the Mann Whitney U-test of SAVIOR vs. DRILLER and SAVIOR vs. QSYM, respectively.

fuzzers to trigger new violations. The average increase ranges
from 4.5% (SAVIOR) to 61.2% (ANGORA). In particular, it
aids ANGORA to trigger 82 new UBSan bugs in total. In the
case of djpeg bug-guided verification does not help much.
This is because djpeg has a relatively smaller code base
and contains fewer vulnerability labels, making bug-guided
verification less utilized. These results are further evidence
that bug-guided verification can truly benefit fuzzing in terms
of vulnerability finding thoroughness.

C. Vulnerability Triage

The UBSan violations triggered by SAVIOR could lead to
various consequences and some of them might be harmless.
Therefore, we manually examine all the UBSan violations
triggered by SAVIOR. These violations include those trig-
gered in the 8 programs in Table V and also those from mjs,
catdoc, and c++filt. We do not include the results of
mjs, catdoc, and c++filt in the evaluation above, as
all fuzzers trigger fewer than 10 UBSan violations. A small
difference would result in a big variance in comparison.
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Prog. Number of reached UBSan labels
AFL AFLGO ANGORA DRILLER QSYM SAVIOR

tcpdump 2029 1235 1333 1906 2509 2582
tiff2ps 748 927 770 931 852 970
readelf 91 79 102 104 106 183
xmllint 588 580 456 567 568 597
djpeg 2746 2588 2546 2713 2707 2746
tiff2pdf 1488 1467 919 1448 1369 1478
jasper 649 660 679 691 731 752
objdump 780 715 844 835 906 1039
Avg. 1139 1031 956 1149 1218 1289

TABLE VI: Number of unique UBSan labels reached by
different fuzzers in 24 hours. On average SAVIOR reaches
19.68% and 15.18% more labels than DRILLER and QSYM.

Prog. Improvements by bug-guided verification
AFL AFLGO ANGORA DRILLER QSYM SAVIOR

tcpdump +10/11% +22/41.5% +29/76.3% +9/9.9% +4/4% +8/7%
tiff2ps +4/133% +0/0% +3/42.9% +0/0% +0/0% +0/0%
readelf +10/82% +9/72.2% +16/107% +9/68.4% +8/63.2% +7/29.2%
libxml +4/33.3% +4/33.3% +5/166.7% +4/33.3% +4/33.3% +0/0%
tiff2pdf +5/50% +1/7.7% +4/44.4% +3/27.2% +5/62.5% +0/0%
djpeg +0/0% +7/5.2% +7/5.2% +0/0% +0/0% +0/0%
objdump +7/10.9% +7/11.7% +11/17.2% +7/11.7% +6/9.5% +0/0%
jasper +0/0% +0/0% +7/30.4% +7/26.9% +7/26.9% +0/0%
Ave. +5/40.1% +6/21.5% +10/61.2% +5/22.2% +4.3/25% +1.8/4.5%

TABLE VII: New UBSan violations triggered with bug-
guided verification in the evaluation with real-world programs.
“+X/Y%” means “X” new violations are triggered, increasing
the total number by “Y%”.

Program Defect categories Note
OOB Logic Error Exploitable* Confirmed

tcpdump 6 102 6+ 7
libjpeg 8 23 0+ N/A
objdump 41 4 4+ N/A
readelf 1 9 10+ 3
libtiff 20 0 0+ N/A
jasper 21 2 2+ 2
mjs 1 0 0+ 1
catdoc 3 0 3+ 1
c++filt 1 1 0 2
Total 102 141 25+ 16

TABLE VIII: Triage of UBsan violations triggered by SAV-
IOR in 24 hours.

Triage Result: In total, we collect 481 UBSan violations and
we manually classify them based on their consequences and
present the results in Table VIII. Specifically, 102 of them lead
to OOB reads/writes and 141 of them result in logic errors.
Those logic errors consist of different categories, such as
incorrect computation, wrong outputs, and polluted conditional
variables. Among the 243 OOB and logic errors, 16 of them
have been confirmed by the developers. Our further analysis
so far reveals at least 25 of them are exploitable for goals such
as information leak and control flow manipulation.

The remaining 238 cases are likely harmless according to
our triage result. They mainly consist of the following cate-
gories: (1) the variables triggering UBSan violations are used
as storage (e.g., int as char[4]) instead of computation-
related objects; (2) the affected variables expire immediately
after the violations; (3) the program already considers the case
of UBSan violations and has handlers.

Case Studies: From each of the three categories (OOB, logic

errors, and those without harm), we pick a case and explain
the details here. All the cases have been fixed.

The first case is an OOB in readelf. The code is shown
below. The variable inote.namesz is copied from input.
By making it equal to 0, (inote.namesz − 1) under-flows
to the maximal unsigned value. It causes an OOB access to
inote.namedata.

1 static bool process_notes_at(...){
2 //readelf.c:18303
3 if(inote.namedata[inote.namesz-1] != '\0')
4 ...
5 }

The second case is a logic error in libtiff. Variable
twobitdeltas[delta] is controlled by user. With a
specially crafted input, one can cause an overflow in the re-
sult of lastpixel + twobitdeltas[delta], making
SETPIXEL set the wrong pixel value to the decoded image.

1 static int ThunderDecode(...){
2 //tif_thunder.c:125
3 if((delta = ((n >> 4) & 3)) != DELTA2_SKIP)
4 SETPIXEL(op, lastpixel + twobitdeltas[

delta]);
5 ...
6 }

The last case is harmless, as the program already considers
overflow. This case locates in libxml. As shown below,
with a special input, the variable okey can be overflowed.
However, the program modulo okey with dict->size
before using it, making the overflow harmless.

1 static int xmlDictGrow(...) {
2 // dict.c:417
3 okey = xmlDictComputeQKey(...);
4 key = okey % dict->size;
5 ...
6 }

VI. RELATED WORKS

The lines of works mostly related to our work include ad-
vanced fuzzing, concolic execution, the state-of-the-art hybrid
testing techniques, and those that facilitate guided testing.

A. Advanced Fuzzing

Many recent works focus on improving the capability of
code exploration in fuzzing. CollAFL [39] aims to reduce
hash collision in coverage feedback to decrease false negatives.
PTrix [30] enables path-sensitive fuzzing based on efficient
hardware tracing. TFUZZ [56] transforms tested programs
to bypass complex conditions and improve code coverage,
and later uses a validator to reproduce the inputs that work
for the original program. To generate high-quality seeds,
ProFuzzer [72] infers the structural information of the inputs.
Along the line of seed generation, Angora [29] assumes a
black-box function at each conditional statement and applies
gradient descent to find satisfying input bytes. This method
is later improved by NEUZZ [63] with a smooth surrogate
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function to approximate the behavior of the tested program.
Compared with these approaches, SAVIOR takes the bug-
driven guidance to maximize bug coverage and verifies the
(non-)existence of these bugs in the explored paths.

B. Concolic Execution

Symbolic execution, a systematic approach introduced in the
1970s [46, 48] for program testing, has attracted new attention
due to the advances in satisfiability modulo theory [33, 34, 40].
However, classic symbolic execution has the problems of
high computation cost and path explosion. To tackle these
issues, Sen proposes concolic execution [59], which combines
the constraint solving from symbolic execution and the fast
execution of concrete testing. Concolic execution increases
the coverage of random testing [41, 42] while also scales
to large software. Hence, it has been adopted in various
frameworks [26, 31, 60, 61]. Recently, concolic execution is
also widely applied in automated vulnerability detection and
exploitation, in which the concolic component provides critical
inputs by incorporating security-related predicates [24, 28].

However, concolic execution operates based on emulation or
heavy instrumentation, incurring tremendous execution over-
head. Purely relying on concolic execution for code explo-
ration is less practical for large software that involves large
amounts of operations. In contrast, hybrid testing runs fuzzing
for code exploration and invokes concolic execution only on
hard-to-solve branches. This takes advantage of both fuzzer’s
efficiency and concolic executor’s constraint solving.

C. Hybrid Testing

Majundar et al. [51] introduce the idea of hybrid concolic
testing a decade ago. This idea offsets the deficiency of
both random testing and concolic execution. Specifically, their
approach interleaves random testing and concolic execution
to deeply explore a wide program state space. Subsequent
development reinforces hybrid testing by replacing random
testing with guided fuzzing [55]. This approach could rapidly
contributing more high-quality seeds to concolic execution.

Recently, DRILLER [66] engineers the state-of-the-art hy-
brid testing system. It more coherently combines fuzzing and
concolic execution and can seamlessly test various software
systems. Despite the advancement, DRILLER still achieves
unsound vulnerability detection. DigFuzz [74] is a more recent
work that tries to better coordinate the fuzzing and concolic
execution components. Using a Monte Carlo algorithm, Dig-
Fuzz predicts the difficulty for a fuzzer to explore a path and
prioritizes to explore seeds with a higher difficulty score.

Moreover, motivated by the growing demands in software
testing, researchers have been reasoning the performance of
hybrid testing. As commonly understood, hybrid testing is
largely restricted by the slow concolic execution. To this end,
QSYM [73] implements a concolic executor that tailors the
heavy but unnecessary computations in symbolic interpretation
and constraint solving. It leads to times of acceleration.

Differing from the above works that bring code-coverage
improvement, SAVIOR changes the philosophy of hybrid

testing. It drives the concolic executor on seeds with higher
potential and guides the verification of the encountered vul-
nerabilities. This leads to quicker and better bug coverage.

D. Guided Software Testing
This line of research [25, 32, 43, 52] aims to guide the

testing towards exploring specific code locations. Katch [52]
prioritizes the seeds that approach patches to guide the sym-
bolic executor. Together with three other guiding schemes,
Katch can efficiently cover the target code. With a similar goal,
AFLGO [25] calculates the distance from each code region
to the targets (e.g., vulnerable code regions or patches). In
fuzz testing, AFLGO favors seeds that exercise code regions
with smaller distances. Christakis et al. [32] proposes to prune
paths in dynamic symbolic execution. It discards paths that
carry properties that have been verified. However, the existing
works generally prefer seeds that approach the targets quicker,
which oftentimes carry shallow contexts. Instead, SAVIOR
values all the seeds with high potential, creating various
contexts to exercise the target code. This enables SAVIOR
to outperforms these existing guided testing techniques in bug
finding. Some other works use static analysis to label potential
vulnerabilities, such as using data flow analysis to pinpoint
data leaks [23], using slicing to mark use-after-free paths [38],
and using taint analysis to mark possible races [50]. they then
rely on subsequent symbolic execution to confirm detection.
These analyses are complementary to SAVIOR. In addition,
SAVIOR relies on fuzz testing to stably approach the to-be-
verified paths, while others use heuristic based approaches to
guide symbolic execution towards the marked label.

VII. CONCLUSION

We introduce SAVIOR, a new hybrid testing approach in
this work. Unlike the mainstream hybrid testing tools which
follow the coverage-driven design, SAVIOR moves towards
being a bug-driven. We accordingly propose in SAVIOR two
novel techniques, named bug-driven prioritization and bug-
guided verification, respectively. On one hand, SAVIOR prior-
itizes the concolic execution to run seeds with more potentials
of leading to vulnerabilities. On the other hand, SAVIOR
examines all vulnerable candidates along the running program
path in concolic execution. By modeling the unsafe conditions
in SMT constraints, it solves for proofs of valid vulnerabilities
or proves that the corresponding vulnerabilities do not exist.
SAVIOR significantly outperforms the existing coverage-
driven tools. On average, it detects vulnerabilities 43.4% faster
than DRILLER and 44.3% faster than QSYM, resulting in the
discovery of 88 and 76 more security violations in 24 hours.
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APPENDIX A
SUPPLEMENTARY FIGURES AND EVALUATION DATA

A. Program Instrumentation

Figure 10 shows the UBSan-instrumented LLVM IR for the
objdump defect in our motivating example, of which source
code is presented in Figure 2. In Figure 10, we highlight
the instrumentation with !saviorBugNum metadata for bug-
driven prioritization.

B. UBSan Label Reduction

In the process of vulnerability labelling, SAVIOR also
reduces labels that can be confirmed as false positives. Table
IX shows the results of label reduction on our benchmark
programs.

1 void log_msg(msg_t* msg) {
2 msg->str[0] = 'n';
3 msg->str[1] = 'o';
4 msg->secret_num =0;
5 printf("%s", msg->str);
6 }

1 void bug(msg_t* msg){
2 size_t sz = sizeof(msg_t) + msg->msg_sz;
3 char* buf = malloc(sz);
4 memset(bug, 0, sz);
5 }

1 ...
2 %23 = load

%struct.dwarf_section*,%struct.dwarf_section**
%section, align 8

,!
,!

3 %size10 = getelementptr %struct.dwarf_section,
%struct.dwarf_section* %23, i32 0, i32 6,!

4 %24 = load i64, i64* %size10, align 8
; load value of section->size,!

5 %25 = call { i64, i1 }
@llvm.uadd.with.overflow.i64(i64 %24, i64
1) ; section->size + 1

,!
,!

6 %26 = extractvalue { i64, i1 } %25, 0
7 %27 = extractvalue i64, i1 %25, 1

8 %28 = xor i1 %27, true, !saviorBugNum !1
9 ; check if the summation results in a carry

10 br i1 %28, label %cont, label %handler.add_overflow
11 cont:
12 %call11 = call noalias i8* @malloc(i64 %26)

#10 ; malloc(section->size + 1),!
13 handler.add_overflow: ; preds = %if.end6
14 call void @__ubsan_handle_add_overflow()
15 ...

3

Fig. 10: SAVIOR instrumentation of UBSan label.

Prog. Label reduction results
Total UBSan Labels Removed UBSan Labels Percentage

tcpdump 13926 1924 13.8%
tiff2ps 1768 57 3.2%
readelf 2476 99 4.0%
xmllint 5258 195 3.7%
djpeg 9391 573 6.1%
tiff2pdf 3126 80 2.6%
jasper 3838 228 5.9%
objdump 9025 346 3.8%
Average 6106 438 5.36%

TABLE IX: Number of UBSan labels removed in our bench-
mark programs. On average, 5.36% of the labels are reduced.

C. LAVA-M Evaluation

In the evaluation with LAVA-M, bug-guided verification
helps identify a group of LAVA bugs that are not listed.
Table X shows the IDs of these LAVA bugs.

D. Real World Benchmark Evaluation

For a better reference of our evaluation with real-world
programs, we summarize the number of triggered violations
at the end of 24 hours in Table XII.

In addition, we also compare the UBSan violations trig-
gered by SAVIOR and the other 5 fuzzers. The results are
summarized in Table XI. In general, these fuzzers are explor-
ing a similar group of UBSan violations. More importantly,
for most of the cases, SAVIOR triggers a super-set of the
violations that are made by the other fuzzers (in particular
AFL and AFLGO). This indicates that SAVIOR has a better
thoroughness in vulnerability finding.

APPENDIX B
TECHNICAL DISCUSSION AND FUTURE WORK

In this section, we discuss the limitations of our current
design, insights we learned and possible future directions.

Over-approximation in Vulnerability Labeling: As ex-
plained in Section III, SAVIOR leverages sound algorithms
to label vulnerabilities where the over-approximation may
introduce many false-positive labels. This imprecision can

1595



Program Bugs unlisted by LAVA-M but exposed by bug-guided verification
base64 274, 521, 526, 527
uniq 227
md5sum 281, 287

who

1007, 1026, 1034, 1038, 1049, 1054, 1071, 1072, 117, 12
125, 1329, 1334, 1339, 1345, 1350, 1355, 1361, 1377, 1382

1388, 1393, 1397, 1403, 1408, 1415, 1420, 1429, 1436, 1445
1450, 1456, 1461, 16, 165, 169, 1718, 1727, 1728, 173

1735, 1736, 1737, 1738, 1747, 1748, 1755, 1756, 177, 181
185, 189, 1891, 1892, 1893, 1894, 1903, 1904, 1911, 1912
1921, 1925, 193, 1935, 1936, 1943, 1944, 1949, 1953, 197

1993, 1995, 1996, 2, 20, 2000, 2004, 2008, 2012, 2014
2019, 2023, 2027, 2031, 2034, 2035, 2039, 2043, 2047, 2051
2055, 2061, 2065, 2069, 2073, 2077, 2079, 2081, 2083, 210

214, 2147, 218, 2181, 2189, 2194, 2198, 2219, 222, 2221
2222, 2223, 2225, 2229, 2231, 2235, 2236, 2240, 2244, 2246
2247, 2249, 2253, 2255, 2258, 226, 2262, 2266, 2268, 2269
2271, 2275, 2282, 2286, 2291, 2295, 2302, 2304, 24, 2462

2463, 2464, 2465, 2466, 2467, 2468, 2469, 2499, 2500, 2507
2508, 2521, 2522, 2529, 2681, 2682, 2703, 2704, 2723, 2724
2742, 2796, 2804, 2806, 2814, 2818, 2823, 2827, 2834, 2838
2843, 2847, 2854, 2856, 2919, 2920, 2921, 2922, 294, 2974
2975, 298, 2982, 2983, 2994, 2995, 3002, 3003, 3013, 3021

303, 307, 3082, 3083, 3099, 312, 316, 3189, 3190, 3191
3192, 3198, 3202, 3209, 321, 3213, 3218, 3222, 3237, 3238
3239, 3242, 3245, 3247, 3249, 325, 3252, 3256, 3257, 3260

3264, 3265, 3267, 3269, 327, 334, 336, 338, 3389, 3439
346, 3466, 3468, 3469, 3470, 3471, 3487, 3488, 3495, 3496

350, 3509, 3510, 3517, 3518, 3523, 3527, 355, 359, 3939
4, 4024, 4025, 4026, 4027, 4222, 4223, 4224, 4225, 4287

4295, 450, 454, 459, 463, 468, 472, 477, 481, 483
488, 492, 497, 501, 504, 506, 512, 514, 522, 526

531, 535, 55, 57, 59, 6, 61, 63, 73, 77
8, 81, 85, 89, 974, 975, 994, 995, 996

TABLE X: IDs of unlisted bugs in LAVA-M that are triggered
with bug-guided verification.

Prog. Difference of triggered UBSan violations
AFL AFLGO ANGORA DRILLER QSYM SAVIOR

tcpdump +5/-43 +0/-61 +0/-76 +7/-30 +15/-28 +0/-0
tiff2ps +0/-13 +0/-6 +0/-9 +0/-8 +0/-8 +0/-0
readelf +0/-7 +1/-7 +4/-13 +2/-7 +2/-7 +0/-0
xmllint +0/-6 +0/-6 +0/-15 +0/-6 +0/-6 +0/-6
djpeg +0/-0 +0/-7 +0/-7 +0/-0 +0/-0 +0/-0
tiff2pdf +0/-7 +0/-4 +5/-13 +0/-6 +0/-9 +0/-0
jasper +2/-13 +0/-13 +1/-22 +0/-18 +0/-8 +0/-0
objdump +14/-18 +10/-18 +16/-20 +10/-18 +12/-17 +0/-0

TABLE XI: Difference between violations triggered by SAV-
IOR and other fuzzers. (+X/-Y) means X violations are
triggered by the fuzzer but not by SAVIOR and Y violations
are triggered by SAVIOR but not by that fuzzer.

Prog. Number of triggered UBSan violations
AFL AFLGO ANGORA DRILLER QSYM SAVIOR

tcpdump 87 59 43 102 113 128
tiff2ps 3 10 7 8 8 16
readelf 14 16 14 15 16 22
xmllint 12 12 3 12 12 18
djpeg 141 134 134 141 141 141
tiff2pdf 13 13 9 13 10 17
jasper 33 31 23 26 26 44
objdump 64 60 64 60 63 79
Total 367 335 297 377 389 465

TABLE XII: Number of unique UBSan violations triggered by
different fuzzers in 24 hours. In particular, 43.4% and 44.3%
more violations than DRILLER and QSYM, respectively.

consequently weaken the performance of SAVIOR’s prioriti-
zation. A straightforward reaction to this issue is to eliminate
as many dummy labels as possible. In our design, we utilize
a rule-based scheme to filter those false-positive labels in
Section III-B. In the future, we plan to include more precise

static analysis for finer-grained label pruning. For instance,
the STACK system developed by Wang et. al [69, 70] and the
approach proposed by Hathhorn et. al [45] can be incorpo-
rated into SAVIOR, which are complementary to UBSan in
identifying code snippets that may lead to undefined behavior.

Prediction in Vulnerability Detection: Once reaching a
potentially vulnerable program location in concolic execution,
SAVIOR extracts the guarding predicates of the vulnerability
label. However, these predicates may contradict the current
path condition. In case of such contradiction, SAVIOR ter-
minates the exploration of the labeling site immediately, since
continuing the analysis cannot contribute to any valuable test
input.

Moreover, in many cases, we can predict whether an exe-
cution path can trigger a vulnerability or not by studying the
runtime information of previous executions. Also, more impor-
tantly, before that execution arrives the vulnerability site. To
achieve this goal, we need a method to backwardly summarize
path constraints from the labeled site to its predecessors in
the explored paths. The core technique of this summary is
the weakest precondition [44] (derived from the Hoare Logic)
which has been applied to both sequential and concurrent
program analysis domains [22, 43, 71].
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