
SoK: Differential Privacy as a Causal Property
Michael Carl Tschantz∗, Shayak Sen†, and Anupam Datta†

∗International Computer Science Institute †Carnegie Mellon University

Abstract—We present formal models of the associative and
causal views of differential privacy. Under the associative view,
the possibility of dependencies between data points precludes
a simple statement of differential privacy’s guarantee as con-
ditioning upon a single changed data point. However, we show
that a simple characterization of differential privacy as limiting
the effect of a single data point does exist under the causal
view, without independence assumptions about data points. We
believe this characterization resolves disagreement and confusion
in prior work about the consequences of differential privacy. The
associative view needing assumptions boils down to the contra-
positive of the maxim that correlation doesn’t imply causation:
differential privacy ensuring a lack of (strong) causation does
not imply a lack of (strong) association. Our characterization
also opens up the possibility of applying results from statistics,
experimental design, and science about causation while studying
differential privacy.

I. INTRODUCTION

Differential Privacy (DP) is a precise mathematical property
of an algorithm requiring that it produce almost identical
distributions of outputs for any pair of possible input databases
that differ in a single data point. Despite the popularity of DP
in the research community, unease with the concept remains.
For example, Cuff and Yu’s paper states “an intuitive under-
standing can be elusive” and recommends that DP be related
to more familiar concepts based on statistical associations,
such as mutual information [8, p. 2]. This and numerous other
works exploring similar connections between DP and statistical
association each makes assumptions about the data points (e.g.,
[1, p. 9] [6, p. 32], [2, p. 4], [34, p. 14], [20, p. 6]).

The use of such assumptions has led to some papers stating
that DP implicitly requires some assumption: that it requires
the data points to be independent (e.g., [27, p. 2], [28, p. 1],
[32, p. 2], [23, p. 3], [5, p. 7], [50, p. 232], [33, p. 1]), that
the adversary must know all but one data point, the so-called
strong adversary assumption (e.g., [8, p. 2], [32, p. 10]), or
that either assumption will do (e.g., [49, §1.2]). (Appendix A3
provides quotations.) Conversely, other works assert that no
such assumption exists (e.g., [3], [25], [36], [35]). How
can such disagreements arise about a precise mathematical
property of an algorithm?

We put to rest both the nagging feeling that DP should be
expressed in more basic terms and the disagreement about
whether it makes various implicit assumptions. We do so by
showing that DP is better understood as a causal property
than as an associative one. We show that DP constrains effect
sizes, a basic concept from empirical science about how much
changing one variable changes another. This view does not
require any independence or adversary assumptions.

Furthermore, we show that the difference between the
two views over whether DP makes assumptions is precisely

captured as the difference between association and causation.
That some fail to get what they want out of DP (without
making an assumption) comes from the contrapositive of the
maxim correlation doesn’t imply causation: DP ensuring a
lack of (strong) causation does not imply a lack of (strong)
association. Given the common confusion of association and
causation, and that DP does not make its causal nature explicit
in its mathematical statement, we believe our work explains
how disagreement could have arose in the research literature
about the what assumptions DP requires.

A. Motivating Example and Intuition

To provide more details, let us consider an example of
using DP inspired by Kifer and Machanavajjhala [27]. Suppose
Ada and her son Byron are considering participating in a
differentially private survey with n − 2 other people. The
survey collects a data point from each participant about their
health status with respect to a genetic disease. Since Ada
and Byron are closely related, their data points are closely
related. This makes them wonder whether the promise of DP
becomes watered down for them, a worrying prospect given
the sensitivity of their health statuses.

Figure 1 summarizes what would happen if both Ada
and Byron participate in the survey. In it, each solid arrow
represents a causal relationship where the quantity at the start
of the arrow causally affects the quantity at the end of the
arrow. For example, Arrow (1) represents that Ada’s genetics
has a causal effect on her son Byron’s genetics. We use an
arrow since causation is directional: Byron’s genetics does
not have a causal effect on Ada’s. Arrow (2) represents a
mechanism by which Ada provides her status to the survey.
This information becomes a data point in the survey’s data set,
that is, a row in a database. This database comprises Ada’s data
point, Byron’s data point, and n−2 other people’s data points.
Arrows (5), (6), and (7) together represent the algorithm that
computes the survey’s result, that is, the output produced from
the database using a differentially private algorithm.

As mentioned, Ada’s status also affects the status of her son
Byron, shown with Arrow (1). Therefore, their statuses are
statistically associated (i.e., not probabilistically independent).
While causation is directional, such associations are not:
seeing Byron’s status reveals information about Ada’s status
despite not causing Ada’s status. Furthermore, Ada’s and
Byron’s data points will be statistically associated because they
have a common cause, Ada’s status. Thus, seeing Byron’s data
point reveals information about Ada’s status and data point.
Since both Ada’s and Byron’s data points reveal information
about Ada’s status, the output can be informed by two data
points about Ada’s status. This double dose of information is
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Ada’s status R1 Byron’s status R2 n− 2 other people’s statuses

Ada’s data point D1 Byron’s data point D2 n− 2 other data points

Survey output O

(1)

(2) (3) (4)

(5)
ε

ε (6)
(n−2)ε

(7)

Fig. 1. A causal diagram approximating the process through which the output of a statistical query is generated and used. The arrows represent direct causal
effects. Indirect cause effects can be inferred from taking the transitive closure of the arrows. ε labels causal effects bounded by ε-differential privacy. (1)–(7)
serve as labels naming arrows.

what gives Ada pause about participating. Furthermore, much
the same applies to Byron.

In the words of Kasiviswanathan and Smith [25, p. 2], DP
intuitively ensures that

changing a single individual’s data in the database
leads to a small change in the distribution on outputs. (∗)

This intuitive consequence of DP, denoted as “(∗)”, does
not make explicit the notion of change intended. It implic-
itly compares the distribution over the output, a random
variable O, in two hypothetical worlds, the pre- and post-
change worlds. If we focus on the individual Ada and let
D1 be a random variable representing her data point as it
changes values from d1 to d′1, then the comparison is between
Pr[O=o when D1=d1] and Pr[O=o when D1=d′1]. The part
of this characterization of DP that is informal is the notion of
when, which leaves the notion of change imprecise. Our paper
contrasts various interpretations of change and when.

The most obvious interpretation is that of conditioning
upon two different values for the changed status. This in-
terpretation implies an approximation of statistical indepen-
dence between an individual’s data point and the output:
Pr[O=o | D1=d1] ≈ Pr[O=o | D1=d′1]. Presuming the
data points are truthful, such an approximate independence
implies (up to a factor) an approximate independence that
compares probabilities over a status with or without knowing
the output, that is, Pr[R1=r1 | O=o] ≈ Pr[R1=r1]. In this
case, observing the output reveals little about an individual’s
status, explaining this interpretation’s appeal.

However, as discussed above, both Ada’s and Byron’s
data points reveal information about each of their statuses
since associations depend upon the full breadth of causal
relations. This double dose of information about their statuses
means that DP does not actually imply this appealing form
of approximate independence. Thus, attempts to interpret DP
in terms of conditioning fail to hold in the presence of
the associations between the data points. Those desiring an
associative guarantee from DP must rule out such double doses
of information, for example, by assuming that the data points
lack any associations or that the adversary already knows all
but one data point, making such associations uninformative.

Now, let us instead consider interpreting DP in terms of
causal interventions. This interpretation models artificially
altering the value of random variables, as in a randomized
experiment. The key difference between intervening upon
a random variable and conditioning upon it is that while

intervening tracks causal effects by accounting for how the
intervention may cause other variables to change, it does not
depend upon all the associations in the database since such
interventions break them. Thus, while associative definitions
using conditioning depends upon the distribution producing
data points, causal ones can screen off this distribution to
examine the behavior of just the DP algorithm itself by
intervening upon all its outputs.

For example, suppose Byron is born without the genetic
disease and a scientist flips a coin and ensures that Byron
has the disease if it comes up heads and ensures that he does
not if it comes up tails. (While the technology to execute this
experiment is currently wanting, it is conceptually possible.)
Since Bryon starts without the disease, the tails outcome does
nothing and can be viewed a control treatment while the
heads outcome causes a change. If it comes up heads, the
scientist could measure various things about Byron to see what
changed from giving him the disease. In particular, Byron’s
data point and the output computed from it would change.
On the other hand, nothing would change about Ada since
causation is directional. (Section IV makes this more precise.)
In fact, after the randomization, Bryon’s status and data point
no longer reveals any information about Ada’s status since the
randomization broke the association between their statuses.

The scientist can measure the size of any changes to
compute an effect size. The effect size for Byron’s data point
would be large since the data point is supposed to be equal to
the status, but the effect size for the output will be small since
it is computed by an algorithm with ε-differential privacy. If
we instead consider intervening on Ada’s status, we find two
paths to the output: one via Ada’s data point (Arrows (2) and
(5)) and another via Byron’s (Arrows (1), (3), and (6)). These
two paths mean that the effect size could be as much as double
that of changing Byron’s status. Thus, DP cannot be interpreted
as limiting the effect of changing Ada’s status to just ε in size.

Recall that the intuitive characterization (∗) of DP referred
to data points, not statuses: “changing a single individual’s data
in the database. . .” [25, p. 2]. So, let us consider intervening
upon the data points instead. Each data point is piped directly
into the differentially private algorithm and has no other
effects. Thus, DP does bound the effect size at ε for Ada’s data
point without making any assumptions about the statuses. For
this reason, we believe DP is better understood as a bound on
effect sizes than as a bound on associations.

We believe that ease of conflating associative and causal
properties explains the disagreement in the research literature.

355



(See Appendix A for a history of this disagreement.) Our
observation also reduces the benefits and drawbacks of these
implicitly associative and causal views of privacy to those
known from studying association and causation in general. For
example, the causal view only requires looking at the system
itself (causation is an inherent property of systems) while
the associative view requires looking at the input distribution
as well. This difference explains why papers implicitly with
the associative view discuss the distribution over data points
despite the definition of DP and the implicitly causal papers
do not mention it.

The causal characterization also requires us to distinguish
between an individual’s attributes (Ris) and the data that is
input to an algorithm (Dis), and intervenes on the latter. Under
the assumption that individuals report their true statuses, the
associative interpretation does not require this distinction since
conditioning on one is identical to conditioning on the other.
This distinction captures an aspect of the difference between
protecting “secrets about you” (Ri) and protecting “secrets
from you” (Di) pointed out by McSherry [36], [35], where DP
protects the latter in a causal sense. An individual’s attribute
Ri is about him and its value is often outside of his control.
On the other hand, an individual’s data point Di, at least in
the setting typically envisioned for DP, is under his control
and is volunteered by the individual, making it from him.

B. Overview

Our main goal is to demonstrate that DP can be understood
as a causal property without needing the sorts of assumptions
made to view it as an associative property. We lay out the
associative view by surveying definitions presented in prior
work to show its awkward fit for DP and how it leads to
suggestions that DP makes assumptions. We then turn to the
causal view, replacing conditioning with interventions in the
associative definitions. Doing so reveals three key insights;
we find that the causal definitions (1) work without such
assumptions, (2) provides a tight characterization of DP, and
(3) explains how DP maps to a concept found throughout
statistics and science, namely to a measure of effect sizes.

We start our analysis with the associative view, which
uses conditioning (Section III). We first consider conditioning
upon all the data points instead of just the changed one.
After dealing with some annoyances involving the inability
to condition on zero-probability data points, we get a precise
characterization of DP (Definition 2). However, this associative
definition does not correspond well to the intuitive characteri-
zation (∗) of differential privacy’s key consequences: whereas
the above-quoted characterization refers to just the changed
data point, this associative definition refers to them all, thereby
blurring the characterization’s focus on change.

Next, we modify the associative definition to condition upon
just the single changed data point (Definition 3). The resulting
definition prohibits more than an ε degree of correlation
between the data point and the output, hereby limiting what
can be learned about the data point. While this definition
is not implied by DP on its own, it is implied with an
additional assumption of independence between data points

(Definition 4). We believe that this explains the claim found
in some papers that DP implicitly assumes independence.

However, we do not share this feeling since the indepen-
dence assumption is not required to get DP to imply the
intuitive consequence (∗) quoted above when interpreting
change as a causal intervention instead of as associative
conditioning. After reviewing the core concepts of causal
modeling (Section IV), we consider intervening upon all the
data points (Section V-A). As with conditioning upon all the
data points, a definition intervening on all the data points
(Definition 6) characterizes DP (Proposition 3) but without the
intuitive focus on a single data point that we desire.

We then consider characterizing DP as intervening upon a
single point (Definition 7 of Section V-B). A benefit of this
causal characterization is that it is implied by DP without
any assumptions about independence (Proposition 4). An ad-
ditional benefit is that, unlike the associative characterizations,
we do not need side conditions limiting the characterization
to data points with non-zero probabilities. This benefit follows
from causal interventions being defined for zero-probability
events unlike conditioning upon them. These two benefits lead
us to believe that DP is better viewed as a causal property than
as an associative one.

In addition to considering the consequences of DP through
the lenses of association and causation, we also consider how
these two approaches can provide definitions equivalent to DP.
Table I shows our key results about definitions that are either
equivalent to DP or might be mistaken as such, which, in the
sections below, we weave in with our aforementioned results
about characterizations of the consequences of DP.

When intervening upon all data points, we get equivalence
for free from Definition 6 that we already explored as a char-
acterization of the consequences of DP. This free equivalence
does not occur for conditioning upon all data points since the
side condition ruling out zero-probability data points means
those data points are not constrained. Since DP is a restriction
on all data points, to get an equivalence, the definition must
check all data points. To achieve this, we further require that
the definition hold on all distributions over the data points,
not just the naturally occurring distribution. (Alternatively, we
could require the definition to hold for any one distribution
with non-zero probabilities for all data points, such as the
uniform distribution.) We also make similar alterations to the
definitions looking at a single data point.

Having shown that DP can be viewed as a causal property,
we then consider how this view can inform our understanding
of it. We relate DP to a previously studied notion of effect
size and discuss how this more general notion can make dis-
cussions about privacy more clear (Section VI). In particular,
DP is a bound on the measure of effect size called relative
probabilities (also known as relative risk and risk ratio). That
is, DP bounds the relative probabilities for the effects of each
data point upon the output. Since not all research papers are
in agreement about what counts as an individual’s data point,
spelling out exactly which random variables have bounded
relative probabilities may be more clear than simply asserting
that DP holds for some implicit notion of data point.

We then consider in more detail the relationship between
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TABLE I
DIFFERENTIAL PRIVACY AND VARIATIONS UPON IT. The left-most column gives the number of its definition later in the text. The point of comparison is
the quantity computed for every pair of values di and d′i for di to check whether the point of comparison’s values for di and for d′i are within a factor of
eε of one another. The check is for all values of the index i. Some of the definitions only perform the comparison when the probability of the changed data
point Di having the value di (and d′i, the changed value) is non-zero under P . Others only perform the comparison when all the data points D having the
values d (and d′ for changed value of Di) has non-zero probability. do denotes a causal intervention instead of standard conditioning [42]. The definitions
vary in whether they require performing these comparisons for just the actual probability distribution over data points P or over all such distributions. In

one case (Definition 4), the comparison just applies to distributions where the data points are independent of one another.

Num. P Conditions on population distribution P Point of comparison (should be stable as di changes) Relation

Original Differential Privacy

1 n/a PrA[A(〈d1, . . . , di, . . . , dn〉)=o] is DP

Associative Variants

2 ∀ PrP [D1=d1, . . . , Di=di, . . . , Dn=dn] > 0 PrP,A[O=o | D1=d1, . . . , Di=di, . . . , Dn=dn] ↔DP

3 ∀ PrP [Di=di] > 0 PrP,A[O=o | Di=di] →DP

4 ∀ indep. Di PrP [Di=di] > 0 PrP,A[O=o | Di=di] ↔DP

Causal Variants

5 ∀ PrP,A[O=o | do(D1=d1, . . . , Di=di, . . . , Dn=dn)] ↔DP

6 given PrP,A[O=o | do(D1=d1, . . . , Di=di, . . . , Dn=dn)] ↔DP

7 given PrP,A[O=o | do(Di=di)] ←DP

8 ∀ PrP,A[O=o | do(Di=di)] ↔DP

our work and that of Kasiviswanathan and Smith [25] (Sec-
tion VII). In short, Kasiviswanathan and Smith provide a
Bayesian interpretation of DP whereas we provide a comple-
mentary causal one.

As we elaborate in the conclusion (Section VIII), these re-
sults open up the possibility of using all the methods developed
for working with causation to work with DP. Furthermore, it
explains why researchers have found uses for DP out side of
privacy (e.g., [15], [14], [12], [13], [30]): they are really trying
to limit effect sizes.

II. PRIOR WORK

The paper coining the term “differential privacy” recognized
that causation is key to understanding DP: “it will not be the
presence of her data that causes [the disclosure of sensitive
information]” [11, p. 8]. Despite this causal view being present
in the understanding of DP from the beginning, we believe we
are first to make it mathematically explicit and precise, and to
compare it explicitly with the associative view.

Tschantz et al. [46] reduces probabilistic noninterference (a
notion of having no flow of information) to having no casual
effect at all. We observe that DP with ε = 0 is identical to
noninterference, implying that the ε = 0 case of DP could be
reduced to causal effects. Our work generalizes from non-
interference to DP and thereby differs in having additional
bookkeeping to track the size of the effect for handling the
ε > 0 case, where an effect may be present but must be
bounded. Importantly, this generalization allows us to compare
the causal and associative views of DP, not a focus of [46].

Our work is largely motivated by wanting to explain the
difference between two lines of research papers that have
emerged from DP. The first line, associated with the inventors
of DP, emphasizes differential privacy’s ability to ensure that

data providers are no worse off for providing data (e.g., [11],
[25], [36], [35]). The second line, which formed in response to
limitations in differential privacy’s guarantee, emphasizes that
an adversary should not be able to learn anything sensitive
about the data providers from the system’s outputs (e.g., [27],
[28], [32], [29], [23], [5], [50], [33]). The second line notes
that DP fails to provide this guarantee when the data points
from different data providers are associated with one another
unless one assumes that the adversary knows all but one
data point. McSherry provides an informal description of the
differences between the two lines [36]. While not necessary
for understanding our technical development, Appendix A
provides a history of the two views of DP.

Kasiviswanathan and Smith look at a different way of
comparing the two views of DP, which they call Semantic
Privacy [25]. They study the Bayesian probabilities that an
adversary seeing the system’s outputs would assign to a sensi-
tive property. Whereas other works looking at an adversary’s
beliefs, such as Pufferfish [29], bounds the change in the
adversary’s probabilities before and after seeing the output,
Kasiviswanathan and Smith bound the change between adver-
sary’s probabilities after seeing the output for two difference
inputs, much as DP compares output distributions for two
different inputs. They conclude that this posterior-to-posterior
comparison captures the epistemic consequences of DP, unlike
the anterior-to-posterior comparison made by Pufferfish-like
definitions, since DP bounds it without additional assump-
tions, such as independent data points. Our causal defini-
tions (Def. 5–8) instead expose differential privacy’s causal
nature with a modification of Pearl’s causal framework as
a frequentist effect size and we do not use any Bayesian
probabilities in our causal definitions. We view their Bayesian
non-causal characterization of DP as complimentary to our
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frequentist causal characterization, with theirs focused on an
adversary’s knowledge and ours on physical constraints. (We
conjecture that a Bayesian causal characterization should be
possible, but leave that to future work.) Besides the conceptual
difference, our characterization is tighter in that we show an
exact equivalence between our central definition (Def. 8) and
DP in that each implies the other with the same value of ε,
whereas their implications hold for an increased value of ε.
Section VII considers their work in more detail.

Others have explored how assumptions about the data or
adversary enables alternative reductions of DP to information
flow properties. Clarkson and Schneider prove an equivalence
between DP and an information-theoretic notion of information
suppression while making the strong adversary assumption [6,
p. 32]. After making the strong adversary assumption, Cuff and
Yu have argued that DP can be viewed a constraint on mutual
information [8, p. 2], but McSherry points out that the connec-
tion is rather weak [37]. Alvim et al. bound the min-entropy
and mutual information in terms of ε under assumptions
about the data’s distribution [1, p. 9]. Ghosh and Kleinberg
provide inferential privacy bounds for DP mechanisms under
assumptions about restricted background knowledge [20, p. 6].
We avoid such assumptions and our causal version of DP
(Def. 8) is equivalent to the original, not merely a bound.

Instead of looking at how much an adversary learns about a
single data point, Barthe and Köpf bound how much adversary
learns, in terms of min entropy, about the whole database from
a differentially private output, while sometimes making the
strong adversary assumption [2, p. 4]. They prove that as the
database increases size, the bound increases as well. McGregor
et al. similarly bound the amount of information leaked, in
terms of mutual information, about the whole database by
a differentially private protocol (the information cost), while
sometimes assuming independent data points [34, p. 14]. We
focus on privacy consequences to individuals, that is, on one
data point at a time.

Other papers have provided flexible or convenient asso-
ciative definitions not limited to attempting to capture DP.
For example, Pufferfish is a flexible framework for stating
associative privacy properties [29]. Lee and Clifton explore
bounding the probability that the adversary can assign to an
individual being in a data set [31]. While such probabilities
are more intuitive than the ε of DP, their central definition
implicitly makes a strong adversary assumption [31, Def. 4].

III. DIFFERENTIAL PRIVACY AS ASSOCIATION

Dwork provides a well known expression of DP [11, p. 8].
In our notation, it becomes

Definition 1 (Differential Privacy). A randomized algorithm
A is ε-differentially private if for all i, for all data points
d1, . . . , dn in Dn and d′i in D, and for all output values o,

PrA[A(〈d1, . . . , dn〉)=o] ≤ eε PrA[A(〈d1, . . . , d′i, . . . , dn〉)=o]

This formulation differs from Dwork’s formulation in four
minor ways. First, for simplicity, we restrict ourselves to only
considering programs producing outputs over a finite domain,
allowing us to use notationally simpler discrete probabilities.

Second, we change some variable names. Third, we explicitly
represent that the probabilities are over the randomization
within the algorithm A, which should be understood as physi-
cal probabilities, or frequencies, not as epistemic probabilities,
or Bayesian credences. Fourth, we use the bounded formula-
tion of DP, in which we presume a maximum number n of
individuals potentially providing data. In this formulation, it
is important that one of the possible values for data points is
the null data point containing no information to represent an
individual deciding to not participate.

Both Dwork’s expression of and our re-expression of DP
make discussing the concerns about dependencies between
data points raised by some papers difficult since it does not
mention any distribution over data points. This omission is
a reflection of the standard view that DP does not depend
upon that distribution. However, to have a precise discussion
of this issue, we should introduce notation for denoting the
data points. We use Yang et al.’s expression of DP as a starting
point [49, p. 749]:

Definition 4. (Differential Privacy) A randomized
mechanism M satisfies ε-differential privacy, or ε-
DP, if

DP (M) := sup
i,x−i,xi,x′i,S

log
Pr(r ∈ S | xi,x−i)
Pr(r ∈ S | x′i,x−i)

≤ ε.

We rewrite this definition in our notation as follows:

Definition 2 (Strong Adversary Differential Privacy). A
randomized algorithm A is ε-strong adversary differentially
private if for all population distributions P , for all i, for all
data points d1, . . . , dn in Dn and d′i in D, and for all output
values o, if

PrP [D1=d1, . . . , Di=di, . . . , Dn=dn] > 0 (1)
and PrP [D1=d1, . . . , Di=d

′
i, . . . , Dn=dn] > 0 (2)

then

PrP,A[O=o | D1=d1, . . . , Di=di, . . . , Dn=dn]

≤ eε ∗ PrP,A[O=o | D1=d1, . . . , Di=d
′
i, . . . , Dn=dn] (3)

where O = A(D) and D = 〈D1, . . . , Dn〉.
This formulation differs from Yang et al.’s formulation

in the following ways. As before, we change some vari-
able names and only consider programs producing out-
puts over a finite domain. Also, rather than using short-
hand, we write out variables explicitly and denote the dis-
tributions from which they are drawn. For example, for
what they denoted as Pr(r ∈ S | x′i,x−i), we write
PrP,A[O=o | D1=d1, . . . , Di=d

′
i, . . . , Dn=dn], where the

data points D1, . . . , Dn are drawn from the population dis-
tribution P and the output O uses the algorithm’s internal
randomization A. This allows explicitly discussion of how the
data points D1, . . . , Dn may be correlated in the population P
from which they come.

Finally, we explicitly deal with data points potentially
having a probability of zero under P . We ensure that we only
attempt to calculate the conditional probability for databases
with non-zero probability. This introduces a new problem:
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if the probability distribution P over databases assigns zero
probability to a data point value di, we will never examine the
algorithm’s behavior for it. While the algorithm’s behavior on
zero-probability events may be of little practical concern, it
would allow the algorithm A to violate DP. (See Appendix B
for an example.) To remove this possibility, we quantify over
all probability distributions, which will include some with non-
zero probability for every combination of data points.

Alternately, we could have used just one distribution that
assigns non-zero probability to all possible input data points.
We instead quantify over all distributions to make it clear
that DP implies a property for all population distributions P .
While the population distribution P is needed to compute
the probabilities used by Definition 2 and will change the
probability of outcomes, whether or not A has DP does
not actually depend upon the distribution beyond whether
it assigns non-zero probability to data points. This lack of
dependence explains why DP is typically defined without
reference to a population distribution P and typically only
mentions the algorithm’s randomization A.

For us, the population distribution P serves to link the
algorithm to the data on which it is used, explaining the
consequences of the algorithm for that population. Since the
concerns of Yang et al. and others deal with differential
privacy’s behavior on populations with correlated data points,
having this link proves useful. The following theorem shows
that its introduction does not alter the concept.

Proposition 1. Definitions 1 and 2 are equivalent.

Proof. Assume Definition 1 holds. Consider any population P ,
index i, data points 〈d1, . . . , dn〉 in Dn and d′i in D, and output
o such that the following holds: PrP [D1=d1, . . . , Dn=dn] > 0
and PrP [D1=d1, . . . , Di=d

′
i, . . . , Dn=dn] > 0. Since Defini-

tion 1 holds,

PrA[A(〈d1, . . . , dn〉)=o] ≤ eε PrA[A(〈d1, . . . , d′i, . . . , dn〉)=o]

Letting O = A(D) and D = 〈D1, . . . , Dn〉, the above implies

PrP,A[O=o | D1=d1, . . . , Dn=dn]

≤ eε ∗ PrP,A[O=o | D1=d1, . . . , Di=d
′
i, . . . , Dn=dn]

Thus, Definition 2 holds.
Assume Definition 2 holds. Let P be a population

that is i.i.d. and assigns non-zero probabilities to all
the sequences of n data points. Consider any index i,
data points 〈d1, . . . , dn〉 in Dn and d′i in D, and out-
put o. P is such that PrP [D1=d1, . . . , Dn=dn] > 0 and
PrP [D1=d1, . . . , Di=d

′
i, . . . , Dn=dn] > 0 both hold. Thus,

since Definition 2 holds for P ,

PrP,A[O=o | D1=d1, . . . , Dn=dn]

≤ eε ∗ PrP,A[O=o | D1=d1, . . . , Di=d
′
i, . . . , Dn=dn]

where O = A(D) and D = 〈D1, . . . , Dn〉. Thus,

PrA[A(〈d1, . . . , dn〉)=o] ≤ eε PrA[A(〈d1, . . . , di, . . . , dn〉)=o]

Thus, Definition 1 holds.

The standard intuition provided for the formulation of
differential privacy found in Definition 2 is a Bayesian one

in which we think of P as being prior information held by
an adversary trying to learn about Di. We condition upon and
fix all the values of D1, . . . , Dn except Di to model a “strong
adversary” that knows every data point except Di, whose value
varies in (3). As the value of Di varies, we compare the
probabilities of output values o. These probabilities can be
thought of as measuring what the adversary knows about Di

given all the other data points. The bigger the change in the
probabilities as the value of Di varies, the bigger the flow of
information from Di to O.

The origins of this characterization of DP go back to
the original work of Dwork et al., who instead call strong
adversaries “informed adversaries” [17, App. A]. However,
their characterization is somewhat different than what is now
viewed as the strong adversary characterization. This new
characterization has since shown up in numerous places. For
example, Alvim and Andrés rewrite DP this way [1, p. 5] while
Yang et al. [49, Def. 4] and Cuff and Yu [8, Def. 1] even define
it thus.

Despite this intuition, there’s no mathematical requirement
that we interpret the probabilities in terms of an adversary’s
Bayesian beliefs and we could instead treat them as frequen-
cies over some population. In Section VII, we return to this
issue where we explicitly mix the two interpretations. Either
way, we term Definition 2 to be an associative characterization
of DP since (3) compares probabilities that differ in the value
of Di that is conditioned upon.

While it may seem intuitive that ensuring privacy against
such a “strong” adversary would imply privacy against other
“weaker” adversaries that know less, it turns out that the
name is misleading. Suppose we measure privacy in terms
of the association between Di and O, which captures what an
adversary learns, as in (3). Depending upon the circumstances,
either a more informed “stronger” adversary or a less informed
“weaker” adversary will learn more from a data release [7],
[27]. Intuitively, if the released data is esoteric information and
only the informed adversary has enough context to make use
of it, it will learn more. If, on the other hand, the released data
is more basic information relating something that the informed
adversary already knows but the uninformed one does not, then
the “weaker” uninformed one will learn more.

One way to make this issue more precise is to model how
informed an adversary is by the number of data points it
knows, that is, the number conditioned upon. This leads to
Yang et al.’s definition of Bayesian Differential Privacy [49,
Def. 5]. Despite the name, its probabilities can be interpreted
either as Bayesian credences or as frequencies. For simplicity,
we state their definition for just the extreme case where the
adversary knows zero data points:

Definition 3 (Bayesian0 Differential Privacy). A randomized
algorithm A is ε-Bayesian0 differentially private if for all
population distributions P , for all i, for all data points di
and d′i in D, and for all output values o, if PrP [Di=di] > 0
and PrP [Di=d

′
i] > 0 then

PrP,A[O=o | Di=di] ≤ eε ∗ PrP,A[O=o | Di=d
′
i] (4)

where O = A(D) and D = 〈D1, . . . , Dn〉.
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Differential Privacy Strong Adversary D.P.

Independent Bayes. D.P. Bayesian D.P.

Strong adversary

Independent data points

Fig. 2. Relationships between Differential Privacy and Associative Charac-
terizations of It. Arrows show implications. Curved, labeled arrows show, in
italics, assumptions required for the implication. For differential privacy to
imply Bayesian Differential Privacy, one of two assumptions must be made.

One might expect that DP would provide Bayesian Dif-
ferential Privacy from hearing informal descriptions of them.
However, Yang et al. prove that Bayesian Differential Privacy
implies DP but is strictly stronger [49, Thm. 2]. Indeed, it was
already known that limiting the association between Di and
the output O requires limiting the associations between Di

and the other data points [7], [27]. Doing so, Yang et al.
proved that DP implies Bayesian Differential Privacy under
the assumption that the data points are independent of one
another [49, Thm. 1]. We state the resulting qualified form of
DP as follows:

Definition 4 (Independent Bayesian0 Differential Privacy). A
randomized algorithm A is ε-Bayesian0 differentially private
for independent data points if for all population distributions
P such that for all i and j where i 6= j, Di is independent
of Dj conditioned upon the other data points the following
holds: for all data points di and d′i in D, and for all output
values o, if PrP [Di=di] > 0 and PrP [Di=d

′
i] > 0 then

PrP,A[O=o | Di=di] ≤ eε ∗ PrP,A[O=o | Di=d
′
i] (5)

where O = A(D) and D = 〈D1, . . . , Dn〉.
On all the above math, everyone is in agreement, which we

summarize in Figure 2 and below:
(a) Differential privacy and Strong Adversary Differential

Privacy are equivalent,
(b) Differential privacy and Independent Bayesian Differen-

tial Privacy are equivalent,
(c) Bayesian Differential Privacy and related associative

properties are strictly stronger than Differential Privacy,
(d) If we limit ourselves to strong adversaries, DP and

Bayesian Differential Privacy become equivalent, and
(e) If we limit ourselves to independent data points, DP and

Bayesian Differential Privacy become equivalent.
More controversially, some papers have pointed to these facts
to say that DP makes implicit assumptions. Some have taken
(d) to imply that DP has an implicit assumption of a strong
adversary. For example, Cuff and Yu’s paper states [8, p. 2]:

The definition of (ε, δ)-DP involves a notion of
neighboring database instances. Upon examination,
one realizes that this has the effect of assuming that
the adversary has already learned about all but one
entry in the database and is only trying to gather
additional information about the remaining entry.
We refer to this as the strong adversary assumption,
which is implicit in the definition of differential
privacy.

Others have focused on (e) and independent data points. For
example, Liu et al.’s paper asserts [33, p. 1]:

To provide its guarantees, DP mechanisms assume
that the data tuples (or records) in the database, each
from a different user, are all independent.

Appendix A3 provides more examples.
Those promoting the original view of DP have re-asserted

that DP was never intended to prevent all associative, or
inferential, privacy threats and that doing so is impossible [3],
[25], [36], [35]. However, this assertion raises the question: if
DP is not providing some form of association-based inferential
privacy, what is it providing?

IV. A PRIMER ON CAUSATION

We believe that the right way of thinking about DP is that it
is providing a causal guarantee. Before justifying this claim,
we will review a framework for precisely reasoning about
causation based upon Pearl’s [42]. We choose Pearl’s since
it is the most well known in computer science, but our results
can be translated into other frameworks.

To explain causation, let us return to the example of
Section I-A. Suppose that the statistic being computed is the
number of data points showing the genetic disease. A possible
implementation of such a differentially private count algorithm
A for a fixed number of three data points is

def progA(D1, D2, D3) :

D := 〈D1, D2, D3〉

O := Lap(1/ε) +
3∑
i=1

(1 if D[i] == pos else 0)

It takes in 3 data points as inputs, representing the statuses
reported by survey participants. It stores them in a database
D and then uses the Laplace Mechanism to provide a differ-
entially private count of the number of data points recording
the status as positive (pos) [17, Example 1].

One could use a tool like the GNU Project Debugger (GDB)
to check the value of a variable as the program executes. We
can think of this as making an observation. If you observed that
D[3] is negative (neg), you would know that D3 and the third
input were also neg. In a probabilistic setting, conditioning
would carry out this update in knowledge.

One could also use GDB to intervene on the program’s ex-
ecution and alter D[3] to be pos. This would probabilistically
increase the output’s value. But would one learn from this
that D3 is pos and no longer neg? No, since the program
uses assignments and not equalities to shift the value of the
right-hand-side variable into the left-hand-side variable. D3 is
a (partial) cause of D, but not the other way around. Altering
the value of D[3] only affects variables that it assigns a value
to, those they assign values to, and so forth, that is, the ones
it causes. In this example, that is only O. This reflects the
difference between association and causation.

More formally, to develop a causal interpretation of DP, we
start by replacing the equation O = A(D) with a stronger
claim. Such equations say nothing about why this relation
holds. We use a stronger causal relation asserting that the
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value of the output O is caused by the value of the input
D, that is, we use a structural equation. We will denote this
structural equation by O := A(D) since it is closer to an
assignment than equality due to its directionality. To make
this more precise, let do(D=d) denote an intervention setting
the value of D to d (Pearl’s do notation [42]). Using this
notation, Pr[O=o | do(D=d)] represents what the probability
of O = o would be if the value of D were set to d by
intervention. Similar to normal conditioning on D = d,
Pr[O=o | do(D=d)] might not equal Pr[O=o]. However,
Pr[D=d | do(O=o)] will surely equal Pr[D=d] since O is
downstream of D, and, thus, changing O has no effects on D.

Similarly, we replace D = 〈D1, D2, D3〉 with D :=
〈D1, D2, D3〉. That is, we consider the value of the whole
database to be caused by the values of the data points and
nothing more. Furthermore, we require that D1, D2, D3 only
cause D and do not have any other effects. In particular, we do
not allow Di to affect Dj for i 6= j. Looking at our example
program progA, this is the case.

This requirement might seem to prevent one person’s at-
tribute from affecting another’s, for example, preventing a
mother’s genetic condition from affecting her child’s genetic
condition. This is not the case since D1, D2, D3 represent
the data points provided as inputs to the algorithm and
not the actual attributes themselves. One could model the
actual attributes, such as genetics itself, as random variables
R1, R2, R3 where Di := Ri for all i and allow Ri to affect
Rj without changing how intervening on the Dis works. For
example, progA might be called in the following context:

def progstatus(R1, R3) :

R2 := R1

D1 := R1

D2 := R2

D3 := R3

progA(D1, D2, D3)

which does not say how the inputs R1 or R3 are set but does
model that R2 is assigned R1. We can graphically represent
these relationships as a graphical model, similar to the one
in Figure 1 with n − 2 = 1 and an intermediate variable
D representing the database put between the data points and
the output. Note that while D1 and D2 are associated, equal
in fact, neither causes the other and they can be changed
independently of one another, which can be seen from neither
being downstream from the other.

To make the above intuitions about causation formal, we
use structural equation models (SEMs). An SEM M =
〈Ven,Vex, E〉 includes a set of variables partitioned into en-
dogenous (or dependent) variables Ven and background (or
exogenous, or independent) variables Vex. You can think of
the endogenous variables as being those assigned values by the
programs above and the background variables as being those
provided as inputs to the programs.M also includes a set E of
structural equations, corresponding to the assignments. Each
endogenous variable X has a structural equation X := FX(~Y )
where FX is a possibly randomized function and ~Y is a list

of other variables, modeling the direct causes of X . To avoid
circularity, ~Y may not include X . We call the variables ~Y the
parents of X , denoted as pa(X).

We limit ourselves to recursive SEMs, those in which the
variables may be ordered such that all background variables
come before all endogenous variables and no variable has a
parent that comes before it in the ordering. We may view such
SEMs as similar to a program where the background variables
are inputs to the program and the ordering determines the order
of assignment statements in the program. We can make this
precise by computing the values of endogenous variables from
the values of the background variables using a method similar
to assigning a semantics to a program.

The only difference is that, rather then a single value, the
inputs are assigned probability distributions over values, which
allows us to talk about the probabilities of the endogenous
variables taking on a value. Let a probabilistic SEM 〈M,P〉
be an SEM M with a probability distribution P over its
background variables. We can raise the structural equations
(assignments) to work over P instead of a concrete assignment
of values. (Appendix C provides details.)

Finally, to define causation, let M be an SEM, Z be an
endogenous variable of M, and z be a value that Z can take
on. Pearl defines the sub-modelM[Z:=z] to be the SEM that
results from replacing the equation Z := FZ(~Z) in E of M
with the equation Z := z. You can think of this as using
GDB to assign a value to a variable or as aspect-oriented
programming jumping into a function to alter a variable. The
sub-model M[Z:=z] shows the effect of setting Z to z. Let
PrM,P [Y=y | do(Z:=z)] be PrM[Z:=z],P [Y=y]. This is well
defined even when PrM,P [Z=z] = 0 as long as z is within
in the range of values Z that Z can take on.

Returning to our example, letMAst be an SEM representing
progstatus and P be the naturally occurring distribution of
data points. PrMAst ,P [O=o] is the probability of the algo-
rithm’s output being o under P and coin flips internal to
A. PrMAst ,P [O=o | Di=pos] is that probability conditioned
upon seeing D1 = pos. PrMAst ,P [O=o | do(D1=pos)] is
that probability given an intervention setting the value of D1

to pos, which is PrMAst [Di:=pos],P [O=o]. MAst [D1:=pos] is
the program with the line assigning R1 to D1 replaced with
D1 := pos. PrMAst ,P [O=o | do(D1=pos)] depends upon how
the intervention on D1 will flow downstream to O.

This probability differs from the conditional probability in
that setting D1 to pos provides no information about Dj for
j 6= 1, whereas if D1 and Dj are associated, then seeing
the value D1 does provide information about Dj . Intuitively,
this lack of information is because the artificial setting of
D1 to pos has no causal influence on Dj due to the data
points not affecting one another and the artificial setting, by
being artificial, tells us nothing about the associations found
in the naturally occurring world. On the other hand, artificially
setting the attribute itself R1 to pos will provide information
about D2 since R1 has an effect on D2 in addition to D1.
A second difference is that PrMAst ,P [O=o | do(Di=di)] is
defined even when PrMAst ,P [Di=di] = 0.

Importantly, interventions on a data point Di do not model
modifying the attributes they record nor affect other inputs.
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Instead, interventions on Di model changing the values pro-
vided as inputs to the algorithm, which can be changed without
affecting the attributes or other inputs. This corresponds to an
atomicity property: the inputs Di are causally isolated from
one another and they can be intervened upon separately.

Making the distinction between the inputs Di and the
attributes Ri might seem nitpicky, but it is key to under-
standing DP. Recall that its motivation is to make people
comfortable with truthfully sharing data instead of withholding
it or lying, which is an acknowledgment that the inputs people
provide might not be the same as the attributes they describe.
Furthermore, that changing inputs do not change attributes or
other inputs is a reflection of how the program works. It is
not an implicit or hidden assumption of independence; it is a
fact about the program analyzed.

V. DIFFERENTIAL PRIVACY AS CAUSATION

Due to differential privacy’s behavior on associated inputs
and its requirement of considering zero-probability database
values, DP is not a straightforward property about the inde-
pendence or the degree of association of the database and
the algorithm’s output. The would-be conditioning upon zero-
probability values corresponds to a form of counterfactual
reasoning asking what the algorithm would have performed
had the database taken on a particular value that it might
never actually take on. Experiments with such counterfactuals,
which may never naturally occur, form the core of causation.
The behavior of DP on associated inputs corresponds to the
atomicity property found in causal reasoning, that one can
change the value of an input without changing the values of
other inputs. With these motivations, we will show that DP
is equivalent to a causal property that makes the change in a
single data point explicit.

A. With the Whole Database
We first show an equivalence between DP and a causal

property on the whole database to echo Strong Adversary
Differential Privacy (Def. 2). To draw out the parallels between
the associative and causal properties, we quantify over all
populations as we did in Definition 2, but as we will see,
doing so is not necessary.

Let MA be an SEM modeling a slightly modified version
of progstatus that lacks the first assignment and treats all of
any fixed number of attributes Ri as inputs (i.e., as exogenous
variables) with Di := Ri. (Appendix C provides details.) We
could instead use a version of MA that also accounts for
Di possibly being assigned a value other than Ri to model
withholding an attribute’s actual value. While the proofs would
become more complex, the results would remain the same
since we only intervene on the Di and not the Ri.

Definition 5 (Universal Whole Database Intervention D.P.).
A randomized algorithm A is ε-differentially private as uni-
versal intervention on the whole database if for all population
distributions P , for all i, for all data points d1, . . . , dn in Dn
and d′i in D, and for all output values o,

PrMA,P [O=o | do(D1=d1, . . . , Dn=dn)]

≤ eε ∗ PrMA,P [O=o | do(D1=d1, . . . , Di=d
′
i, . . . , Dn=dn)]

where O := A(D) and D := 〈D1, . . . , Dn〉.
Proposition 2. Definitions 1 and 5 are equivalent.

Proof. Pearl’s Property 1 says that conditioning upon all the
parents of a variable and causally intervening upon them all
yields the same probability [42, p. 24]. Intuitively, this is for
the same reason that Strong Adversary Differential Privacy is
equivalent to DP: it blocks other paths of influence from one
data point to the output via another data point by fixing all
the data points.

We can apply Property 1 since all the Dis are be-
ing intervened upon and they make up all the parents of
D. We can apply it again on D and O. We then get
that PrMA,P [O=o | do(D1=d1, . . . , Dn=dn)] is equal to
PrMA,P [O=o | D1=d1, . . . , Dn=dn], that is to Strong Ad-
versary Differential Privacy, which we already know to be
equivalent to DP by Proposition 1.

Notice that this causal property is simpler than the as-
sociative one in that it does not need qualifications around
zero-probability data points because we can causally fix data
points to values with zero probability. In fact, the population
distribution P did not matter at all since intervening upon all
the data points makes it irrelevant, intuitively by overwriting
it. For this reason, we could instead look at any population,
such as the naturally occurring one (or even elide it from the
definition altogether, as in Definition 1, if we are not too picky
about formalism). Next, we state such a simplified definition.

Definition 6 (Whole Database Intervention D.P.). Given a
population distribution P , a randomized algorithm A is ε-
differentially private as intervention on the whole database for
P if for all i, for all data points d1, . . . , dn in Dn and d′i in
D, and for all output values o,

PrMA,P [O=o | do(D1=d1, . . . , Dn=dn)]

≤ eε ∗ PrMA,P [O=o | do(D1=d1, . . . , Di=d
′
i, . . . , Dn=dn)]

where O := A(D) and D := 〈D1, . . . , Dn〉.

Proposition 3. Definitions 1 and 6 are equivalent.

Proof. The proof follows in the same manner as Proposition 2
since that proof applies to all population distributions P .

B. With a Single Data Point

Definitions 5 and 6, by fixing every data point, do not
capture the local nature of the decision facing a single potential
survey participant. We can define a notion similar to DP that
uses a causal intervention on a single data point as follows:

Definition 7 (Data-point Intervention D.P.). Given a popula-
tion P , a randomized algorithm A is ε-differentially private
as intervention on a data point for P if for all i, for all data
points di and d′i in D, and for all output values o,

PrMA,P [O=o | do(Di=di)] ≤ eε PrMA,P [O=o | do(Di=d
′
i)]

where O := A(D) and D := 〈D1, . . . , Dn〉.
This definition is strictly weaker than DP. The reason is

similar to why we had to quantify over all distributions P
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with Strong Adversary Differential Privacy. In both cases,
we can give a counterexample with a population P that
hides the effects of a possible value of the data point by
assigning the value a probability of zero. For the associative
definition, the counterexample involves only a single data
point (Appendix B). However, for this causal definition, the
counterexample has to have two data points. The reason is that,
since the do operation acts on a single data point at a time, it
can flush out the effects of a single zero-probability value but
not the interactions between two zero-probability values.

Proposition 4. Definition 1 implies Definition 7, but not the
other way around.

Proof. W.l.o.g., assume i = n. Assume Definition 1 holds:

PrA[A(〈d1, . . . , dn−1, dn〉)=o]
≤ eε ∗ PrA[A(〈d1, . . . , dn−1, d′n〉)=o]

for all o in O, 〈d1, . . . , dn〉 in Dn, and d′n in D. This implies
that for any P ,

PrP
[
∧n−1i=1 Di=di

]
∗ PrA[A(〈d1, . . . , dn−1, dn〉)=o]

≤ eε ∗ PrP
[
∧n−1i=1 Di=di

]
∗ PrA[A(〈d1, . . . , dn−1, d′n〉)=o]

for all o in O, d1, . . . , dn in Dn, and d′n in D. Thus,∑
〈d1,. . . ,dn−1〉∈Dn−1

PrP
[
∧n−1
i=1 Di=di

]
∗ PrA[A(〈d1, . . . , dn−1, dn〉)=o]

≤
∑
〈d1,. . . ,dn−1〉∈Dn−1

eε ∗ PrP
[
∧n−1
i=1 Di=di

]
∗ PrA[A(〈d1, . . . , dn−1, d

′
n〉)=o]

∑
〈d1,. . . ,dn−1〉∈Dn−1

PrP
[
∧n−1
i=1 Di=di

]
∗ PrA[A(〈d1, . . . , dn−1, dn〉)=o]

≤ eε
∑
〈d1,. . . ,dn−1〉∈Dn−1

PrP
[
∧n−1
i=1 Di=di

]
∗ PrA[A(〈d1, . . . , dn−1, d

′
n〉)=o]

PrMA,P [O=o | do(Dn=dn)] ≤ eε ∗ PrMA,P [O=o | do(Dn=d′n)]

where the last line follows from Lemma 2 in Appendix C.
Definition 7 is, however, weaker than DP. Consider the case

of a database holding two data points whose value could be 0,
1, or 2. Suppose the population P is such that PrP [D1=2] = 0
and PrP [D2=2] = 0. Consider an algorithm A such that

PrA[A(〈2, 2〉)=0] = 1 PrA[A(〈2, 2〉)=1] = 0

PrA[A(〈d1, d2〉)=0] = 1/2 PrA[A(〈d1, d2〉)=1] = 1/2

when d1 6= 2 or d2 6= 2. The algorithm does not satisfy
Definition 1 due to its behavior when both of the inputs are
2. However, using Lemma 2 in Appendix C,

PrMA,P [O=o | do(D1=d′1)] = 1/2

for all o and d′1 since PrP [D2=2] = 0. A similar result holds
switching the roles of D1 and D2. Thus, the algorithm satisfies
Definition 7 for P but not Definition 1.

Despite being only implied by, not equivalent to, DP, Defi-
nition 7 captures the intuition behind the characterization (∗)
of DP that “changing a single individual’s data in the database
leads to a small change in the distribution on outputs” [25,
p. 2]. To get an equivalence, we can quantify over all pop-
ulations as we did to get an equivalence for association, but
this time we need not worry about zero-probability data points

or independence. This simplifies the definition and makes it a
more natural characterization of DP.

Definition 8 (Universal Data-point Intervention D.P.). A
randomized algorithm A is ε-differentially private as universal
intervention on a data point if for all population distributions
P , for all i, for all data points di and d′i in D, and for all
output values o,

PrMA,P [O=o | do(Di=di)] ≤ eε PrMA,P [O=o | do(Di=d
′
i)]

where O := A(D) and D := 〈D1, . . . , Dn〉.
Proposition 5. Definitions 1 and 8 are equivalent.

Proof. That Definition 1 implies 8 follows from Proposition 4.
Assume Definition 8 holds. W.l.o.g., assume i = n. Then,

for all P , o in O, and d′n in D,

PrMA,P [O=o | do(Di=di)] ≤ eε ∗ PrMA,P [O=o | do(Di=d
′
i)]∑

〈d1,. . . ,dn−1〉∈Dn−1

PrP
[
∧n−1i=1 Di=di

]
∗ PrA[A(〈d1, . . . , dn−1, dn〉)=o]

≤ eε
∑
〈d1,. . . ,dn−1〉∈Dn−1

PrP
[
∧n−1i=1 Di=di

]
PrA[A(〈d1, . . . , dn−1, d′n〉)=o]

(6)

follows from Lemma 2 in Appendix C.
For any d†1, . . . , d

†
n−1 in Dn−1, let Pd

†
1,. . . ,d

†
n−1 be such that

Pr
Pd
†
1,. . . ,d

†
n−1

[
∧n−1i=1 Di=d

†
i

]
= 1 (7)

For any d†1, . . . , d
†
n in Dn and d′n in D, (6) implies∑

〈d1,. . . ,dn−1〉∈Dn−1

Pr
Pd
†
1,. . . ,d

†
n−1

[
∧n−1i=1 Di=di

]
PrA[A(〈d1, ..., dn−1, d

†
n〉)=o]

≤ eε
∑
〈d1,. . . ,dn−1〉∈Dn−1

Pr
Pd
†
1,. . . ,d

†
n−1

[
∧n−1i=1 Di=di

]
∗ PrA[A(〈d1, ..., dn−1, d

′
n〉)=o]

Thus,

PrA[A(〈d†1, . . . , d
†
n−1, d

†
n〉)=o]

≤ eε PrA[A(〈d†1, . . . , d
†
n−1, d

′
n〉)=o]

since both sides has a non-zero probability for

Pr
Pd
†
1,. . . ,d

†
n−1

[
∧n−1i=1 Di=di

]
at only the sequence of data point values d†1, . . . , d

†
n−1.

VI. BOUNDING EFFECTS: GENERALIZING D.P.,
UNDERSTANDING ALTERNATIVES

To recap, we have shown that reasoning about DP as a causal
property is more straightforward than reasoning about it as an
associative property. Still, one might wonder, Why express
DP in either form? Why not just stick with its even simpler
expression in terms of functions in Definition 1?

In this section, we show what is gained by the causal
view. We show that DP bounds a general notion of effect size.
Essentially, DP limits the causal consequences of a decision
to contribute data to a data set. If the consequences are small,
then an individual will need less encouragement (e.g., financial
incentives) to set aside privacy concerns.
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We show that this general notion can also capture alternative
privacy definitions, including some arising from concerns over
dependent data points. A common causal framework allows us
to precisely compare these definitions.

A. Bounded Relative Probability (BRP)

Generalizing from the decision to participate in a data
set, we define a more general notation for any two random
variables X and Y . To do so, we need a description of how
X and Y relate to one another. Recall that a probabilistic SEM
〈M,P〉 shows the causal and statistical relations between
random variables by providing a list of structural equations
M and a distribution P over variables not defined in terms of
others (exogenous variables). (See Appendix C for details.)

We will measure the size of the effects of X on Y using
relative probabilities, better known as relative risk and as risk
ratio with clinical studies of risks in mind. For three (binary)
propositions ρ, φ, and ψ, let

RPM,P(ρ, φ, ψ) =
PrM,P [ρ | do(φ)]

PrM,P [ρ | do(ψ)]

denote the relative probability. (Some authors also allow
using conditioning instead of interventions.) For two random
variables X and Y , we can characterize the maximum effect
of X on Y as

R̄PM,P(Y,X) = max
y,x1,x2

RPM,P(Y=y,X=x1, X=x2)

Expanding these definitions out shows that ε-differential pri-
vacy places a bound on the maximum of the maximum relative
probabilities:

max
P,i

R̄PM,P(O,Di) ≤ eε

where M describes the differentially private algorithm A.
Note that our use of maximization is similar Yang et al. [49,
p. 749, Def. 4], which we quote in Section III.

With this in mind, we propose to use R̄P for a general
purpose effect-size restriction:

Definition 9 (BRP). A causal system described by M has
ε-bounded relative probability (BRP) for X to Y iff

max
P

R̄PM,P(Y,X) ≤ eε

Differential privacy is equivalent to requiring ε-BRP for all
data points Di.

B. Composition

BRP enjoys many of the same properties as DP. Recall
that DP has additive sequential composition for using two
differentially private algorithms one after the next, even if
the second is selected using the output of the first [38].
Similarly, BRP has additive sequential composition for two
random variables.

To model the second output Z depending upon the first Y ,
but not the other way around, we say random variables X ,
Y , and Z are in sequence if X may affect Y and Z, and Y
may affect Z, but Z may not affect X nor Y , and Y may not
affect X . That is,

X Y

Z

To model that the second output Z could be computed with
one of any of a set of algorithms but that each of algorithm
has a bounded effect from X to Z, we look at Z’s behavior in
sub-models M[Y := y] where each setting of Y corresponds
to a selecting one available algorithm.

Theorem 1. For any SEM M such that X , Y , and Z are in
sequence and the parents of Z are {X,Y }, if X has ε1-BRP
to Y in M and ε2-BRP to Z in M[Y := y] for all y in Y ,
then X has (ε1 + ε2)-BRP to 〈Y,Z〉 in M.

Proof. Consider any probability distribution P , x and x′ in
X , y in Y , and z in Z . Since the effect of X on Y is bounded
by ε1-BRP,

PrM,P [Y=y | do(X=x)] ≤ eε1 PrM,P [Y=y | do(X=x′)]

Since the parents of Z are {X,Y }, Pearl’s Property 1 [42,
p. 24] shows that for any y such that PrM,P [Y=y] > 0,

PrM,P [Z=z | Y=y,do(X=x)]

= PrM,P [Z=z | do(Y=y),do(X=x)]

Since there’s ε2-BRP from X to Z in M [Y := y] for all y,
this implies that

PrM,P [Z=z | Y=y,do(X=x)]

≤ eε2 PrM,P [Z=z | Y=y,do(X=x′)]

Thus,

PrM,P [〈Y,Z〉 = 〈y, z〉 | do(X=x)]

= PrM,P [Z=z | Y=y,do(X=x)] PrM,P [Y=y | do(X=x)]

≤ eε2 PrM,P [Z=z | Y=y,do(X=x′)]

∗ eε1 PrM,P [Y=y | do(X=x′)]

= eε1+ε2 PrM,P [〈Y,Z〉 = 〈y, z〉 | do(X=x′)]

We can generalize this theorem for Z having additional
parents by requiring BRP for all of their values as well.

The special case of this theorem where ε2 = 0 is known as
the postprocessing condition:

X Y Zε

For this causal diagram, Theorem 1 ensures that if the arrow
from X to Y is ε-BRP, then any subsequent consequence Z of
Y is also going to be ε-BRP. This captures the central intuition
behind DP and BRP that they limit any downstream causal
consequences of a variable X .

C. Application

While the explicit causal reasoning in BRP can sharpen our
intuitions about privacy, BRP is not itself a privacy definition.
Only some choices of variables to bound yield reasonable
privacy guarantees. Below, we use BRP to express some of
well known variations of DP. Doing so both shows some
reasonable ways of using BRP to provide privacy guarantees
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and demonstrates that BRP provides a common framework for
precisely stating and comparing these variations.

First, consider the randomized response method of provid-
ing privacy in which each survey participant adds noise to his
own response before responding [48]. Let each person’s actual
attribute be Ri, let the noisy response he provides be Di, and
let O be the output computed from all the Di. Unlike with
(standard) DP, the causal path from Di to O has unbounded
BRP, may not contain any random algorithms, and misses the
privacy protection altogether. Similarly, the path from Ri and
O has unbounded BRP due to the possibility of the Ri having
effects upon one another. However, the randomized response
method does ensure ε-BRP from Ri to Di for all i where ε
depends upon the amount of noise added to Di.

Second, we consider group privacy, the idea that a group
of individuals may be so closely related that their privacy is
intertwined. Differential privacy approaches group privacy by
summing the privacy losses, measured in terms of ε, of each
individual in the group [11, p. 9]. Similarly, we can add the
relative probabilities of multiple random variables to get a total
effect size. Alternately, BRP can easily be extended to measure
simultaneous joint interventions by using multiple instances
of the do operator. The total effect size may be larger than
the joint effect size since, in cases where the intervened upon
variables affect one another, interventions on a downstream
variable can mask interventions on its parents. Returning to
the example of Section I-A, the total effect for both Ada’s
attribute R1 and Byron’s R2 is 3ε with 2ε of that coming
from R1. However, the joint effect is 2ε since R1 achieved
half of its effect via R2. In examples like this where the
variables correspond to different moral entities, the total effect
size strikes us as more reasonable since it accounts for both
Ada and Byron experiencing a privacy loss. If on the other
hand, the variables correspond to a single topic about a single
person, such as weight and waist size, then the joint effect
size seems more reasonable. However, we see this choice as
under explored since it does not emerge for DP given that data
points cannot not affect one another.

Third, we consider a line of papers providing definitions of
privacy that account for dependencies between data points, but
which are ambiguous about association versus causation [5],
[50], [33]. For example, Liu et al. use the word “cause”
in a central definition of their work [33, Def. 3], but do no
causal modeling, instead using a joint probability distribution
to model just associations in their adversary model [33, §3].
Using causal modeling and BRP would allow them to actually
model causation instead of approximating it with associations,
or, if associations really is what they wish to model, would
provide a foil making their goals more clear.

Fourth, as a more complex example, Kifer and Machanava-
jjhala consider applying DP to social networks [27, §3]. They
note that DP applied to a network is typically taken to mean
either considering nodes or edges labeled with an individual’s
id i in the network as that individual’s data point Di, but that
participation in a social network is likely to leave far more
evidence than just those nodes and edges. They consider an
example in which Bob joins a network and introduces Alice
and Charlie to one another, leading them to create an edge

between them that does not involve Bob. Arguably, protecting
Bob’s privacy requires counting this edge as Bob’s as well
despite neither edge nor node DP doing so. To capture this
requirement, they distinguish between differential privacy’s
deleting of data points from a data set and their desire to
“hide the evidence of participation” [27, §2.2.1].

Because “It is difficult to formulate a general and formal
definition for what evidence of participation means” [27, §3,
p. 5], they use correlations in its place for modeling public
health and census records [27, §§2.1.3, 2.2, 4.1 & 4.3.1].
However, for modeling social networks, they use statistical
models that they interpret as providing “a measure of the
causal influence of Bob’s edge”, that is, informal causal
models [27, §3, p. 6].

We believe that the causal framework presented herein
provides the necessary mathematical tools to precisely reason
about evidence of participation. Causal models would allow
them to precisely state which aspects of the system they wish
to protect, for example, by requiring that Bob’s joining the
network should have a bounded effect upon a data release.
While accurately modeling a social process is a difficult task,
at least the requirement is clearly stated, allowing us to return
to empirical work. Furthermore, such formalism can allow for
multiple models to be considered and we can demand privacy
under each of them, and erring on the side of safety by over-
estimating effect sizes remains an option.

Finally, causal modeling can make the choices between
privacy notions more clear. The distinction between direct and
indirect effects [41] can model the difference between node
privacy, which only captures the direct effects of joining a
social network, and all of the evidence of participation, which
includes hard-to-model indirect effects. Edge privacy captures
the direct effect of posting additional content. Given that
Facebook has reached near universal membership but worries
about disengagement, this effect might be the more concerning
one from paractical perspective.

VII. RESTRICTIONS ON KNOWLEDGE

Privacy is often thought of as preventing an adversary from
learning sensitive information. To make this intuition precise,
we can model an adversary’s beliefs using Bayesian probabil-
ities, or credences. We denote them with Cr, instead of Pr,
which we have been using to denote natural frequencies over
outcomes without regard to any agent’s beliefs. We denote the
adversary’s background knowledge as B. The knowledge of
an adversary about the database D after observing the output
can be expressed as Cr[D=d | O=o,B]. A natural privacy
property, termed statistical nondisclosure by Dalenius [9],
requires that Cr[D=d | O=o,B] = Cr[D=d | B], that is,
that the beliefs about the database before and after observing
the output are the same.

This requirement limiting the difference between prior and
posterior beliefs has been shown to be impossible to achieve
under arbitrary background knowledge by Dwork and Naor,
even for approximate relaxations of statistical nondisclosure,
as long as the output provides some information [18]. As
DP also falls under the purview of this impossibility result,
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it only provides this associative guarantee under restrictive
background knowledge assumptions, such as independent data
points or strong adversaries. To see the need for assumptions,
consider that statistical nondisclosure implies 0-Bayesian0
Differential Privacy (Def. 3) since both are equivalent to re-
quiring independence between D and O in the case where
the adversary’s background information is the true distribution
over data points. We believe such a need underlies the view
that DP only works with assumptions (Appendix A3).

Kasiviswanathan and Smith’s Semantic Privacy is a property
about the adversary’s ability to do inferences that does not
require such assumptions [25]. It requires that the probability
that the adversary assigns to the input data points does not
change much whether an individual i provides data or not.
The probability assigned by the adversary when each person
provides his data point is

Cr[D=d | O=o,B] =
PrA[A(d)=o] ∗ Cr[D=d | B]∑
d′ PrA[A(d′)=o] ∗ Cr[D=d′ | B]

where D=d is shorthand for
∧n
j=1Dj=dj with d =

〈d1, . . . , dn〉. The probability where person i does not provide
data or provides fake data is

PrA[A(d−id
′
i)=o] ∗ Cr[D=d | B]∑

d′ PrA[A(d−id
′
i)=o] ∗ Cr[D=d′ | B]

where d′i is the value (possibly the null value) provided
instead of the real value and d−1d

′
i is shorthand for d with

its ith component replaced with d′i. While we leave fully
formalizing the combining of Bayesian credences and frequen-
tist probabilities to future work, intuitively, this probability is
CrMA,P [D=d | O=o,do(Di=d

′
i), B] in our causal notation.

Kasiviswanathan and Smith prove that DP and Semantic
Privacy are closely related [25, Thm. 2.2]. In essence, they
show that DP ensures that Cr[D=d | O=o,B] and Cr[D=d |
O=o,do(Di=d

′
i), B] are close in nearly the same sense as

it ensures that Pr[O=o] and Pr[O=o | do(Di=d
′
i)] are close.

That is, it guarantees that an adversary’s beliefs will not change
much relative to whether you decide to provide data or not,
providing an inference-based view of DP.

To gain intuition about these results, let us consider the
findings of Wang and Kosinski [47], which show the possibil-
ity of training a neural network to predict a person’s sexual
orientation from a photo of their face. If this model had been
produced with DP, then each study participant would know
that their participation had little to do with the model’s final
form or success. However, inferential threats would remain.
An adversary can use the model and a photo of an individ-
ual to infer the individual’s sexual orientation, whether that
individual participated in the study or not. Less obviously, an
adversary might have some background knowledge allowing
it to repurpose the model to predict people’s risks of certain
health conditions. Such difficult to predict associations may
already be used for marketing [24] (cf. [43]).

An individual facing the option of participating in such a
study may attempt to reason about how likely such repurposing
is. Doing so requires the difficult task of characterizing the
adversary’s background knowledge since Dwork and Naor’s

proof shows that the possibility cannot be categorically elim-
inated [18]. Furthermore, if the individual decides that the
study is too risky, merely declining to participate will do
little to mitigate the risk since DP ensures that the individual’s
data would have had little effect on the model. Rather, the
truly concerned individual would have to lobby others to not
participate. For this reason, both the causal and associative
views of privacy have their uses, with the causal view being
relevant to a single potential participant’s choice and the
associative, to the participants collectively. One can debate
whether such collective properties are privacy per se or some
other value since it goes beyond protecting personal data [36].

VIII. CONCLUSION AND FURTHER IMPLICATIONS

Although it is possible to view DP as an associative property
with an independence assumption, we have shown that it is
cleaner to view DP as a causal property without such an
assumption. We believe that this difference in goals helps to
explain why one line of research claims that DP requires an
assumption of independence while another line denies it: the
assumption is not required but does yield stronger conclusions.

We believe these results have implications beyond explain-
ing the differences between these two lines. Having shown
a precise sense in which DP is a causal property, we can use
the results of statistics, experimental design, and science about
causation while studying DP. For example, various papers have
attempted to reverse engineer or test whether a system has
DP [45], [10], [4]. Authors of follow up works may leverage
by pre-existing experimental methods and statistical analyses
for measuring effect sizes that apply with or without access
to causal models.

In the opposite direction, the natural sciences can use DP
as an effect-size metric, inheriting all the pleasing properties
known of DP. For example, DP composes cleanly with itself,
both in sequence and in parallel [39]. The same results would
also apply to the effect-size metric that DP suggests.

Finally, showing that DP is in essence a measure of effect
sizes explains why it, or properties based upon it, has shown up
in areas other than privacy, including fairness [15], ensuring
statistical validity [14], [12], [13], and adversarial machine
learning [30]. While it may be surprising that privacy is related
to such a diverse set of areas, it is not surprising that causation
is, given the central role the concept plays in science. What
is actually happening is that causal reasoning is making its
importance felt in each of these areas, including in privacy.
That it has implicitly shown up in at least four areas of research
suggests that causal reasoning should play a more explicit role
in computer science.
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APPENDIX

A. Two Views of Differential Privacy: A Brief History

Throughout this paper, we have mentioned two lines of
work about DP. The historically first line, associated with its
creators, views DP as not requiring additional assumptions,
such as independent data points or an adversary that already
knows all but one data point. The historically second line views
such assumptions as needed by or implicit in DP. Here, we
briefly recount the history of the two lines.

1) Before Differential Privacy: The idea of a precise frame-
work for mathematically modeling the conditions under which
an adversary does not learn something perhaps starts with
Shannon’s work on perfect security in 1949 [44]. In 1984, this
idea led to Goldwasser and Silvio’s cryptographic notion of
semantic security, which relaxes Shannon’s requirement by ap-
plying to only polynomially computationally bounded adver-
saries [22] (with antecedents in their earlier 1982 work [21]).

Apparently independently, the statistics community also
considered limiting what an adversary would learn. One early
work cited by DP papers (e.g., [11]) is Dalenius’s 1977
paper on statistical disclosure [9]. Dalenius defines statistical
disclosures in terms of a frame of objects, for example, a
sampled population of people [9, §4.1]. The objects have data
related to them [9, §4.2]. A survey releases some statistics over
such data for the purpose of fulfilling some objective [9, §4.3].
Finally, the adversary may have access to extra-objective data,
which is auxiliary information other than the statistics released
as part of the survey. Dalenius defines a statistical disclosure
as follows [9, §5]:

If the release of the statistics S makes it possible
to determine the value DK more accurately than is
possible without access to S, a disclosure has taken
place [. . . ]

where DK is the value of the attribute D held by the object
(e.g., person) K. The attribute D and object K may be used
in the computation of S or not. The extra-objective data may
be used in computing the estimate of DK .

As pointed out by Dwork [11], Dalenius’s work is both
similar to and different from the aforementioned work on
cryptosystems. The most obvious difference is looking at
databases and statistics instead of cryptosystems and messages.
However, the more significant difference is the presence of
the objective with a benefit, or the need for utility in Dwork’s
nomenclature. That is, the released statistics is to convey some
information to the public; whereas, the encrypted message, the
cryptosystem’s analog to the statistic, only needs to convey
information to the intended recipient. Dalenius recognized
that this additional need makes the elimination of statistical
disclosures “not operationally feasible” and “would place
unreasonable restrictions on the kind of statistics that can be
released” [9, §18].

Even before the statistics work on statistical nondisclosure,
statistical research by S. L. Warner in 1965 introduced the
randomized response method of providing DP [48]. (His work
is more similar to the local formulation of DP [16].) The
randomized response model and statistical disclosure can be

viewed as the prototypes of the first and second lines of
reseach respectively, although these early works appear to have
had little impact on the actual formation of the lines of reseach
over a quarter century later.

2) Differential Privacy: In March 2006, Dwork, Mc-
Sherry, Nissim, and Smith presented a paper containing
the first modern instance of DP under the name of “ε-
indistinguishable” [17]. The earliest use of the term “differ-
ential privacy” comes from a paper by Dwork presented in
July 2006 [11]. This paper of Dwork explicitly rejects the
view that DP provides associative or inferential privacy [11,
p. 8]:

Note that a bad disclosure can still occur [despite
DP], but [DP] assures the individual that it will not be
the presence of her data that causes it, nor could the
disclosure be avoided through any action or inaction
on the part of the user.

and further contains a proof that preventing Dalenius’s statis-
tical disclosures while releasing useful statistics is impossible.
(The proof was joint work with Naor, with whom Dwork later
further developed the impossibility result [18].) Later works
further expound upon their position [16], [26].

3) Questions Raised about Differential Privacy: In 2011,
papers started to question whether DP actually provides a
meaningful notion of privacy [7], [27], [19]. These papers
point to the fact that a released statistic can enable inferring
sensitive information about a person, similar to the attacks
Dalenius wanted to prevent [9], even when that statistic
was computed using a differentially private algorithm. While
the earlier work on DP acknowledged this limitation, these
papers provide examples where correlations, or more generally
associations, between data points can enable inferences that
some people might not expect to be possible under DP. These
works kicked off a second line of research (including, e.g.,
[28], [29], [23], [5], [50], [33]) attempting to find stronger
definitions that account for such correlations. In some cases,
these papers assert that such inferential threats are violations
of privacy and not what people expect of DP. For example,
Liu et al.’s abstract states that associations between data points
can lead to “degradation in expected privacy levels” [33]. The
rest of this subsection provides details about these papers.

In 2011, Kifer and Machanavajjhala published a paper stat-
ing that the first popularized claim about DP is that “It makes
no assumptions about how data are generated” [27, p. 1].
The paper then explains that “a major criterion for a privacy
definition is the following: can it hide the evidence of an
individual’s participation in the data generating process?” [27,
p. 2]. It states [27, p. 2]:

We believe that under any reasonable formaliza-
tion of evidence of participation, such evidence can
be encapsulated by exactly one tuple [as done by
DP] only when all tuples are independent (but not
necessarily generated from the same distribution).
We believe this independence assumption is a good
rule of thumb when considering the applicability of
differential privacy.
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For this reason, the paper goes on to say “Since evidence of
participation requires additional assumptions about the data (as
we demonstrate in detail in Sections 3 and 4), this addresses
the first popularized claim – that differential privacy requires
no assumptions about the data” [27, p. 2]. From context, we
take “addresses” to mean invalidates since the paper states
“The goal of this paper is to clear up misconceptions about
differential privacy” [27, p. 2].

In 2012, Kifer and Machanavajjhala published follow up
work stating that “we use [the Pufferfish framework] to formal-
ize and prove the statement that differential privacy assumes
independence between records” [28, p. 1]. It goes on to say
“Assumptionless privacy definitions are a myth: if one wants to
publish useful, privacy-preserving sanitized data then one must
make assumptions about the original data and data-generating
process” [28, p. 1, emphasis in original]. In 2014, Kifer and
Machanavajjhala published a journal version of their 2012 pa-
per, which makes a similar statement: “Note that assumptions
are absolutely necessary – privacy definitions that can provide
privacy guarantees without making any assumptions provide
little utility beyond the default approach of releasing nothing
at all” [29, p. 3:5]. However, this version is, overall, more
qualified. For example, it states “The following theorem says
that if we have any correlations between records, then some
differentially private algorithms leak more information than is
allowable (under the odds ratio semantics in Section 3.1)” [29,
3:12–13], which makes it clear that the supposed shortcoming
of DP in the face of correlated data points is relative to a
particular notion of privacy presented in that paper, roughly,
reducing uncertainty about some sensitive fact about a person.

Also in 2014, He et al. published a paper building upon
the Pufferfish framework [23]. Referring to the conference
version [28], He et al. states [23, p. 1]:

[Kifer and Machanavajjhala] showed that differential
privacy is equivalent to a specific instantiation of
the Pufferfish framework, where (a) every property
about an individual’s record in the data is kept
secret, and (b) the adversary assumes that every
individual is independent of the rest of the individ-
uals in the data (no correlations). We believe that
these shortcomings severely limit the applicability
of differential privacy to real world scenarios that
either require high utility, or deal with correlated
data.

and “Recent work [by Kifer and Machanavajjhala] showed
that differentially private mechanisms could still lead to an
inordinate disclosure of sensitive information when adversaries
have access to publicly known constraints about the data that
induce correlations across tuples” [23, p. 3].

In 2013, Li et al. published a paper that states “differential
privacy’s main assumption is independence” [32, p. 2]. Sim-
ilar, to the papers by Kifer and Machanavajjhala, this paper
assumes a technical definition of privacy, positive member-
ship privacy, and makes this assertion since independence
is required for DP to imply it. The paper also claims that
“the original definition of differential privacy assumes that
the adversary has precise knowledge of all the tuples in the

dataset” [32, p. 10], which we take as a reference to the strong
adversary assumption.

Chen et al.’s 2014 paper is the first of three attempting to
provide an associative version of privacy, motivated by Puffer-
fish, in the face of correlated data [5]. It states “ε-differential
privacy fails to provide the claimed privacy guarantee in the
correlated setting” [5, p. 2] and “ε-differential privacy is built
on the assumption that all underlying records are independent
of each other” [5, p. 7].

The second paper, Zhu et al.’s paper, published in 2015,
provides a more accurate accounting of correlations [50]. It
states [50, p. 229]:

An adversary with knowledge on correlated infor-
mation will have higher chance of obtaining the
privacy information, and violating the definition of
differential privacy. Hence, how to preserve rigorous
differential privacy in a correlated dataset is an
emerging issue that needs to be addressed.

It further asserts [50, p. 231]:
In the past decade, a growing body of literature
has been published on differential privacy. Most
existing work assumes that the dataset consists of
independent records.

and “a major disadvantage of traditional differential privacy
is the overlook of the relationship among records, which
means that the query result leaks more information than is
allowed” [50, p. 232].

The third paper, by Liu et al. in 2016, provides an even
more accurate accounting of correlations [33]. A blog post
by one of the authors, Mittal, announcing the paper states
“To provide its guarantees, DP implicitly assumes that the
data tuples in the database, each from a different user, are
all independent.” [40]. In five comments on this blog post,
McSherry posted a summary of his concerns about their paper
and blog post. McSherry also treats the paper at length in a
blog post [35]. McSherry highlights three statements made
by the paper that he finds false [35]: (1) “For providing this
guarantee, differential privacy mechanisms assume indepen-
dence of tuples in the database” [33, p. 1], (2) “To provide
its guarantees, DP mechanisms assume that the data tuples
(or records) in the database, each from a different user, are
all independent.” [33, p. 1], and (3) “However, the privacy
guarantees provided by the existing DP mechanisms are valid
only under the assumption that the data tuples forming the
database are pairwise independent” [33, p. 2].

A somewhat different tack is taken in a 2016 paper by
Cuff and Yu, which instead focuses on the strong adversary
assumption [8, p. 2]:

The definition of (ε, δ)-DP involves a notion of
neighboring database instances. Upon examination
one realizes that this has the affect of assuming that
the adversary has already learned about all but one
entry in the database and is only trying to gather
additional information about the remaining entry.
We refer to this as the strong adversary assumption,
which is implicit in the definition of differential
privacy.
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Yang et al.’s 2015 paper allows either assumption [49, §1.2]:
Differential privacy is designed to preserve the
privacy in the face of intrusions by the strongest
adversary who exactly knows everything about all
individual entities except the object of its attack. [. . .]
In fact, as we will show in Section 3, differential
privacy does guarantee privacy against intrusion by
any adversary when all the entities in the database
are independent.

4) Responses: In addition to the aforementioned blog post
by McSherry [35], other works by those promoting the original
view of DP have also re-asserted that DP was never intended
to prevent all inferential privacy threats and that doing so is
impossible [3], [25], [36]. In a different blog post, McSherry
goes the furthest, questioning whether wholesale inferential
privacy is the normal meaning of “privacy” or even an ap-
pealing concept [36]. He calls it “forgettability”, invoking the
European Union’s right to be forgotten, and points out that
preventing inferences prevents people from using data and
scientific progress. He suggests that perhaps people should
only have an expectation to the privacy of data they own, as
provided by DP, and not to the privacy of data about them. He
challenges the line of research questioning DP (Appendix A3)
to justify the view that forgettability is a form of privacy.

We know no works explicitly responding to this challenge.

B. Counterexample Involving Zero Probability for Strong Ad-
versary D.P.

Consider Definition 2 modified to look at one distribution
P , which represents the actual distribution of the world.

Definition 10. A randomized algorithm A is said to be ε-
Strong Adversary Differentially Private for One Distribution
P if for all databases d, d′ ∈ Dn at Hamming distance at
most 1, and for all output values o, if Pr[D=d] > 0 and
Pr[D=d′] > 0 then

PrP,A[O=o | D=d] ≤ eε ∗ PrP,A[O=o | D=d′] (8)

where O = A(D) and D = 〈D1, . . . , Dn〉.
To prove that this does not imply Definition 1, consider the

case of a database holding a single data point whose value
could be 0, 1, or 2. Suppose the population P is such that
PrP [D1=2] = 0. Consider an algorithm A such that for the
given population P ,

PrA[A(0)=0] = 1/2 PrA[A(0)=1] = 1/2 (9)
PrA[A(1)=0] = 1/2 PrA[A(1)=1] = 1/2 (10)
PrA[A(2)=0] = 1 PrA[A(2)=1] = 0 (11)

The algorithm does not satisfy Definition 1 due to its behavior
on the input 2. However, using (3),

PrP,A[O=0 | D1=0] = 1/2 PrP,A[O=1 | D1=0] = 1/2

PrP,A[O=0 | D1=1] = 1/2 PrP,A[O=1 | D1=1] = 1/2

While (3) says nothing about D1=2 since that has zero
probability, this is sufficient to show that the algorithm satisfies
Definition 10 since it only applies to data points of non-zero
probability. Thus, the algorithm satisfies Definition 10 but not
Definition 1.

C. Details of Causation

We use a slight modification of Pearl’s models. The models
we use are suggested by Pearl for handling “inherent” ran-
domness [42, p. 220] and differs from the model he typically
uses (his Definition 7.1.6) by allowing randomization in the
structural equations FV . We find this randomization helpful
for modeling the randomization within the algorithm A.

Formally, let JMK(~x).~Y be the joint distribution over values
for the variables ~Y that results from the background variables
~X taking on the values ~x (where these vectors use the same
ordering). That is, JMK(~x).~Y (~y) represents the probability of
~Y = ~y given that the background variables had values ~X = ~x.
Since the SEM is non-recursive this can be calculated in a
bottom up fashion. We show this for the model MA with
Di := Ri for all i, D := 〈D1, . . . , Dn〉, and O := A(D):

JMAK(r1, . . . , rn).Ri(ri) = 1

JMAK(r1, . . . , rn).Di(ri)

= PrFDi
[FDi

(Ri)=ri] = PrFDi
[Ri=ri] = 1

JMAK(r1, . . . , rn).D(〈r1, . . . , rn〉)
= PrFD

[FD(D1, . . . , Dn)=〈r1, . . . , rn〉]
= PrFD

[FD(FD1
(R1), . . . , FDn

(Rn))=〈r1, . . . , rn〉]
= PrFD

[FD(R1, . . . , Rn)=〈r1, . . . , rn〉]
= PrFD

[〈R1, . . . , Rn〉=〈r1, . . . , rn〉] = 1

and

JMAK(r1, . . . , rn).O(o) = PrFO
[FO(D)=o]

= PrA[A(〈r1, . . . , rn〉)=o]

We can raise the calculations above to work over P instead
of a concrete assignment of values ~x. Intuitively, the only
needed change is that, for background variables ~X ,

PrMA,P [~Y=~y] =
∑
~x∈ ~X

PrPA[ ~X=~x] ∗ JMAK(~x).~Y (~y)

where ~X are all the background variables.1

The following lemma will not only be useful, but will
illustrate the above general points on the model MA that
concerns us.

Lemma 1. For all algorithms A, P , all o, and all d1, . . . , dn,

PrMA,P [O=o | do(D1:=d1, . . . , Dn:=dn)]

= PrA[A(d1, . . . , dn)=o]

Proof. Let Fdi() represent the constant function with no
arguments that always returns di. The structural equation
for Di is Fdi in MA[D1:=d1] · · · [Dn:=dn]. As before, we
compute bottom up, but this time on the modified SEM:

JMA[D1:=d1] · · · [Dn:=dn]K(r1, . . . , rn).Ri(ri) = 1

1This is Pearl’s equation (7.2) raised to work on probabilistic structural
equations FV [42, p. 205].
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JMA[D1:=d1] · · · [Dn:=dn]K(r1, . . . , rn).Di(di)

= PrFdi
[Fdi()=di] = 1

JMA[D1:=d1] · · · [Dn:=dn]K(r1, . . . , rn).D(〈d1, . . . , dn〉)
= PrFD

[FD(D1, . . . , Dn)=〈d1, . . . , dn〉]
= PrFD

[FD(FD1
(), . . . , FDn

())=〈d1, . . . , dn〉]
= PrFD

[FD(d1, . . . , dn)=〈d1, . . . , dn〉]
= PrFD

[〈d1, . . . , dn〉=〈d1, . . . , dn〉] = 1

JMA[D1:=d1] · · · [Dn:=dn]K(r1, . . . , rn).O(o)

= PrFO
[FO(D)=o] = PrA[A(〈d1, . . . , dn〉)=o]

Thus,

PrMA,P [O=o | do(D1:=d1, . . . , Dn:=dn)]

= PrMA[D1:=d1]···[Dn:=dn],P [O=o]

=
∑
~r∈Rn

PrP [~R=~r] ∗ JMA[D1:=d1] · · · [Dn:=dn]K(~r).O(o)

=
∑
~r∈Rn

PrP [~R=~r] ∗ PrA[A(〈d1, . . . , dn〉)=o]

= PrA[A(〈d1, . . . , dn〉)=o] ∗
∑
~r∈Rn PrP [~R=~r]

= PrA[A(〈d1, . . . , dn〉)=o] ∗ 1

= PrA[A(〈d1, . . . , dn〉)=o]

Lemma 2. For all algorithms A, P , o, j, and d′j ,

PrMA,P [O=o | do(Dj=d
′
j)]

=
∑
〈r1,. . . ,rj−1,rj+1,. . . ,rn〉∈Rn−1

PrP
[
∧i∈{1,. . . ,j−1,j+1,. . . ,n}Ri=ri

]
∗ PrA[A(r1, . . . , rj−1, d

′
j , rj+1, . . . , rn)=o]

=
∑
〈d1,. . . ,dj−1,dj+1,. . . ,dn〉∈Dn−1

PrMA,P
[
∧i∈{1,. . . ,j−1,j+1,. . . ,n}Di=di

]
∗ PrA[A(d1, . . . , dj−1, d

′
j , dj+1, . . . , dn)=o]

Proof. With out loss of generality, assume j is 1. Let Fd′1()
represent the constant function with no arguments that al-
ways returns d′1. The structural equation for D1 is Fd′1 in
MA[D1:=d′1]. As before, we compute bottom up, but this
time on the modified SEM:

JMA[D1:=d′1]K(r1, . . . , rn).Ri(ri) = 1

holds as before. The behavior of Di varies based on whether
i = 1:

JMA[D1:=d′1]K(r1, . . . , rn).D1(d′1) = PrFd′1
[Fd′1()=d′1] = 1

JMA[D1:=d′1]K(r1, . . . , rn).Di(ri) = PrFDi
[FDi(Ri)=ri]

= PrFDi
[Ri=ri] = 1

for all i 6= 1. Thus,

JMA[D1:=d′1]K(r1, . . . , rn).D(〈d′1, r2, . . . , rn〉)
= PrFD

[FD(D1, D2. . . , Dn)=〈d′1, r2, . . . , rn〉]
= PrFD

[FD(Fd′1(), FD2
(R2), . . . , FDn

(Rn))=〈d′1, r2, . . . , rn〉]
= PrFD

[FD(d′1, r2, . . . , rn)=〈d′1, r2, . . . , rn〉]
= PrFD

[〈d′1, r2, . . . , dn〉=〈d′1, r2, . . . , rn〉] = 1

and

JMA[D1:=d′1]K(r1, . . . , rn).O(o)

= PrFO
[FO(D)=o] = PrA[A(〈d′1, r2, . . . , rn〉)=o]

Thus,

PrMA,P [O=o | do(D1:=d′1)]

= PrMA[D1:=d′1],P [O=o]

=
∑

r1,. . . ,rn∈Rn

PrP [R1=r1, . . . , Rn=rn]

∗ JMA[D1:=d′1]K(r1, . . . , rn).O(o)

=
∑

r1,. . . ,rn∈Rn

PrP [R1=r1, . . . , Rn=rn]

∗ PrA[A(〈d′1, r2, . . . , rn〉)=o]

=
∑

r1,. . . ,rn∈Rn

PrP [R1=r1 | R2=r2, . . . , Rn=rn]

∗ PrP [R2=r2, . . . , Rn=rn]

∗ PrA[A(〈d′1, r2, . . . , rn〉)=o]

=
∑

r2,. . . ,rn∈Rn

∑
r1∈R

PrP [R1=r1 | R2=r2, . . . , Rn=rn]

∗ PrP [R2=r2, . . . , Rn=rn]

∗ PrA[A(〈d′1, r2, . . . , rn〉)=o]

=
∑

r2,. . . ,rn∈Rn

PrP [R2=r2, . . . , Rn=rn]

∗ PrA[A(〈d′1, r2, . . . , rn〉)=o]

∗
∑
r1∈R

PrP [R1=r1 | R2=r2, . . . , Rn=rn]

=
∑

r2,. . . ,rn∈Rn

PrP [R2=r2, . . . , Rn=rn]

∗ PrA[A(〈d′1, r2, . . . , rn〉)=o] ∗ 1

=
∑

r2,. . . ,rn∈Rn

PrP [R2=r2, . . . , Rn=rn]

∗ PrA[A(〈d′1, r2, . . . , rn〉)=o]

=
∑

d2,. . . ,dn∈Dn

PrP [D2=d2, . . . , Dn=dn]

∗ PrA[A(〈d′1, d2, . . . , dn〉)=o]

where the last line follows since Di = Ri for i 6= 1.
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