
High Precision Open-World Website Fingerprinting
Tao Wang

Hong Kong University of Science and Technology
taow@cse.ust.hk

Abstract—Traffic analysis attacks to identify which web page
a client is browsing, using only her packet metadata — known
as website fingerprinting (WF) — has been proven effective in
closed-world experiments against privacy technologies like Tor.
We want to investigate their usefulness in the real open world.
Several WF attacks claim to have high recall and low false
positive rate, but they have only been shown to succeed against
high base rate pages. We explicitly incorporate the base rate into
precision and call it r-precision. Using this metric, we show that
the best previous attacks have poor precision when the base rate
is realistically low; we study such a scenario (r = 1000), where
the maximum r-precision achieved was only 0.14.

To improve r-precision, we propose three novel classes of
precision optimizers that can be applied to any classifier to
increase precision. For r = 1000, our best optimized classifier
can achieve a precision of at least 0.86, representing a precision
increase by more than 6 times. For the first time, we show a
WF classifier that can scale to any open world set size. We
also investigate the use of precise classifiers to tackle realistic
objectives in website fingerprinting, including different types of
websites, identification of sensitive clients, and defeating website
fingerprinting defenses.

Index Terms—website fingerprinting; traffic analysis; Tor;
privacy

I. INTRODUCTION

The last few years have seen a sharp increase in TLS usage
rate (26% in 2014 to 70% in 2018 [14]). Combined with
packet destination obfuscation techniques such as proxies and
encrypted SNI, the network-level privacy leaks of the Internet
are being plugged. Privacy-sensitive individuals may turn to
anonymity networks, which encrypt and redirect the user’s
traffic across proxies, hiding sender, recipient, and packet
contents from a passive observer (a network eavesdropper).
However, none of these technologies hide significant features
of the user’s traffic, such as packet frequency, timing, order,
and direction. Website Fingerprinting (WF) attacks allow
passive network eavesdroppers to use these features to identify
the client’s destination web page, compromising her privacy.

The WF attacker wishes to monitor a set of sensitive web
pages and identify when a client visits these pages. In the
closed-world scenario, the client is configured to only visit
these sensitive web pages, and the attacker needs to identify
which one. In the harder open-world scenario, the client can
visit any page, and the attacker must also correctly identify
which page visits are non-sensitive.

WF attacks have been proven effective against real-world
privacy technologies in the closed-world scenario [3], [8], [13],
[19], [29]. However, there is a general academic consensus that
known WF attacks fail in the open world because they are too
imprecise. In 2013, a Tor developer criticized WF techniques

for failing in the open world [21]. In 2014, Juarez et al. found
that “prior work succumbs to the base rate fallacy in the open-
world scenario” [11]. In 2016, Panchenko et al. studied WF
attacks in a large open world and concluded that “no existing
method scales when applied [in the open world]” [19].

Multiple works have achieved open-world success since
then [7], [20], [29], but they can only identify high base
rate pages (such as the most popular search engines), as our
work will confirm. These may not be the sensitive pages the
attackers are interested in. Failure in the large open world
implies that WF does not pose a threat to privacy-sensitive in-
dividuals visiting low base rate pages, such as whistleblowing,
file sharing, and politically and culturally sensitive pages. With
more than one billion pages on the Internet, the vast majority
of pages have a base rate much lower than that which can be
threatened by known attacks.

To tackle the unsolved problem of open-world website
fingerprinting (OWF), this work achieves the first scalable
OWF attack for the realistic low base rate scenario. Low base
rate open-world scenarios have been challenging for other
fields that rely on machine learning as well, including forensic
analysis [24], intrusion detection systems [22], and medical
imaging [27]. For example, open-world failure in forensic
analysis has been subject to public controversy [16] as it leads
to wrongful convictions.

In Section II, we show that previous work did not correctly
include the base rate when calculating precision. We formulate
r-precision to explicitly include the base rate, allowing us to
evaluate classifiers in OWF over a low base rate and identify
several new insights for OWF.

Using r-precision, we show that previous classifiers are not
precise when the base rate is low. This motivates our contribu-
tion of three novel classes of techniques that can improve the
open-world precision of any classifier; we call them Precision
Optimizers (POs). We demonstrate the effectiveness of our
POs by combining them with six of the best previous WF
attacks to create effective open-world WF attacks against a
Tor user. We focus on attacking Tor due to its popularity and
because it is currently the hardest web anonymity technology
to attack using WF [28]. We present these results in Section III;
our best PO can improve a classifier’s precision from 0.024 to
0.86 in a low base rate scenario, giving us the first attack to
achieve high precision in a low base rate scenario.

We show that our optimized classifiers are better able to
handle low base rate — and thus pose a greater threat to
privacy — in Section IV. In particular, we use them to attack
several WF defenses in Section IV-B precisely. In Section V,

152

2020 IEEE Symposium on Security and Privacy

© 2020, Tao Wang. Under license to IEEE.
DOI 10.1109/SP40000.2020.00015

TABLE I: How we count the number of true positives (NTP), wrong positives (NWP), and false positives (NFP). After
counting them, we obtain the true positive rate RTP = NTP /NP , wrong positive rate RWP = NWP /NP , and false positive
rate RFP = NFP /NN .

Classified as
Correct sensitive class Wrong sensitive class Non-sensitive class

Tr
ue

cl
as

s Sensitive class
(# = NP)

True Positive
(# = NTP)

Wrong Positive
(# = NWP)

False Negative
(# = NP −NTP −NWP)

Non-sensitive class
(# = NN) Not possible False Positive

(# = NFP)
True Negative

(# = NN −NFP)

we show that our optimized classifiers can scale to any open-
world size across a range of base rates, and they perform well
on alternative scenarios including identification of sensitive
clients and actively browsing users. We give a survey of related
work in Section VI, and conclude in Section VII.

II. BACKGROUND

A. Terminology and Threat Model

Machine learning terminology. A classifier takes as input a
testing element and determines which class it belongs to. In
our case, the testing element is a sequence of packets (with
timing, size and direction) and each class is a web page.1

When the classifier claims that the tested packet sequence is
sensitive, it is known as a positive; it is a true positive (TP)
if the tested packet sequence came from the same page the
classifier identified, and it is a false positive (FP) if the tested
packet sequence came from a non-sensitive page. We define a
wrong positive (WP) to be a sensitive page mistaken as another
sensitive page. While some previous works have considered
a wrong positive to be a false positive [7], [19], [29], we
do not, because the tested packet sequence did not come
from a non-sensitive page. Later, we will show that equating
wrong positives with false positives would lead to a significant
error when calculating precision. Refer to Table I for an
illustration of these terms and how their rates (TPR/WPR/FPR)
are defined. We also refer to TPR as recall; some previous WF
works used recall as the main metric to compare and optimize
WF attacks [28], [29].
WF threat model and the open world. We use the same
threat model as all previous WF works involving the open
world [7], [11], [19], [29]. Our WF attacker, Oscar, is a passive
eavesdropper that is local to the client, Alice. The attacker
watches packet sequences sent by the client, and knows the
client’s identity. The privacy-sensitive client uses encryption
with proxies to hide her packet contents and destination web
page from the attacker, for example, by using Tor. Therefore,
the attacker cannot figure out what the client is doing by
simply reading her packet headers; the destination web page
is hidden.

In the open world, the attacker seeks to compromise her
privacy by using a classifier that decides if the client is visiting
a set of sensitive pages. These sensitive pages could be inter-
esting to the attacker for a variety of privacy-compromising

1In this work, we use sequences of Tor cells where each cell has the same
size; we still call them packet sequences for generality.

reasons, such as profiling, flagging potential threats, or censor-
ship. The classifier is trained on supervised packet sequence
data, which Oscar collected by visiting the sensitive pages
himself. The set of sensitive pages is, inevitably, a small subset
of all web pages, so the attacker must be able to recognize
when the client is not visiting sensitive web pages, avoiding
the base rate fallacy.
Precision and the base rate fallacy. The base rate fallacy
describes the following problem in the open world: a classifier
may have high recall and low FPR, but it may still be useless in
practice. This happens when the base rate of positive events
(sensitive web page accesses) is much lower than the FPR,
as the attacker would be overwhelmed by incorrect positive
classifications. A OWF eavesdropper overwhelmed by false
positives would not be able to determine if a given client is
actually visiting sensitive pages or not; the OWF attack has
failed to achieve its main objective. This is why it is necessary
to achieve high precision when the base rate is low in OWF.

The base rate fallacy is the chief challenge of OWF. To
avoid the base rate fallacy, the attacker wants to classify a page
access as sensitive only if he is certain that the classification
is correct. We propose and evaluate three classes of precision
optimizers (POs), each of which uses a different kind of
certainty to reject questionable sensitive classifications and
thus improve precision.

In this work, we also consider WF defenses. These defenses
have been proposed to defend web-browsing clients against
WF attacks. WF defenses are applied by the client and her
proxies, and they transform the packet sequence to disrupt the
attacker’s ability to classify them correctly. We will evaluate
the effectiveness of these defenses in the open world with our
optimized classifiers.

We present our notation in Table II.

B. r-precision

The base rate fallacy shows that an open-world classifier
should only be considered effective if its positive classifica-
tions are largely correct; otherwise, the attacker cannot act on
its positive classifications. By this standard, TPR, WPR, and
FPR alone cannot tell us if the classifier is effective. We also
need to include a fourth metric: the base rate at which the
client accesses sensitive web pages. Without considering the
base rate, it is not possible to determine how any attack fares
in realistic low base rate scenarios. We illustrate how the base
rate can be incorporated into the calculation of precision as
follows.

153

When an attacker monitors a client’s web page accesses,
his positive classifications (accesses believed to be sensitive
pages) may be true (N ′TP), wrong (N ′WP), or false (N ′FP).
We mark these values with primes to distinguish them from
experimental values, which are not primed. The primed vari-
ables represent real observed values due to the behavior of a
client,

Many fields in this work did not calculate precision while
claiming open-world success, so they succumb to the base rate
fallacy [7], [20], [29]. Works that did calculate precision used
the following formula [11], [18], [19]:

π =
NTP

NTP +NWP +NFP

However, the correct formula for precision should be:

π =
N ′TP

N ′TP +N ′WP +N ′FP

It is significant to note the difference between the two. The
non-primed variables, counted during experiment, are not
unbiased estimators for the primed variables. For example,
NTP grows in proportion to how many sensitive pages we
include in the experimental testing data set, while N ′TP grows
in proportion to how many sensitive pages the client would
actually visit. These variables are not related. Using the former
formula would be a mistake: by doing so, the experimenter
implicitly assumes that the real client visits sensitive pages at
the same rate as the experimenter. Previous work often set the
non-sensitive and sensitive set sizes to be similar [7], [11],
[19], [20], [29]. This means that the experimenter implicitly
assumes that the client visits sensitive pages around half of
the time (r ≈ 1), which is unrealistic.

To derive the correct formula, we need to use RTP as an
unbiased estimator for R′TP , and so on for RFP and RWP .
Therefore, we need to convert the above values to rates:

π =
R′TP ·N ′P

R′TP ·N ′P +R′WP ·N ′P +R′FP ·N ′N

=
R′TP

R′TP +R′WP +
N ′

N

N ′
P
·R′FP

≈ RTP
RTP +RWP + r ·RFP

= πr

Setting r = N ′N/N
′
P , we arrive at our formulation of

r-precision (πr) that incorporates the base rate. r (which
we call the base ratio) is the relative likelihood of negative
events (client visiting any non-sensitive page) to positive
events (client visiting any sensitive page). A higher r re-
duces r-precision holding all other rates constant, making the
classification problem harder. Mathematically, r-precision is
equivalent to precision, but it explicitly displays the base ratio
r to avoid the above implicit base rate error when calculating
precision.

Note that N ′P and N ′N are not the sizes of the positive and
negative data sets in our experimental setup. r = N ′N/N

′
P

represents the real ratio of non-sensitive to sensitive pages

TABLE II: Notation used in this paper.

NP , NN # of positives, negatives
NTP , NWP , NFP # of true, wrong, false positives
RTP , RWP , RFP True, wrong, false positive rates

Above variables, primed Real values (not experimental parameters)
r Base ratio, equal to NN /NP

πr precision for base ratio r
PO Method to improve WF precision

Recall Equal to RTP

P A packet sequence
C A class

a client would visit. In a realistic setting, clients may have
different values of r representing how often each client visits
sensitive pages. Alternatively, r can also represent the same
ratio for a given set of clients, or the set of all clients. (We
will present some values of r extracted from real users in
Section V-B.) r is not a fixed value, nor is it estimated or
determined by the attacker. A correct analysis of the precision
of a WF classifier should include experiments on various
explicit values of r.

We can also see that RWP and RFP contribute differently
to πr, as only the latter is magnified by r. This is why we do
not consider wrong positives to be false positives. Doing so
would cause us to underestimate precision.

C. Does precision trump recall?

In the classical formulation of WF, the effectiveness of an
attack is measured with its recall (TPR). We present three
arguments to convince the reader that it is more important to
optimize the precision of WF attacks than their recall.

Base rate fallacy. The base rate fallacy tells us that a WF
classifier can be ineffective no matter how high its recall is.
“The boy who cried wolf” tells us that a high-recall, low-
precision classifier is useless in a low base rate scenario. This
is because the attacker cannot use the classifier’s information
in any way unless the attacker is confident that the classifier’s
positive classifications are true: that is to say, precision is high.
The base rate fallacy highlights the epistemological deficiency
of recall in the open world; it does not tell us anything about
open-world effectiveness.

Chilling effect. Web-browsing clients using anonymity net-
works are sensitive to privacy and do not want the attacker to
capture any of their browsing behavior. When WF precision
is high, even a moderate recall may trouble privacy-sensitive
users. For example, a whistleblower who would suffer a 10%
recall — a 10% chance of revealing each sensitive page access
to any eavesdroppers — may instead choose to self-censor
rather than incur significant personal risk.

Repeated visits. Browsing patterns are often consistent and
self-repeating, and users visit the same websites frequently. A
low-recall, high-precision attacker would eventually be able
to determine if the client is interested in particular sensitive
pages. A high recall is unnecessary in this scenario. Repeated
visits cause a gradual decay in privacy.

There are situations where both recall and precision are
important. If the attacker wants to determine the rate at which

154

clients visit a page on an anonymity network, low recall
would distort the count as much as low precision. There
are also scenarios where, due to side information or other
preconditions, the possible set of pages the client visited is
small, better represented by a closed-world scenario. This is
the case for hidden services, which have recently been found
to consist a relatively small ecosystem [10]. Nevertheless, in
the general open-world case, the above arguments explain
why a low-recall, high-precision attacker is more threatening
than a high-recall, low-precision attacker. For this reason, we
focus entirely on optimizing precision rather than recall or a
combined metric such as F -measure or G-measure.

D. Experimental setup

Data set. We collected our data set between February and
April 2019 with Tor Browser 8.5a7 on Tor 0.4.0.1-alpha, using
one machine on a university network. We focus exclusively on
Tor because it is both popular and resilient. Furthermore, it is
the most difficult for WF out of currently usable anonymity
networks [8], and WF attacks designed to succeed in the Tor
scenario also tend to succeed against other privacy technolo-
gies [28]. The data set includes both HTTP/1.1 and HTTP/2
web pages.

We collected a set of sensitive (monitored) pages and non-
sensitive (non-monitored) pages. We chose the top 100 pages
on Alexa as the sensitive set, visiting each of them 200 times,
and the next 80,000 pages on Alexa as the non-sensitive set,
visiting each of them once. We decided that the sensitive pages
should be top sites to ensure reproducibility. Some previous
work has instead chosen politically sensitive pages [29], but
this made the scientific results unreproducible, because most
of those web pages have become unavailable in only a few
years. We gave each page up to 90 seconds to load, collecting
all cells. Some other pages (not counted in the above) had
failed to load; we filtered them away.

For each web page, we collected the times, sizes, and
directions of all packets, from which Tor cells can be de-
rived [30], representing a local, passive attacker’s information.
Some attacks called for TCP packets, for which we directly
used the above raw traces; others called for Tor cells, for which
we processed the TCP packets to extract Tor cells. We did not
intentionally include any noise.

For convenience, we may describe a subset of our full data
set using the numeric notation 50x100+20, which denotes that
the subset has 50 monitored pages, 100 instances of each page,
and 20 non-monitored pages (non-monitored pages always
have one instance each). It is necessary to conduct certain
experiments on a subset of the data due to computation and
memory limitations.

Our experimental setup is the same as all works studying
open-world WF. We are allowed to perform data collection
on one computer specifically because Tor Browser preserves
anonymity by refusing to allow clients to customize it, and
Tor’s random circuit construction ensures that our attacker will
not train on the same circuits as the client. To our knowledge,
there is no work showing that this setup skews results unfairly.

Precision and recall. Our objective is to maximize r-precision
(πr) for WF attacks. In our experiments, we present results for
r = 20 and r = 1000, representing respectively an easy and
hard classification setting. Note that r describes the total base
ratio of all sensitive pages (we consider 100 sensitive pages
in our work). For example, if the attacker wants to monitor
100 sensitive pages and the client has a 1/100,000 chance of
visiting each sensitive page, the attacker’s precision would be
correctly captured by our π1000 scenario.

The objective of this work is to optimize precision, which
may sometimes entail sacrificing recall. This is informed by
our argument that a low-recall, high-precision attacker is more
threatening to privacy than a high-recall, low-precision at-
tacker. So that our POs will not produce completely inaccurate
classifiers, we set a minimum recall in this work of 0.2. We
chose 0.2 so that the classifier would still be threatening to
people who visit sensitive pages only once; they could not be
sure that they would escape detection. Our approach to OWF
is novel compared to previous work; we maximize r-precision
while ensuring the recall is acceptable, while previous works
maximize recall [3], [19], [20], [28]–[30].

Presentation of results. In this work, we measure the 95%
confidence interval of a statistic x̂ by taking:

C(x̂) = 1.96

√
x̂(1− x̂)

n

This is the confidence interval of the mean for the normal
distribution using the Wald method, and we apply it to TPR,
WPR, and FPR. We then write x̂±C(x̂) to show the confidence
interval of x̂. We are able to use the Wald method as our n is
large (usually 80,000). However, the above does not apply to
r-precision. Recall that the definition of r-precision is:

πr =
RTP

RTP +RWP + r ·RFP
Let us denote RmaxTP = RTP +C(RTP), and RminTP = RTP −
C(RTP), and correspondingly for RWP and RFP . We take
a naı̈ve 95% confidence interval by computing the maximum
πr:

πmaxr =
RmaxTP

RminTP +RminWP + r ·RminFP

We take C(πr) = πmaxr −πr and show the confidence interval
as πr ± C(πr).2 When r is large (as in our experiments),
precision is dominated by the r·RminFP term in the denominator.

When πr is high, C(πr), its confidence interval, is unstable.
This is because a high r-precision indicates a very small
number of false positives, especially in the r = 1000 scenario.
For example, consider an experiment with NP = 20000 and
NN = 80000 where we find that RTP = 0.45, RWP =
0, RFP = 0.00005. This gives π1000 = 0.9. But the number of
false positive events is very small, with NFP = RFP ·NN =
4 < 10. This violates a general rule of thumb: there must
be more than ten occurrences of an event to use the Wald

2This C(πr) is larger than an alternative C′(πr) = πr − πmin
r , so the

estimation is cautious.

155

method as the confidence interval. In such cases, we calculate
the maximum FPR using the Wilson method (which better
suits the extremely small rate RFP), with z = 1.96 for the
95% confidence interval:

RmaxFP =
RFP + z2

2NN
+ z
√

RFP (1−RFP)
NN

+ z2

4N2
N

1 + z2

NN

Then, we take the minimum precision as

πminr =
RminTP

RmaxTP +RmaxWP + r ·RmaxFP

Finally, we express the precision with its lower bound of πr ≥
πminr . We present no value for the upper bound of precision
as it cannot be accurately measured. Continuing the above
example, we find RminTP = 0.353, RmaxTP = 0.367, RmaxWP = 0,
and RmaxFP = 0.00010, so we would write π1000 ≥ 0.76, not
π1000 = 0.9. We use the Wilson method for π1000 whenever
NFP < 10.

III. PRECISION OPTIMIZERS

We modify closed-world classifiers to achieve high r-
precision for OWF using Precision Optimizers (POs). Our POs
teach the underlying classifier to be conservative, such that it
would assign a packet sequence to the negative class (non-
sensitive web page) if it is not certain about its classification.
This reduces FPR, thus increasing r-precision.

To optimize r-precision, we first ask the closed-world
classifier to classify the element as usual. If it is a negative
classification, we do not apply PO. Otherwise, if the classifier
decides the element should be classified as a sensitive page (we
refer to that class as the assumed class), we ask a PO whether
or not we should reject classification of the assumed class.
The PO may agree with the assumed class, or it may reject
the assumed class and instead classify the element as non-
sensitive. (Our POs do not change a sensitive classification to
another sensitive classification.) This is shown in Figure 1.
This strategy is conceptually similar to the Classify-Verify
strategy described in Juarez et al.’s previous work [11].

Our POs are designed to be classifier-agnostic: they treat
the classifier as a black box and they can be applied to all
classifiers. Some POs are also parametrically tuneable to allow
maximization of r-precision.

We start this section by motivating our work with an exper-
iment on the baseline r-precision of WF classifiers without
any POs (Section III-A). Then, we present three types of
POs: confidence-based POs (Section III-B), distance-based
POs (Section III-C), and ensemble POs (Section III-D). Our
techniques are inspired by techniques used in clustering and
ensemble learning.

We will describe in detail how each type of PO improves
the precision of known attacks in the following sections, but
first we front-load our presentation with Figure 2 showing our
precision optimization in the r = 20 and r = 1000 scenarios.
In each bar, the lighter area show the original precision without
POs, the darker area show how much we increased precision

Fig. 1: Flowchart describing how we classify an element. Our
Precision Optimizers (POs) modify classification to improve
precision as represented by the dotted box.

using our POs, and an arrow (if any) indicates use of the
more conservative Wilson method to obtain a lower bound for
precision. These graphs clearly show that we can significantly
increase precision in both scenarios and all attacks, with
Ha-kFP and the ensemble method performing especially well
in for r = 1000. We will describe each PO in detail in the
following.

A. Baseline precision

We first present the precision of previous work, non-
optimized, as a comparative basis. We experimented on the
classifiers in Table III, using the experimental setup and
methodology described in Section II-D. We tested two strate-
gies seen in previous work, the non-monitored class strategy
and the k-neighbors strategy.

Non-monitored class strategy. This strategy adds an extra
“non-monitored class” that includes all non-sensitive pages. In
our case, there would be 100 sensitive (positive) classes and
1 non-sensitive (negative) class. The classifier is then asked
to determine to which of the 101 classes each testing element
should be assigned. We present the best results for 20-precision
and 1000-precision in Table III.

Besides the six attacks we will optimize, we also include
the Deep Fingerprinting attack (Si-DF) by Sirinam et al. [25],
the current state of the art in website fingerprinting. We do not
optimize Si-DF because our POs do not apply to its neural
network mechanism. Indeed, non-optimized Si-DF has the
best performance: with a TPR of 0.94 and a FPR of 0.005,
previous works would have presented its precision (which is
actually 1-precision) as π1 = 0.995. However, this implicitly
requires an unrealistic r = 1 value; in the more realistic (and
much more difficult) r = 1000 scenario, its 1000-precision is
still low at π1000 = 0.143.

Amongst the attacks to be optimized, the best-performing
attacks are Wa-kNN and Pa-CUMUL, though 30–40% of

156

TABLE III: Summary of the seven WF attacks, as well as their baseline 20-precision (π20) and 1000-precision (π1000) using
the non-monitored class strategy (i.e. no optimization).

Name Classifier Classification mechanism π20 π1000

Bi-XCor [1] Scoring Cross correlation on inter-packet timing and lengths .068± .001 .0007± .0001
Pa-SVM [20] SVM SVM on sequence features .510± .013 .022± .001
Ca-OSAD [3] SVM Custom SVM kernel using Levenshtein distance .57± .07 .03± .01
Wa-kNN [29] kNN Custom-weighted kNN on sequence features .615± .012 .032± .001
Ha-kFP [7] Random Forest 1000 decision trees on sequence features .53± .01 .024± .001

Pa-CUMUL [19] SVM SVM on cumulative packet sizes .701± .007 .047± .002
Si-DF [25] NN Neural Network on raw data .860± .018 .143± .04

 0

 0.2

 0.4

 0.6

 0.8

 1

Bi-XCor Pa-SVM Ca-OSAD Wa-kNN Ha-kFP Pa-CUMUL

Distance Distance Distance Confidence Confidence Distance

π
2
0

(a) 20-precision for each attack using the best PO.

 0

 0.2

 0.4

 0.6

 0.8

 1

Bi-XCor Pa-SVM Ca-OSAD Wa-kNN Ha-kFP Pa-CUMUL Ensemble

Distance Distance Distance Confidence Confidence Distance Ensemble

π
1
0
0
0

(b) 1000-precision for each attack using the best PO.

Fig. 2: Overall best optimized 20-precision and 1000-precision results across the three types of POs. The best optimizer used
is written above the chart for each bar. Lighter areas indicate the original precision of each attack in previous work, and the
darker top area indicates the increased new precision achieved with the given PO. An arrow (if shown) jutting out of the bar
indicates that the precision was obtained with the conservative Wilson method.

their classifications were wrong in the easier π20 scenario
(when about 5% of the user’s page visits are sensitive to
the attacker). In the harder π1000 scenario, all attacks are
imprecise. The results show that the trivial strategy of adding a
non-sensitive class, used in previous work, is unable to achieve
high precision with realistically high r.

All 100,000 packet sequences were part of the testing set
for each attack except Ca-OSAD.3 To form the training set,
we used 10-fold cross validation, so that the training set would
have 100x180+72000 elements and the testing set would have
100x20+8000 elements, and we would repeat this ten times
with ten disparate testing sets. However, we found that this
was impossible for one attack, Ha-KFP, which ran out of
memory. For this attack only, we reduced the training set to
100x20+8000 elements during 10-fold cross validation, similar
in size to their original data set.

k-neighbors strategy. Any classification strategy based on
the proximity of the testing element to training elements can
be enhanced with the k-neighbors strategy. When classifying
a testing element, the classifier finds the k closest training
elements to the testing element. The classifier will output a
positive class only if all k closest training elements belong
to that positive class. Otherwise, the classifier will output the
negative class, rejecting classification. This strategy was seen
in two previous attacks, Wa-kNN and Ha-kFP [7], [29]. Other

3We tested Ca-OSAD only on 100x100+10000 elements because of the
computational time involved to compute the custom SVM distance kernel,
which scales with the square of the number of instances. On the full data set,
it would’ve taken around 300,000 CPU hours.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 3 6 9 12 15

π
1
0
0
0

k

Fig. 3: 1000-precision for Ha-kFP under the k-neighbors
strategy, varying k from 1 to 15.

attacks cannot use this strategy because they do not classify
based on proximity.

We test the effectiveness of this strategy and show π1000 in
Figure 3 for Ha-kFP (the better attack). We varied k from 1
to 15, the same range of values as both previous works. We see
that increasing k improves precision within this range, but not
sufficiently significantly; its highest value π1000 = 0.04 is still
poor. This strategy also allows Ha-KFP to reach π20 = 0.69
at k = 15. Thus, we find that the non-monitored class strategy
and the k-neighbors strategy are both insufficient to achieve
high precision.

B. Confidence-based PO

To classify an input element P , some classifiers compute
some matching function match between P and all trained

157

classes C, and classify P to the class that maximizes the value
of the function:

argmax
C

match(P,C)

As an example, in the following we describe the match
function used by Support Vector Machines (SVMs). SVMs are
used by several WF attacks [3], [19], [20], [30]. We specify
the match function for other classifiers in the Appendix.

SVMs attempt to find an optimal separator between two
classes in training. We denote fC,C′(P) ∈ {C,C ′} as the
classification output of an SVM trained on two classes C and
C ′ when classifying P . For multi-class classification, SVMs
can use the “one-against-one” classification system [4], as
follows. To decide whether or not P belongs to C, the system
computes a score S(P,C):

S(P,C) =
∣∣{C ′ 6= C|fC,C′(P) = C}

∣∣
In other words, S(P,C) is the number of classes C ′ such
that the SVM prefers C over C ′ for classifying P . In the end,
the element is classified to the class with the highest aggregate
score. Therefore, S fits the definition of the matching function
for SVMs: S(P,C) = match(P,C).

The matching function of a classifier can be interpreted
as its confidence. If match(P,C) is low for all classes, the
classifier is reluctant to classify P to any class. Normally, the
classifier will nevertheless choose the highest-scoring class.
This causes false positives despite the classifier’s uncertainty.
A confidence-based PO would recognize such uncertainty, and
instead classify the element as negative.

Our confidence-based PO works as follows. Suppose that
the classes are ordered from highest match to lowest, such
that C1 matches P the most (i.e. C1 is the assumed class)
, followed by C2, and so on, until CN+1. We first scale
all match values linearly so that match(P,C1) = 1 and
match(P,CN+1) = 0. For parameters K and Mmatch,
we reject classification (classify the element as negative) if∑K+1
i=2 match(P,Ci) > K · Mmatch. In other words, we

classify an element as negative if the top K competing classes
to the assumed class have a mean match score of Mmatch or
above. We vary K and Mmatch and test their effects on r-
precision. The output of match is also useful in cases where
the attacker may want to rank his classifications, or explicitly
output the confidence of classification.

Which attacks apply?

All known attacks in the WF literature can be said to
compute a match(P,C) function for all C and choosing the
highest-scoring class to classify P . Therefore, the confidence-
based PO applies to all of our classifiers.

Results

We present the results of confidence-based PO with regards
to how it improves r-precision of our chosen WF attacks in
Table IV.

Optimized Ha-kFP becomes highly precise even under the
difficult 1000-precision scenario. In the optimal case (K = 3,

TABLE IV: Best 20-precision (π20) and 1000-precision
(π1000) with confidence-based PO.

Name π20 π1000

Bi-XCor [1] .16± .01 .0040± .0002
Pa-SVM [20] .60± .02 .031± .002
Ca-OSAD [3] .77± .10 .06± .03
Wa-kNN [29] ≥ .93 ≥ .40
Ha-kFP [7] ≥ .96 ≥ .86

Pa-CUMUL [19] .79± .02 .076± .005

Mmatch = 0.08), we were able to achieve π1000 > 0.86 as
shown in the table, and the attack achieved no false positives
in all 80,000 non-monitored traces. In fact, if we were using
the Wald method, its mean precision would be much higher
(0.999), but we must use the more conservative Wilson method
as explained in Section II-B.

An attack may seem to achieve a low FPR but still be
insufficient to obtain high precision under π1000; for instance,
optimized Wa-kNN achieved a false positive rate of 0.03%, but
due to its poor true positive rate and the conservative nature
of the Wilson method, it was still unable to beat optimized
Ha-kFP. This shows the importance of the r-precision metric.

Some of the above attacks became many times more pre-
cise under π1000. Bi-XCor became 6 times more precise;
Wa-kNN became at least 13 times more precise; Ha-kFP
became at least 40 times more precise. The SVM-based
classifiers Pa-SVM and Pa-CUMUL gained a relatively small
improvement using confidence-based metrics. This may be
because the SVM match function was not sufficiently infor-
mative about classifier confidence.

C. Distance-based PO

Several WF attacks use or induce a notion of distance
between packet sequences when performing classification.4

We found that those distances, when used to augment the
normal classification algorithm of WF attacks, could serve to
remove questionable positive classifications and thus improve
precision.

We derived distances between packet sequences based on
known attacks. For example, we defined a distance based
on Pa-SVM by executing its feature extraction algorithm,
and then applying the radial basis function on the extracted
features. From each distance between packet sequences, we
derive a distance between packet sequences and classes. Note
that while classifiers always chose the class with the highest
match score, they did not choose the class with the shortest
distance. For details on how we derived distances from WF
attacks, we refer the reader to the Abstract. Then, we tested
two different distance-based POs:

1) Too-far PO: We trained the PO by computing expected
in-class distance (distance between packet sequences of

4In our work, we do not use the strict mathematical definition of a “metric”
when referring to distances. In particular, many of our distances do not
satisfy the triangle inequality in edge cases. Rather, the distance quantifies
the difference between packet sequences from the classifier’s perspective.
We avoid use of the word “metric” for this reason, opting to use the word
“distance”.

158

TABLE V: Best π20 and π1000 with the too-far PO and too-close PO on a 100x100+10000 data set.

Too-close PO Too-far PO
Name π20 π1000 Best distance π20 π1000 Best Distance

Bi-XCor [1] .42± .02 .014± .004 Wa-kNN .46± .02 .016± 0.001 Wa-kNN
Pa-SVM [20] .91± .05 ≥ .18 Bi-XCor .92± .04 ≥ .21 Bi-XCor
Ca-OSAD [3] .88± .10 ≥ .08 Wa-kNN .93± .09 ≥ .14 Bi-XCor
Wa-kNN [29] .93± .04 ≥ .21 Bi-XCor .94± .05 ≥ .30 Bi-XCor
Ha-kFP [7] .98± .02 ≥ .59 Wa-kNN .97± .03 ≥ .39 Wa-kNN

Pa-CUMUL [19] .95± .04 ≥ .33 Bi-XCor .94± .05 ≥ .27 Bi-XCor

the same class, for each class). If the distance of a testing
packet sequence to the assumed class was more than
Mfar times the expected in-class distance, we rejected
classification.

2) Too-close PO: If there were at least Mclose classes that
were closer to the packet sequence than its assumed
class, we rejected classification.

Which attacks apply?

We tested five distances, each one based on a different
attack; Ha-kFP did not produce a distance. All classifiers can
be optimized with both distance-based POs, even if it itself
does not produce a distance. This means that we have a total
of 60 optimized classifiers (two types of POs, five distances,
six classifiers).

Results

We present the results for the two distance-based POs in
Table V for the full data set.

In both cases, we can achieve significant increases in both
20-precision and 1000-precision. In particular, Ha-kFP with
Wa-kNN distance reached π20 = .98 and .97 respectively. It
reaches π1000 ≥ .59 and ≥ .39 as well, representing a more
than 20-fold increase in precision compared to no POs.

For both distance-based POs, the best distance to use
was always the Bi-XCor distance or the Wa-kNN distance.
This implies that they contained significant information not
sufficiently incorporated in future attacks; for the case of
Bi-XCor, this is perhaps because it had achieved a compar-
atively low TPR. Appropriately, the distance for Bi-XCor
could not save itself from relatively poor precision; no other
distance could, either. This would suggest that Bi-XCor’s
distance is useful, but its classifier is weak.

For the too-close PO, in all cases Mclose = 1 was optimal
for precision. Mclose = 1 means that the PO rejected the
classification of any element that was closer to a different class
than the assumed class. Increasing Mclose increased both TPR
and FPR in a ratio that was not favorable for precision.

For the too-far PO, the optimal value for Mfar was slightly
less than 1 for each of the above classifiers. A larger Mfar

weakened the precision optimizer, but a smaller Mfar may
cause TPR to drop too significantly. We show the effect
of Mfar on the lower bound of π1000 for Ha-kFP and
the Wa-kNN distance in Figure 4. Peak precision occurred
at Mfar = 0.84. It makes sense that Mfar > 1 would
be imprecise: this represents a PO that would not reject
classification even if the distance to its assumed class was

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.5 1 1.5 2

π
1

0
0

0

Mfar

Fig. 4: Lower bound of π1000 for Pa-CUMUL with too-far
PO, using the Bi-XCor distance on 100x100+10000 elements
while varying Mfar. The PO rejected any assumed class for
which the testing element was at least Mfar times as distant
as the expected distance to that class.

greater than expected. There was almost no change in precision
beyond Mfar = 2 (when the PO almost never rejected a
classification). It is interesting to see that a wide range of
values for Mfar gives similar results, suggesting the power of
the PO is not a consequence of parameter overfitting.

D. Ensemble PO

In ensemble learning, multiple classifiers simultaneously
classify the same testing element, and we decide the final
class based on an aggregate of each classifier’s individual
classification. In adapting ensemble learning techniques for
OWF, we hypothesized that disagreements between different
classifiers could show a lack of confidence. Therefore, we
should reject classification when different classifiers output
different classifications.

We evaluate a simple bagging scheme for OWF. We trained
all classifiers except Ca-OSAD (as it could not be trained on
the full data set) separately on the same training set using 10-
fold classification. Then, we take a subset of the classifiers and,
for each testing element, we ask each of them to determine the
assumed class. We rejected classification whenever there was
no unanimous decision among all classifiers in the chosen
subset of classifiers. Therefore, the more classifiers there are,
the more conservative our classifications become.

We show the results for all 31 possible subsets of 5 classi-
fiers in Table VI, focusing on the minimum π1000 (Wilson
method). The black marker indicates which algorithms are
used. Filled black rows represent that the algorithm forms part
of the subset for that result. From top to bottom, they represent
Bi-XCor, Pa-SVM, Wa-kNN, Ha-kFP, and Pa-CUMUL.
Row i contains results for the use of i classifiers in ensemble.

159

TABLE VI: Lower bound for π1000 when a subset of the five WF attacks are used in ensemble PO. The marker besides each
result indicates which of the five WF attacks are used (black bar = used, white bar = not used). From top to bottom, the bars
represent Bi-XCor, Pa-SVM, Wa-kNN, Ha-kFP, and Pa-CUMUL in order.

.001 .021 .031 .006 .005

.18 .20 .118 .225 .329 .337 .347 .399 .288 .387

.633 .630 .657 .696 .588 .675 .703 .619 .686 .689

.795 .764 .793 .845 .771

.823

For example, the second result in the third row represents
the use of Bi-XCor, Pa-SVM and Ha-kFP. All results here
exceed a recall of 0.2.

From Table VI, we see that the optimal precision is achieved
when all except Pa-SVM are used for π1000 ≥ 0.845. The best
single classifier was Wa-kNN; the best two-classifier ensemble
was to add Ha-kFP; the best three-classifier ensemble was
to add Pa-SVM; but the best four-classifier ensemble does
not include Pa-SVM, as it was too conservative and rejected
too many correct classifications. Using more classifiers was
more conservative and generally gave better precision, except
in the five-classifier case where Pa-SVM rejected many correct
positive classifications without helping to reject incorrect ones.

To expand on the above bagging scheme, we tested several
other schemes including giving different weights to different
classifiers and changing the number of votes required to accept
a classification (instead of requiring all votes to accept a
classification). Even with an exhaustive search of optimal
parameters, none of these schemes outperformed the simple
bagging scheme in the optimal case, so we omit these results.

IV. DIFFERENT SCENARIOS FOR A PRECISE WF ATTACK

To go beyond the standard open-world scenario, we test
the effectiveness of a WF attack in several other scenarios
in this section. We introduce each scenario in the following
and analyze how high precision helps the classifier tackle the
scenario.

A. Identifying a sensitive client

We want to know if the attacker could determine, after some
period of observing the client, whether or not the client has
a habit of visiting sensitive pages. This scenario simulates an
attacker who wants to learn about the client’s online behavior.
For example, the attacker may want to figure out the client’s
political affiliation, romantic status, or other demographics by
deciding if the client visits certain pages frequently. High
recall and precision are both advantageous for this scenario,
so we want to know if our preference for high precision helps
classifiers.

Let us define a sensitive client as one who visits sensitive
pages at a rate of b, and a non-sensitive client as one who does
not visit sensitive pages. The attacker faces a binary classifi-
cation problem to determine if a client is one of the above. To
do so, the attacker observes each client for N page accesses,
performs WF classification on their accesses, and gets some

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.005 0.01 0.015 0.02

S
u
c
c
e
s
s
 r

a
te

b

Ha-kFP with PO
Ha-kFP without PO

Fig. 5: Success rate of identifying a sensitive client for
Ha-kFP with and without confidence-based PO, while vary-
ing b, the rate of sensitive page visits.

number x of sensitive page accesses. The attacker decides that
the client is a sensitive client if x ≥ Midentify . Midentify

is a parameter that controls the trade-off between identifying
sensitive clients correctly and mistaking non-sensitive clients
as sensitive clients.

We compare Ha-kFP with and without confidence-based
PO in Figure 5. We vary the base rate between 0.001 and
0.02 and model an attacker who has observed 1000 page
accesses. Therefore, in the toughest b = 0.001 case, the client
has only visited one sensitive page. To distinguish between
sensitive and non-sensitive clients, we set Midentify to be
equal to 1000 · (b · (RTP +RWP) + (1− b) ·RFP)/2, i.e. the
mean of the expected number of positive classifications for the
sensitive client and the non-sensitive client. We can see that
the optimized attack is much more successful at identifying
sensitive clients when b is low, with a 63% chance of correct
identification at b = 0.002, up to 99% at b = 0.01. Not only
does the original attack achieve less success at identifying
sensitive clients, it also more frequently falsely identifies non-
sensitive clients as sensitive ones: the rate increases with lower
b, from 25% at b = 0.01 to 43% at b = 0.001 (not shown in
the graph). This rate cannot be reduced without also reducing
the true identification rate. The optimized attack did not make
false positives.

B. Attacking defenses

A number of defenses against WF have been proposed
for anonymity technologies like Tor. Much like WF attacks,
these defenses are almost always evaluated with recall: a good
defense would be judged by its ability to decrease the recall
of all classifiers. We wanted to know the precision of our

160

TABLE VII: Best 20-precision (π20) with confidence-based
PO on Ha-kFP against three defenses: Random Padding,
Tamaraw and WTF-PAD. Bandwidth (B/W) and Time over-
head are also given.

Name Original With PO Overhead
π20 π20 B/W Time

Random Padding .17± .01 .86± .08 50% 50%
Tamaraw [2] .0088± .0004 .036± .005 91% 247%

WTF-PAD [12] .24± 0.01 .96± .02 32% 0%

optimized attacks on those defenses and whether or not their
precision could be significantly deterred by defenses.

We evaluated three WF defenses: Random Padding set to
produce 50% bandwidth and time overhead by adding random
packets, Tamaraw by Cai et al. [2], and WTF-PAD by Juarez
et al. [12]. Bandwidth overhead is equal to the percentage of
extra packets added by the defense, and time overhead is equal
to the percentage of extra time required to load each web page.

We present the results in Table VII. For these results
only, we lower the minimum recall requirement from 0.2
to 0.02, because no attack can achieve a higher recall than
0.06 for Tamaraw. For WTF-PAD, we could only test on
100x100+10000 because it was very slow.

We see that WTF-PAD is slightly less capable of reducing
the precision of an attacker compared to Random Padding,
and much less capable compared to Tamaraw, though it is
the cheapest in overhead. Even without any PO, attacking
WTF-PAD was relatively easy compared to Tamaraw, though
Tamaraw is far more expensive, especially in time overhead.
Recent work by Sirinam et al. has shown high TPR against
WTF-PAD [25]. With precision optimization, Ha-kFP can be
precise (for r = 20) on both WTF-PAD and Random Padding;
a five-fold jump in precision is possible on Tamaraw, though
the best attack is still highly imprecise. Tamaraw cannot be
defeated, though its incredible cost in overhead has hampered
its adoption.

We did not evaluate any “targeted defenses”: a targeted
defense allows the client to choose which page to mimic while
accessing specific pages. While targeted defenses give clients
the advantage of creating a specific cover story, rather than a
series of randomly perturbed packet sequences, currently there
is no known mechanism to automatically choose correct targets
to mimic. Wrongly chosen targets could significantly impede
the ability of the defense to lower precision, so we cannot
evaluate them fairly. These defenses include Glove [17],
Walkie-Talkie [32], and Decoy pages [20].

C. Attacking different data sets

Like most other works on WF, we perform the main
evaluation of our work on a data set that consists of 100
monitored web pages chosen from the top pages. Here, we
consider whether variations in the data, corresponding to
realistic scenarios a WF attacker would want to tackle, would
change the precision of our optimized classifiers.

HTTP/1.1 and HTTP/2. Our data set consists of a mix
of HTTP/1.1 (30%) and HTTP/2 (70%). HTTP/2, the newer
version, changes how resources are loaded to encourage same-
stream parallelism. We separate our data set into two parts
for those two versions and compare their recall and precision
for Ha-kFP. Before optimization, recall on the two sets was
respectively 0.91 and 0.88, while 1000-precision was 0.023
and 0.027. After optimization, recall was 0.44 and 0.37, while
1000-precision was respectively > 0.85 and > 0.84. There is
almost no difference between precision on the two data sets,
while the HTTP/1.1 data set showed a slightly higher recall.
It is possible that the slight difference is due to HTTP/2, but
it is also possible that the nature of the web pages was simply
different.

Same-domain pages. We want to test if the attacker can
precisely separate web pages of the same type and domain.
We collect a new Wikipedia data set for this purpose: our 100
monitored classes are all Wikipedia pages concerning sensitive
topics, for which we collect 100 instances each, and we also
collect 10,000 non-monitored Wikipedia traces corresponding
to random walks of Wikipedia’s pages following links starting
from the main page. Details of data collection can be found
in the Appendix. This is a more difficult task since the pages
are highly similar in size and structure.

Our results show that original Ha-kFP can achieve π20 =
0.09 and π1000 = 0.002 on this data set with a low TPR of
0.52, while confidence-based optimized Ha-kFP can achieve
π20 = 0.28 and π1000 = 0.008 lowering TPR to 0.2, with
K = 3 and Mmatch = 0.28. Although we are not able
to achieve high precision in this challenging problem, our
methods do bring a three- to four-fold increase in precision.
The difficulty of the above task can be seen in the following
statistics: the mean difference in the number of cells between
a randomly chosen monitored instance and a non-monitored
one was 810 (compared to a mean size of 1720 cells), while
in the original data set it was 4260 (compared to a mean size
of 4120 cells). This reflects the fact that monitored and non-
monitored pages were much more similar in the Wikipedia
data set. The web pages were also smaller, thus leaking less
information to classify.

Different monitored pages. We chose the top 100 Alexa
pages as our monitored sensitive set chiefly to ensure repro-
ducibility as lesser ranked pages often had a shorter lifespan. If
the site is taken down, the results can no longer be reproduced.
To address questions as to whether high-precision attacks on
the top 100 Alexa pages would be reproducible on other
pages, we collect a different data set here corresponding to 100
randomly chosen pages from the top 100,000 instead, similarly
with 200 instances each, making up a 100x200+80000 data set
as before. We use Ha-kFP with confidence-based PO, the best
optimized attack available, and achieve π1000 > 0.81 on this
data set, a slightly diminished but still highly precise result.
This shows that our methods are similarly precise on other
web pages.

161

TABLE VIII: TPR of each of the four classes and what
portion of the false positives each class contributed to (“FPR
contribution”). TPR was calculated for a modified data set with
these 4 new classes and 96 original classes.

Name Original With PO
TPR FPR contribution TPR FPR contribution

AJAX1 0.54 0.9% 0.11 0%
AJAX2 0.60 0.7% 0.15 0%
LINKS1 0.87 0.6% 0.02 0%
LINKS2 0.9 1.4% 0.06 0%

Active client. we want to test the precision of an attacker
against an active client who is generating random events
through page browsing, rather than a static client who visits a
page and does not act on it. We chose two sites for this task; for
the first site “AJAX”, the active client randomly scrolls down
the web page, causing more content to be loaded because of
its AJAX code; in the other site “LINKS”, the active client
randomly clicks on links to browse topics. For each site, we
generated two classes, corresponding to a fast client (AJAX1,
LINKS1) and a slow client (AJAX2, LINKS2). Exact details
are in the Appendix.

We replaced 4 of the original 100 classes with these new
classes and asked Ha-kFP to classify the new problem
precisely. (The data set size is the same at 100x200+80000).
We present the results in Table VIII. We show TPR for the
four chosen classes before and after optimization, as well as
what portion of the false positives they each contributed to.
Since there are 100 classes, each class on average contributes
to 1% of the false positives.

We found that AJAX1 and AJAX2 were especially dif-
ficult to classify, as their true positive rate was low even
in the original case. This was probably due to the highly
random network activity. None of these four classes were
especially responsible for false positives in the modified data
set. After optimization, the true positive rate of each class
was reduced below the overall mean true positive rate (0.38),
suggesting that the four classes were somewhat harder to
classify correctly. Overall, however, the classifier still achieved
π20 > 0.99 and π1000 > 0.85, about as good as the original
data set. The four new classes were difficult to classify, but
they did not end up hurting precision.

V. DISCUSSION

A. Does Website Fingerprinting scale?

We have shown that optimized classifiers can be highly
precise in our large open world. Yet, the reader may comment
that our experimental open world is tiny compared to the actual
open world (with over a billion pages). Can these results be
extended to the actual open world?

Since any experiment’s size is invariably limited when
compared to the space of all potential inputs, what is crucial is
to ensure that the experiment procedure correctly simulates a
realistic attack scenario. Our open-world experiment is correct
because we are pessimistically simulating an attacker who has

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000 60000 70000 80000

π
2

0

N

Fig. 6: 20-precision for Wa-kNN on a data set of 100x200+N
elements using 10-fold cross-validation, where N is the size
of the open-world class ranging from 100 to 80,000.

no knowledge whatsoever of the testing open world; at most,
he is only allowed to train on his own toy open world, which
does not intersect with the client’s testing open world. The
difference in size between the training and testing worlds does
not affect the correctness of this procedure. For this reason,
we only need to ensure that the classifier should never be
tested on the same non-sensitive pages it has trained on.

To achieve this experimentally, we visited each non-
sensitive page only once, and split the training and testing set
(generally using 10-fold cross validation, though the training
set was smaller for some attacks). We also filtered out pages
with similar domain names so that they would not both appear
in our non-monitored set. Since the classifier has no knowledge
whatsoever of the non-sensitive pages in the testing set, its
decision that a testing element should be classified as non-
sensitive is not based on any specific knowledge about the
page it came from. In other words, the actual open world —
and its larger size — has no impact on the classifier’s success.

Some previous work increased the size of the open world
and found that accuracy and precision decreased [19], [20]. We
argue that this was only the case because they did not keep r
constant and implicitly increased r when increasing the open
world size. To show this, we also increased the size of the
open world, but we measured π20 (20-precision), holding the
base rate of visiting non-sensitive pages constant. We evaluated
optimized Wa-kNN on a data set of 100x200+N elements,
where N , the open world size, varied from 100 to 80,000,
with 10-fold cross-validation. We show the results in Figure 6,
which shows that a larger open world set size will increase
π20 from 0.28 to 0.93, as may be expected of a competent
classifier. Other classifiers show similar results, though we
specifically picked Wa-kNN as it does not have to wrestle
with class size imbalance.

B. What is the value of r?

The value of r parametrically captures an aspect of client
behavior: the ratio between the probability a client would visit
a non-sensitive page compared to that of a sensitive page. We
never assume that the attacker knows or needs to estimate the
value of r (his strategy is the same no matter what the client
does). For simplicity of presentation we decided to focus on
two scenarios, r = 20 and r = 1000. Here we justify the

162

choice of these parameters by presenting data from real web
browsers.

We wrote a small executable to read browser history files
(Firefox and Chrome) and distributed it to volunteering ac-
quaintances. We created two lists of 100 web pages each,
respectively the top 100 web pages, and 100 sensitive web
pages that are banned in certain countries including the U.K.,
India, Australia, New Zealand, U.S., and Russia.5 The latter
set mostly consists of file sharing sites and streaming services,
and we selected the 100 most popular ones (by Alexa rank)
amongst those. All clients were fully informed of the above
and how the data would be presented, and approval was
obtained from the relevant institutional ethics review boards.
We included a hash as a rudimentary way to stop participants
from editing their data.

Since Tor Browser keeps no history and no logins between
sessions, users generally have to visit the home page of a web
site (sometimes to log in) before visiting any of its other web
pages. This is not the case in normal browsing, so we took this
into consideration to avoid under-counting the number of page
visits (thus overestimating r). We counted the number of page
visits in two different ways. First, the “Site” method counts
all page visits corresponding to that site, not just the specific
page. This likely over-counts the number of actual visits to
these pages. Second, the “Session” method also counts all page
visits to that site, but only once in a given session. We define a
session to be any continuous series of page visits with less than
5 minutes of inactivity between two consecutive visits. For
example, if a user visits ten profile pages on facebook.com
in one session without going to the home page (because they
are already logged in), this counts as ten visits in the “Site”
method and one visit in the “Session” method. The latter
more realistically represents private browsing and Tor Browser.
Exact page visits are counted in any case. While it can be
argued that r extracted from normal browsing would differ
from r extracted from Tor Browser users, we have no way of
obtaining the latter and the former nevertheless represents real
browsing activity.

We show values of r in Table IX. We see that r values
for the top sites generally varied from 10 to 30, while
the sensitive values varied more significantly from several
hundred to several thousand. If we treat the “Session” value as
more realistic, then monitoring these particular sensitive pages
would probably require the attacker to succeed at r = 1000 to
r = 2000. The value of 54338 for one data set is questionable
because it corresponds to a single recorded visit of a sensitive
page; a few more visits would significantly decrease the value.

For presentation, we chose to fix r to two specific values
earlier, r = 20 and r = 1000 to represent popular pages
and sensitive pages respectively. Here, we want to vary r to
examine its effects on r-precision. Since our classifiers are
not dependent on r, we take the TPR, WPR, and FPR of the
best previous result, Ha-kFP using confidence-based PO, and

5We intentionally did not include any pages banned in China as it does not
represent what our participants would consider sensitive.

TABLE IX: Values of r for several participants, based on two
data sets and two methods of counting r, “Site” and “Session”.

of pages Top pages Sensitive pages
Site Session Site Session

127095 6 15 281 1896
54338 10 33 2089 54338

116566 5 14 485 2534
13161 20 20 258 274

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

π
r

r

Fig. 7: Lower bound for πr by the Wilson method when we
vary r from 1 to 10000. Note that the x-axis is logarithmic.

re-calculate the conservative lower bound of r-precision using
the Wilson method while varying r. We show these results in
Figure 7.

First, there is only a very slight decrease of r-precision
from r = 20 (π20 > 0.96) to r = 100 (π100 > 0.95). r = 100
represents a moderately difficult scenario, since the base rate
we measure is the sum of 100 pages. For example, if 10% of
the population regularly visit a page, and if they visit 30 pages
per day, the pages they visit once per month would match the
rate of the sensitive pages examined by the r = 100 scenario.
Our success with the r = 20 scenario can be extended to the
r = 100 scenario. Second, there is a more significant drop
in r-precision at r = 10000. This is in fact an experimental
limitation, as the value is obtained by the conservative Wilson
method. At r = 2000, we still achieve π2000 > 0.78 with our
current methods and data set.

C. Is Website Fingerprinting realistic?

Generally, WF works make several assumptions to present
results. These assumptions include the use of a cold cache,
freshness of the training set and the lack of noise that could
impede classification. Multiple works [11], [31] have noted
that violating these assumptions would cause recall to drop.
We note that assuming the use of a cold cache is reasonable
for Tor (as it does not keep cache in disk), and Wang et al. [31]
have shown that the training set can be kept sufficiently fresh
for classification. Here, we discuss issues related to the last
assumption, the lack of noise.

In machine learning, noise could refer to several different
aspects of data. First, there may be label noise — mislabeled
elements in the training set. This is irrelevant to our WF
attack model as the attacker visits specific pages himself to
collect training data. Second, perturbations to the data may
be introduced by differences between the experimental setting

163

and the real client setting, such as network conditions and
browser settings. Much of these differences are ameliorated
when experimenting on Tor, where network conditions are
already random and the browser cannot be easily configured
differently. The browser also does not keep cookies across
sessions, including login cookies; for example, a user must
login to a social media page every time she starts the browser
again, thus going through the easily-fingerprinted front page.
Third, user actions may cause data to load in a different
way compared to the experimental client (which is static
and does not act beyond loading a page). For example, the
user may be listening to music in another tab, which causes
network activity. Wang et al. [31] showed that classification
is only impeded when the bandwidth rate of noise is very
high, possibly from a video or a file download. Our work
addresses several types of active users to find that they will not
impede precision, though we cannot claim to have a complete
investigation of all types of user activity.

VI. RELATED WORK

As the presentation of our results has already included
descriptions of much previous work, we offer only a brief
overview of related work in this section focusing on WF
attacks. Cheng et al. [5], Sun et al. [26], Hintz et al. [9], and
Bissias et al. [1] were some of the first to show successful
classifiers to determine which page someone is visiting based
on traffic patterns. Later works referred to this traffic analysis
problem as website fingerprinting.

The original paper on Tor considered traffic analysis to be a
serious threat [6], though no attack had been successful on Tor
at that time as Tor equalized cell sizes. In particular, Herrmann
et al. [8] showed that their attack, as well as Liberatore and
Levine’s attack [13], did not succeed against Tor, though their
attacks were able to beat SSH and selected VPNs. Lu et
al. [15], Panchenko et al. [20] and Cai et al. [3] were some of
the first to show success against Tor. Attack accuracy was
improved and computational time was decreased by Wang
et al. [29], Hayes et al. [7], another work by Panchenko et
al. [19], and more recently with deep learning by Rimmer et
al. [23] and Sirinam et al. [25]. These works also attempted
to lower the false positive rate for open-world effectiveness.

Some previous WF works have discussed the base rate
fallacy, though they did not include the base rate in their
analysis or experiments. Panchenko et al. [19] discussed issues
with precision, though their attack was not precise (as seen in
our results as well), and they found that WF attacks generally
would fail in the large open world if they are not precise.
This important point underlines our paper’s motivation. Hayes
et al. [7] are able to achieve a more precise attack using the k-
neighbors strategy, as did an earlier work by Wang et al. [29].
We showed that our POs are more effective and can be applied
to any attack.

VII. CONCLUSION AND FUTURE WORK

This work tackles the open problem of open-world website
fingerprinting (OWF). We found that OWF classifiers were

not precise considering the realistically low base rates at
which people normally visit sensitive web pages. This implied
that WF would only succeed in identifying highly popular
web pages. We formulate r-precision (πr), the percentage of
sensitive classifications that are correct if the client visits r
times as many non-sensitive pages as sensitive pages. We
address a confusion between experimental data set sizes and
real world data set sizes sometimes found in previous work,
and show the importance of distinguishing between wrong
positives and false positives in calculating precision.

As no previous attack was precise under r = 1000, we
present three classes of POs to improve the precision of WF
classifiers. Our confidence-based POs ask classifiers to output
the degree of confidence they have in their classifications, and
we reject classifications that are not confident enough. Our
distance-based POs reject classifications of testing elements
that are too far from the assumed class. Our ensemble-based
POs reject elements for which a chosen set of classifiers
did not unanimously agree on the assigned class. While
confidence-based Ha-KFP performed the best at π1000 >
0.86, distance-based POs were able to allow almost any attack
to achieve high π20 precision, and ensemble-based POs were
nearly as precise as confidence-based Ha-kFP with the added
benefit of requiring no parametrization.

Previous authors have shown that a number of problems in
realistic scenarios would lower recall, such as noisy packet
sequences, poor training sets and multi-tab browsing; solu-
tions have been proposed in previous works. We evaluated
one particular scenario involving active users with random
behavior to show that we can still achieve high precision, but
we do not know if other realistic problems and their solutions
would affect precision. One way to definitely demonstrate the
practicality of OWF would be to create a private Tor guard
that performs website fingerprinting on consenting Tor clients,
telling them which sensitive web pages they visited and asking
them if it is correct.

On the flip side, defenses should also be designed to
minimize the attacker’s precision. One approach to designing
defenses is to create “anonymity sets” of web pages that look
the same to the attacker after padding. This approach provides
an upper bound on the maximum recall of any attacker, but not
precision. We should consider re-designing such defenses to
provide an upper bound on the maximum r-precision instead.

Our data and code can be found at:
https://github.com/OpenWF/openwf.git

164

REFERENCES

[1] BISSIAS, G. D., LIBERATORE, M., JENSEN, D., AND LEVINE, B. N.
Privacy Vulnerabilities in Encrypted HTTP Streams. In Privacy Enhanc-
ing Technologies (2006), Springer, pp. 1–11.

[2] CAI, X., NITHYANAND, R., WANG, T., GOLDBERG, I., AND JOHN-
SON, R. A Systematic Approach to Developing and Evaluating Website
Fingerprinting Defenses. In Proceedings of the 21st ACM Conference
on Computer and Communications Security (2014).

[3] CAI, X., ZHANG, X. C., JOSHI, B., AND JOHNSON, R. Touching from a
Distance: Website Fingerprinting Attacks and Defenses. In Proceedings
of the 19th ACM Conference on Computer and Communications Security
(2012), pp. 605–616.

[4] CHANG, C.-C., AND LIN, C.-J. LIBSVM: a library for support vector
machines. ACM Transactions on Intelligent Systems and Technology
(TIST) 2, 3 (2011), 27.

[5] CHENG, H., AND AVNUR, R. Traffic Analysis of SSL-Encrypted
Web Browsing. http://www.cs.berkeley.edu/∼daw/teaching/cs261-f98/
projects/final-reports/ronathan-heyning.ps, 1998.

[6] DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. Tor: The
second-generation onion router. In Proceedings of the 13th USENIX
Security Symposium (2004).

[7] HAYES, J., AND DANEZIS, G. k-Fingerprinting: A Robust Scalable
Website Fingerprinting Technique. In Proceedings of the 25th USENIX
Security Symposium (2016).

[8] HERRMANN, D., WENDOLSKY, R., AND FEDERRATH, H. Website
Fingerprinting: Attacking Popular Privacy Enhancing Technologies with
the Multinomial Naı̈ve-Bayes Classifier. In Proceedings of the 2009
ACM Workshop on Cloud Computing Security (2009), pp. 31–42.

[9] HINTZ, A. Fingerprinting Websites Using Traffic Analysis. In Privacy
Enhancing Technologies (2003), Springer, pp. 171–178.

[10] JANSEN, R., JUAREZ, M., GALVEZ, R., ELAHI, T., AND DIAZ, C.
Inside job: Applying traffic analysis to measure Tor from within.
In Proceedings of the 25th Network and Distributed System Security
Symposium (2018).

[11] JUAREZ, M., AFROZ, S., ACAR, G., DIAZ, C., AND GREENSTADT, R.
A Critical Evaluation of Website Fingerprinting Attacks. In Proceedings
of the 21st ACM Conference on Computer and Communications Security
(2014).

[12] JUAREZ, M., IMANI, M., PERRY, M., DIAZ, C., AND WRIGHT, M.
Toward an Efficient Website Fingerprinting Defense. In Computer
Security–ESORICS 2016. Springer, 2016, pp. 27–46.

[13] LIBERATORE, M., AND LEVINE, B. N. Inferring the Source of En-
crypted HTTP Connections. In Proceedings of the 13th ACM Conference
on Computer and Communications Security (2006), pp. 255–263.

[14] LINUX FOUNDATION. Let’s Encrypt Stats — Percentage of Web Pages
Loaded by Firefox Using HTTPS. https://letsencrypt.org/stats, 2018.
Accessed Dec. 2018.

[15] LU, L., CHANG, E.-C., AND CHAN, M. C. Website Fingerprinting and
Identification Using Ordered Feature Sequences. In Computer Security–
ESORICS 2010. Springer, 2010, pp. 199–214.

[16] NATIONAL RESEARCH COUNCIL. Strengthening forensic science in the
United States: a path forward. National Academies Press, 2009.

[17] NITHYANAND, R., CAI, X., AND JOHNSON, R. Glove: A Bespoke
Website Fingerprinting Defense. In Proceedings of the 13th ACM
Workshop on Privacy in the Electronic Society (2014).

[18] OVERDORF, R., JUAREZ, M., ACAR, G., GREENSTADT, R., AND
DIAZ, C. How Unique is Your .onion?: An Analysis of the Finger-
printability of Tor Onion Services. In Proceedings of the 24th ACM
Conference on Computer and Communications Security (2017).

[19] PANCHENKO, A., LANZE, F., ZINNEN, A., HENZE, M., PENNEKAMP,
J., WEHRLE, K., AND ENGEL, T. Website Fingerprinting at Internet
Scale. In Proceedings of the 23rd Network and Distributed System
Security Symposium (2016).

[20] PANCHENKO, A., NIESSEN, L., ZINNEN, A., AND ENGEL, T. Website
Fingerprinting in Onion Routing Based Anonymization Networks. In
Proceedings of the 10th ACM Workshop on Privacy in the Electronic
Society (2011), pp. 103–114.

[21] PERRY, M. A Critique of Website Traffic Fingerprinting Attacks. https:
//blog.torproject.org/blog/critique-website-traffic-fingerprinting-attacks,
November 2013. Accessed Feb. 2015.

[22] PIETRASZEK, T. Using adaptive alert classification to reduce false
positives in intrusion detection. In Recent Advances in Intrusion
Detection (2004), pp. 102–124.

[23] RIMMER, V., PREUVENEERS, D., JUAREZ, M., VAN GOETHEM, T.,
AND JOOSEN, W. Automated website fingerprinting through deep
learning.

[24] SAKS, M. J., AND KOEHLER, J. J. The coming paradigm shift in
forensic identification science. Science 309, 5736 (2005), 892–895.

[25] SIRINAM, P., IMANI, M., JUAREZ, M., AND WRIGHT, M. Deep
fingerprinting: Undermining website fingerprinting defenses with deep
learning. In Proceedings of the 25th ACM Conference on Computer and
Communications Security (2018), ACM, pp. 1928–1943.

[26] SUN, Q., SIMON, D. R., WANG, Y.-M., RUSSELL, W., PADMANAB-
HAN, V. N., AND QIU, L. Statistical Identification of Encrypted Web
Browsing Traffic. In Proceedings of the 2002 IEEE Symposium on
Security and Privacy (2002), IEEE, pp. 19–30.

[27] SWETS, J. A. Roc analysis applied to the evaluation of medical imaging
techniques. Investigative radiology 14, 2 (1979), 109–121.

[28] WANG, T. Website Fingerprinting: Attacks and Defenses. PhD thesis,
University of Waterloo, 2016.

[29] WANG, T., CAI, X., NITHYANAND, R., JOHNSON, R., AND GOLD-
BERG, I. Effective Attacks and Provable Defenses for Website Fin-
gerprinting. In Proceedings of the 23rd USENIX Security Symposium
(2014).

[30] WANG, T., AND GOLDBERG, I. Improved Website Fingerprinting on
Tor. In Proceedings of the 12th ACM Workshop on Privacy in the
Electronic Society (2013), pp. 201–212.

[31] WANG, T., AND GOLDBERG, I. On Realistically Attacking Tor with
Website Fingerprinting. In Privacy Enhancing Technologies (2016),
Springer.

[32] WANG, T., AND GOLDBERG, I. Walkie-Talkie: An Efficient Defense
Against Passive Website Fingerprinting Attacks. In Proceedings of the
26th USENIX Security Symposium (2017).

APPENDIX

Here we describe each of the six previously published
attacks we tested with our POs. The attacks are Bi-XCor [1],
Pa-SVM [20], Ca-OSAD [3], Wa-kNN [29], Ha-kFP [7] and
Pa-CUMUL [19]. We describe how each classifier represents
packet sequences P as R(P), the distance d(P, P ′) between
two packet sequences P and P ′, the training and the testing
procedures. We describe the testing procedure by specifying
match (as explained in Section III-B); each classifier assigns
the element to the class that scores the highest with match.

We denote packet sequences as P = 〈p1, p2, . . . , pn〉, where
pi = (ti, `i), ti is the interpacket time between pi−1 and pi,
and `i is the byte length of packet pi, with positive packet
lengths representing outgoing packets from the client and
negative packet lengths representing incoming packets to the
client. With Tor cells, `i ∈ {−1, 1} as all cells have the
same size. P represents the WF attacker’s information, and
he attempts to deduce which web page it came from.

Bi-XCor

Representation. We split R(P) = (Rt(P), R`(P)), where:

Rt(P) = 〈t1, t2, . . . , tn〉
R`(P) = 〈`1, `2, . . . , `n〉

Distance. Consider two lists a and b with mean ā, b̄ and
standard deviation σa, σb respectively. We define the cross-
correlation function X(a, b) between them:

X(a, b) =

∑min(|a|,|b|)
i=1 (ai − ā)(bi − b̄)
min(|a|, |b|) · σa · σb

165

We have:

d(P, P ′) = 2−X(Rt(P), Rt(P
′))−X(R`(P), R`(P

′))

Training. We represent each class C as R(C) =
(Rt(C), R`(C)), where the i-th element of Rt(C) is the mean
of all ti for training packet sequences from class C, and
similarly for R`(C).
Testing.

match(P,C) = d(R(P), R(C))

Pa-SVM

Representation. We extract a number of features from each
packet sequence related to packet ordering, directions, and
sizes: R(P) =< f1, f2, ..., f|F | >. To see the list of features,
refer to the original work [20] or our code.
Distance. We use the radial basis function with γ = 2−25

to compute distances between the feature representations of
packet sequences. The distance is:

d(P, P ′) = 1− e−γ||R(P)−R(P ′)||2

Training. We train an SVM on the above pairwise distances
by finding support vectors which separate classes.
Testing. The matching function uses one-against-one SVM
classification as described in Section III-B.

Ca-OSAD

Representation.
R(P) = {`1, `2, . . .}

Distance. We compute the pairwise distance between packet
sequences P and P ′ as:

d(P, P ′) = 1− e−2·OSAD(P,P ′)2/min(|P |,|P ′|)

In the above, OSAD(P, P ′) is the Optimal String Align-
ment Distance between R(P) and R(P ′).
Training. We train an SVM using the custom kernel calculated
from the above pairwise distances.
Testing. The matching function uses one-against-one SVM
classification as described in Section III-B.

Wa-kNN

Representation. We extract a number of features from each
packet sequence related to packet ordering, directions, and
sizes: R(P) =< f1, f2, ..., f|F | >. To see the list of features,
refer to the original work [29] or our code.
Distance. We use a weighted L1-distance between P and P ′:

d(P, P ′) =

|F |∑
i=1

wi|fi − f ′i |

Training. We learn weights wi that optimize the accuracy of
the weighted distance.

Testing.

match(P,C) = min
P ′∈C

d(P, P ′)

Ha-kFP

Representation. We extract features from each packet se-
quence, similar to Wa-kNN. To see the list of features, refer
to the original work [7] or our code.
Distance. Ha-kFP does not produce a distance.
Training. We train a Random Forest classifier with 1000
decision trees, where each tree draws a random sample of
the input elements with replacement, resulting in a sample of
equal size to the input. Each leaf L of a decision tree records
L(x), the number of training samples of each class that fell
in that leaf, for class x.
Testing.

If P falls in leaf L for decision tree i, we calculate
matchi(P,C) = L(C)/

∑
x L(x). Then

match(P,C) =
1000∑
i=1

matchi(P,C)

Pa-CUMUL

Representation. We extract features from each packet se-
quence, based on total size, time, and 100 linear interpolations
of aggregated packet sizes. To see the list of features, refer to
the original work [19] or our code.
Distance. We use the radial basis function with γ = 2−28

to compute distances between the feature representations of
packet sequences. The distance is:

d(P, P ′) = 1− e−γ||R(P)−R(P ′)||2

Training. We train an SVM on the above pairwise distances
by finding support vectors which separate classes.
Testing. The matching function uses one-against-one SVM
classification as described in Section III-B.

Distances

For our distance-based POs, we derived a distance between
packet sequences P, P ′ based on five previous WF attacks:
Bi-XCor, Pa-SVM, Ca-OSAD, Wa-kNN and Pa-CUMUL.
The distance is equivalent to d(P, P ′) as written above for
each WF attack. Then, we derived a distance between packet
sequences P and classes C based on the distance between
packet sequences as follows. We denote C[: N] to mean the
N closest elements to P in C, and C[N] to mean the N -th
closest element to P in C.

1) d(P,C) =
∑
P ′∈C d(P, P ′)/|C|.

2) d(P,C) =
∑
P ′∈C[:5] d(P, P ′)/|C|.

3) d(P,C) =
∑
P ′∈C[:25] d(P, P ′)/|C|.

4) d(P,C) = d(P,C[1]).
5) d(P,C) = d(P,C[5]).
6) d(P,C) = d(P,C[25]).

166

DATA COLLECTION

We collected the Wikipedia data set (100x100+10000) as
follows. For the non-monitored pages, we started from one
of five pages: the main page, the portal of current events,
the “United States” page, the “India” page, and the “World
War II” page. Then, we randomly traversed links on the page
to other Wikipedia articles, avoiding special pages and pages
corresponding to dates. The random walk lasted for a uniform
length between 1 to 20 steps, after which we would restart
at one of the above five pages. This was meant to simulate
a client who surfed Wikipedia pages starting from a topic
of interest. For the monitored pages, we manually chose ten
politically/culturally sensitive topics, and for each topic we
manually chose ten relevant pages. We share the list of all
pages in our data set:

https://github.com/OpenWF/openwf.git

We collected the different data set used in Section IV-C as
follows. For AJAX1 and AJAX2, we visited reddit.com
and scrolled down. AJAX1 scrolls down every 1 to 5 seconds
for up to 1000 pixels; AJAX2 scrolls down every 1 to 10
seconds for up to 500 pixels. Each stops after 20 to 40 seconds.
LINKS1 and LINKS2 are based on en.wikipedia.org,
and follows a random walk. LINKS1 visits a new link every 1
to 5 seconds; LINKS2 visits a new link every 1 to 10 seconds,
and each stops after 20 to 40 seconds. All randomness is
uniform.

167

