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Abstract—Cross domain tracking has become the rule, rather
than the exception, and scripts that collect behavioral data from
visitors across sites have become ubiquitous on the Web. The
collections form comprehensive profiles of browsing patterns and
contain personal, sensitive information. This data can easily be
linked back to the tracked individuals, most of whom are likely
unaware of this information’s mere existence, let alone its per-
petual storage and processing. As public pressure has increased,
tracking companies like Google, Facebook, or Baidu now claim
to anonymize their datasets, thus limiting or eliminating the
possibility of linking it back to data subjects.

In cooperation with Europe’s largest audience measurement
association we use access to a comprehensive tracking dataset
to assess both identifiability and the possibility of convincingly
anonymizing browsing data. Our results show that anonymization
through generalization does not sufficiently protect anonymity.
Reducing unicity of browsing data to negligible levels would
necessitate removal of all client and web domain information as
well as click timings. In tangible adversary scenarios, supposedly
anonymized datasets are highly vulnerable to dataset enrichment
and shoulder surfing adversaries, with almost half of all browsing
sessions being identified by just two observations. We conclude
that while it may be possible to store single coarsened clicks
anonymously, any collection of higher complexity will contain
large amounts of pseudonymous data.

I. INTRODUCTION

Tracking has become pervasive on the Web. More than
four out of five sites employ behavioral tracking, some on
a large scale, with dozens of different scripts tracking their
users at the same time [1], [2]. The average page access
on the Web is tracked by eight scripts, today1. Some sites
employ local tracking to optimize their user experience, others
use legitimate scripts to perform reliable audience and reach
measurements. The majority of trackers, however, is used to
presumably improve targeted advertisement [3], [4].

While the request to clear one’s browser history in case of
emergency has made it into contemporary folklore due to how
sensitive such data is, a broad industry has been establishing
increasingly comprehensive overviews of browsing histories
of users across essentially the entire Web. Upon visits to Web
pages, tracking scripts identify the browser across websites

This work has in parts been supported by the German Research Foundation
DFG, the Cluster of Excellence EXC 2050/1 ”Centre for Tactile Internet”
(CeTI) as part of Germany’s Excellence Strategy, and INFOnline GmbH.

1https://www.whotracks.me

and store entire browsing profiles or sequences of observed
visits as so called click traces in vast tracking databases [5].

The usual reflex to inquiry is the statement that this data
was anonymized, usually through generalization (truncation,
or “coarsening”) of stored attributes, such as IP addresses [6]
or through differential privacy techniques. Differential privacy
is a powerful tool which delivers provable privacy guarantees.
In this paper we will not examine practical implementations
of differential privacy, but in the past they have often been
either misused (eg. through lack of a properly enforced privacy
budget) or have lead to severely restricted utility [7], [8].
Instead we will focus on examining generalization techniques.

Whether and how generalized data can be de-anonymized
has been extensively researched by Narayanan et al. and
others in the past [9], [10], [11]. Nevertheless, anonymization
through generalization techniques not only continue to be
used, but the industry in which they are applied plays an
increasingly ubiquitous role in modern society. Their position
is that these results are not universally valid and do not
apply to other methods of generalization on different kinds
of data. In this work we will attempt to close that gap as it
relates to web tracking data. More specifically, both structural
information, such as position in a social graph, as well as
pseudonyms in general have been shown to be highly identi-
fying. In recognition of this fact, modern privacy regulations
like the European GDPR specifically enforce restrictions such
as obtaining informed consent before allowing collection and
processing of pseudonymous data. Storing a client browsing
session as a sequence of website visits with very general page
and client information, as audience measurement providers
often do, appears to avoid these restrictions.

We argue that a combination of attributes and sequential
information can be uniquely identifying as well and thus
constitutes an implicit pseudonym. Once enough elements of a
browsing sequence have been observed, the entire session can
be linked back to the data subject. Shoulder surfing - physically
or through digital dossier aggregations - is one example where
this fact can be exploited. Another is the trading of suppos-
edly anonymized data between tracking companies, where the
buyer can match unique partial traces to their own data. In that
way they gain access to the browsing history of data subjects
they did not track themselves, evading the obtaining of consent
and data protection rules.
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In this paper we will not only attempt to show how easily
such pseudonyms can manifest, but we will also investigate
whether the techniques applied by industry can prevent the
emergence of pseudonyms in tracking databases at all. More
specifically, we ask ourselves the following two questions:
(1) How frequently do pseudonyms emerge in anonymized
tracking data? and (2) How easily can tracking data be linked
to secondary sources? In this course we aim to understand to
which extent coarsening the available data can actually help
to reduce identifiability.

We analyze an obfuscated sample of the data of the largest
technical provider for German Audit Bureaus of Circulation,
one of Europe’s largest providers for audience measurement
services. The analyzed sample contains 65.2 million clients
and over 2.3 billion page impressions. We adhere to industry
standards for data treatment to generate a database of click
traces. Following the rationale of IP address truncation, we
then successively reduce click trace length as well as the
level of detail of the available information per click; including
information about the visited page, the timestamp, and data
collected from the browser.

We then calculate the unicity, the fraction of unique click
traces, as a measure of how pseudonymous the data is. We
argue that a unique browsing session is by itself a pseudonym
and thus cannot be anonymous. To test anonymity in a more
practical vein we also act as an adversary in the two scenarios
mentioned above - shoulder surfing and data exchange enrich-
ment.

As we have already acknowledged, the data we analyze
is highly sensitive and private. We take the responsibility
of working with such data very seriously. The data was
accessed solely through scripts run locally on the database
servers, directly generating the results we present here. As
a consequence we do not have direct access to said data
and cannot provide it. Verification of our results can still be
facilitated through the same method we used, at the discretion
of the database owner.

II. BACKGROUND

Web browsing behavior is processed for different reasons.
To optimize the browsing experience on their website, web
developers have long parsed web server access log files, and
later turned to entirely local, per domain tracking scripts, like
Matomo (formerly Piwik)2.

Site analytics and cross domain tracking (Google, Face-
book, Yandex Metrica, etc.) provide web developers with sim-
ilar functionality. Their business model is based on collecting
browsing behavior across several sites, mainly to improve
advertisement accuracy and allow extended features like retar-
geting. Their reach varies. Some have managed to be present
in the vast majority of the popular Web [2]. Smaller tracking
companies started to extend their data by trading tracking data
with competitors. User data exchanges provide such markets,
buyers can even bid for the profiles of specific users [12]. This

2https://matomo.org

market has grown to dozens of providers. So meta tools have
emerged that manage the combination of trackers that are used
for specific page calls, based on chosen policies3.

Another reason is audience measurement [13]. The market
of publishers and advertisers on the Web requires independent
third parties. These ABCs (Audit Bureau of Circulation)
verify the popularity of sites, and their claimed number of
visits. They measure the performance of advertising media,
to provide the advertisement market with indicators of the
relevance of the different outlets.

A. Internet Audience Measurement

Audience measurement is traditionally conducted with pan-
els or full evaluations. For this paper, we focus on the latter,
as it implements a census measurement similar to Web track-
ing. Technically, this is implemented by injecting JavaScript
snippets (“tags”) into the code of a Web page. It collects and
sends information to the tracker when the page is rendered on
the client system.

The requirement for cross-market data leads to the imple-
mentation of a third-party approach. Hence, both third-party
JavaScript and third-party cookies are used4. When integrating
the script into the website, the publisher provides two essential
pieces of information in the html-tag. An identifier for the
website as a whole (website-identifier) and an identifier for
the specific, visited page, called “code”.

The transmitted dataset is received by a web server of the
measuring system. It is then enriched and stored as a tuple
of the client ID (extracted from a cookie), the geolocation of
the client (as queried based on its IP address, to an accuracy
of the federal state level), and a timestamp. Similarly, the
user agent is converted to an estimated “device type” using
a corresponding database.

The publisher provides further information. This includes
the categorization of all pages contained in their site, according
to the standards of the International Federation of ABCs
(IFABC).For each unique combination of website-identifier
and code, the publisher provides a number of features. These
include the category of the content (news, social, sports,
politics5), the media (image and text, video), the creator
(editorial content, user-provided), the language, whether it is
paid content, whether it is the entry-page (i.e. index.html)
and for which device the exact page was optimized (desktop,
mobile).

ABCs then publish the essential results of activity on the
measured sites, which is usually the number of page impres-
sions, visits, and clients. The IFABC defines a page impression
as ”[...] every user-induced action (e.g. a click) that leads to
a significant change in the view [...]”. This definition includes
scrolling pages with progressive loading. Visits are defined as

3https://marketingplatform.google.com/about/tag-manager/
4Browser developers have recently started to prevent 3rd-party cookies, so
many large trackers now turn to integrating 1st party content to the pages,
thus being able to also set 1st-party cookies, or to exploit session resumption
of TLS [14].

5https://support.aerserv.com/hc/en-us/articles/207148516-List-of-IAB-
Categories
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sessions of consecutive page impressions with an inter-arrival
time of 1800 seconds (30 minutes) or less. Clients represent
unique, returning visitors. Several visits can correspond to the
same client, and since client IDs change (e.g. when cookies
are deleted or various devices used), a multitude of measured
clients can correspond to the same individual.

Tracking databases essentially contain sequences of action
entries. Each entry traditionally consists of extensive client
and page information, such as IP address, unique ID (cookie),
user agent, visited URL, page category (topical), timestamp
and many more6. IP addresses nowadays are truncated as
privacy regulations prohibit processing of explicit identifying
information without consent.

B. Pseudonymity and Threats

Browsing data is highly sensitive. This is especially true
for cross domain tracking: the same trackers from very few,
large companies are found in the majority of websites offering
medical advice, information on planned parenthood, opinion
formation, political discussion, even pornographic content,
and also web search and social networking [2]. Activities
across these sites are linked by their client ID to sessions
in the tracking databases. Some entries may contain plaintext
pseudonyms or even names as parameters of stored URLs.

Tracking companies contest such concerns, maintaining that
they do not attempt to identify individuals, and that they
anonymize their databases. However, even when measures
such as IP address truncation and removal of URL parameters
and other directly identifying information are correctly and
faithfully applied, they may not actually anonymize the data.
This is because the stored data pertaining to an individual
remains pseudonymous as long as the connection to the data
subject is unique. Meaning there is no other individual exhibit-
ing the exact same data signature. As long as this pseudonym
exists, it can in principle be linked back to the individual
identity. While we will present tangible scenarios as to how
this can happen even today, it is clear that more sophisticated
techniques and more massive databases will be available in
the future and potentially retroactively expose pseudonyms in
today’s databases. Privacy regulations therefore impose severe
restrictions on the use of data that is not strictly anonymous.
The GDPR for instance inversely defines “anonymous” as “the
data subject is no longer identifiable”. It thus requires that data
subjects can no longer be linked against the data, which also
precludes the existence of pseudonyms.

In this paper, we follow the interpretation of the GDPR and
consider any information that implicitly identifies an individual
a pseudonym. The stored client ID that ties the clicks of
sessions together of course represents such a pseudonym.
However, being assigned randomly, it may not be easy to link
it back to individuals. The behavior as encoded in the click
trace on the other hand may also represent a pseudonym. This
clearly holds for all unique click traces, which therefore have

6Overviews are at https://developer.matomo.org/api-reference/tracking-api
or https://developers.google.com/analytics/devguides/collection/protocol/v1/
parameters.

to be considered pseudonyms in themselves. Furthermore,
we expect that external information exists in abundance that
facilitates linking the click trace to an identity.

To emphasize possible threats, we describe two common-
place scenarios, which provide trackers with the possibility to
identify the users behind click traces in their databases, given
that some of them are unique.

We first consider a tracking company that partakes in a
user data exchange, like BDEX, BIG, onAudience, or Lotame.
Most websites employ a combination of trackers, and some
user data inevitably ends up in databases of different trackers,
causing an overlap of page views between trackers. This
overlap can be used to identify click traces in acquired data, to
enrich the owned database with additional profiles. This also
allows for the re-identification of click traces in acquired data,
thus learning additional, potentially sensitive, and explicitly
identified activities.

Second, we consider different types of shoulder surfing.
Assuming the tracking database contained pseudonymous click
traces that are unique in less than the entirety of their clicks,
partial knowledge could suffice to identify individuals that
are represented in the data. This requires observation of an
identifying subset of clicks, which is easy to imagine: The
textbook example is a colleague or bystander who watches
another user. Considering frequent public sharing of links on
social media, a much more scalable and globally available way
to collect such identifying sets of clicks is to automatically
scrape social media sites, and filter the posts of real-name
profiles for shared links.

Tracking companies argue they are not interested in iden-
tifying individuals. The data of a large fraction of them,
however, is readily available for low prices at user data
exchanges, and data loss incidents happen to even the largest
and most profitable companies7,8.

To evaluate the occurrence of pseudonyms in tracking
databases, we will analyze a representative, real dataset.

III. IDENTIFICATION METRICS AND ANONYMIZATION
STRATEGIES

In this section, we will introduce the metrics we use to
measure pseudonymity and identifiability. We subsequently
discuss strategies that commonly are suggested to anonymize
tracking databases.

The data collected by trackers upon a page call is commonly
stored as a tuple of page and client information, which we
call a click. It is possible to assemble the set of clicks of a
client by selecting the tuples with identical client identifiers.
Depending on browser settings, these client identifiers may
change frequently, resulting in very small sets of clicks, or
remain stable over long periods of time resulting in very
large collections of clicks of the same client. To obtain a
more consistent dataset, we do not consider these client sets

7https://www.theverge.com/2018/10/8/17951914/google-plus-data-breach-
exposed-user-profile-information-privacy-not-disclosed

8https://www.wired.com/story/facebook-security-breach-50-million-
accounts/
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and instead only retain information pertaining to individual
browsing sessions. We call the sequence of clicks representing
a browsing session a click trace.

Definition 1 (Clicks and click traces): A click is a tuple
representing a page impression. It may contain information
about the page, a client identifier, other characteristic data
about the client as well as a timestamp. Consider a database
of browsing data consisting of individual clicks. A click trace
is an ordered sequence of clicks. All clicks of a click trace
belong to the same user and are ordered chronologically.
A click trace β is a subsequence of click trace α, or β ⊆ α,
if all its clicks are contained in α in the same order (not
necessarily subsequently, so AC ⊆ ABC, but BA 6⊆ ABC).
A traceset is an unordered set of click traces. The n-subset
of a click trace α is the collection of all its subsequences
of length n, or more formally: Nn(α) = {β |β ⊆ α, |β| =
n} with |Nn(α)| =

(|α|
n

)
.

In this paper we want to assess how easily pseudonyms
emerge, and tracking data can be identified using secondary
sources.

A pseudonym can be seen as the lowest form of identity.
It does not directly identify the subject, but it uniquely
corresponds to one. Once that link is found out, for example
through some external data, the pseudonymity is broken and
the data subject is identified. By measuring the degree to
which pseudonyms exist in a collection of click traces, we can
determine how vulnerable it is to simple de-anonymization.

Applied to a database of click traces, our definition of
pseudonyms relates to k-anonymity. A database contains no
pseudonyms if it is k-anonymous with k ≥ 2; in other words,
if no click trace is unique. However, the binary nature of k-
anonymity severely limits its utility for our purpose. It is to
be expected that at least one click trace will remain unique
under most coarsening measures, for example because a web
page may only have a single visitor or a location only a
single browser. k-anonymity would never be fulfilled, even if
coarsening measures were relatively successful. Instead, the
fraction of unique click traces allows for a more nuanced
observation. For that reason we adopt the approach used by De
Montjoye et al. [15], which defines unicity as the proportion
of unique pieces of information. Unicity in this case serves as
a measure of how close the database is to being anonymous.
A unicity of 0 implies k-anonymity, a unicity of 0.5 means
half the click traces in our traceset are pseudonyms.

Definition 2 (Unicity): We say that click traces α and β
are equal, or α = β, if and only if α ⊆ β and β ⊆ α. If
and only if two click traces are equal they belong to the same
anonymity set. A click trace is unique if it is the only member
of its anonymity set. The unicity of a traceset is its ratio of
unique click traces over all click traces.

As previously mentioned it is not always necessary to know
all clicks from a trace to make it uniquely identifiable. While
the pseudonymity of a unique click trace is by itself first
and foremost a theoretical issue, unique partial traces present
an immediate practical adversary model. Note that Partial
information is more easily obtained and, once identified, the

click trace contains previously unknown information. We want
to find out how little information is necessary for successful
identification and call the corresponding metric identifiability.
The idea behind that metric is as follows: given an adversary
with some well defined capability of obtaining partial informa-
tion of some browsing session, an identifiability of 0.2 means
that the corresponding full click trace has a 20% chance to
be identified. It is important to note that the adversary in this
model does not actually have the partial information, in which
case the corresponding click trace would either be or not be
identified. Rather he has the abstract capability, represented
by a set of possible partial traces he can draw from, and
identifiability is then the share of samples in this set uniquely
identifying the original trace.

Definition 3 (identifiability): The compatibility class θ(β, T )
of click trace β given traceset T consists of all click traces
α ∈ T such that β ⊆ α. We say that a click trace α ∈ T is
identified by β, or β identifies α, if α is the only member of
its compability class, or θ(β, T ) = α. Given traceset Iα, the
identifiability ρα(T, Iα) of click trace α ∈ T is the ratio of
click traces β ∈ Iα that α is identified by.

The weighted identifiability of a trace set T given I =
{Iα|α ∈ T} is

ρ(T, I) =

∑
α∈T (|α|ρα(T, Iα))∑

β∈T |β|

Iα represents the adversary, or rather all the possible ways
with which they might attempt to identify α. For example, Iα
might consist of all subtraces β ⊆ α of length |β| = n ≤ |α|,
or Iα = Nn(α), representing an adversary making exactly n
random observations of click trace α.

Success of the adversary measured in the identification
ratio depends on the adversary’s prior knowledge. An ad-
versary knowing the entire dataset can clearly identify every
pseudonym, but gains no information in the process. An
adversary knowing very little may identify only a few click
traces, but learn much more in the process, relatively speaking.

We now describe the implementation of click trace genera-
tion, as well as the calculation of unicity and identifiability.

A. Extracting Click Traces

The dataset which we are going to use for our evaluation
does not contain click traces, rather it contains the full brows-
ing history of each client, including a unique ID. As a first
data processing step we thus need to turn the full browsing
history into individual browsing sessions.

The database we analyze is extremely comprehensive, we
made some implementation decisions to achieve feasible cal-
culation. Due to technical considerations the database can only
be accessed sequentially. We can choose an order in which
entries are processed a priori, but we cannot access them out of
order. Following the industry definition of a browsing session
(ref. to section II), we build click traces iteratively by pushing
clicks from a chronological click stream until two consecutive
clicks are more than 1800 seconds apart or the trace exceeds
a given maximum length (Algorithm 1).
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input : chronologically sorted stream C, max length ml;
all c ∈ C contain timestamp ct and click trace ID ci

output: traceset T
T ← {}; TempTraces← {}; LastTime← {};
for c ∈ C do

if ci ∈ TempTraces and ct − LastTime[ci] < 1800 and
TempTraces[ci] < ml then

TempTraces[ci]← TempTraces[ci] ∪ c;
else

T ← T ∪ TempTraces[ci];
TempTraces[ci]← c;

end
LastTime[ci]← ct;

end
for trace ∈ TempTraces do

T ← T ∪ trace;
end

Algorithm 1: Calculating click traces from data stream

B. Calculating Unicity

Computing unicity requires a number of comparisons be-
tween click traces to determine whether they belong to the
same anonymity set. By hashing click traces and using an
index we only require logarithmic time to determine whether
a click trace is unique or not. The overall complexity of
Algorithm 2 is thus O(n log n).

input : traceset T , click trace properties w, hash function h
output: unicity and anonymity sets Anon of T
Anon ← {}
for wi ∈ w do

for t ∈ T (wi) do
/* check if t’s anonymity set already exists*/
if t ∈ Anon then

Anon(t) ← Anon(t) +1;
else

Anon(t) ← 1;
end

end
end
unique ← 0;
for t ∈ Anon do

if Anon(t) = 1 then
unique ← unique + 1;

end
end
unicity ← unique

|T |

Algorithm 2: Unicity and anonymity sets given a traceset

We can further reduce the computation time by grouping
click traces by their coarsened timestamp range and length.
Doing so does not reduce time complexity, but significantly
increases performance.

C. Evaluating Identifiability

Algorithm 3 calculates identifiability according to defini-
tion 3. We assess identifiability with two realistic threats in
mind: (1) the case of database trading, and (2) shoulder surfing.
Identifiability depends on prior knowledge of the adversary,
which differs between these scenarios and is represented in
the adversary set.

For web trackers we define prior knowledge as the fraction
of the acquired dataset overlapping with their own data.

Recalling definition 3, for each adversary we need to define
the adversary set I . For an acquired dataset T and a given
overlap σ ∈ [0, 1], we consider all possible sets of websites
W such that the fraction of clicks belonging to each such set is
within an ε of the overlap: ∀ω ∈ W,

∣∣∣∑α∈T |γα,ω|∑
α∈T |α| − σ

∣∣∣ < ε,
with γα,ω being the maximal subtrace of α such that each
click belongs to a website in ω. Analogous to definition 3 we
obtain the adversary set

I = {Iα,W |α ∈ T} with Iα,W = {γα,ω|ω ∈W}.

For example with an overlap of 0.2 an identifiability of
0.5 means that an adversary, who acquired an external dataset
with 20% of its clicks appearing in his own data, can uniquely
identify half of the click traces in the acquired dataset. Having
re-identified click traces in the acquired data, the adversary
learns additional actions of the client on sites that he does not
track. We define gain accordingly to be the fraction of clicks
of the acquired dataset belonging to identified click traces,
which are not contained in the known dataset.

For the shoulder surfer, we define prior knowledge as the
number n of observations known to the adversary, therefore

I = {Iα|α ∈ T} with Iα = Nn(α).

input : acquired traceset T , adversary set I , sample size s
output: identifiability ident of T
index ← 0;
for t ∈ T do

/* build associative array assigning clicks to their trace */
traces[index, index + |t|]← t;
index← index + |t|;

end
IndexSamples ← draw s samples from [1, size(T)];
count ← 0;
for i in IndexSamples do

α← traces(i);
subsample ← draw sample from Iα;
matched ← False;
for β ∈ T do

if subsample ⊆ β then
matched ← True;

end
end
if not matched then

count ← count +1;
end

end
ident ← count

s
;

Algorithm 3: Calculating identifiability from a traceset

Identifiability cannot be calculated using hashed values the
way we calculate unicity, as we have to determine whether a
smaller click trace is contained within a larger one rather than
whether they are equal. In addition, the adversary set I is far
too large to allow exact calculation. For example, calculating
identifiability for a shoulder surfer making 3 observations
on a million click traces of length 10 requires a number of
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operations on the order of 14.4 · 1015. Our database contains
far more than a million click traces, some several thousand
clicks long. It is clear that exact identifiability cannot be
computed. Instead, we follow the approach of De Montjoye
[15] and approximate the true value using established sampling
techniques.

In order to approximate identifiability by sampling, we need
to sample from the set of all possible results. The set of all
possible results, again, is far too big to be computed. Instead,
for algorithm 3 we sample results by selecting the click trace of
a random click from all click traces (thus selecting a click trace
weighted by its length), and then selecting from all possible
attack configurations, given the adversary’s capabilities.

Sampling in this way corresponds to a series of Bernoulli
trials, which allows us to use established formula for sample
size n0 given a confidence interval and error estimation.

n0 =
Z2p(1− p)

e2

This expression is maximized for p = 0.5, which is our
best estimation since p is unknown. For a confidence of 99%
(Z = 2.576) and a maximum error of 1% (e = 0.01), meaning
that any subsequent experiment has a 99% chance of deviating
from the result by at most 1%, we obtain a necessary sample
size of n0 = 16, 590. The expected necessary granularity of
our results is well below 1%, so we can use this sampling size
for all our identifiability experiments.

D. Anonymization

Understanding tracking databases and ways to identify users
that have generated the contained traces, we turn to strategies
that are commonly suggested for their anonymization.

Considering the composition of entries in tracking
databases, as described in Section II-A, we group the param-
eters into (1) information about the user (IP, client ID, user
agent, location), (2) information about the visited page (URL,
category), and (3) information about the access (method,
referrer, timestamp).

Since privacy regulations require either informed consent or
the absence of identifying information, trackers have confined
themselves to store only truncated IP addresses. Generalizing
the direct identifier, they claim that the processed data thus
was anonymous.

It is easy to see that the data above still contains
pseudonyms. Storing a page call with its exact time in mil-
liseconds creates a unique identifier with high probability, as
exactly simultaneous calls to the same page are unlikely on
that time scale.

We hence explore anonymization of the described groups
of parameters, following the same vein of generalization. The
most intuitive measure is to coarsen the timestamps. We do
so by removing the least significant time information, similar
to truncating bits of the IP address. Specifically, we coarsen a
timestamp by subtracting the timestamp modulo the coarseness
parameter. For example a timestamp of 152.9867 with a
coarseness parameter of 60 seconds is coarsened to 120. We

use coarsening parameters up to the order of 100, 000 seconds,
which is slightly over a day and sufficiently below the scope
of the analyzed data (ref. section IV).

The visited page and all information about the user can also
successively be discarded, to reduce unicity in the click traces.
Some properties are suited for gradual anonymization: the
page can be generalized from the exact URL to the code of the
page, its category, or simply the FQDN of the visited website.
The same holds for information about the user, where we can
remove information about the user-agent and geolocation.

Finally, some properties of the traces directly relate to
unicity: traces collected across several websites contain more
information than click traces that are restricted to single
websites only. The length of the clicks that are linkable to
a single session also correlates to identifiability, as long traces
contain more information and are much more likely to be
unique than short traces. Restricting the maximum length of
click traces, or limiting them to single websites, are other
possible strategies when aiming to anonymize datasets.

IV. DATA

For this study we joined forces with the audience measure-
ment provider of an ABC representing a majority of German
websites. It spans over 2500 websites and apps in total, with
an average volume of 2 to 3 billion page impressions per day.
This data is thus representative for the German market, but
we cannot say with certainty whether our experiments would
yield the same results using data of another provider, such as
Google Analytics. Nationality likely does not have an effect
as we are analyzing meta data rather than content, but to our
best knowledge this specific subject has not yet been explored
in literature.

The ABC stores this data for the purpose of calculating
quantitative session metrics, like visits and returning clients.
It stores a subset of common tracking parameters, as described
in Table I.

First, each entry contains a client ID, tied to a session
cookie. In our experiments we use this ID only to assemble the
database of click traces, but discard it before assessing unicity
and identifiability. A geolocation is stored on the granularity
of federal states, determined by looking up the IP address
of the browser in a public database, and the IP address is
subsequently discarded. The ABC also stores a page code of
the visit. This code is assigned by the publisher, and usually
encodes an article, or specific site (local path of the URL), as
well as the user-agent for which its layout has been optimized.
Additional information about the visited page are the site and
its category. The former corresponds to the public host part
of the URL, or FQDN, and the latter to classes of content,
as they are defined by the ABC (sports, politics, etc). Finally,
each entry contains the time of the user’s click, stored as a
Unix timestamp with millisecond precision.

Some of the page-related information has global, and some
local characteristics. Categories on the one hand are global
to the ABC, so different sites will have pages with identical
categories. The codes, on the other hand, are chosen by
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Fig. 1. Distribution of visits: sample vs entire dataset (PIs in inset). Websites
are ranked by the number of visits in the original dataset. The sample
distribution largely follows the original distribution, meaning websites are
represented proportionally in the sample.

the respective publishers for their own site. They only have
significance for their respective site and may even overlap with
codes of other sides. Therefore the code information can only
be used if the site information is used as well.

Note that the only explicit information beyond the ID that
is stored about the clients is their geolocation. The choice of
device-type and browser may be implicitly represented in the
page code.

Field Content

Timestamp Unix timestamp in microseconds

Client ID Unique per user / browser, from cookie

Site ID of visited website/FQDN

Code ID of displayed page, assigned by publisher

Category Category of page, according to ABC

Geolocation DB lookup of client IP

TABLE I
INFORMATION STORED PER CLIENT ACTION

The entire database of the measurement provider is far too
large to analyze unicity and identifiability. Behavior on the
Web being driven by freshly published content, we analyzed
an interval of one week in March 2019. We limited our dataset
to desktop clients that accept cookies and do not exhibit any
characteristic behavior (for example search engines, bots, etc).
This produced a highly reliable and clean dataset without
requiring additional preprocessing. As a result, we do not take
into account mobile browsing and we acknowledge that as a
limitation of this study. The full week’s worth of data contains
66.1 million clients, 2.34 billion page impressions, and 351.3
million visits.

From this data we sampled a 16th of the clients at random

from roughly half of available sites, to reduce the sample to
a size that allowed computation of unicity given the resources
available. To verify that our results are representative, we ran
all experiments on samples of increasing size, and empiri-
cally observed that the experiment outcome converged with
increasing sample size well before reaching the size of our
final sample.

To validate our sample, we performed some basic sanity
tests: Fig. 1 compares the frequencies of page impressions
and visits of the original data vs. the sample. We observe that
the frequency distributions in the full census and our sample
follow equal characteristics and we verified that our click trace
lengths comply to literature [16].

The final sample contains data as described in Table II.

PIs Visits Clients Locations Sites Codes Categories

147.9M 22.1M 4.1M 3053 1281 62.5K 725

TABLE II
COMPOSITION OF THE TESTED SAMPLE

While analyzing large data vaults is always a challenge,
the resource constraints we experienced would not necessarily
apply to an adversary. They may only be interested in a single
click trace while we analyze large samples in a multitude
of different scenarios. In addition, they may have access to
resources far exceeding ours.

Note that at no point in our experiments was plain text
data analyzed. All the adversary models are only applied on a
theoretical level, meaning no actual user was de-anonymized.
Or, in other words, no privacy was harmed in the making
of this study. For regulatory reasons we cannot share the final
dataset, but we will provide access to run reproduction studies
upon request.

V. EMPIRICAL RESULTS

Our main interest in this paper is to assess to which extent
pseudonyms emerge in tracking databases. We divide this
general question into two studies over increasingly generalized
data, investigating first the unicity of the data and afterwards
the identifiability. In the following section we describe how
we conducted our experiments and report the results.

A. Experimental Setup

The experiments of this paper were computed on a small
standard hadoop platform with about 2, 000 cores. All ex-
periments were classical map-reduce jobs. A proven mapper
was used for all applications. The reducers were developed
according to the requirements of the respective experiment.

Within the experiments, we are searching for unique click
traces. This terminally requires all pairs of traces to be
compared to each other. Even using cascaded map-reduce jobs
to reduce and pre-process the amount of data, the last reducer
is left with this ultimate task. We facilitate computation of
our results despite this restriction using the algorithms and
sampling described in section III-C & IV.
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Fig. 2. Click trace unicity over coarsened time. Fig. 3. Click trace unicity, trace length limited to l. Configuration:
x/loc/code/site/·.

B. Applied Anonymization

Following the common argument of tracking companies, we
anonymize the data by generalization (coarsening, truncating,
omission) as described in Section III-D, and evaluate its effect
on the perseverance of pseudonyms. We slightly need to adapt
this step, given the dataset we have at hand.

We generalize with respect to four properties: the temporal
resolution, client geolocation, information about the visited
page, and finally the length of each click trace. Trace length
can be adjusted by discarding traces below a minimum length
or cutting traces above a maximum length into several, smaller
ones. Page information at the highest level of detail consists
of the site domain and a code. The code contains informa-
tion about the exact page, which, for identification purposes,
implies information about its category. We subsequently gen-
eralize to the tuple of site and category, thus generalizing the
specific page to the category it belongs to. Then, we also omit
the category and only consider the site, and finally we omit
all information about the page.

Within experiments and results we denote which informa-
tion is used by the tuple <temporal resolution> / location /
[code/category] / site / <trace length> (“ms/loc/code/site/∞”
for instance denotes information at the original granularity
with click trace length corresponding to the sessions as defined
above). Omissions are denoted by a dash “-”: so “s/-/-/-/∞”
represents a dataset with timestamps (coarsened to seconds)
and trace length. The click traces may still be identifiable
through timing and their length, but leaking such a trace could
not disclose any information about the visited sites. At even
lower granularity, “d/-/-/-/1” denotes a database containing
only the information on what day each click occurred, without
any information pertaining to client, site and sequence. If one
of the elements is displayed on the x-axis of the plot, the field
is correspondingly replaced with an ”x”. If the x-axis displays
timestamp coarseness, we added dotted vertical indicator lines
for coarseness values of a minute, hour and day (60, 3600 and

86400, respectively).

C. Unicity and Pseudonymity
Our first research question investigates to which extent

pseudonyms emerge in tracking data, and how they are af-
fected by successive generalization of the data.

1) General Unicity: We determine the unicity according
to Algorithm 2 on the sample described in Section IV. It
initially includes highly detailed attributes per click (location,
code, and site, timestamps in ms), which we gradually coarsen
as described above. While industry parameters for temporal
coarsening are usually on the order of tens of minutes [4],
we coarsen up to slightly more than a day to provide a more
comprehensive overview. We first run a series of experiments
on the entirety of the sample across all sites, and then repeat
the series on the trace sets per site.

We expect high unicity in experiments with high levels
of detail in auxiliary information and timestamps as well as
no length restrictions. Following the common rationale that
coarsening suffices to anonymize tracking data, we expect the
unicity to decrease markedly in the subsequent experiments
with lower granularity.

The results of the first series of experiments are shown in
Fig. 2. We observe that unicity highly depends on timestamp
coarseness. Reducing the accuracy of the timing to the order
of seconds or minutes obscures the exact instant of a click,
but details on intervals between page calls is retained in the
data. When all information about client and page are removed,
unicity remains at over 60% for high temporal resolutions.

In the cases where timestamps are coarsened to the order
of hours, most differences in the intervals between clicks are
lost, and just time of day and sequence information of the
clicks are preserved. We can observe that the granularity of
information about user and page still has a marked effect.
At high granularity, taking information similar to the data
contained in current tracking databases, over 70% of all traces
remain unique. When removing the location and all page
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Fig. 4. Click trace unicity with minimum length, timestamps coarsened to
the day.

Fig. 5. Click trace unicity for exact trace length, timestamps coarsened to
the hour.

information save the website domain, unicity is reduced to
a value slightly below 40%.

Further coarsening timestamps to the day of the click
removes differences in time zones and browsing habits per-
taining to daily routines.With full information about page and
location, over half of all click traces remain unique. Knowing
only the number of clicks per day on the websites contained in
a trace (day/-/-/site/∞), the unicity still remains at over 20%.

Only when deleting all auxiliary information (x/-/-/-∞), and
coarsening the timestamps to the order of hours or days do we
observe unicity values that converge to 0 – where practically
no pseudonym has remained and the database is anonymized.

The results of this first series of experiments show that
generalization of the attributes does not yield anonymity as
long as even a minimal amount of utility of the database is
preserved.

2) Trimming Sessions and Click Trace Length: Long click
traces exhibit higher unicity than short traces and at session
lengths > 50 clicks even strong coarsening has little effect.
This is intuitive, as the attribute of a click trace’s length is pro-
gressively characteristic with increasing length. Deliberately
limiting click traces to a maximum length should therefore
increase anonymity.

We perform a second series of experiments to this end,
reducing the length of click traces but using all auxiliary
information about clients and pages. Practically, this represents
a tracker that forcibly resets sessions or client IDs after
an observed number of clicks, to reduce the likelihood of
pseudonyms to emerge.

The results are shown in Fig. 3. We observe that unicity can
indeed be significantly reduced as the trace length l is reduced,
particularly at high timestamp granularity. However, truly low
values of unicity are only reached when traces are limited to a
single or two clicks and timestamps are coarsened to at least
several hours. Even keeping traces of just l = 4 clicks, and a
time resolution of hours, is sufficient to uniquely identify over

40% of all click traces.
Furthermore, our dataset contains a number of session

fragments - sessions where only one or two clicks occurred on
a website in our sample - which arguably aren’t representative
for the types of browsing sessions we are concerned about.
To assess their effect on the measured unicity, and to get a
better insight into the unicity of click traces more likely to
represent full browsing sessions, we performed another series
of experiments with increasing minimum length. As short click
traces are less likely to be unique, we expect unicity to rise
when shorter click traces are removed. Therefore we only
show the results for highly coarsened timestamps. First, we
only remove shorter click traces and leave longer ones intact,
coarsening to the order of days (Fig. 4). Next we cut click
traces to a chosen length as in the previous experiment and
subsequently remove all shorter click traces from the sample,
coarsening to the order of hours (Fig. 5).

In both experiments unicity rises sharply by over 20% when
click traces consisting of only one or two clicks are removed,
confirming our expectation that unicity of full browsing ses-
sions is likely higher than our initial results show.

3) Unicity of Local Tracking: We finally wanted to take
the position of publishers that apply local tracking, meaning
websites that keep log files containing the clicks of their
own visitors. Our dataset contains all necessary data for all
participating websites, as they share all calls to their pages
with the ABC, to give an accurate picture of their popularity.

Click traces within single sites are bound to be much shorter
than click traces of multi-domain sessions. The universe of
different pages within a single site is also much lower, and a
small number of specific pages or categories have been shown
to be much more popular than others[17]. Given these points,
we expect the unicity of click traces per site to be much lower,
than of click traces from cross-domain tracking.

The results show that unicity does decrease, slightly. Within
single pages, when the location of the client is removed and
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Fig. 6. The “Matomo (Piwik) case”, local unicity at max length l. Configu-
ration: x/-/cat/-/·.

Fig. 7. Average anonymity set size within the original dataset.

only the category of the called page is retained, the unicity of
longer click traces remains high (well above 20%), even when
the temporal resolution is reduced to the order of hours (cmp.
Fig. 6). Only limiting the trace length to a single click with
timestamps on the order of minutes or hours, or to 2-click
tuples with timestamps on the order of hours pushes unicity
below 10%.

An interesting artifact can be observed in Fig. 6 for configu-
rations of very high granularity (i.e. low timestamp coarseness,
high maximum length): a decrease in maximum length can
cause an increase in unicity. The reason for this lies in the way
that sessions are extracted from the measurement databases:
Using Algorithm 1, single longer sessions are split into several
smaller click traces. For relatively high length limits (l = 10)
and given information of high granularity, the odds are fairly
good that a single, long unique click trace is cut into several
shorter click traces, all of which remain unique. This in turn
increases the overall unicity of the dataset.

4) Anonymity Set Sizes: Unicity measures the fraction of
pseudonyms in the database, the remaining non-unique click
traces fall into anonymity sets of varying size. While the
number and cardinality of these sets has no effect on unicity, it
has long been identified as a reliable metric for anonymity in
settings such as DC networks [18] We therefore investigated
the size of these anonymity sets using Algorithm 2.

For the sake of stable anonymization, one would strive for
large anonymity set sizes. Given the large number of over a
million clients and the common assumption of the popularity
of pages being power-law distributed [19], many common,
or at least highly similar behaviors should be contained in
the database. Observing the impact of time granularity, one
would expect to see fewer, larger anonymity sets, especially
when reducing the temporal resolution, and hence the impact
of different users starting their browsing sessions at different
times. This should be pronounced for parameter sets that are
already characterized by low unicity.

The results, as shown in Fig. 7, largely follow these ex-
pectations. Increased coarsening causes anonymity set sizes
to continue to increase linearly even as unicity converges.
This indicates indeed that with increased coarsening few, in-
creasingly large sets of identical click traces emerge, whereas
the fraction of unique behavior, probably clicks to rarely
visited pages, or browsing with a highly identifying user agent
characterization, remains comparatively stable.

D. Identifiability Experiments

Unicity provides a measure of the pseudonimity of click
traces in a tracking database. It does not indicate how easily
a click trace may be identified or how much an adversary
could gain by doing so. If a click trace is only unique when
considering the entire trace, then the pseudonym is all the data
and knowing to whom it belongs does not offer any additional
insight. Insight can only be gained when the trace contains
unique subtraces.

Our second research question therefore aims at understand-
ing how easily tracking data can be linked against, and thus re-
identified with data from secondary sources. We devise a series
of experiments to measure the identifiability, using Algorithm
3 as defined in Section III-C. We are interested in both of the
scenarios described: the case of trackers partaking in user data
exchanges and comparison to data that is publicly available
(for instance on Twitter).

1) User Data Exchanges: In the first scenario, we consider
a tracker to have collected a dataset using his own tracking
technology and to acquire a second dataset at a user data
exchange, such that the acquired dataset has a partial overlap
of tracked sites with their own data. Given various percentages
of overlap we (1) want to understand, how large a fraction of
the click traces in the second dataset can be re-identified and
uniquely matched to click traces in the first dataset. We subse-
quently are interested in (2) the gain of the adversary. Section
III-C defines it as the fraction of identified clicks (contained
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Fig. 8. Dataset enrichment via acquiring a dataset: We measure the identi-
fiability of the acquired dataset given an overlap between the datasets.
Configuration: ·/-/-/site/∞

Fig. 9. Dataset enrichment via acquiring a dataset: We measure the infor-
mation gain, meaning the amount of information in identified click traces
not previously known, given the overlap between datasets. Configuration: ·/-
/-/site/∞

in identified click traces) in an acquired dataset, which were
not already contained in the initially owned dataset. This data
can then be used to create more comprehensive click traces
belonging to the same data subject even though the subject is
not explicitly contained in either database.

We adapt Algorithm 3 to incorporate the prior knowledge
of the adversary. For that purpose, we sample a database
overlap by selecting a random collection of websites such
that the number of clicks belonging to those websites is a
given fraction of the overall number of clicks. We chose this
approach due to the high variance in size of different websites
in our dataset.

Geolocation, the public host part of a site, and on a
somewhat reduced resolution even the times of clicks can
be considered globally valid and compatible between tracking
collections. Given that the acquired data is bought at a user
data exchange, however, the adversary may not get, or not be
able to interpret, the code nor category in the trace set, as
these are schemes that are agreed upon between tracker and
publisher internally. We thus remove these details from the
datasets completely, before calculating the identifiability.

We expect identifiability to increase progressively with a
growing overlap, eventually becoming equal to unicity once
overlap reaches 100%. The results confirm this expectation
(cmp. Fig. 8), showing an almost linear relationship between
identifiability and overlap for overlap values below 0.5. How-
ever, as the overlap increases, the adversary’s potential payoff
decreases, because he can only learn new information in the
non-overlapping portion.

We therefore turn to calculating the gain as defined in
section III-C. On first glance, if unknown clicks are distributed
uniformly across identified and unidentified traces, gain should
be equal to identifiability. If, for instance, half of all click
traces are identified, then we would expect roughly half of
all unknown clicks to be contained therein. However, such

an assumption of uniformity would be incorrect, because the
chance of a click trace to be identified increases with the
number of known clicks it contains. It is expected then, that
the set of identified click traces contains a lower proportion
of unknown clicks than the set of unidentified click traces.
The results as shown in Fig. 9 confirm this expectation. At
high granularity, an overlap of 30% enables the adversary to
learn about 20%-35% of the unknown clicks and at very low
granularity with coarseness values on the order of days, at
40%-50% overlap, about 10% of clicks remain susceptible to
identification.

2) Shoulder Surfing and Comparison to Digital Dossier
Aggregation: Finally, we want to assess how easily data sub-
jects can be linked back against their click traces in tracking
databases. For this purpose, we assume an adversary to possess
some identified page calls of a user, known from secondary
sources. Generally this may be from a direct physical en-
counter or prior knowledge of their browsing behavior, but
observation of publicly posted links on social media or, more
generally, digital dossier aggregation may be more attainable.
In this case the adversary is usually aware of at least part of
the data subject’s identity and their goal is to use the observed
information of a partial browsing session to discover the full
browsing session in a database of web tracking data.

The categorization and mutual agreement on codes between
tracker and publisher is assumed to be unknown to the
adversary, we thus limit their best case knowledge to access
time, location, and the visited website. Note that we do not
assume that observations are consecutive. Each observation
is selected completely at random from the browsing session,
but the overall order is preserved. This corresponds to the
definition of click traces, subtraces and identifiability as laid
out in section III.

We perform the experiments on data of various coarsening
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Fig. 10. Shoulder surfing: We measure the identifiability of a partially
observed browsing session, given the number of observations.
Configuration: ·/loc/-/site/10.

Fig. 11. Shoulder surfing: We measure the identifiability of a partially
observed browsing session, given the number of observations for different
session lengths. Configuration: h/loc/-/site/·.

levels and evaluate over the extent of prior knowledge of the
adversary. Note that as the adversary gains more observations,
click traces with an overall length below the number of
observations are no longer considered. So on one hand we
expect identifiability to be well below unicity, due to unicity
acting as an upper bound for what can be identified. On
the other hand, due to the removal of short, low unicity
click traces, we would expect even a relatively short number
of observations to be sufficient for a significant degree of
identifiability.

The results in Fig. 10 indeed show that the adversary needs
to know the time of a single visit only to an accuracy on
the order of minutes to identify almost half of all browsing
sessions with just two observations. Timestamp coarsening
reduces identifiability substantially, but doesn’t eliminate it.
Knowing the hour of the observation as well as the website’s
domain and location of the user, four observations suffice to
correctly identify a quarter of click traces. Once the adversary
has made seven or more observations, knowing merely the day
is sufficient to identify 20% of browsing sessions.

We finally want to assess whether trimming of click traces
is as effective at reducing identifiability as it is at reducing
unicity. Fig. 11 plots the identifiability of click traces trimmed
to length l, given prior knowledge of a number of observations,
while limiting the maximum length of click traces in the
database. Longer click traces exhibit higher unicity, but not
necessarily higher identifiability. This is because we assume
the same adversary strength in both cases, translating to a
relatively smaller observation size in the case of the longer
click trace. Interestingly, these effects (increased unicity, but
smaller subtrace) appear to cancel each other out for the most
part. At the lower end of maximum length we observe a
statistically significant but very small increased identifiability
for higher length limits and at the mid and high end the results
become almost indistinguishable.

VI. RELATED WORK

We investigate the emergence of pseudonymous data and
identifiability of click traces in databases of Web trackers. The
primary research areas related to our work pertain to identi-
fiability of online tracking and browsing data and sequential
identifiability in general.

A. Online Tracking

Third party online tracking mechanisms, such as the ones
which were used to generate our data, are widely used [3].
Cookies remain the most common form [1], and techniques
such as “evercookies” and “cookie syncing” continue to make
them a very resilient and reliable tracking tool [20]. Browser
fingerprints are a more recent technique which attempts to
identify users via information extracted from their browser.
The potential of this approach has been demonstrated by
Eckersley and others [21], [22], [23] by leveraging a com-
bination of seemingly benign information to generate highly
identifiable fingerprints. Besides such browser specific infor-
mation, Upathilake et al. [24] identify additional categories of
fingerprints: Based on Canvas [25], JavaScript Engine [26],
and Cross-browser.

While our work is based on data obtained through online
tracking, the data was gathered entirely through third party
cookies and we do not generate fingerprints in the conventional
sense. In fact we purposefully disregard a large amount
of information that would traditionally be used to generate
fingerprints to demonstrate that identifiability can be achieved
in other ways.

B. Browsing History

Broadly speaking we analyze the metadata of browsing ses-
sions. We thus implicitly analyze browsing behavior. However,
research corresponding to browsing behavior usually analyzes
how users tend to navigate through websites [27], rather than
privacy in web tracking.

788



Olejnik et al. [28], [29] do examine the uniqueness of
browsing history patterns and their work strongly relates to
ours. However, their analysis of unicity diverges significantly
from our work. They do not investigate unicity as it emerges in
cross site tracking, but rather explore differences in repetitive
browsing behavior, completely observing the users in all their
actions. The effect of anonymizing, or coarsening measures is
also not considered in their work.

Browsing history is also used by Su et. al [30] to link a
data subject to their social media profile by scraping profile
activity and matching the visited sites to the history. Again,
this represents an attempt to identify profiles from a local
observer’s view, unlike our analysis of global tracking data.

Finally, Yu et. al [2] classify certain pieces of information as
particularly identifiable (or “unsafe”). Their scale of evaluation
is similar to ours, with a comprehensive overview of the
German online sphere. However, while we focus our analysis
on the anonymizability of the datasets, they took a more local
approach and implemented a client based browser extension
as a means of privacy protection.

C. Trace Unicity
The notion that sequences of data fragments leak private

information has been explored before. Papadimitriou et al. [31]
studied time-series compressibility and privacy using perturba-
tion. Le Blond et al. [32] show that over 98% of VoIP calls in
their dataset can be traced using call start and end times with
1-second granularity. Fan et al. [33] investigated if differential
privacy techniques on sequential information protect sensitive
data while retaining specific utility.

Re-identifying claimed, or seemingly anonymous data rep-
resents its own entire research. Naranayan and Shmatikov
were able to successfully de-anonymize parts of an industry
dataset, in their groundbreaking paper from 2006 [10]. This
has spawned large interest, and several approaches to improve
anonymization and re-identification have been published [34],
[35], [36], [11]. This terminally led to the acceptance that
only differential privacy can provide guarantees. We were
inspired by this work. But given the industry practice of IP
address truncation, and claims that such coarsening sufficiently
anonymized their datasets, we were interested in the limits of
this approach.

Similar to De Montjoye et al. [15], we approach sequence
privacy through the upper bound of unicity instead. In their
initial work they examine the unicity of location sequences
to explore re-identifiability through movement patterns. They
repeated a similar approach using credit card shopping data
in [37]. When considering the unicity of sequential informa-
tion, the generating process for that information has to be
considered. So even though we look at browsing sessions in
a similar fashion to De Montjoye’s approach, the underlying
model which generated the data is different and conclusions
from one do not apply to the other.

VII. CONCLUSION

In this paper we have shown that sequential browsing data
is highly identifiable and attempts to lower the identifiability

through coarsening are largely ineffective.
We analyzed a dataset of browsing sessions representative

for both local analytics on single websites as well as large
cross domain trackers. We wanted to understand (1) how
common it is for pseudonymous data to emerge in such
databases, as privacy regulations require informed consent
if pseudonyms are processed. And (2) how vulnerable such
databases are to re-identification with partial knowledge in
practical applications. Throughout this endeavor we wanted
to know to which extent coarsening or generalization, the
industry standard for anonymizing such data, helps to protect
the privacy of the tracked audience.

Our results show that unicity, the prevalence of pseudonyms
in the data, is very high for almost all configurations. Pushing
unicity below a level of 10% requires removal of all informa-
tion pertaining to clients and website visits, and coarsening
timestamp information to at least an order of hours. We
make no judgment which level of unicity is or is not legally
acceptable. However, it stands to reason that unicity is highly
indicative of how vulnerable such data is to re-identification,
especially considering future capabilities, both regarding the
processing of data as well as the amount. In the absence of
more effective anonymization methods it appears very unlikely
that any meaningful degree of utility can be preserved in a
database of clicks without pseudonymous data.

In our practical evaluation of identifiability this idea is
largely confirmed. Trackers that participate in the common
markets of user data exchanges have to assume that large parts
of the data they are passing on can immediately be re-identified
by the recipients. Shoulder surfing attacks, or the knowledge of
two to three visited Web pages, for instance from somebody’s
Twitter feed, are sufficient to uniquely identify entire browsing
sessions retroactively. These results are consistent with and
strengthen established research. Website visits where users
considered themselves unobserved can easily be attributed
to them as long as part of that visit was observed, even if
the observer is restricted to the website’s domain and rough
location of the user.

Our results strongly imply that audience measurement
providers who want to anonymize click traces in compli-
ance with regulations such as the GDPR will need to use
methodology beyond coarsening. Adding noise or otherwise
perturbing the data, for example to achieve differential privacy,
provides provable privacy guarantees at the cost of significant
losses in utility. These methods have been applied in specific
circumstances, but have not been widely adopted by audience
measurement providers.

In summary, we observe that sequential browsing data
contains highly identifiable information. Anonymizing such
data by generalizing its attributes has little effect; even if
session recording length is severely restricted and click traces
are trimmed to only two or three page calls. According to
our research, if negligible identifiability is desired, only single
page calls with a minimum of additional information about
the browser and the visited page can be stored.
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[22] A. Gómez-Boix, P. Laperdrix, and B. Baudry, “Hiding in the crowd: an
analysis of the effectiveness of browser fingerprinting at large scale,” in
WWW 2018: The 2018 Web Conference, 2018.

[23] A. Vastel, P. Laperdrix, W. Rudametkin, and R. Rouvoy, “Fp-stalker:
Tracking browser fingerprint evolutions,” in IEEE S&P 2018-39th IEEE
Symposium on Security and Privacy. IEEE, 2018, pp. 1–14.

[24] R. Upathilake, Y. Li, and A. Matrawy, “A classification of web browser
fingerprinting techniques,” in New Technologies, Mobility and Security
(NTMS), 2015.

[25] K. Mowery and H. Shacham, “Pixel perfect: Fingerprinting canvas in
html5,” Proceedings of W2SP, pp. 1–12, 2012.

[26] M. Mulazzani, P. Reschl, M. Huber, M. Leithner, S. Schrittwieser,
and E. Weippl, “Fast and reliable browser identification with javascript
engine fingerprinting,” in Web 2.0 Workshop on Security and Privacy
(W2SP), vol. 5, 2013.

[28] L. Olejnik, C. Castelluccia, and A. Janc, “Why johnny can’t browse
in peace: On the uniqueness of web browsing history patterns,” in 5th
Workshop on Hot Topics in Privacy Enhancing Technologies (HotPETs
2012), 2012.

[29] ——, “On the uniqueness of web browsing history patterns,” Annals of
telecommunications-annales des télécommunications, vol. 69, no. 1-2,
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