
Neutaint: Efficient Dynamic Taint Analysis
with Neural Networks

Dongdong She, Yizheng Chen, Abhishek Shah, Baishakhi Ray and Suman Jana

Columbia University

Abstract—Dynamic taint analysis (DTA) is widely used by var-
ious applications to track information flow during runtime execu-
tion. Existing DTA techniques use rule-based taint-propagation,
which is neither accurate (i.e., high false positive rate) nor effi-
cient (i.e., large runtime overhead). It is hard to specify taint rules
for each operation while covering all corner cases correctly. More-
over, the overtaint and undertaint errors can accumulate during
the propagation of taint information across multiple operations.
Finally, rule-based propagation requires each operation to be
inspected before applying the appropriate rules resulting in pro-
hibitive performance overhead on large real-world applications.

In this work, we propose NEUTAINT, a novel end-to-end
approach to track information flow using neural program embed-
dings. The neural program embeddings model the target’s pro-
grams computations taking place between taint sources and sinks,
which automatically learns the information flow by observing a
diverse set of execution traces. To perform lightweight and precise
information flow analysis, we utilize saliency maps to reason
about most influential sources for different sinks. NEUTAINT con-
structs two saliency maps, a popular machine learning approach
to influence analysis, to summarize both coarse-grained and fine-
grained information flow in the neural program embeddings.

We compare NEUTAINT with 3 state-of-the-art dynamic taint
analysis tools. The evaluation results show that NEUTAINT can
achieve 68% accuracy, on average, which is 10% improvement
while reducing 40× runtime overhead over the second-best taint
tool Libdft on 6 real world programs. NEUTAINT also achieves
61% more edge coverage when used for taint-guided fuzzing
indicating the effectiveness of the identified influential bytes. We
also evaluate NEUTAINT’s ability to detect real world software
attacks. The results show that NEUTAINT can successfully detect
different types of vulnerabilities including buffer/heap/integer
overflows, division by zero, etc. Lastly, NEUTAINT can detect
98.7% of total flows, the highest among all taint analysis tools.

I. INTRODUCTION

Dynamic Taint Analysis (DTA) [41] is a well-known

technique to track information flow between source and

sink variables during a program’s execution. It has been

used in many security-relevant applications including guided

fuzzing, automatic vulnerability discovery, run-time policy

enforcement, information leak detection and malware behavior

analysis. [19] [22] [31] [34] [37] [41] [51] [58] [59] [61] [64].

Most, if not all, applications of DTA require high accuracy

and low run-time overhead. Unfortunately, existing DTA

techniques suffer both from high false positive/negative rates

and incur prohibitive performance overhead especially for

large real-world programs [18].

All existing DTA techniques propagate taint labels from the

taint source to the sinks during the target program’s execution

based on a set of rules for every executed statement. The final

taint results are computed by propagating and composing the

individual per-statement taint rules together. Essentially, the

final output indicates whether a taint source influences a sink.

Unfortunately, this rule-based propagation approach

has three fundamental limitations: (i) Specifying accurate
propagation rules: Even for seemingly simple operations,

accurately specifying propagation rules is often hard as there

can be many different cases to consider. For instance, the

correct propagation rule for s = x*c might vary based on

different values of taint labels of x and constant c—if c is

always 0, s is not influenced by x. Similarly, if c is very

large and x is small, the influence of x on the output might

be negligibly small. It is extremely difficult to enumerate all

such possibilities exhaustively. (ii) Accumulating errors: Even

if taint propagation rules for each operation are accurate,

their composition across multiple operations can introduce

large errors. For example, consider two operations s = a
+ b; t = s - b, where the rule-based propagation will

conclude that both s and t are influenced by b. Although this

is the correct analysis for each operation individually, t is not

affected by b. (iii) Large run-time overhead: The rule-based

propagation introduces prohibitive run-time overhead as each

operation has to be examined to decide which rules to apply.

In this paper, we propose a novel technique, NEUTAINT

that automatically learns the information flow, i.e., taint, in

a program by modeling its source-sink behaviors with neural

program embeddings and gradient analysis. Neural program

embeddings are essentially neural networks that learn to

predict program behaviors from different representations of a

program (e.g., graph representation, input-output pairs) [60],

[46], [52], [53]. Such embeddings have shown promise in

various tasks including fuzzing, program repair, program

synthesis, vulnerability localization and binary similarity

detection [60], [25], [14], [47], [52]. Leveraging the chain

rule of calculus, gradient analysis is a more precise technique

using automatic gradient computation to accurately track the

influence of sources over sinks in programs. Our NEUTAINT

first learns a neural program embedding of a program’s run-

time behaviors and then performs gradient analysis for light-

weight and accurate end-to-end information flow tracking.

NEUTAINT addresses the aforementioned limitations of

rule-based taint tracking. First, while rule-based DTA applies

the propagation rules based on the program statements

executed along a single flow, neural networks can generalize

1527

2020 IEEE Symposium on Security and Privacy

© 2020, Dongdong She. Under license to IEEE.
DOI 10.1109/SP40000.2020.00022

and infer new flows based on the past program behaviors.

This allows us to more accurately model different degrees of

influence from different taint sources. Second, since neural

networks are continuous, the gradient computation provides

an efficient and precise mathematical way of deriving a

source’s influence on a particular sink, thus avoiding the need

to manually specify propagation rules. This also minimizes

the composition errors that plague existing rule-based

approaches and significantly improves the accuracy of taint

tracking by cutting down the false positive/negative rates.

Lastly, the neural program embeddings can be trained using

program traces generated offline by adding light-weight

instrumentation and executing the target program with

multiple inputs. Once trained, the neural program embeddings

can be used to perform taint analysis without even examining

the computations performed by the target program in an

highly efficient manner compared to rule-based propagation.

Specifically, we train dynamic neural program embeddings

using observed execution paths between sources and sinks.

Once we have observed one path reaching the sink from

the source during program execution, we generate a lot of

other program paths in a cheap way (e.g., mutating the

input) to obtain the training data. Note that any form of DTA

(rule-based or learning-based) requires an input triggering a

program execution path from the source to the sink to begin

its analysis. Our key advantage is that we can accurately

infer new information flows without inspecting each executed

statement. Even with simple training data, we can track more

flows than three state-of-the-art DTA tools: Libdift, Triton,

and DFSan. We can potentially further improve the training

data quality by using techniques such as symbolic execution.

We present detailed quantitative results showing the number

of detected and missed flows by NEUTAINT in Section IV-G.

After training the neural program, we use a gradient-based

attribution method on the trained network to create saliency

maps that accurately measure the flow of information from

NN inputs (i.e., taint sources) to NN outputs (i.e., taint

sinks). Depending on the application domain, NEUTAINT

supports two types of saliency maps to track information

flow: (i) a coarse-grained map that aggregates the influence of

all sources over all sinks. This map contains the information

flow summarized by all executed inputs over all taken paths.

(ii) a fine-grained map containing separate influence analysis

for each source-sink pair. Such information is useful for tasks

like zero-day attack detection. A common use case for such

analysis is taint-guided fuzzing where the sources are the input

bytes and the sinks are the variables used in program branches.

Input bytes with high saliency values have large influences on

the output variables in program branches. Mutating these bytes

can maximally trigger the execution of a diverse set of program

branches. The number of mutations spent on each byte can be

adjusted according to its corresponding aggregate influence

on all program branches, i.e., the higher the influence, the

more mutations should be tried on the corresponding byte.

We evaluate NEUTAINT against 3 state-of-the-art dynamic

taint analysis tools: Libdft, Triton, and DFSan. We train neural

network models representing two sets of real-world programs.

For the first set of programs, NEUTAINT can successfully find

the information flow from source to sink in known CVEs. On

the second set of programs, we compare NEUTAINT against

other tools in regards to accuracy, overhead, and effectiveness

when applied to fuzzing (an important security application).

We utilize the parsing logic of programs to build ground

truth of hot bytes, i.e., file format bytes (influential taint

sources) that trigger different program behaviors (taint sinks

at branching conditions). The evaluation results show that

NEUTAINT achieves on average 10% higher taint accuracy

than the second-best DTA tool. To compare the runtime

overhead, we measure the total amount of time needed

to process all the inputs in the training dataset, and our

NEUTAINT is almost 40× more efficient than the second-

fastest tool, Libdft. We then validate the taint information

obtained from all tools through taint-guided fuzzing. We

feed the hot bytes produced by the four different tools into

a common fuzzer backend that supports the same mutation

algorithm in which our NEUTAINT achieves 61% more edge

coverage on all the real-world programs in 24 hours.

Our main contributions are as follows:

• We propose a novel information flow tracking technique

based on neural program embedding and gradient

analysis.

• We design and implement our technique as part of

NEUTAINT and evaluate it against 3 state-of-the-art

DTA tools. The evaluation shows that NEUTAINT can

achieve on average 10% higher taint accuracy than the

second-best tool while taking 40× less analysis time.

• We further validate the taint information obtained from

4 different tools by using a real world taint application,

taint-guided fuzzing. The results show that NEUTAINT

achieves 61% more edge coverage than that of the

second-best DTA tool.

• We analyze and identify the key factors that allow

NEUTAINT to outperform traditional DTA tools. In

addition, we present quantitative results showing NEU-

TAINT’s ability to infer new information flows and discuss

different ways to further improve the training data quality.

II. BACKGROUND

This section first gives a brief overview of dynamic taint

analysis. Then, we introduce existing work in program

embeddings, among which dynamic program embeddings can

be used to capture the runtime program behavior. Lastly, we

discuss saliency maps for neural networks, which can be used

to conduct information flow analysis for dynamic program

embeddings.

Dynamic Taint Analysis (DTA). A dynamic taint analysis

pre-defines taint sources (e.g., untrusted file, network, etc.) and

as a program executes tracks the effect of them on program

state such as internal variables. In most cases, DTA wants to

determine whether the taint sources affect some predefined

target locations, commonly known as taint sinks. Depending

on the specific application, taint sources and sinks vary.

1528

1 x = input();
2 a = x[0];
3 b = x[1];
4 c = a*a + b;
5 z = c - b;
6 print z

Input Program

+3.2

1st byte has the largest influence on Z

Z

+2.77

+0.01

-0.02

X[0]

X[1]

X[2]

X[3]

Taint sink

Gradient
analysis

Taint sources

Taint sources
&

Taint sinks

Instrumented
Execution

NN
Training +0.03

Neural Program Embedding Influence Analysis

Fig. 1: Simple code snippet demonstrating the workflow of NEUTAINT. NEUTAINT uses light-weight instrumentation to collect

a diverse set of sources and sinks from the input program. Then, we train neural program embeddings and use gradient-based

analysis to infer information flow for the programs.

For many security applications, user inputs are often used

as taint sources [41]. For example, during fuzzing [49], [16],

DTA explores diverse program execution behaviors and checks

which input bytes affect the branches (i.e., the taint sinks) of

the target program. In the case of malware analysis [64], DTA

monitors if program instruction registers (i.e., taint sink) are

manipulated by untrusted user input [41]. DTA is also applied

to identifying user information leakage [21] [56], where DTA

monitors a set of sensitive user data as taint source and a set

of sensitive functions (e.g., socket write) that leak that data

to the outside world as taint sinks.

DTA is typically implemented with taint tags. There are

mainly two types of taint tags used in the literature: binary

tags and multiple tags. The binary tag approach marks all

taint sources with a single binary value: 1 or 0 to represent

tainted or untainted respectively. Binary tags are commonly

found in simple tasks such as privacy leakage and detecting

attacks from user-supplied inputs. However, they fail to

monitor more fine-grained information flow used in malware

analysis and taint-guided fuzzing because they can only track

the existence of taint rather than the ownership of taint source.

In contrast, multi-tag DTA, which tracks every taint source

independently, tracks taint at a more detailed granularity

at the cost of significantly large runtime overhead which

grows quadratically with tag size. The large runtime overhead

prohibits practical deployment of online DTA tasks to check

security properties such as policy enforcement and intrusion

detection in Android [21] [56]. Moreover, time-sensitive

applications such as fuzzing ideally require taint analysis

for a large number of program executions in a short amount

of time for defenders to find vulnerabilities before attackers

do [49]. These limitations are further detailed in Appendix D3.

Fundamental Problems of DTA. There are three fundamental

problems in the design and implementation of taint: under-

taint, over-taint, and large runtime overhead. Even with the

heavy instrumentations that cause large runtime overheads,

manually engineered rules for taint propagation still have poor

accuracy at capturing information flow. These limitations of

taint severely affect its applicability to real-world programs. A

recent work TaintInduce [18] has proposed to learn the taint

propagation rules instead of manually specifying them. This

can increase the accuracy of individual rules, but the error

accumulation and large overhead issues still remain, due to

propagation-based design. Therefore, we choose to use end-to-

end program embeddings, and we conduct influence analysis

directly on the neural program to track information flow.

Program Embeddings. In general, there are two types of

program embeddings, static and dynamic. Static program

embeddings first generates a program representation, then

use neural networks to encode the representation into

embeddings. Example program representations include token

sequences [25], [14], [47], [20], abstract syntax trees [39], and

control and data flow graphs [63], [13]. Static program embed-

dings have been applied to correcting student code errors, au-

tomatic vulnerability detection, and detecting variable misuse.

Since such program representations cannot capture program

semantics, dynamic program embeddings learn program

behavior from input-output pairs [60], [46], [53] by executing

the program. Dynamic program embeddings have been used

for fuzzing [52], solving symbolic constraints [53], program

repair [60] and generating feedback on student code [46].

Since information flow analysis reflects the runtime behavior

of programs, we use dynamic program embeddings to learn

from program execution traces. Our neural program model

approximates the program logic from taint source to taint

sink. Then, we analyze the flow of information in the model.

Information Flow in Neural Network. A popular technique

to track information flows in a neural network (NN) is a

saliency map, which measures the sensitivity of the NN output

to changes in the input features [54]. For example, in image

classification, the saliency map can be viewed as an annotated

representation of the input image, where the annotations at

every pixel correspond to the gradient of the output w.r.t. to

the corresponding original pixel value (i.e., how the output

category changes as the input image pixels change). Saliency

maps have also been used to construct inputs with minimal per-

turbations as adversarial examples to an image classifier [44].

Since the saliency map indicates the most critical input fea-

tures that affect final neural network output, it guides an

attacker’s construction of the adversarial example by localizing

1529

the changes needed on features to change the classifier output.

As a gradient-based attribution method, a saliency map

has been widely used in interpreting neural networks.

Compared to other gradient-based methods (e.g., integrated

gradient [57]), saliency maps focus on the sensitivity of neural

output to every feature, i.e., how the NN output changes with

respect to a small change in the input. In contrast, integrated

gradient tries to explain the attribution of neural output to

every feature, i.e., how each feature of input contributes to

the final NN output. This implies that saliency values for

specified input features may differ from their corresponding

integrated gradient value. Since integrated gradient value is

essentially gradient ∗ input and saliency value is gradient,

the disparity between these two values is maximized when

the input value is significantly small but the gradient value is

large. In our case, since we want to infer which byte in the

input affects the taint sink, i.e., induce the greatest sensitivity

to the neural network output, we use the saliency map method.

III. METHODOLOGY

A. Overview

In this section, we give a motivating example to show the

workflow of NEUTAINT. As shown on the left side of Fig 1,

we assume the taint source is x, taking 6 bytes from the user

input, and the taint sink is variable z. The propagation-based

dynamic taint analysis cannot derive accurate information flow

in this case. Since variable c at line 4 is computed by a and b,

the first two bytes of user input, so taint value for c is a and

b. At line 5, z is computed from c and b, thus the taint value

for z is composed from c and b. The analysis is accurate for

both line 4 and line 5, but composing the propagation rules

together amplifies errors. The analysis ignores the fact that

at line 5 z actually equals a*a and is only affected by the

first byte of user input. Composition introduces and amplifies

errors and runtime overhead in the dynamic taint analysis.

On the contrary, NEUTAINT uses an end-to-end approach

to build neural program embeddings for information flow

analysis. Based on some training samples (i.e., user input, z),

NEUTAINT learns a neural program from dynamic execution

results which preserve program context–z is only affected by

a. As shown on the right side of Fig 1, given a user input x,

NEUTAINT computes the gradient of variable z with respect to

x and constructs a saliency map which indicates the sensitivity

how each byte of x affects z. From the saliency map, we

find that first byte is the most critical byte of input affecting

z. Fig 1 presents a high-level overview of our approach.

Training. We first train a neural program to learn the

information flow from taint source to sink. For a given program

and a set of inputs, we mark these inputs and use light-weight

instrumentation to collect values of sink variables. They repre-

sent the dynamic behavior of a program. Next, we train a neu-

ral network model (NN) to learn this dynamic behavior. Our

NN approximates a function that maps sources to sinks. The

training process minimizes the errors of learning this function,

thereby improving the precision of information flow tracking.

Influence Estimation. We construct two saliency maps to

infer the information flow from taint source to sink. Saliency

maps analyze the sensitivity of input features for NEUTAINT.

The more important a feature is, the more it influences the

NN output. We first define a saliency map to summarize

coarse-grained information flow for the program behavior,

aggregating gradient information for all inputs and all paths.

Then, we define the second saliency map to identify the most

important taint sources for specific sinks, utilizing first-order

partial derivatives of the NN output with respect to the input.

Since our end-to-end methodology of collecting program

behavior information, training, and influence estimation is

lightweight, the runtime overhead is much smaller than a tradi-

tional taint analysis tool. NEUTAINT directly performs analysis

at the program semantic level by learning from dynamic

program behaviors rather than on the instruction semantic level

in traditional taint analysis which leads to under-taint and over-

taint. Learning the end-to-end model with NEUTAINT reduces

overall information tracking errors, which mitigates the issues

of over-taint and under-taint. Thus, NEUTAINT achieves more

accurate results than traditional taint analysis tools.

B. Program Embedding

NEUTAINT learns the information flow by observing a

large set of taint source-sink pairs from program execution

traces. The model predicts the values of taint sink variables

given taint sources as model input. We formally define our

neural network model as follows, with detailed architecture

shown in Appendix A. Given a set of concrete taint sources

x and the corresponding taint sinks y for a specified program

P , the neural program predicts the taint sinks as ŷ, with the

following equations.

a = φ(W T
1 x+ b1) (1)

ŷ = σ(W T
2 a+ b2) (2)

We denote Wk, bk as trainable parameters for every

layer where k represents the layer index, φ represents the

ReLU function, and σ represents the sigmoid function. In

Equation 1, a represents the output vector of the hidden layer

of neural network. The NN model learns the function f that

takes numerical vector of size m as input and outputs n taint

sink variables. Let θ denote the trainable weight parameters

of f . Given a set of training samples (X,Y), where X is

a set of taint sources and Y represents the correct taint sink

values, the training task of the parametric function f(x,θ) is

to obtain the parameter θ̂ that minimizes the multi-variable

regression loss, where each variable is a taint sink.

After we train the NN model, we construct two saliency

maps to analyze the flow of information in the neural program.

From the neural program model, the first saliency map pro-

vides a global view of coarse-grained information flow when

all sinks are considered as a whole. The second saliency map

can extract the most influential taint sources for any given sink.

We now explain the details of the information flow analysis.

1530

C. Coarse-Grained Information Flow
We discuss the method to extract coarse-grained information

flow from the NN model. We define the coarse-grained

information flow as the influence of each source on all sinks.

Since some dynamic taint analysis applications have a set of

taint sink variable, e.g., taint-guided fuzzing, it is important to

consider coarse-grained information flow to all the sinks. The

aggregated information flow to a set of taint sink variables

can highlight which part of the taint source has the most

significant effect on them.
To extract coarse-grained information flow, we first

compute the partial derivatives of the taint sink with respect

to all sources. Let fi(θ,x) denote the output value for the

i-th taint sink variable during the execution of the targeted

program with taint source x. We compute the derivative with

respect to a given taint source x, defined below, where xj

denotes the j-th byte in the taint source.

∇xf(θ,x) =
∂f(θ,x)

∂x
=

[
∂fi(θ,x)

∂xj

]
i∈1...n,j∈1...m

(3)

The partial derivatives constitute a Jacobian matrix of the

neural network function. Each element of the matrix represents

the gradient of output neuron fi(θ,x) with respect to taint

source byte xj . Note that the gradient we compute has two

main differences from the gradient used in a neural network

trained by backpropagation. First, the target function is differ-

ent. The gradient used for backpropagation is computed on a

loss function which includes information about the state of the

model parameters and the expected outputs. In contrast, our

method computes the derivative on the output of the neural net-

work, which includes only information about the model param-

eters. Since we aim to interpret how neural networks make the

decision after convergence, our gradient computation does not

need to consider the corresponding ground truth information.

Second, we compute the gradient with respect to the input,

rather than trainable parameters of neural network model. By

computing the gradient directly with respect to the input, we

obtain the sensitivity of NN output to all the bytes in the input.
Then, we construct a saliency map to provide the global

view for coarse-grained information flow, based on partial

derivatives of the neural network model. The saliency map

S(x) is defined as follows.

S(x)[j] =
∑
i

∣∣∣∣∂fi(θ,x)∂xj

∣∣∣∣ (4)

S(x)[j] is the sum of all the sink sensitivity to the j-th

byte, representing the effect of the j-th byte to the overall

program behavior from the current execution. Summarizing

the sensitivity to all sinks includes information about all

paths to these sinks. In addition, the neural program includes

information about all the input data. Therefore, we can analyze

the coarse-grained information flow using this saliency map.

D. Fine-Grained Information Flow
We define fine-grained information flow as the influence of

each source to a single sink. Dynamic taint analysis applica-

tions that are interested in fine-grained information flow often

set taint sink at a certain variable such as function pointer,

jump target address and instruction pointer register. We refer

to these applications as fine-grained information flow analysis.

To reason about how information arrives at a given sink, we

follow similar steps from the coarse-grained information flow

analysis as mentioned in Section III-C. First, we compute

the Jacobian matrix to obtain the gradient information using

equation 3. After obtaining the gradient value for every

byte in the taint source, we can construct a saliency map to

infer the fine-grained information flow from taint source to

a particular taint sink. Since we are only interested in the

sensitivity of the taint sink to every byte in the taint source,

we take the absolute value of the gradient to construct the

saliency map S(x) defined as follows.

S(x)[j] =

∣∣∣∣∂fi(θ,x)∂xj

∣∣∣∣ (5)

The bytes that causes the maximum fluctuations of NN output

are considered taint source bytes that influence the sink. The

set of source bytes that determines taint sink variables can

be inferred by finding the top-k bytes with maximum values,

defined below.

Hi(k) : arg(top k(

∣∣∣∣∂fi(θ,x)∂x

∣∣∣∣)) (6)

Let Hi(k) denote the set of indices of K source bytes, top k
denotes the function to select k largest elements from a vector

and arg denote the function to return indices of selected

elements. Since our neural network learns a summary of

dynamic program behavior from all training samples, the

influential source bytes inferred from the neural network

model contains knowledge from a large number of concrete

runs of the program. On the contrary, traditional dynamic taint

analysis tools have information from only the specific path

taken from one execution.

E. Data Collection

In this section, we describe the general method to collect

a set of training samples for our neural program training. To

learn the information flow from taint source to taint sink, it is

crucial to obtain a large, diverse, and representative dataset.

However, unlike traditional machine learning tasks (e.g.,
image classification, natural language processing, speech

recognition), there is no standard dataset for various taint

sources and sinks. There are many options to collect training

datasets. A natural solution to collect such a dataset would

be to randomly sample taint source-sink execution pairs for

a specified programs. As an example to generate a training

dataset, we can start with a common taint source, randomly

flip the bytes in the taint source, and record the corresponding

taint sink values. Alternatively, we can use a simple fuzzer to

generate a set of taint source which trigger diverse program

states and record the taint sinks values. The training data

coverage affects the amount of information NEUTAINT can

track. We can further improve the information flow coverage

using more sophisticated techniques like coverage-guided

1531

fuzzing, symbolic execution, etc. However, in this paper we

demonstrate that even with training data generated by a simple

fuzzer, NEUTAINT can easily outperform existing DTA tools.

Note that taint sources are normally user input, files or user

privacy strings that can be represented as byte sequences. So

we can easily convert the byte sequences to bounded numerical

vectors ranged in [0, 255]. However, the taint sink can be

arbitrary variables in the program with unbounded values such

as instruction pointer register, a complex socket structure, or a

user defined variable in the program. These arbitrary variables

are hard to model as unified representations for NN output

and make it difficult for the NN to converge. To tackle this

problem, we normalize these unbounded variables to bounded

data for different applications. For example, in taint-guided

fuzzing, we set taint sinks at a set of variables used in branch

conditions and normalize the sink variables with binary data

(i.e., 1 represents the branch is taken, 0 represents the branch

is not taken). The binary representation of the NN output can

ensure the fast convergence of the model.

IV. EVALUATION

In this section, we evaluate the effectiveness and efficiency

of NEUTAINT against three state-of-the-art dynamic taint

analysis tools (Libdft [32], Triton [2], and DFSan [5]). We

answer the following research questions about NEUTAINT in

the evaluation.

1) Hot Byte Accuracy: Is NEUTAINT more accurate at

finding hot bytes (i.e., the most influential bytes that

determine different program behaviors) in input for 6

real-world programs?

2) Runtime Overhead: What is the runtime overhead of

NEUTAINT compared to state-of-the-art dynamic taint

analysis tools (both with and without GPU)?

3) Exploit Analysis: Can NEUTAINT detect vulnerabilities

in real-world programs?

4) Application on Taint-Guided Fuzzing: Since fuzzing is

one of the most important security applications of taint,

does NEUTAINT help taint-guided fuzzing achieve better

edge coverage compared to other taint analysis tools?

5) Model Choice: How does NEUTAINT perform with

different machine learning models other than neural

networks?

6) Information Loss: What kinds of flows are missed by

NEUTAINT? How does the training data quality affect

such information loss and how to mitigate this loss?

To answer these questions, we will first describe our

experiment setup and how we learn the neural program

embeddings for the real-world programs.

A. Experiment Setup

Environment Setup. All our measurements are performed

on a ubuntu 16.04 system with an Intel Xeon E5-2623

v4@2.60GHz CPU , an Nvidia GTX 1080 Ti GPU and 256

GB RAM. We implement the NEUTAINT in Keras-2.1.4 [6]

with Tensorflow-1.8.0 [7] as the backend.

Next, we give a brief introduction of the three front-end

tools in our evaluation, how we set up the tools, and our

implementation of NEUTAINT.

1) Libdft: Libdft is a widely-used dynamic taint analysis

engine based on Intel PIN framework [8]. It predefines taint

propagation rules for every type of instruction via external

functions using the PIN analysis API. Then, it dynamically

instruments the binary code using the PIN instrumentation

API at runtime. For every executed instruction, Libdft calls

a corresponding external function to track the taint flow.

If a particular type of instruction (e.g., pop, ret) lacks any

taint information, no external function will be invoked.

Nevertheless, for real-world applications, most instructions

contain taint information, and hence this design incurs a

large runtime overhead due to the sheer number of external

function calls. Another notable drawback of Libdft is that the

current implementation only supports the x86 architecture.

Setup. We set up a modified version libdft with support of

multiple taint tags [1]. The dependency PIN version is 2.13.

2) Triton: Triton is a platform that supports concolic

execution, dynamic taint analysis, and abstract syntax tree

representation. Similar to Libdft’s approach for dynamic

analysis, it uses Intel PIN to monitor taint flow corresponding

to a set of predefined taint propagation rules. Currently, its

taint analysis engine only supports the x86 architecture. Triton

provides users Python bindings to the underlying PIN API

so that they can write scripts to perform customized analysis

tasks. However, these bindings are limited and fail to capture

the full functionality of PIN. Moreover, the limited Python

bindings cause imprecise dynamic taint analysis results in

addition to the runtime overhead from heavy instrumentation

and monitoring taint propagation in PIN.

Setup. We set up a develop fork Triton to support the multiple

taint tags feature [3]. The dependency PIN version is 2.13.

We write the analysis script with Triton Python binding to

set corresponding taint sources and taint sinks according to

different programs.

3) DFSan: DFSan (DataFlowSanitizer) is a data flow

analysis framework provided by Clang [4]. It consists of a

compile-time instrumentation module and a runtime dynamic

library to track taint flow for the x86-64 architecture only.

Users only need to define taint source and taint sink with the

public DFSan API. DFSan relies on predefined taint propaga-

tion rules for LLVM IR instructions rather than architecture-

specific assembly instructions. This enables DFSan to insert

taint tracking functions at compile time into a program.

Thus, it has a smaller runtime overhead compared to other

PIN-based tools that use dynamic instrumentation. DFSan,

however, fails to run on programs which depend on external

shared libraries. Since the dynamically shared libraries cannot

be instrumented when compiling a given program, DFSan

cannot insert these taint tracking functions and fails to work on

programs depending on dynamic shared libraries. This along

with the exhaustion and resolution of taint tags (Section IV-C)

limits the applicability of DFSan to real-world applications.

1532

DTA Engine Propagation Level Dependency Tag Type

Libdft assembly instruction Pin 2.13 multi-tag
Triton assembly instruction Pin 2.13 multi-tag
DFSan LLVM instruction LLVM-7.0.0 multi-tag

TABLE I: Dynamic Taint Analysis Engines.

Setup. We set up DFSan from the Clang runtime library. The

underlying LLVM version is 7.0.0. We use DFSan’s API to

set taint source and sink for different programs.

4) NEUTAINT: Model Architectures. For each program,

we train a neural program model which learns the program

logic from taint sources to taint sinks. The NN model consists

of 3 fully-connected layers. The hidden layer uses ReLU

as activation functions with 4096 hidden units. The output

layer uses Sigmoid as the activation function to predict the

sink variables. Since each program has different taint sources

and taint sinks, the corresponding neural program model

has different number of input/output neurons. We describe

taint sources and taint sinks for all programs in Table II. We

use the first 6 programs to evaluate the hot byte accuracy

and the taint-guided fuzzing experiments, so we set multiple

taint sinks as branch variables (i.e., the variables used in

conditional predicates). The later 5 programs are evaluated

in the exploit analysis experiment, so they only have a single

taint sink at a specified variable. All 11 programs set each

byte of the program input as a taint source. Thus the total

number of taint sources are the total number of input bytes.

Training Data Collection. To collect the training data, we

first run the AFL fuzzer with an initial seed to collect its

mutation corpus. Next, we use a simple LLVM pass to add

light-weight instrumentation for recording the two operands

of CMP instructions during runtime. These operands of

CMP instructions are branch variables (i.e., our taint sinks)

evaluated in conditional predicates. We run the instrumented

program with the generated input and record the taint sink

values. We collect around 2K input-output pairs (each input

has multiple source bytes and reaches multiple sinks) on each

program for training. For hot byte evaluation, we normalize

the taint sink variables into binary, i.e., 1 if a sink value

satisfies the conditional predicate and 0 if not. We check

the value of predicates by computing the difference of two

operands of CMP instructions. For exploit analysis, we use the

similar LLVM pass to obtain the specified taint sink values,

then perform standard min-max normalization to the sink

values (i.e., ynorm = (y − ymin)/(ymax − ymin)). Note that

the data collection and normalization can be easily done by

a simple python script, no manual labeling effort is required.

Training Procedure. We adopt random weight initialization

and cross-entropy loss function or mean-square-error loss

depending on specific model output data type. The NN model

is trained with an Adam optimizer for 100 epochs with an

initial learning rate 0.01 and decay rate 0.7 per 10 epochs. We

choose a mini-batch size 16. For exploit analysis evaluation,

we use mean-square-error as loss function and metric to

evaluate our model performance. Since our NN model is

Program Taint Sources # Taint Sinks # Taint Sinks Types

readelf 7467 2122 branch variables
harfbuzz 5049 2805 branch variables
mupdf 4861 1377 branch variables
libxml 8040 1929 branch variables
libjpeg 5873 997 branch variables
zlib 8306 571 branch variables

sort 500 1 length variable
openjpeg2 298 1 denominator
libsndfile 446 1 length variable
nm 847 1 counter variable
strip 1123 1 length variable

TABLE II: We set program input bytes as taint sources, and

we use different types of taint sinks. For the first 6 programs,

we select sink variables at program branches to evaluate

NEUTAINT’s accuracy, overhead, and application on taint-

guided fuzzing. For the rest 5 programs, we set taint sinks

according to the vulnerability information for exploit analysis.

simple, the training process is very efficient and takes on

average 73s across all tested programs. In Section IV-B, we

test the accuracy and false positive rate of our neural program

models at identifying hot bytes. In addition, we evaluate the

information loss in Section IV-G.

B. Is NEUTAINT more accurate at finding hot bytes (i.e., the
the most influential bytes) in input for 6 real-world programs?

It is extremely hard to evaluate the accuracy of dynamic

taint analysis. We would like to find ground truth for taint

that is relevant to its applications. DTA is often used to

search for important bytes in the inputs to trigger specified

program behaviors. For example, vulnerability analysis needs

to find which part of untrusted input triggers malicious

behaviors. Taint-guided fuzzing aims to find importance bytes

which explore new program behaviors and yield new code

coverage. DTA finds these important bytes by setting and

propagating taint labels from taint sources (program input)

to taint sinks (various variables that determines program

behaviors). Therefore, we propose to use these hot bytes to

evaluate the accuracy of DTA tools and NEUTAINT.

Hot Bytes Definition. We define importance bytes that can

maximally influence the variables in program branches as hot
bytes.

Then next question is how to obtain the ground truth

hot bytes as baseline to compute the hot byte accuracy.

We observe that a large number of real-world programs are

parsers which take in a specified file type and check its

format. Meanwhile, most of the program behaviors of these

parser programs are determined by bytes at the specified

locations of input (i.e., the fixed locations where file format

headers locate), rather than the file content. Hence, for a

parser program, we can approximate that the hot bytes are

mostly located at the structured format sections. Further, by

analyzing the fixed structured locations of a file, we can

obtain the estimated ground truth of hot bytes for a particular

parsing program. These ground truth hot bytes can be used as

a metric to evaluate the effectiveness and efficacy of dynamic

taint analysis tools on a particular parsing program.

1533

Programs File Hot Byte Accuracy Hot Byte FPR Runtime
Format NEUTAINT Libdft DFSan Triton NEUTAINT Libdft DFSan Triton NEUTAINT Libdft DFSan Triton

(GPU/CPU)

readelf-2.30 ELF 81% 74% 49% 44%† 1.6% 3.0% 3.5% 3.7%† 6m/25m 161m 117m >24h

harfbuzz-1.7.6 TTF 86% 86% n/a 13%† 0.8% 0.8% n/a 5.2%† 5m/18m 204m n/a >24h

mupdf-1.12.0 PDF 80% 48% 57% 33%† 2.0% 2.9% 2.6% 3.9%† 3m/9m 224m 532m >24h

libxml2-2.9.7 XML 65% 56% n/a 14.2%† 2.3% 3.0% n/a 5.8%† 6m/29m 197m n/a >24h
libjpeg-9c JPEG 29% n/a n/a n/a 3.9% n/a n/a n/a 3m/5m n/a n/a n/a

zlib-1.2.11 ZIP 66% 26% n/a 3%† 1.8% 3.9% n/a 5.1%† 3m/4m 20m n/a >24h

†indicates cases where Triton analyzed partial dataset within 24 hours

TABLE III: For each program, we measure the accuracy and false positive rate of identifying hot bytes, as well as runtime

overhead for different DTA tools and NEUTAINT. NEUTAINT achieves the highest accuracy and lowest false positive rate. On

average, NEUTAINT increases the accuracy by 10% and reduces the false positive rate by 0.44% compared to the second-best

DTA tool Libdft. NEUTAINT is 40× faster on GPU and 10× faster on CPU than the second-best DTA tool Libdft.

Ground Truth. Note that all evaluated real-world programs in

this sections are file parsing programs. Since these 6 parsing

programs have particular structures in their file formats, we

can obtain estimated ground truth of hot bytes by analyzing

these file formats. A saliency map of ELF file format is

shown in Appendix B. Fig 2 shows the ground truth of all

6 file formats. Similar to ELF, other formats also include the

header and trailers. But some files may have unique format

features. For example, ZIP file has an additional local file

header after the ZIP file header at the beginning. TTF file

contains unique character tables near the trailers.

Extract Hot Byte. We perform the following step to extract

the hot bytes from our neural program models. 1) For each

program, we feed the seed input to NN model. 2) We

compute the gradient of taint sinks with respect to the taint

sources (seed input) and construct the saliency map using

Equation 4. The saliency value indicates the extent to which

the byte in taint sources affect the all the taint sink variables.

3) We select the top 5% bytes with highest values from the

input saliency map as possible hot bytes using Equation 6.

The reason we set this threshold is that in practice, only a

small number of hot bytes in the input determine program

behaviors. After analyzing all 6 file formats, we find that the

total number of ground truth hot bytes range from 250 to 500

which takes around 5% of total input bytes.

Compute Hot Byte Accuracy. We compute the hot byte accu-

racy by checking if the hot bytes analyzed from taint tools are

consist with ground truth hot bytes. To be specific, if a hot byte

identified by NEUTAINT locate in the estimated ground truth

range, we consider it as a true hot byte identification (i.e., true

positive); otherwise, we consider it as false identification (i.e.,
false positive). For the 3 other state-of-the-art dynamic taint

analysis tools, we also evaluate their abilities to find hot bytes

to compare against NEUTAINT. Since dynamic taint analysis

operates on a single execution trace, we run the dynamic taint

analysis tools on every input in the training data and collect

the tainted bytes for every execution; we then aggregate these

tainted bytes by counting the total number of times a specified

byte is tainted. In this way, we construct a similar saliency

map as NEUTAINT for these 3 tools. We then select the same

threshold 5% of top tainted bytes as possible hot bytes and

calculate the hot byte accuracy. Lastly, we measure the total

runtime to obtain the final hot byte accuracy for the 4 tools.

For the 3 dynamic taint analysis tools, we record the total

runtime for tracking all the input samples in the dataset. For

NEUTAINT, we record the total runtime cost for NN training

and gradient computation. Based on the best-effort ground

truth for the 6 file formats, we compute accuracy and false

positive rate of identifying hot bytes in a standard way.

Results. The results for hot byte accuracy is shown in

Table III. For programs with simple and straightforward

parsing logic such as readelf and harfbuzz, we observe

that all four tools find hot bytes with high accuracy. For

programs with complex parsing and transformation logic

such as libjpeg and zlib, the accuracy drops for all

tools due to large taint flows inside the decompression

algorithm. Nonetheless, NEUTAINT achieves the highest hot

byte accuracy on 5 programs. Even for the remaining program

libjpeg which causes significant runtime overhead due to

large taint propagation flows, NEUTAINT is the only one to be

able to finish the analysis within a reasonable time (minutes

as opposed to hours). Fig 2 shows the detailed visualisation

of hot byte accuracy using a heat map.
Traditional taint propagation can result in significant

slowdowns for time-sensitive operations in large real-world

applications. libjpeg’s decompression algorithm requires

massive memory read and write operations which carry

taint information. Indeed, all three traditional dynamic taint

analysis tools fail to finish the analysis of libjpeg on the

dataset within 24 hours. Moreover, the second-best tool Libdft

spends more than 3 minutes on libjpeg to finish a single

execution (more than 2 days for all 993 inputs in the dataset)

to track all the taint flows inside the decompression algorithms

while a vanilla execution of libjpeg without dynamic taint

analysis takes 0.015s. The runtime overhead for intense taint

tracking could be more than 104X times while NEUTAINT

avoids such heavy instrumentation overhead through a

lightweight neural network model that identifies the hot bytes.

Analysis: Hot Byte Accuracy. The average hot byte

accuracy for all 4 tools across all evaluated programs

are 68%, 58%, 53%, 27%. NEUTAINT achieves 10%
more accuracy improvement than second-best dynamic

taint tool Libdft. As for hot byte accuracy of every

program, NEUTAINT achieves 7%, 0%, 7%, 23%, 40% more

1534

Neutaint 81%

�DFSan 49%

� Triton 44%

Ground Truth

Libdft 74%

(a) ELF

Neutaint 65%

�DFSan� n/a

� Triton 17%

Ground Truth

Libdft 56%

(b) XML

Neutaint 86%

�DFSan� n/a

� Triton 13%

Ground Truth

Libdft 86%

(c) TTF

Neutaint 29%

�DFSan� n/a

� Triton� n/a

Ground Truth

Libdft� n/a

(d) JPG

Neutaint 66%

�DFSan� n/a

� Triton� 3%

Ground Truth

Libdft 26%

(e) ZIP

Neutaint 80%

�DFSan 57%

� Triton 33%

Ground Truth

Libdft 48%

(f) PDF

� � 100� � 75� � 25� � 50� � 0� n/a
�Number of hot bytes predicted by a tool

Fig. 2: The six heatmaps show how each tool identifies hot bytes for a given file format. The x-axis is broken into byte

intervals, and an interval’s darkness is proportional to how many hot bytes a tool predicts. Since the first row represents the

ground truth, the correctness is defined by how each subsequent row aligns with the ground truth row.

improvement respectively on program readelf, harfbuzz,

mupdf, libxml, zlib. The reason for NEUTAINT’s higher

accuracy is that NEUTAINT is an analysis based on program

semantics by learning dynamic program logic rather than

an analysis based on instruction semantics performed by

traditional dynamic taint analysis tools. NEUTAINT could

flexibly adapt to diverse execution context which cannot be

accurately modeled by dynamic taint analysis tools through

fixed, predefined taint propagation rules.

Analysis: Hot Byte False Positive Rate. For all programs,

NEUTAINT achieves the lowest false positive rate at

identifying hot bytes (Table III). On average, NEUTAINT has

2.07% false positive rate, that is less than half of that for

Triton. Compared to the second-best DTA tool Libdft, the hot

byte false positive rate of NEUTAINT is 0.44% lower. The

results show that learning end-to-end program embeddings

can effectively reduce the overtaint issue.

Result 1: NEUTAINT achieves the highest hot byte accuracy

and lowest false positive rate in six popular file formats

compared to state-of-the-art dynamic taint analysis tools.

On average, NEUTAINT increases the accuracy by 10% and

reduces the false positive rate by 0.44% compared to the

second-best DTA tool Libdft.

C. What is the runtime overhead of NEUTAINT compared to
state-of-the-art dynamic taint analysis tools, with and without
GPU?

We measure the runtime overhead for NEUTAINT and all

three dynamic taint analysis tools. We measure the total time

needed to process all the inputs in our dataset, as the runtime

in Table III. For NEUTAINT, the total runtime of NEUTAINT

is composed of three parts, collecting program behavior data,

training NN and computing the saliency map of NN.

Table III summarizes the result. Overall, NEUTAINT has

the least runtime overhead for all six programs compared to

other tools, since the time cost for training and computing the

saliency map is negligible. To collect the training dataset, we

obtain values of the sink variables in the binary through light-

weight instrumentation which introduces negligible overhead.

In addition, computing the saliency map is computationally

efficient. Therefore, NEUTAINT enjoys the fastest runtime

among all four tools evaluated. In particular, on program

mupdf, NEUTAINT can save up to 74× runtime overhead on

GPU and 24× runtime overhead on CPU than the second-best

DTA tool Libdft. The average runtime overhead for the

four tools are 4 mins(GPU)/15min (CPU), 161 mins, 325
mins and > 24 hours. Compared to the second fastest tool

Libdft, NEUTAINT on average achieves 40× and 10× smaller

runtime overhead on GPU and CPU, respectively.

Among the other three tools, Triton achieves the worst result

on hot byte accuracy and runtime overhead, due to PIN dy-

namic instrumentation and inefficient analysis routine. So we

only evaluate the partial inputs from dataset on Triton within

24 hours to compute the hot byte accuracy. As for runtime of

Triton, we use > 24 hours to indicate the significantly large

runtime overhead. DFSan achieves the second fastest analysis

on program readelf. Its runtime overhead is smaller than

Libdft because of its efficient instrumentation during compile

time rather than runtime. However, DFSan fails to run on four

programs because it cannot instrument external dynamically

linked libraries at compile time, and it incurs large overhead

for recursive tag resolution. Libdft runs faster than DFSan

and Triton for all programs except readelf. It is also more

accurate at identifying hot bytes than DFSan and Triton, in

all programs except mupdf. However, Libdft is still 43 times

slower than NEUTAINT, due to execution of heavily instru-

mented binary and accumulated overhead through propagation.

Result 2: The runtime overhead of NEUTAINT is 40× faster

on GPU and 10× faster on CPU than the previously fastest

dynamic taint analysis tool Libdft.

Ablation Studies. We break down the total runtime overhead

of NEUTAINT for processing 2,000 inputs into three parts,

1535

All 2,000 Inputs

Program Data Training Saliency Map Total
Collection GPU CPU GPU CPU GPU CPU

readelf 18s 214s 1352s 98s 119s 330s 1471s
harfbuzz 40s 115s 951s 119s 130s 274s 1080s
mupdf 30s 116s 472s 64s 82s 210s 554s
libxml 44s 216s 1652s 93s 109s 353s 1761s
libjpeg 10s 112s 251s 36s 37s 158s 288s
zlib 5s 110s 202s 26s 30s 141s 232s

TABLE IV: Runtime breakdown for NEUTAINT. The table

shows the total runtime of processing 2,000 inputs for data

collection, training, and saliency map computation.

Program Vulnerability Type CVE ID

sort buffer overflow CVE-2013-0221
openjpeg2 integer division-by-zero CVE-2016-9112
libsndfile out-of-bound read CVE-2017-14245
nm heap overflow CVE-2018-19931
strip integer overflow CVE-2018-19932

TABLE V: NEUTAINT can successfully identify the

information flow from source to sink in the following exploits.

data collection, training and saliency map on both GPU and

CPU settings. The results are shown in Table IV. The average

runtime of NEUTAINT is 244s across 6 programs, 4× faster

than on CPU (898s). Even on a machine with only CPU

computation, the runtime overhead of NEUTAINT is still 10×
lower than traditional DTA tools. Since our NN model has a

small number of hyperparameters, the model can be efficiently

trained with and without GPU. With GPU, the training time

takes around 60%. The construction of saliency map and

data collections takes around 30% and 10%, respectively.

With only CPU, the runtime splits into training, saliency map

computation, and data collection as 88%, 9% and 3%. Using

only CPU causes on average 4.5× and 0.16× slowdown

in training and saliency map construction than with GPU,

respectively. In general, the training time takes up the majority

of total runtime. Whereas, data collection takes up the least

part of runtime because the light-weight instrumentation of

program only records the taint sink values during execution

and introduces minimal overhead than vanilla execution.

Result 3: The total runtime for NEUTAINT to process all

2,000 inputs is 244s on average for each of the six pro-

grams. Training time takes up the most part of total runtime

overhead, around 60% with GPU and 88% without GPU.

D. Can NEUTAINT detect vulnerabilities in real-world
programs?

We evaluate the effectiveness of NEUTAINT in the

analysis of software attacks. We choose 5 known real-world

vulnerabilities as listed in Table V. These vulnerabilities

are all from open-sourced programs. Then we perform

light-weight instrumentation on the programs and record the

values for (taint source, taint sink) pairs during runtime. The

5 vulnerabilities covers various exploit types such as buffer

overflow, heap overflow, integer overflow, integer division-by-

zero and out-of-bound read. For each vulnerabilities, we set

the taint sink at the variables which causes the vulnerability

Programs File Edge coverage
Format NEUTAINT Libdft DFSan Triton

readelf-2.30 ELF 5540 4164 2489 440†
harfbuzz-1.7.6 TTF 5395 3796 n/a 11†
mupdf-1.12.0 PDF 399 248 192 48†
libxml2-2.9.7 XML 918 428 n/a 236†
libjpeg-9c JPEG 649 n/a n/a n/a

zlib-1.2.11 ZIP 200 131 n/a 54†

†indicates cases where Triton analyzed partial inputs from dataset.

TABLE VI: Edge coverage comparison of 5 taint-guided

fuzzers for 24 hour time budget

(e.g., length variable used by read/write function, variable used

as denominator). We also set program input as taint source

for every vulnerability. To collect the training samples, we

randomly flip bytes at a specified program input (the exploit)

and execute the vulnerable programs with the generated input

to record the corresponding taint sink values. For the 5 vulner-

abilities, we generate 2K training samples for each of them.

We train the neural program model which learns the mapping

from taint source to taint sink. Then we feed the exploit as

taint source to the neural program and construct the saliency

map using Equation 5 based on the gradient of taint sink with

respect to taint source. According to the saliency, we can infer

which part of taint source determines the taint sink variables.

The key result is that NEUTAINT successfully locates the

hot bytes which control the taint sink variables, and thus can

reason about the influence from taint source to taint sink.

Result 4: NEUTAINT can successfully find the information

flow from source to sink in known CVEs.

E. Since taint-guided fuzzing is one of the most important
security applications of taint, does NEUTAINT help taint-
guided fuzzing achieve better edge coverage compared to
other taint analysis tools?

In this section, we compare the performance of all

tools when applied to one of the most important security

applications, taint-guided fuzzing.

Fuzzer Backend Implementation. Dynamic taint analysis

has been used as the front end by many fuzzers to identify hot

bytes for guiding further mutations. [62] [40] [27] [49] [16].

Although these fuzzers leverage dynamic taint analysis tools

to find hot bytes, each of them applies different algorithms

to mutate hot bytes. For example, Vuzzer [49] copies the

magic number extracted from binary directly to the locations

of hot bytes; and Angora [16] implements gradient descent

along with other strategies to mutate these hot byte locations.

To eliminate the effects of different searching strategies

and different execution backends of fuzzing modules, we

build a simple and efficient fuzzer backend in C (shown in

Appendix C). For each dynamic taint analysis front end, we

use a common backend that generates new inputs based on

mutations of the hot bytes. Therefore, we have a total of

four fuzzer prototypes using the same mutation algorithm as

shown in Algorithm 1. The metric we use for comparison is

the edge coverage achieved from the different front ends.

1536

Edge Coverage Comparison. We run each fuzzer prototype

for 24 hours on the 6 programs shown in Table VI. We

have discussed the evaluation of hot byte accuracy for these

programs in Section IV-B. Each fuzzer is given the same initial

seed corpus for each program and assigned a single CPU.

Each dynamic taint analysis front-end works with the back-end

fuzzer to guide the mutation. Since Triton incurs a significantly

large runtime overhead greater the our evaluation time, Triton

has only analyzed partial inputs in 24 hours. The results are

shown in Table VI. NEUTAINT achieves the highest edge

coverage for all 6 program evaluated. On average, NEUTAINT

reaches 61% more edge coverage than the second best analysis

front end Libdft. Triton is the worst analysis front end due

to its extremely large runtime overhead and lowest hot byte

accuracy. DFSan front end could only run on two programs

and achieves intermediate results. To summarize, the taint-

guided fuzzing results further validate that NEUTAINT obtains

the most accurate hot bytes among the four taint analysis tools

in real-world applications. The consistency of taint-guided

fuzzing results and hot byte accuracy evaluation (Section IV-B)

demonstrates the efficiency and effectiveness of NEUTAINT.

Result 5: NEUTAINT achieves 61% more edge coverage

than other dynamic taint analysis tools for taint-guided

fuzzing, demonstrating that the taint information obtained

from NEUTAINT is more effective.

F. How does NEUTAINT perform with different machine
learning models other than neural networks?

In this section, we compare other machine learning models

(e.g., logistic regression and support vector machines (SVM))

against neural network for the implementation of NEUTAINT

on the same set of real world programs. We also use the hot

byte accuracy and FPR as mentioned in Section IV-B to eval-

uate the performance of different machine learning models.

Logistic Regression: We implement the logistic regression

using the same NN architecture, but without any non-linear

activation in hidden layers. We use sigmoid as final layer and

train with the same setting as mentioned in Section IV-A.

To extract the hot byte information, we perform the gradient

analysis routine as mentioned in Section IV-B.

SVM models: We implement the SVM models (linear,

polynomial kernel, and RBF Gaussian kernel) using the

scikit-learn library [9]. Our dataset has a large number of

output labels (i.e., up to 2K sink variables for each input).

The runtime overhead is large for SVM model on such dataset

because it uses a simple one-vs-one scheme. Therefore, we

leverage the correlations between labels and encode the large

number labels into a smaller and compact ones. To obtain

the importance of each input feature, we compute the dot

product of all weights associated with each input feature to

the final model outputs. Bigger weights mean that the output

is more sensitive to the change of the corresponding feature.

Results: Table VII shows the hot byte accuracy and false

positive rate from the five different ML models. Neural

network model achieves the best results on all 6 programs,

on average 68% hot byte accuracy. Among the four other

Fig. 3: Total number of flows detected by NEUTAINT when

training dataset coverage increases. Training data with higher

coverage can increase the flow coverage of NEUTAINT.

machine learning models, SVM with polynomial kernel is the

best model, achieving on average 30.5% hot byte accuracy.

Logistic model achieves the second-best results on programs

libjpeg and zlib. SVM with polynomial kernel is the

best-performed SVM model, achieving the second-best results

on programs harfbuzz and readelf. SVM with linear

kernel achieves the second-best result on program libxml
and SVM with RBF Gaussian kernel achieves the second-best

result on program mupdf. The reason for neural network’s

superior performance is that neural network has a large model

capacity such that it fits diverse datasets well. Moreover,

unlike SVM, neural network can naturally support datasets

with a large number of labels.

Result 6: The neural network model achieves on average

68% hot byte accuracy and 2.07% FPR, the best among

five machine learning models.

G. What kinds of flows are missed by NEUTAINT? How does
the training data quality affect such information loss and how
to mitigate this loss?

Flow Definition: Before describing our techniques to measure

the information loss, we formally define the flows. The goal of

DTA is to detect flows based on dynamic execution. Therefore,

we collect a ground truth dataset that contains the total number

of flows based on unseen test inputs. We define one flow as a

tuple of (input value, source, sink), and the total flows are col-

lected from all test inputs. To measure the information loss, we

evaluate how many flows NEUTAINT and dynamic taint analy-

sis tools can detect out of the total flows from the ground truth.

Flow Dataset: Since we need the ground truth of exact

number of total flows as baseline, we choose four programs

(including three tiny programs [12], [10], [11], and one small

real world program) where such information can be obtained

reliably through static analysis and manual inspection. For

each program, we choose 50 sink variables in conditional

predicates, such as file magic bytes, field values and offsets.

We obtain these sink values through light-weight instrumen-

tation and normalize them into binary data as mentioned

in Section IV-A. These sink variables are commonly used

to perform conditional checking that determines program

behaviors. If a particular input can reach 20 sinks, we count

20 flows for that input. To collect the dataset, we randomly

flip bytes of a specified input using a simple fuzzer, generating

1537

Program Hot Byte Accuracy Hot Byte FPR
NN Logistic SVM(linear) SVM(poly) SVM(rbf) NN Logistic SVM(linear) SVM(poly) SVM(rbf)

readelf 81% 38.6% 23.8% 47.4% 27.4% 1.6% 4.2% 5.2% 3.6% 4.9%
harfbuzz 86% 19.8% 26.3% 56.7% 28.7% 0.8% 4.8% 4.4% 2.6% 4.2%
mupdf 80% 13% 14% 14.8% 17.4% 2% 5% 5% 4.9% 4.8%
libxml 65% 34.8% 47% 42.3% 5.7% 2.3% 4.3% 3.5% 3.9% 6.3%
libjpeg 29% 7.3% 5.9% 7% 1.4% 3.9% 7.3% 5.1% 5% 5%
zlib 66% 44% 7.1% 15% 10% 1.8% 3% 4.8% 4.4% 4.7%

TABLE VII: NEUTAINT performance on different ML models. The neural network model achieves on average 68% hot byte

accuracy and 2.07% FPR, the best among five machine learning models.

Program Total Flows NEUTAINT Libdft Triton DFSan(Ground Truth)

TinyELF 19,464 19,046 7,227 18,048 5,120
TinyJPG 17,188 17,160 11,439 17,184 15,510
TinyXML 17,036 16,691 15,233 7,671 14,720
Zlib 19,957 19,804 18,043 14,743 14,322

TABLE VIII: Comparison of information flow losses of

different taint tracking tools on three tiny programs and

one real world program. We use static analysis and manual

examination to estimate the number of total flows.

6K inputs which cover all the 50 sink variables. Then we

split the dataset into 5K training inputs and 1K testing inputs.

Both training and testing datasets can cover all 50 sink

variables. We achieve on average 99% testing accuracy. After

training the neural program, we perform the gradient analysis

as mentioned in Section IV-B to reason if a sink variable

is tainted or not. If the gradient value for a sink variable is

greater than a specified threshold, it is considered as tainted.

Information Loss: All dynamic taint analysis tools suffer

from information loss, since they cannot track all flows

in a program. The information loss of NEUTAINT can be

categorized into two classes.

• Coverage of training dataset. When the training data do

not cover all the sink variables that appear in the testing

data, there could be information loss on NEUTAINT.

• Inaccuracy of machine learning model. No model is

100% accurate on unseen testing data. The information

loss happens when the neural network model makes

wrong predictions to unseen testing data.

To investigate the information loss caused by training data

coverage (i.e., the number of sink variables covered by training

inputs), we downsample the 5K training inputs into five subsets

with different coverage threshold. Each subset covers a differ-

ent number of sink variables from 10, 20, 30, 40, to 50. Then

we train NEUTAINT with each subset and evaluate the total

number of flows detected on the 1K unseen test inputs. The

result is shown in Fig 3. The total number of flows detected by

NEUTAINT increases as the training data coverage increases.

When training data covers all the sinks, NEUTAINT can detect

the highest number of flows in the unseen testing dataset.

Furthermore, we evaluate the information loss caused by

the inaccuracy of the neural network model. Specifically, we

compare the number of flows detected by NEUTAINT against

three state-of-the-art DTA tools on the four programs. We

obtain the ground truth (i.e., total number of flows) from

all the testing inputs. The result is shown in Table VIII.

On average, NEUTAINT detects 98.7% flows, the highest

among all tools. Triton, Libdft, and DFSan detect on average

78%, 70.9% and 69% flows, respectively. The 1.3% loss of

NEUTAINT is due to model inaccuracy.

Advantages of NEUTAINT: The reason for NEUTAINT’s

superior performance is that NEUTAINT can detect information

flows passed through some complex code such as external

library calls strcmp() and strncmp(). It is hard for DTA

tools to propagate the taint tags through the library calls.

Moreover, NEUTAINT also detects some implicit control

flow dependency which is not supported by common DTA

tools. We will cover more details of these cases in Section V

and Appendix D. NEUTAINT achieves the best result on

3 programs (TinyELF, TinyXML, and Zlib) among

all four tools and the second best on TinyJPG. For the

program TinyJPG, Triton finds slightly more flows than

NEUTAINT. TinyJPG does not contain any external library

calls or implicit control dependency in selected taint sinks,

while NEUTAINT could make some minor mistakes when

approximating sink variables in unseen inputs. Lifdft performs

the worst on the program TinyELF, because most functions

in TinyELF pass parameters through a float point instruction

MOVSD which is not supported by Libdft. Compared to other

tools, DFSan finds the least number of flows. The results

show that information loss is common for all tested tools.

How to improve the coverage of training data for
NEUTAINT? To mitigate the information loss, we can add

more training data to reach more sink variables. Using a

fuzzer to generate data with coverage guidance is more

helpful than only randomly flipping the input without the

guidance. In addition, we can use existing techniques such

as symbolic execution to generate training data with high

quality. Finding a new path in any form of DTA is the hard

problem. Once we find one path between source and sink, we

can generate many more paths via input mutation. Though

training the neural program requires at least one path between

a source and a sink, we can achieve lower false positive rate

and higher accuracy than rule-based traditional DTA tools.

Result 7: Training data with higher coverage increases

the flow coverage of NEUTAINT. On average, NEUTAINT

detects 98.7% flows which is 20% more than the second-best

tool Triton.

1538

V. UNDERTAINT CASE STUDY

In this section, we present a case to explain why

NEUTAINT is more accurate than traditional dynamic taint

analysis. Specifically, NEUTAINT tracks implicit information

flows and avoids under taint in real world programs. More

examples can be found in Appendix D.

Example: Implicit Information Flows. Most DTA tools

ignore implicit information flows (i.e., implicit control depen-

dency and complex external library calls) and only support

explicit information flow in data-dependency form. The reason

is that supporting implicit information flows could cause high

runtime overhead and false positive rate [32]. Lack of support

to these implicit information flows often result in under-taint

issue on some real world programs. We discuss the implicit

control dependency in a popular tiny program TinyXML [12].

As shown in List 1, p is a input buffer which stores program

input as taint source. At line 16, ele->ClosingType() is

the sink variable determining the program branching behavior.

At line 6, ele->ClosingType() can be modified to a

constant value when there is a special character in the input

buffer. Since ele->ClosingType() is control-dependent

but not data-dependent on taint source input buffer p,

DTA tools fail to track the flows to such sink variables.

In the second example, we consider such implicit control

dependency in complex external function calls. Many sink

variables are the return values of complex external function

calls such as strcmp() and strncmp(). The return values

are state variables which are control-dependent on the taint

source, but not explicit data dependent. Therefore, DTA tools

would lose taint information for such sink variables.

1 // tinyxml2/tinyxml2.cpp:1066
2 while(p){
3 ...
4 if(*p == ’/’)
5 {
6 /* implicit control flow dependency*/
7 ele->ClosingType() = CLOSING;
8 ++p;
9 }

10 }
11

12 char* XMLNode::ParseDeep(...)
13 {
14 ...
15 /* under-taint */
16 if(ele->ClosingType() == XMLElement::CLOSING)
17 {
18 ...
19 }
20 ...
21 }

Listing 1: Implicit control dependency in TinyXML

NEUTAINT Solution. NEUTAINT avoids this problem by

directly learning the mapping from taint sources to any taint

sink variables (including both data-dependency and control-

dependency variables). Compared to traditional dynamic taint

analysis tools, NEUTAINT has the advantage of generalizing

to various real-world programs.

VI. RELATED WORK

Recently, many works [14], [47], [24], [46], [50] have used

machine learning for different program analysis tasks such as

program synthesis [45], vulnerability detection [28], [43], [39],

[35], [30], [33], [17], program repair [60], [26], fuzzing [48],

[23], [42], [36], [29], [52], and symbolic execution [53].

Dynamic taint analysis [41] [15] [64] [32] [38] executes

programs with concrete inputs to perform the analysis.

However, it incurs large overhead and suffers from overtaint

and undertaint issues. To address these issues, TaintInduce [18]

proposes to learn platform-specific taint propagation rules

from (input, output) pairs of instructions. Their approach

learns propagation rules based on a template, and uses an

algorithm to reduce the task to learning different input sets

and pre-conditions for propagating the taint tags. TaintInduce

increases the accuracy for individual propagation rules,

but they still suffer from accumulated errors and large

overhead due to propagation-based design. On the contrary,

NEUTAINT uses machine learning technique to track end-to-

end information flow. We use light-weight instrumentation to

build neural program embeddings, and directly analyze the

flow of information captured by the neural network models.

Our technique minimizes end-to-end information flow

tracking errors and significantly reduces runtime overhead.

VII. CONCLUSION

We present a novel approach NEUTAINT to perform

taint analysis using neural program embeddings. Our neural

program learns the information flow directly from taint

sources to taint sinks. We use saliency maps to analyze the

information flow in the neural programs. To evaluate the

accuracy, overhead, and application utility of NEUTAINT, we

compare against three state-of-the-art dynamic taint analysis

tools. The results show that NEUTAINT achieves on average

10% increase in accuracy and 40 times less runtime overhead

over the second best dynamic taint analysis tool Libdft.

NEUTAINT can also successfully track the information from

source to sink in exploits. We further evaluate NEUTAINT

through a popular taint application–fuzzing. The taint-guided

fuzzing results demonstrate that NEUTAINT can achieve

on average 61% more edge coverage than state-of-the-art

dynamic taint analysis tools.

ACKNOWLEDGEMENT

We thank Mingshen Sun, our shepherd Mathias Payer and

the anonymous reviewers for their constructive and valuable

feedback. This work is sponsored in part by NSF grants

CNS-18-42456, CNS-18-01426, CNS-16-17670, CNS-16-

18771, CCF-16-19123, CCF-18-22965, CNS-19-46068; ONR

grant N00014-17-1-2010; an ARL Young Investigator (YIP)

award; a NSF CAREER award; a Google Faculty Fellowship;

and a Capital One Research Grant. Any opinions, findings,

conclusions, or recommendations expressed herein are those

of the authors, and do not necessarily reflect those of the US

Government, ONR, ARL, NSF, Google, or Capital One.

1539

REFERENCES

[1] Libdft with support of multiple taint. https://github.com/m000/dtracker.

[2] Triton: A Dynamic Symbolic Execution Framework. SSTIC, 2015.

[3] Triton with support of multiple taint tags. https://github.com/bntejn/
Triton/tree/dev-tagging-taint, 2017.

[4] Clang: a C language family frontend for LLVM. https://clang.llvm.org/,
2018.

[5] DataFlowSanitizer. https://clang.llvm.org/docs/DataFlowSanitizer.html,
2019.

[6] Keras: The python deep learning library. https://keras.io/, 2019.

[7] An open source machine learning framework for everyone.
https://www.tensorflow.org/, 2019.

[8] Pin - A Dynamic Binary Instrumentation Tool. https://software.intel.
com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool, 2019.

[9] scikit-learn Machine Learning in Python. https://scikit-learn.org/stable/,
2019.

[10] TinyELF. https://github.com/TheCodeArtist/elf-parser, 2019.

[11] TinyJPG. https://github.com/cdcseacave/TinyEXIF, 2019.

[12] TinyXML2. https://github.com/leethomason/tinyxml2, 2019.

[13] M. Allamanis, M. Brockschmidt, and M. Khademi. Learning to represent
programs with graphs. arXiv preprint arXiv:1711.00740, 2017.

[14] S. Bhatia and R. Singh. Automated correction for syntax errors in
programming assignments using recurrent neural networks. 2016.

[15] E. Bosman, A. Slowinska, and H. Bos. Minemu: The world’s fastest
taint tracker. In RAID, 2011.

[16] P. Chen and H. Chen. Angora: Efficient fuzzing by principled search.
2018 IEEE Symposium on Security and Privacy (S&P), pages 711–725,
2018.

[17] M.-J. Choi, S. Jeong, H. Oh, and J. Choo. End-to-end prediction of
buffer overruns from raw source code via neural memory networks.
In Proceedings of the 26th International Joint Conference on Artificial
Intelligence, IJCAI’17, 2017.

[18] Z. L. Chua, Y. Wang, T. Blu, P. Saxena, Z. Liang, and P. Su. One engine
to serve’em all: Inferring taint rules without architectural semantics.
In 26th Annual Network and Distributed System Security Symposium,
NDSS 2019, San Diego, California, USA, February 24-27, 2019, 2019.

[19] J. Clause, W. Li, and A. Orso. Dytan: A generic dynamic taint analysis
framework. 2007.

[20] J. Devlin, J. Uesato, S. Bhupatiraju, R. Singh, A.-r. Mohamed,
and P. Kohli. Robustfill: Neural program learning under noisy i/o.
In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 990–998. JMLR. org, 2017.

[21] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth. Taintdroid: An information-flow tracking system
for realtime privacy monitoring on smartphones. In Proceedings
of the 9th USENIX Conference on Operating Systems Design and
Implementation, OSDI’10, pages 393–407, Berkeley, CA, USA, 2010.
USENIX Association.

[22] V. Ganesh, T. Leek, and M. Rinard. Taint-based directed whitebox
fuzzing. In 2009 IEEE 31st International Conference on Software
Engineering, May 2009.

[23] P. Godefroid, H. Peleg, and R. Singh. Learn&Fuzz: Machine Learning
for Input Fuzzing. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering, 2017.

[24] A. Graves, G. Wayne, and I. Danihelka. Neural turing machines. 2014.

[25] R. Gupta, S. Pal, A. Kanade, and S. K. Shevade. Deepfix: Fixing
common c language errors by deep learning. In AAAI, 2017.

[26] R. Gupta, S. Pal, A. Kanade, and S. K. Shevade. Deepfix: Fixing
common C language errors by deep learning. In Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence, February 4-9,
2017, San Francisco, California, USA., 2017.

[27] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos. Dowsing
for overflows: A guided fuzzer to find buffer boundary violations. In
Proceedings of the 22nd USENIX Security Symposium, 2013.

[28] A. Hovsepyan, R. Scandariato, W. Joosen, and J. Walden. Software
vulnerability prediction using text analysis techniques. In Proceedings
of the 4th International Workshop on Security Measurements and
Metrics, MetriSec ’12, 2012.

[29] Z. Hu, J. Shi, Y. Huang, J. Xiong, and X. Bu. Ganfuzz: A gan-based
industrial network protocol fuzzing framework. In Proceedings of the
15th ACM International Conference on Computing Frontiers, 2018.

[30] X. Huo, M. Li, and Z.-H. Zhou. Learning unified features from
natural and programming languages for locating buggy source code.
In Proceedings of the Twenty-Fifth International Joint Conference on
Artificial Intelligence, 2016.

[31] M. G. Kang, S. McCamant, P. Poosankam, and D. X. Song. Dta++:
Dynamic taint analysis with targeted control-flow propagation. In
NDSS, 2011.

[32] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis. Libdft:
Practical dynamic data flow tracking for commodity systems. In
Proceedings of the 8th ACM SIGPLAN/SIGOPS Conference on Virtual
Execution Environments, VEE ’12, 2012.

[33] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. Combining
deep learning with information retrieval to localize buggy files for
bug reports (n). In 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2015.

[34] S. Lekies, B. Stock, and M. Johns. 25 million flows later: Large-scale
detection of dom-based xss. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, pages 1193–1204.
ACM, 2013.

[35] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong.
Vuldeepecker: A deep learning-based system for vulnerability detection.
In 25th Annual Network and Distributed System Security Symposium,
NDSS 2018, San Diego, California, USA, February 18-21, 2018, 2018.

[36] C. Lv, S. Ji, Y. Li, J. Zhou, J. Chen, P. Zhou, and J. Chen.
Smartseed: Smart seed generation for efficient fuzzing. arXiv preprint
arXiv:1807.02606, 2018.

[37] W. Melicher, A. Das, M. Sharif, L. Bauer, and L. Jia. Riding out doms-
day: Towards detecting and preventing dom cross-site scripting. In 2018
Network and Distributed System Security Symposium (NDSS), 2018.

[38] J. Ming, D. Wu, J. Wang, G. Xiao, and P. Liu. Straighttaint: Decoupled
offline symbolic taint analysis. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering, ASE
2016, New York, NY, USA, 2016. ACM.

[39] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin. Convolutional neural
networks over tree structures for programming language processing. In
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
AAAI’16, 2016.

[40] M. Neugschwandtner, P. Milani Comparetti, I. Haller, and H. Bos. The
BORG: Nanoprobing binaries for buffer overreads. In Proceedings
of the 5th ACM Conference on Data and Application Security and
Privacy, 2015.

[41] J. Newsome and D. Song. Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on commodity
software. 2005.

[42] N. Nichols, M. Raugas, R. Jasper, and N. Hilliard. Faster
fuzzing: Reinitialization with deep neural models. arXiv preprint
arXiv:1711.02807, 2017.

[43] Y. Pang, X. Xue, and A. S. Namin. Predicting vulnerable software
components through n-gram analysis and statistical feature selection.
In 2015 IEEE 14th International Conference on Machine Learning and
Applications (ICMLA), 2015.

[44] N. Papernot, P. D. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami. The limitations of deep learning in adversarial settings.
2016 IEEE European Symposium on Security and Privacy, 2016.

[45] E. Parisotto, A. rahman Mohamed, R. Singh, L. Li, D. Zhou, and
P. Kohli. Neuro-symbolic program synthesis. CoRR, abs/1611.01855,
2016.

[46] C. Piech, J. Huang, A. Nguyen, M. Phulsuksombati, M. Sahami, and
L. Guibas. Learning program embeddings to propagate feedback on
student code. In Proceedings of the 32nd International Conference on
Machine Learning, pages 1093–1102, 2015.

[47] Y. Pu, K. Narasimhan, A. Solar-Lezama, and R. Barzilay. Sk P: A
Neural Program Corrector for MOOCs. In Proceedings of the 2016
ACM SIGPLAN International Conference on Systems, Programming,
Languages and Applications: Software for Humanity, 2016.

[48] M. Rajpal, W. Blum, and R. Singh. Not All Bytes Are Equal: Neural
Byte Sieve for Fuzzing. arXiv preprint arXiv:1711.04596, 2017.

[49] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos.
VUzzer: Application-Aware Evolutionary Fuzzing. In Proceedings of
the 2008 Network and Distributed Systems Security Conference, 2017.

[50] S. E. Reed and N. de Freitas. Neural programmer-interpreters. In
International Conference on Learning Representations, 2015.

[51] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detecting format
string vulnerabilities with type qualifiers. In Proceedings of the 10th

1540

Conference on USENIX Security Symposium, SSYM’01, Berkeley, CA,
USA, 2001. USENIX Association.

[52] D. She, K. Pei, D. Epstein, J. Yang, B. Ray, , and S. Jana. NEUZZ:
Efficient Fuzzing with Neural Program Smoothing. In Proceedings of
the 2019 IEEE Symposium on Security and Privacy, 2019.

[53] S. Shen, S. Ramesh, S. Shinde, A. Roychoudhury, and P. Saxena.
Neuro-symbolic execution: The feasibility of an inductive approach to
symbolic execution. 2019.

[54] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional
networks: Visualising image classification models and saliency maps.
CoRR, abs/1312.6034, 2013.

[55] A. Slowinska and H. Bos. Pointless tainting?: Evaluating the practicality
of pointer tainting. In Proceedings of the 4th ACM European Conference
on Computer Systems, EuroSys ’09, New York, NY, USA, 2009. ACM.

[56] M. Sun, T. Wei, and J. C. Lui. Taintart: A practical multi-level
information-flow tracking system for android runtime. In Proceedings
of the 23rd ACM Conference on Computer and Communications
Security, CCS’16, 2016.

[57] M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep
networks. arXiv preprint arXiv:1703.01365, 2017.

[58] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman. Taj:
Effective taint analysis of web applications. In Proceedings of the 30th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’09, New York, NY, USA, 2009. ACM.

[59] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Krügel, and G. Vigna.
Cross site scripting prevention with dynamic data tainting and static
analysis. In NDSS, 2007.

[60] K. Wang, R. Singh, and Z. Su. Dynamic neural program embedding
for program repair, 2017.

[61] T. Wang, T. Wei, G. Gu, and W. Zou. Taintscope: A checksum-aware
directed fuzzing tool for automatic software vulnerability detection. In
Proceedings of the 2010 IEEE Symposium on Security and Privacy, SP
’10, Washington, DC, USA, 2010. IEEE Computer Society.

[62] T. Wang, T. Wei, G. Gu, and W. Zou. TaintScope: A checksum-aware
directed fuzzing tool for automatic software vulnerability detection. In
Proceedings of the IEEE Symposium on Security & Privacy, 2010.

[63] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song. Neural network-
based graph embedding for cross-platform binary code similarity
detection. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 363–376. ACM, 2017.

[64] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda. Panorama:
Capturing system-wide information flow for malware detection and
analysis. In In Proceedings of the 14th ACM Conferences on Computer
and Communication Security (CCS). ACM, 2007.

APPENDIX

A. NN Architecture

We use the neural network architecture shown in Figure 4

to learn neural program embeddings. The taint sources are

NN inputs and taint sinks are NN outputs. The network has

one hidden layer with ReLU activations and one output layer

with sigmoid activations.

X_2

taint
sinks�

...

X_n

X_1 relu

relu

relu

...

sigmoid

... ...

taint
sources

sigmoid

sigmoid

y_1

y_2

...

y_n

Fig. 4: The Neural Network architecture we use to generate

dynamic program embeddings.

B. Saliency Map for ELF File Format

The ELF file format can be broken down into four main

regions, as shown in Fig 5. Three of them are header informa-

tion (ELF, Program Header Table, and Section Header Table)

and the other one is for non-header information (e.g.,.text,

.data, .bss). For a common ELF file parser (readelf), the

main parsing logic focuses on these shaded header regions

and typically ignores the non-header information. Therefore

the hot bytes should locate at the these header regions.

Fig. 5: Saliency Map of user input on program readelf.

The darkness of the color corresponds to the influence of the

region’s bytes on the taint sinks. The ELF Header field has

the largest saliency values.

C. Fuzzing Algorithm

Our fuzzing algorithm is shown in Algorithm 1. The

algorithm takes in hot bytes locations from taint tools and

perform deterministic mutations on these hot bytes. Random

mutations are discarded to ensure that the fuzzer performance

is only affected by the quality of hot bytes identified by the

different dynamic taint analysis front ends.

Algorithm 1 Our mutation algorithm for taint-guided fuzzing

that focuses on influential bytes.

Input: seed ← initial seed

iter ← number of iterations

hot bytes ← hot bytes from taint tools

1: for i = 1 to iter do
2: locations ← top(hot bytes, (2i))
3: for m = 1 to 255 do
4: for loc ∈ locations do
5: v ← seed[loc] +m
6: v ← clip(v, 0, 255)
7: end for
8: gen mutate(seed, loc, v)
9: for loc ∈ locations do

10: v ← seed[loc]−m
11: v ← clip(v, 0, 255)
12: end for
13: gen mutate(seed, loc, v)
14: end for
15: end for

1541

D. Case Study

In this section, we present case studies to explain why

NEUTAINT is more accurate and has lower runtime overhead

than traditional dynamic taint analysis tools.

1) Undertaint: When a taint analysis tool fails to track

all the taint labels for a specified variable, it is considered as

under-taint. Under-taint is a common issue for dynamic taint

analysis. Since the taint propagation rules in dynamic taint

analysis tools are neither sound nor complete, some taint

labels are easily missed during the analysis process [18].

Example: Pointer Taint. In the code example 2, we demon-

strate the classic pointer taint dilemma in a popular XML

parser library libxml, where we track the taint flow from

program input to NXT(len) (line 7 and 8). From the prior

execution context, variables ctxt->cur and len are all

affected by program input taint source and therefore carry the

taint label of the taint source. The example shows a function,

xmlXPathComPathExpr(), that is frequently used by the

library to parse the path expression of a XML element. It uses

len as the index to check the one-character operator of a path

expression at line 7 and 8, through the byte reading macro

NXT(val) defined in line 2. After taking len as the offset

to the current pointer location ctxt->cur, NXT() returns

the byte located at the address ctxt->cur + len. The

propagation rules state that the byte memory is only affected

by a single byte read from the memory content NXT(val),

not by the base address ctxt->cur and len. However,

these addresses determine the byte memory content, which

are missed due to pointer under-taint. In practice, the taint

flow from pointer to memory content is intentionally ignored

by most taint analysis tools as handling them could easily

cause many false positives and even a taint explosion.[55] In

contrast, NEUTAINT can capture such information flow from

pointer to program behavior. Specifically, NEUTAINT models

the function mapping from program input to branch variables

at line 7 and 8. Then, by learning the differences among

program behavior triggered by various input samples at line 7
and 8, NEUTAINT can infer input bytes that reach line 10. The

advantage of our method over traditional taint analysis is that it

is based on the knowledge learned from a summary of runtime

program semantics rather than fixed taint propagation rules.

1 // libxml2-2.9.7/xpath.c:10736
2 #define NXT(val) ctxt->cur[(val)]
3

4 static void xmlXPathCompPathExpr(...)
5 {
6 ...
7 if((NXT(len) == ’<’) || (NXT(len) == ’>’)
8 || (NXT(len) == ’=’))
9 {

10 lc = 1;
11 break;
12 }
13 ...
14 }

Listing 2: Pointer under-taint in libxml

Example: Incomplete Taint Source. Incomplete taint source

identification can also cause severe under-taint issue in real-

world applications. Dynamic taint analysis tools identify the

taint source by installing some hooks to system calls open(),

read(), mmap() and setting taint marks on corresponding

memory/registers. These predefined interception procedures

usually rely on developers’ experience to cover some common

cases. However, real-world applications have diverse and

complex IO procedures. The simple system call hooks in

dynamic taint analysis tools may fail to fully capture all

the taint sources and lose track of taint information at the

beginning of program execution. For example, a popular XML

parser library libxml supports uses compressed IO interface

gzread() by default for both compressed and uncompressed

input, which a lot of tools are not aware of. In this case, a

state-of-the-art dynamic taint tool libdft would lose track of

partial taint source and result in a severe under-taint problem.

To make the matter worse, many different under-taint reasons

can co-occur at different parts of the program.

NEUTAINT Solution. NEUTAINT avoids this problem by not

relying on any human engineered system call hook procedures.

It directly uses a neural network model to learn the mapping

between taint sources and taint sink variables. Compared to

traditional dynamic taint analysis tools, NEUTAINT has the

advantage of generalizing to various real-world programs.

2) Overtaint: Over-taint occurs when dynamic taint

analysis marks irrelevant taint labels on specified variables.

Dynamic taint analysis tools define over-approximated taint

propagation rules for certain types of instructions, making

it hard to track the precise taint flow. Since the taint labels

are propagated at the instruction level and often ignore the

semantic of the program context, the over-taint issue is

inevitable. Furthermore, in a real-world program, a single

over-taint label could instantly propagate to generate many

over-taint labels during a repeating operation (e.g., a loop or

recursive function call). This over-taint issue pollutes further

execution and analysis results.

1 // zlib-1.2.11/inffast.c:50
2 void ZLIB_INTERNAL inflate_fast(strm, start)
3 {
4 ...
5 for(...)
6 {
7 hold += (unsigned long)(*in++) << bits;
8 bits += 8;
9 hold += (unsigned long)(*in++) << bits;

10 bits += 8;
11 ...
12 /* decoding match distance */
13 if(dodist)
14 {
15 dist=(unsigned)hold & ((1U << op) - 1);
16 if(dist > dmax) {...}
17 }
18 ...
19 hold >>= (bits + 16); // over-taint
20 }
21 ...
22 }

Listing 3: Over-taint propagation in zlib

1542

Example. Error Accumulation. As shown in code 3,

inflate_fast() is a decoding function in a zlib decom-

pression procedure, where we track the taint flow from input

buffer in (line 7 and 9) to the distance variable dist (line

16). The function reads compressed data from input buffer in
and decodes the distance variable dist for further deflation.

Going through the for loop, every time two bytes are read

from in buffer (lines 7-10) and stored into the bit accumulator

hold, then the content in hold are dropped at line 19. After

a few iterations, the condition at line 13 is satisfied and the

function starts to decode the match distance variable dist.

So dist is only affected by the two new bytes in hold that

are read from the current round. The over-taint occurs at line

19 when hold drops bits from the previous round through

a shift operation, but the taint rules did not drop the labels.

Since no taint propagation rule can be general enough for

different program semantic, dynamic taint analysis tools use a

conservative taint rule to copy all the taint labels from source

(hold) to destination (hold) for shift instructions. For every

round in the loop, hold obtains two byte taint labels while

still keeping the old taint labels from the previous round.

The total taint labels of hold were accumulated through the

loop, then spread to dist that determines the conditional

program behavior at line 16. The over-taint propagation issue

stems from the inaccurate taint propagation rules pre-defined

by experts. It is impossible to design fixed taint propagation

rules to accurately handle all the real-world cases.

NEUTAINT Solution. NEUTAINT directly models the mapping

from program input to conditional program behaviors at line

16. As long as there exist samples that cover different

branches at line 16, NEUTAINT can easily infer the two

critical bytes of program input that affect dist.

3) Overhead: Traditional dynamic taint analysis tools track

the taint labels by instrumenting the execution of the program.

Specifically, for every executed instruction, the taint analysis

tool calls a corresponding taint propagation handler to process

the taint labels associated with the operation. Most instructions

trigger calls to these handlers to track the taint flow with very

few exceptions (e.g., push, pop and ret), leading to a large

runtime overhead. The runtime overhead of taint propagation

is also affected by the granularity of the taint tag. Marking taint

tags for each input on the coarse binary taint tag granularity al-

ready incurs significant overhead, not to mention the overhead

to mark each input offset. A complex dynamic taint analysis

task such as fuzzing requires more fine-grained taint labels

which represents different offsets of user input. Tracking nu-

merical taint labels incurs more runtime overhead than simple

binary taint labels due to the fact that a basic union operation

over two tainted source tags with respectively m and n offsets

is O(mn) time complexity, rather than O(1) on two binary taint

labels. As a result, adopting fine-grained taint labels drastically

increases the runtime overhead of taint propagation handlers.

Example. Real-world programs can have many time-critical

operations that are frequently executed. If every instruction

of these time-critical procedures needs to call additional taint

propagation handler, then the runtime overhead would be

significantly large. As shown in code 4, decode_mcu() is

a common function used in JPEG parser library libjpeg,

where we track taint flow from program input to DC

coefficients block. The function uses a for loop to

decode Huffman-compressed coefficients, by repeatedly

calling a function macro HUFF_DECODE at line 17. Since

HUFF_DECODE is a time-critical operation, it is implemented

as inline-macro for better performance. However, most

operations in HUFF_DECODE involve taint propagation.

Starting from line 5, the macro reads a byte c from input

buffer, then performs a binary OR between get_buffer and

c at line 6. So get_buffer takes the union of taint labels

for c and itself. At line 7, the global variable get_buffer is

used to perform huffman decoding which requires to propagate

the taint label from get_buffer to result. Repeated

calls to the macro HUFF_DECODE all involve taint label

propagation, causing extreme runtime overhead. These taint

labels finally propagates into result variable s at line 20, which

would be intensively used during later decoding procedure and

introduce even more runtime overhead. Our experiments show

that a state-of-the-art dynamic taint analysis tool has more than

10,000X runtime overhead than normal execution on libjepg.

NEUTAINT Solution. As mentioned in last section, NEUTAINT

is a black-box analysis that does not need to track every

instruction, enabling it to avoid large runtime overheads.

1 // jpeg-9c/jdhuff.c:1197
2 #define HUFF_DECODE(result, ...) \
3 {
4 ...
5 c = read_byte(); \
6 get_buffer = get_buffer | c; \
7 result = huff_decode(get_buffer, ...); \
8 ...
9 }

10

11 bool decode_mcu(j_decompress_ptr cinfo, ...)
12 {
13 ...
14 for(...)
15 {
16 ...
17 HUFF_DECODE(s, br_state, htbl, ...);
18 ...
19 /* Output the DC coefficient */
20 (*block)[0] = (JCOEF) s;
21 ...
22 }
23 ...
24 }

Listing 4: Extreme runtime overhead in libjpeg. In

Line 17, macro HUFF_DECODE is repeatedly called,

which involves expensive taint label propagation, causing

extreme runtime overhead.

1543

