
Kobold: Evaluating Decentralized Access Control for
Remote NSXPC Methods on iOS

Luke Deshotels
North Carolina State University,

Samsung Research America
ladeshot@ncsu.edu

Costin Carabas,
University POLITEHNICA of Bucharest

costin.carabas@cs.pub.ro

Jordan Beichler
North Carolina State University

jabeichl@ncsu.edu

Răzvan Deaconescu
University POLITEHNICA of Bucharest

razvan.deaconescu@cs.pub.ro

William Enck
North Carolina State University

whenck@ncsu.edu

Abstract—Apple uses several access control mechanisms to
prevent third party applications from directly accessing secu-
rity sensitive resources, including sandboxing and file access
control. However, third party applications may also indirectly
access these resources using inter-process communication (IPC)
with system daemons. If these daemons fail to properly enforce
access control on IPC, confused deputy vulnerabilities may
result. Identifying such vulnerabilities begins with an enumer-
ation of all IPC services accessible to third party applications.
However, the IPC interfaces and their corresponding access
control policies are unknown and must be reverse engineered at
a large scale. In this paper, we present the Kobold framework
to study NSXPC-based system services using a combination
of static and dynamic analysis. Using Kobold, we discovered
multiple NSXPC services with confused deputy vulnerabilities
and daemon crashes. Our findings include the ability to activate
the microphone, disable access to all websites, and leak private
data stored in iOS File Providers.

Keywords-access control, iOS, iPhone, inter-process commu-
nication, fuzzer, attack surface, automation, policy analysis

I. INTRODUCTION

Apple’s iOS App Store offers over 2 million applica-
tions [26], and in 2017 was used by half a billion customers
per week [27]. To protect users, third party applications run
within the confines of a sandbox that limits the number of
directly accessible resources. However, applications can also
indirectly access sensitive resources through inter-process
communication (IPC) with system daemons. For example, an
application does not have direct access to a user’s calendar,
but can use services provided by a calendar managing
daemon to view and modify calendar events. If a system
daemon does not properly enforce access control, a third-
party application may be able to abuse the daemon as a
confused deputy [20] to perform some action that damages
the system or violates the user’s privacy.

IPC-based confused deputy vulnerabilities are not new.
Woodpecker [17] uses data-flow analysis on pre-loaded
Android applications to enumerate dangerous services ex-

posed to other applications. However, several features (e.g.,
dynamic dispatching for method calls) make data flow
analysis less practical for iOS binaries. To the best of our
knowledge, there exists no systematic enumeration of iOS
remote methods accessible to third party applications. The
closest related work is existing IPC fuzzers for iOS [2],
[22], [30] that probe for code flaws such as type confusion
or dereferencing vulnerabilities, which can be exploited
to obtain arbitrary code execution. However, these fuzzers
do not attempt to enumerate remote methods or identify
confused deputy vulnerabilities. From a policy perspective,
SandScout [10] and iOracle [9] detect access control policy
flaws in iOS; however, they are limited to the file system.

iOS system daemons frequently protect IPC using static
capabilities called entitlements, which are immutable key-
value pairs bound to an executable’s code signature at
compile time. To enforce access control policy on IPC,
system daemons often use hard-coded conditional checks
based on a caller’s entitlements. Unfortunately, there is
limited understanding of IPC on iOS, despite the growing
amount of literature on iOS application [4], [8], [12], [19],
[25], [29] and platform security [9], [10]. iOS defines several
IPC interface abstractions, many of which exist for legacy
reasons. The state-of-the-art interface type is called XPC.1

This paper focuses on the object-oriented version of XPC
called NSXPC (Next Step XPC). Specifically, we seek
to answer: Which security and privacy sensitive NSXPC
methods are accessible to third party applications? The
answer represents an attack surface of remote methods that
may be exploited by third party apps through IPC.

To answer this question, we address three research chal-
lenges. First, the set of entitlements available to third party
applications is unknown. We identify two sets of entitle-
ments available to third party applications: a public set
accessible to all developers, and a semi-private set that Apple

1To the best of our knowledge, Apple has not expanded this acronym

1056

2020 IEEE Symposium on Security and Privacy

© 2020, Razvan Deaconescu. Under license to IEEE.
DOI 10.1109/SP40000.2020.00023



provides only to select developers. For example, the Uber
application was found to possess a potentially dangerous en-
titlement normally unavailable to third party applications [6].
Second, the set of NSXPC services accessible to third party
applications is unknown. The executables that provide these
services are closed source and there is no centralized policy
mapping services to their entitlement requirements. Third,
which NSXPC services are security or privacy sensitive is
unknown. The semantics of these services are not publicly
documented, and data flow analysis in iOS is nontrivial.

In this paper, we present the Kobold2 framework for
studying NSXPC services in iOS. Kobold leverages two
key insights. First, the standardized IPC interfaces (e.g.,
NSXPC) contain predictable patterns in compiled code that
are identifiable via static analysis. Second, error messages
returned by unauthorized attempts to access IPC services can
provide a model of the iOS IPC access control policy. Using
these insights, Kobold provides a pattern-based, static binary
program analysis to enumerate NSXPC interfaces and then
dynamically uses systematic probing to extract an approxi-
mation of the access control policy encoded by conditional
checks within a given service. We used Kobold to study
iOS 9, 10 and 11 and found multiple NSXPC services with
confused deputy vulnerabilities and daemon crashes. The
discovered vulnerabilities allow third-party applications to
activate the microphone, disable access to all websites, and
leak private data stored in iOS File Providers. All issues
have been reported to Apple. At the time of writing, Apple
has provided two CVEs in response to our disclosure and is
working to resolve remaining issues. After fixes are made,
we plan to publicly release Kobold as open source code.

This paper makes the following contributions:
• We present Kobold, the first framework for evaluating

NSXPC access control policies implemented in iOS
system code. Kobold enumerates the NSXPC services
accessible to third party applications and uses heuristics
to determine which services are likely to be exploited.

• We perform the first measurement of semi-private enti-
tlements. We analyze approximately six thousand popu-
lar third party applications and 100 thousand randomly
selected third party applications to determine which
semi-private entitlements Apple distributes to an undis-
closed subset of third party developers.

• We identify previously unknown security issues includ-
ing three categories of confused deputy vulnerabilities
and fourteen daemon crashes. Our findings include
crashes for root authority daemons, unprivileged access
to Mobile Device Management (MDM) functionality,
and microphone activation without user permission.

Kobold does not require a jailbroken device. However, a
jailbroken device can provide supplemental data that may
assist in identifying vulnerabilities. Furthermore, Kobold is

2A spirit from German folklore that haunts mines.

not restricted to a specific version of iOS and can be used
to study new versions as they are released.

The remainder of the paper proceeds as follows. Section II
provides background on iOS IPC and access control. Sec-
tion III overviews Kobold. Section IV details the implemen-
tation of Kobold. Section V presents the results of the semi-
private entitlement survey. Section VI quantifies the ports,
methods, arguments, and entitlement requirements enumer-
ated by Kobold. Section VII demonstrates Kobold’s ability
to detect previously unknown policy flaws and crashes.
Section VIII discusses limitations. Section IX overviews
related work. Section X concludes.

II. BACKGROUND

iOS is Apple’s operating system for mobile devices (i.e.,
iPhone, iPad, iPod). It is very similar to macOS, watchOS,
and tvOS, which are all based on the XNU (X is Not Unix)
kernel. XNU is a hybrid kernel that combines the Mach
microkernel, FreeBSD, and a driver framework called I/O
Kit. Mach provides much of the Inter-Process Communica-
tion (IPC) functionality through mach-messages. FreeBSD
provides the file system and the TrustedBSD Mandatory
Access Control (MAC) Framework, which allows Apple
to hook system calls and implement sandboxing. Finally,
as interfaces between user space and kernel space, I/O
Kit drivers are often the target of fuzzing. The remainder
of this section will explain Mach IPC and access control
mechanisms that regulate IPC on iOS.

A. Mach IPC

IPC on iOS is built upon the Mach microkernel. The
primitive components of Mach IPC are mach-messages
and mach-ports. A service-providing process can host re-
mote methods by registering a name for a mach-port, and
clients can send messages to that port in order to call
the remote methods. The mach-port name registration is
facilitated by launchd, which also assists clients in con-
necting to mach-ports. For example, the location daemon,
locationd, offers remote methods on the mach-port named
“com.apple.locationd.registration”. A client process can ac-
cess these methods by asking launchd to connect it to the
“com.apple.locationd.registration” mach-port. If the connec-
tion is successful, the client can then send messages to the
server via the mach-port. If the messages are well formed,
and the client has sufficient capabilities, the server will the
execute the methods for the client (e.g., locationd could
provide access to the user’s coordinates). While launchd
plays a low-level role in securely facilitating mach-port
connections, flaws in launchd are out of scope for Kobold.
XPC and NSXPC: The process of encoding and decod-
ing mach-messages is complex, error prone, and security
sensitive. Abstractions are provided by Apple to make IPC
simpler for developers. The state-of-the-art interface types

1057



are XPC and its object oriented variant, NSXPC. In object-
oriented IPC, an object and its methods reside in the service-
providing process, but the client can access the object as
though it existed in the client’s address space. Therefore, a
service-providing process using NSXPC can register mul-
tiple mach-port names that each provide access to remote
objects, and each remote object exposes remote methods.
NSSecureCoding: In order to mitigate type confusion at-
tacks [14], remote methods exposed with NSXPC have strict
parameter types that must adhere to a protocol called NSSe-
cureCoding.3 Any attempts to invoke these methods with
invalid parameter types are immediately rejected. Therefore,
Kobold must perform three tasks: 1) identify the mach-ports
associated with NSXPC interfaces; 2) find the names of
remote methods provided by remote objects; and 3) obtain
the expected argument types of those remote methods.

B. IPC Access Control

Apple uses app vetting and code signing requirements to
help protect iOS users from malicious applications. How-
ever, code signing and app vetting are not sufficient to stop
all attacks, and researchers have demonstrated several attacks
that bypass these defenses [19], [29], [33]. To mitigate such
attacks, Apple has implemented multiple layers of access
control including capability systems and the sandbox.
Entitlements: The capability most relevant to IPC access
control is called an entitlement. Entitlements are key-value
pairs statically embedded into an executable’s code signa-
ture. An application’s entitlements can only be changed as
part of a formal app update, and the entitlements are not
made visible to users installing the application. Apple uses
entitlements to help determine which privileges are accessi-
ble to each application. The most dangerous entitlements
(e.g., bypassing code-signing restrictions) are private and
reserved for executables created by Apple. Less sensitive
entitlements (e.g., inter-app audio) are publicly available
to third party developers who can add them to apps by
toggling switches in Xcode during development. A third,
poorly understood class of semi-private4 entitlements are not
available through Xcode toggles, but can still be found in a
number of third party apps on App Store.
Enforcement: Figure 1 illustrates the three locations of
NSXPC IPC access control enforcement. At stage one, the
sandbox can allow or deny requests to connect to specific
mach-port names. The sandbox can prevent the client from
making the system call that would cause launchd to make
the connection. Apple must allow third party applications to
access some IPC functionality (e.g., accessing location data),
so it cannot use the sandbox to block access to all mach
ports. Sandbox enforcement is also not sufficiently granular
to support ports that offer some methods intended for third

3https://developer.apple.com/documentation/
foundation/nssecurecoding?language=objc

4https://forums.developer.apple.com/thread/77704

Figure 1. Stages of NSXPC Access Control: 1) Sandbox Access to Port;
2) Entitlement Checks for Port; 3) Entitlement checks for Remote Method

party apps and some methods intended for only system apps.
At stage two, the service-providing process can accept or
deny attempts to connect to one of its mach-ports based on
the client’s capabilities. Finally, at stage three, each remote
method can accept or deny attempts to invoke them based on
the client’s capabilities. For stages two and three, service-
providing processes can check the entitlements of clients
by using the SecTaskCopyValueForEntitlement
API [23]. This API allows a process to specify an entitlement
key and a client (i.e., a token representing the client’s id), and
the API will return the value associated with that entitlement
key for the specified client.

III. OVERVIEW

This paper seeks to answer the research question: Which
security and privacy sensitive NSXPC methods are acces-
sible to third party applications? The answer helps charac-
terize the attack surface of iOS with respect to third party
applications. Historically, iOS security has strongly relied
on the App Store review process, allowing malicious apps
to circumvent protections by obfuscating calls to sensitive
system services [29]. Recent years have seen substantial
improvements to the iOS platform’s access control policies
and mechanisms. However, the policies have become com-
plex and difficult to define. Prior work [9], [10] addressed
this complexity by systematically studying file-based access
control in iOS. Kobold compliments this prior work by
investigating IPC access control.

In order to determine which security and privacy sensitive
NSXPC methods are accessible to third-party applications,
we must overcome three research challenges.

• The set of entitlements available to third-party applica-
tions is unknown. While Xcode defines a set of “public”
entitlements available to all iOS application developers,
reports indicate that there is a set of “semi-private”
entitlements that Apple grants to select developers [6].

• The set of NSXPC services accessible to third party
applications is unknown. NSXPC services are dynami-
cally resolved via service names. There is no documen-
tation or configuration file mapping NSXPC services
(i.e., method names) to corresponding daemons, much
less IPC entry points within those daemons. Moreover,
access control policy for accessing NSXPC services
is hard-coded into daemons. Unlike prior-work [9],

1058



Vulnerability Analysis

Firmware

App Data

Sandbox Rules

Mach Services
(NSXPC Objects, 
Methods, Ports)

Entitlement Types 
(public, semi-private)

Triage 
Accessible 
Services

Attack 
Surface

Static
Analysis

Static
Analysis

Static
Analysis

Dynamic 
Testing

Figure 2. Kobold Overview

[10], we cannot consult a policy specification, encoded
in a proprietary format or otherwise. Apple could
more easily obtain the method names for IPC services.
However, they cannot automatically determine where
the entitlement checks will be (e.g., they could occur
indirectly in libraries), and they cannot determine which
resources are being protected by entitlement checks.

• Which NSXPC services are security or privacy sensitive
is unknown. There is no public information on service
semantics. And code and data flow analysis of NSXPC
services is non-trivial due to the complex and closed
source implementation of iOS programs.

We address these challenges through a combination of
static analysis and dynamic testing, as shown in Figure 2.
First, services are enumerated (i.e., identify the port, method
name, and arguments). Second, Kobold triages only those
services that are accessible to third party applications. Third,
we use heuristics to choose accessible, security sensitive
services for manual analysis.

Kobold’s static analysis helps to enumerate the attack sur-
face, while the dynamic analysis allows an analyst to triage
which NSXPC services are likely to contain vulnerabilities.
This approach led to the discovery of confused deputy vul-
nerabilities and daemon crashes that we disclosed to Apple.
A simpler approach using only dynamic analysis would
likely overlook several services that are rarely called at run-
time. Likewise, an approach that focuses only static analysis
would risk spending significant time analyzing services that
are not actually accessible to third party applications.
Enumeration of services: A common approach to finding
IPC vulnerabilities is to dynamically record IPC messages
during normal system activity and replay these messages
with slight mutations. However, this “record and replay” ap-
proach has two disadvantages. First, it will not reveal rarely
used services that were not invoked during the “record”
phase. Second, it is highly dependent on using a jailbroken
device to record the IPC activity. Instead, we apply static
analysis to extract object-oriented (i.e., NSXPC) services
from iOS firmware, which is available for download from
Apple.5 This analysis is based on the intuition that high level
abstractions create patterns in binaries that are amenable to

5https://developer.apple.com/download/

static analysis. Our enumeration approach does not require
a jailbroken device and will reveal the ports, method names,
and argument types for services regardless of how often
those services are used.
Triaging accessible services: Significant manual effort can
be saved by triaging the services accessible to third party ap-
plications. We use three techniques to perform this triaging.
First, we use a model of the iOS sandbox policy for third
party apps (i.e., the container policy) to determine which
mach ports a third party application has access to. Second,
we use an iOS application to dynamically invoke services. A
significant number of services provide responses in the form
of completion handlers (callbacks). These responses allow
us to confirm when a service was successfully accessed.
Third, the sandbox model and service responses (e.g., error
messages) sometimes indicate that a specific entitlement
is required to access a service. In order to determine if
the required entitlement can be possessed by a third party
application, we performed an automated survey of the Apple
App Store and created a list of entitlements observed there.
Vulnerability Analysis: Our initial dynamic testing uses
uninitialized values for the variables passed as arguments
into services. In many cases, uninitialized values are suf-
ficient to trigger unusual system activity (e.g., crashes,
prompts to the user, disabling system resources, audible
alerts). Additional tests are performed to map specific ser-
vice invocations with observed security sensitive operations.
We also use the names of methods as a heuristic to prioritize
methods for manual investigation. During manual investiga-
tion we can initialize variables with valid values, and we can
optionally use a jailbroken device to monitor system activity
(e.g., file access logs) while invoking the service.

IV. KOBOLD

Kobold is divided into three tasks. First, it performs a
survey of the entitlements available to third party applica-
tions. Second, it enumerates the NSXPC services accessible
to third party applications. Third, we evaluate the security
sensitivity of accessible NSXPC services in order to high-
light services likely to allow confused deputy attacks.

The first and second tasks are automated. We developed
scripts and integrated existing tools to extract application
entitlements and enumerate NSXPC services. The third task

1059



uses fuzzing and manual analysis to investigate NSXPC
service methods that are accessible and security sensitive.

A. Identify Semi-Private Entitlements

Since entitlement requirements in the sandbox can de-
termine the set of mach-ports accessible to third party
applications, our first step is to enumerate the entitlements
that a third party application can possess. Finding the set of
public entitlements is trivial. We enable all the capabilities
available in Xcode for an iOS app and extract the entitle-
ments from this app’s signature. However, identifying semi-
private entitlements requires scraping applications from the
App Store and surveying their entitlements.

Definition (Semi-Private Entitlement). An entitlement is
semi-private if it is possessed by a third party application on
the app store, but not possessed by our experimental Xcode
application with all capabilities enabled.

Kobold’s entitlement surveying framework has two stages.
First, we automatically download the .ipa (iPhone applica-
tion archive) files representing iOS applications from the
Apple App Store. Second, we extract metadata and entitle-
ment data from each .ipa file and search for entitlements that
we have not already labeled as public. Finally, we take care
to ignore entitlements from App Store applications that list
“Apple” as the developer. Such applications are not installed
by default on iPhones, but they can still be granted private
entitlements because their code base is owned by Apple.
App Scraper: We developed an app scraper for Kobold,
but we do not claim to have developed the first App Store
scraper. Kobold uses accessibility options and AppleScript to
manipulate iTunes on macOS, while prior work by Orikogbo
et al. [25] uses a Windows virtual machine to manipulate
iTunes. We collected our app samples in September 2017.
Apple has officially removed the iOS app market from
the default version of iTunes. However, to reproduce our
analysis, it is possible to install6 an alternative version7 of
iTunes and restore the iOS app market functionality.
Modeling Sandbox Entitlement Checks: Kobold expands
upon an existing model of iOS access control called iOra-
cle [9] in two ways: 1) modeling sandbox rules for mach-
port access; and 2) enumerating the entitlements available
to third party applications. By combining an enumeration of
third party entitlements and the model of sandbox rules for
mach-port access, Kobold can automatically map third party
accessible entitlements to sandbox rules that require those
entitlements. This mapping allows us to infer which mach
ports are accessible to a sandboxed third party application
(even if that app possesses semi-private entitlements).

6https://www.macworld.com/article/3230135/software-
entertainment/how-to-install-itunes-1263-and-replace-itunes-127.html

7https://support.apple.com/en-us/HT208079

B. Enumerate Accessible NSXPC Services

To invoke an NSXPC service, a client must correctly
specify two targets: (1) a mach-port name and (2) a remote
method associated with the service. Kobold uses two static
analysis techniques and one dynamic analysis technique to
find these mach-ports and methods in order to enumerate
the NSXPC services accessible to third party applications.
First, a mapping of mach ports to the executables that
host them is extracted from a cache of configuration files
extracted from the iOS firmware. Second, protocol headers
that contain method names for NSXPC services are extracted
statically from daemon binaries, which were extracted from
iOS firmware. Third, our internally developed application
attempts to invoke combinations of mach ports and method
names while recording responses from these invocations.
Mapping Mach Ports to Executables: In general, iOS
statically maps mach port names to the executables that host
them. In theory, it is possible for services to be set up at
runtime, but due to the following reasons it is usually done
statically. The static mapping allows launchd to start the
appropriate daemon when a service provided by that daemon
is requested. A static mapping also prevents processes from
pretending to host a mach port in order to steal IPC
messages. The mapping of mach-ports to executables can
be obtained statically by analyzing a cache of mach-port
name registrations stored in xpcd_cache.dylib. How-
ever, parsing this file is non-trivial. First, Kobold identifies
a section in the .dylib binary format that represents a .plist
file and extracts that section using jtool.8 This plist file is
then converted from a binary format into xml by using the
plutil utility. Finally, the xml formatted plist file can
be parsed with regular expressions to extract a mapping of
service providing executables to the mach-ports they host.
Mapping Protocols to Executables: Since NSXPC is an
object-oriented interface, both the client and service provider
are expected to have a list of method declarations (method
names and argument types) called a protocol. However, these
protocols are not publicly available and must be extracted
from the binary executables of service providers found on
the iOS firmware image. We use a static analysis tool called
class-dump9 to extract object-oriented features (i.e., protocol
method declarations) from iOS daemon executable files.
Using class-dump, we search service providers for inter-
face classes associated with either NSXPCConnection or
NSXPCListener classes. Class-dump extracts the protocols
implemented by these interfaces, and we extract method
declarations from those protocols. The extracted protocols
are not guaranteed to represent NSXPC services, but we treat
them as an over-approximation that can be refined through
dynamic testing. For example, the NSXPCListenerDelegate
protocol appears often, but it seems to act as a utility service

8http://www.newosxbook.com/tools/jtool.html
9http://stevenygard.com/projects/class-dump/

1060



supporting connections for other NSXPC services and is not
relevant to our analysis.
Mapping Ports to Protocols: At this point, mach-ports
have been mapped to executables, and protocols have been
mapped to executables. Kobold also removes any mach-
ports that the sandbox blocks access to as discussed in
Section IV-A. However, an executable could use more than
one mach-port and more than one protocol. Therefore, while
we have significantly reduced the possible combinations,
we still need to disambiguate invalid mach-port to protocol
combinations within an executable. Kobold addresses this
ambiguity by attempting each combination at run time and
using message feedback to determine which mach-port to
protocol combinations are valid.
Bypassing Compile Time Policies: The Xcode IDE for iOS
forbids developers from calling NSXPC APIs in their code.
However, through reverse engineering we have confirmed
that system programs on iOS do use NSXPC. Therefore, the
libraries for NSXPC exist on the iOS device, but Xcode acts
as a compile-time obstacle to discourage malicious or acci-
dental abuse of low level functionality. To clarify, third party
applications are expected to call libraries that will indirectly
call NSXPC APIs from the third party app’s address space.
If developers directly invoke NSXPC APIs, they are more
likely to call them with invalid or dangerous parameters.
Investigating the NSXPC header file10 in the iOS SDK (Soft-
ware Development Kit) revealed that the NSXPC API we
needed was augmented with the tag __IOS_PROHIBITED.
Removing these tags from the header file allowed us to use
Xcode to compile applications using NSXPC APIs.
Completion Responses: Once a client connection to a
mach-port, NSXPC allows it to call associated remote meth-
ods. Many methods contain a special parameter called a
completion handler that contains zero or more arguments
and a block of code to be executed if the remote method
completes. Kobold calls all remote methods associated with
the protocols extracted and assumes that messages which
trigger completion handler responses are accessible unless
those completion handlers return error messages specify-
ing entitlement requirements. If an error occurs, a helpful
message describing the problem may be available in the
error field of the method’s completion handler. We speculate
that these error messages were only intended for Apple
developers since third parties are not expected to use the
NSXPC APIs. However, we have found these completion
handler errors to provide valuable insights since they may
specify the entitlement key and value required for the
method being called. An example automatically-generated
completion handler is presented in Figure 3.

10/Applications/Xcode.app/Contents/Developer/Platforms
/iPhoneOS.platform/Developer/SDKs/
iPhoneOS11.3.sdk/System/Library/Frameworks/
Foundation.framework/Headers/NSXPCConnection.h

1 NSXPCInterface *myIf_9;
2 NSXPCConnection *myConn_9;
3
4 initWithMachServiceName:@"com.apple.commcenter.

cupolicy.xpc"options:0];
5
6 myConn_9.remoteObjectInterface = myIf_9;
7 [myConn_9 resume];
8 myConn_9.interruptionHandler = ˆ{NSLog(@"id 9:

Connection Terminated");};
9 myConn_9.invalidationHandler = ˆ{NSLog(@"id 9:

Connection Invalidated");};
10 NSLog(@"id 9: Invocation has a completion handler");
11
12 typedef void (ˆobjectOpBlock_9_2)(NSError * var_9_1);
13 objectOpBlock_9_2 blockH_9_3 = ˆ(NSError * var_9_1) {
14 NSLog(@"id 9: Completion message");
15 @try {
16 NSLog(@"id 9: COMPLETION HANDLER OUTPUT NSError *

var_9_1: %@",var_9_1);
17 }
18 @catch (NSException * e) {
19 NSLog(@"Completion Handler Exception: %@", e);
20 }
21 };
22
23 @try {
24 [myConn_9.remoteObjectProxy refreshPlansInfo:

blockH_9_3];
25 }
26 @catch (NSException * e) {
27 NSLog(@"Invocation Exception: %@", e);
28 }

Figure 3. Example Automatically-Generated Completion Handler

C. Security Sensitivity of NSXPC Services

We use four methods to evaluate the security sensitivity of
each remote method and filter for candidate attacks: 1) we
use method name semantics and entitlement requirement
inconsistencies to triage methods for manual investigation;
2) we manually investigate values returned via completion
handler arguments; 3) we observe user perceivable changes
on the device; 4) we use a jailbroken device to provide
supplemental insight into file operations and crash logs.
Method Name Semantics: Apple has not obfuscated the
names of the remote methods, and Objective-C requires each
parameter to be mentioned in the method name. Therefore,
the method names contain a significant amount of semantic
information related to their functionality. The method name
of each method with a successful completion handler (in-
cluding the following example) was reviewed manually by
an author with experience investigating iOS access control
policies. For example, we would manually classify the
following method declaration as security sensitive due to
the terms “Recording”, “Dictation”, and “Speech”.

1 - (oneway void)startRecordingFor
2 PendingDictationWithLanguageCode:(NSString *)
3 arg1 options:(AFDictationOptions *)
4 arg2 speechOptions:(AFSpeechRequestOptions *)
5 arg3 reply:(void (ˆ)(NSXPCListenerEndpoint *))

arg4;

Entitlement Inconsistencies: Each remote method is an
opportunity for developers to make access control mistakes.
We assume that each method associated with a mach port
has a similar level of security sensitivity. We also assume

1061



that methods requiring entitlements are security sensitive.
Therefore, any method that does not require an entitlement
and shares a port with a method that does require an entitle-
ment is considered to be security sensitive. For example, if a
port has 9 methods that require an entitlement and one that
does not, we assume that a developer may have forgotten to
add an entitlement requirement to the unrestricted method.
Observations Without Jailbreak: A significant amount
of system activity can be observed when fuzzing remote
methods on a non-jailbroken device. Many methods contain
parameters that represent return values, and these values
may contain security sensitive data after the method finishes
executing. In one step, we initialize method parameters to
either simple values such as 0 for numbers or an empty
string. Then we use values previously collected via static
analysis or dynamic analysis, e.g., names of open files or
file names and strings used in programs. If invalid method
arguments cause device features to be disrupted (e.g., Inter-
net access, configuration options), a human observer may
detect these changes by manually investigating the device
state. Effects such as sounds or prompts that occur while
running the fuzzing application can also be documented.
Finally, crash reports are visible to iOS users through the
Settings menu. These reports can be used to detect crashes
caused by method invocation on stock or jailbroken devices.
Observations With Jailbreak: We perform two types on
dynamic analysis to observe system activity on a jailbroken
device. First, we use filemon11 to track all file operations
(i.e., the process, file source, file destination, and operation
type) on the device. Second, we monitor crash log files.12,13

V. IDENTIFIED SEMI-PRIVATE ENTITLEMENTS

As discussed in Section IV-A, an application’s entitle-
ments play a significant role in determining which mach
ports and remote methods the app has access to. Public
entitlements are trivially identifiable by assigning them to
an experimental iOS application created in Xcode with all
capabilities toggled on. However, Apple also distributes an
unknown set of semi-private entitlements to a subset of third
party developers. Therefore, we need to answer the research
question: “What semi-private entitlements can be acquired
by third party applications?”. To answer this question, we
performed a survey of the Apple iOS App Store in order to
search for third party applications with entitlements that are
not in our set of known public entitlements. We conducted
the survey in September and October 2017.
Six Thousand Popular Apps: Since semi-private entitle-
ments require an additional amount of trust from Apple, we
assume that popular applications (e.g., Netflix and Uber) are
more likely to contain semi-private entitlements. There are
25 app genres listing the top 240 most popular applications

11http://www.newosxbook.com/src.jl?tree=listings&file=3-filemon.c
12/private/var/mobile/Library/Logs/AppleSupport/
13/private/var/mobile/Library/Logs/CrashReporter/

for the United States in each genre for a total of 6000 appli-
cations. Of the 6000 popular apps, there is overlap between
genres (e.g., the same app might be listed under Games and
Lifestyle), and only 5873 of the popular applications were
unique. Of the 5873 unique applications, 5716 were free, and
we did not collect any paid applications. Of the 5716 free
applications, 16 gave error messages stating that they were
not currently available in the United States, and we were able
to download the other 5700 applications. We speculate that
these applications were revoked from the US app store, but
are still indexed as popular. Our final sample set consisted
of 5700 popular, free applications currently available in the
US. 17 of the 5700 applications list Apple as the developer,
so we label the remaining 5683 as third party applications.
100k Random App Sample: In addition to our survey of
popular applications, we also collected 100 thousand ran-
domly selected applications. This collection was performed
automatically by a tool we developed. It took two weeks
for it to download the applications and another two days to
extract the entitlements used in those applications. However,
within this sample we did not detect any new types of semi-
private entitlement that had not been observed in our sample
of six thousand popular applications. This finding supports
the assumption that a sample set of popular applications
is sufficient to study semi-private entitlements. Therefore,
quantities listed in this section are with respect to the six
thousand popular apps.
Results: We discovered 17 semi-private entitlements. To
the best of our knowledge, only 4 have clear documentation
from Apple about the process of requesting them. The
process requires sending an email to a specific team
within Apple to request access. The four entitlements
publicly documented as semi-private are pass-presentation-
suppression,14 payment-pass-provisioning,15 previous-
application-identifiers,16 and HotspotHelper.17 The semi-
private entitlements are listed in Table I.
Vendor Specific Entitlements: Five of the semi-private
entitlements are vendor-specific, listing the app developer’s
names in the entitlement key. Flickr, Twitter, Vimeo, and
several Facebook applications all have vendor-specific, semi-
private entitlements with keys referencing default access and
account data. Nike has three applications with a vendor-
specific entitlement referencing healthkit and Nike Fuel,
Nike’s proprietary unit of measurement for fitness activity.
Sharing Resources with Daemons: Two applications pos-
sess unique semi-private entitlements that seem to otherwise
be used by system applications. As revealed by Strafach
[6], the Uber application has the explicit-graphics-priority18

entitlement which is used by jailbreak applications to build

14com.apple.developer.passkit.pass-presentation-suppression
15com.apple.developer.payment-pass-provisioning
16https://developer.apple.com/library/content/technotes/tn2319/ index.html
17com.apple.developer.networking.HotspotHelper
18com.apple.private.allow-explicit-graphics-priority

1062



Table I
SEMI-PRIVATE ENTITLEMENTS USED BY THIRD-PARTY APPS

Entitlement Key Value Type Apps
com.apple.accounts.flickr.defaultaccess bool 1
com.apple.accounts.twitter.defaultaccess bool 1
com.apple.accounts.vimeo.defaultaccess bool 1
com.apple.coremedia.allow-mpeg4streaming bool 1
com.apple.private.allow-explicit-graphics-priority bool 1
com.apple.developer.healthkit.nikefuel-source bool 3
com.apple.developer.legacyvoip bool 3
com.apple.developer.passkit.pass-presentation-suppression bool 3
com.apple.networking.vpn.configuration arrayOfStrings 4
com.apple.payment.pass-access bool 4
com.apple.accounts.facebook.defaultaccess bool 7
com.apple.developer.payment-pass-provisioning bool 7
previous-application-identifiers arrayOfStrings 8
com.apple.developer.playable-content bool 23
com.apple.developer.networking.HotspotHelper bool 28
com.apple.developer.video-subscriber-single-sign-on bool 39
com.apple.smoot.subscriptionservice bool 50

screen recording applications.19 This correlation implies that
Uber could have recorded the user’s screen while the appli-
cation ran in the background. Uber quickly removed the enti-
tlement after its existence was made public, thus highlighting
the importance of transparency for entitlements. Further,
Netflix has an entitlement with allow-mpeg4streaming.20

This entitlement is also possessed by system applications
built into iOS, but the best of our knowledge the entitle-
ment is undocumented. While Netflix is not the only video
streaming application in our sample (e.g., Hulu and Amazon
Prime Video), it is the only third party application in our
sample with this entitlement.

VI. EMPIRICAL STUDY OF NSXPC ATTACK SURFACE

In addition to searching for confused deputy attacks, we
also use Kobold to perform a quantitative analysis of NSXPC
methods. This analysis enumerates accessible methods and
measures characteristics such as the number and type of ar-
guments required for each method. Entitlement requirements
for NSXPC methods are also investigated.
Hierarchical Results: Figure 4 illustrates the number of in-
vocations, unique methods, completion handlers, completion
confirmations, and entitlement free methods dynamically
tested with Kobold, on an iOS 11.3.2 device, using an
application with only default entitlements. Default entitle-
ments (e.g., an app identifier) are embedded into every
application’s signature and do not require toggles in Xcode.
Kobold’s static analysis phase extracted 276 sandbox acces-
sible mach-ports and 3048 candidate remote methods to in-
voke. 1517 unique methods were tested with the mach-ports
associated with the daemons each method was extracted
from. Note that due to mach-port to protocol mapping ambi-
guity, many of those methods could be assigned to incorrect

19https://stackoverflow.com/questions/32239969/
iomobileframebuffergetlayerdefaultsurface-not-working-on-ios-9

20com.apple.coremedia.allow-mpeg4streaming

3048 Total Invocations

1517 Unique Methods

677 Methods with
Completion Handlers

224 Completion
Confirmations

139 Completions
Without Ent.

Requirements

Figure 4. NSXPC Method Invocation Quantitative Results

ports. 677 of the methods tested contained completion han-
dlers, and 224 of those methods returned completion handler
confirmations when invoked. As shown by Table II, of the
224 remote methods with successful completion messages,
139 did not require entitlements, 8 required unspecified
entitlements, and 77 required specific entitlements.
Completion Handlers: Completion handlers are blocks of
code with arguments that can be passed to a remote method
as one of the method’s arguments. If the remote method
completes, the code block assigned to the completion han-
dler is executed. The completion handler’s arguments (e.g.,
NSError or NSString values) can be initialized with data
from the daemon, and used in the scope of the completion
handler’s code block. Kobold uses this code block to output
a completion confirmation that can be detected when in-
specting the output of our application. This output allows us
to determine whether a remote method with a completion
handler has run or not. However, as shown in Figure 4
approximately half of the unique methods tested did not have
completion handlers and could not be labeled as accessible
or inaccessible without further analysis.
Impact of Entitlements on NSXPC Services: We identified

1063



Table II
PER METHOD ENTITLEMENT REQUIREMENTS BASED ON ERROR MESSAGES

Entitlement Key Requirements Based on Error Message Number of Methods
No Entitlement Required 139
Unspecified Entitlement Required 8
com.apple.managedconfiguration.profiled-access 1
com.apple.managedconfiguration.profiled.shutdown 1
com.apple.managedconfiguration.mdmd.push 2
com.apple.managedconfiguration.profiled.migration 2
com.apple.managedconfiguration.profiled.usercompliance 4
com.apple.managedconfiguration.profiled.get 5
com.apple.managedconfiguration.profiled.provisioningprofiles 5
com.apple.managedconfiguration.mdmd-access 7
com.apple.managedconfiguration.profiled.configurationprofiles 10
com.apple.private.mobileinstall.allowedSPI 18
com.apple.managedconfiguration.profiled.set 22

Table III
MACH PORT ENTITLEMENT REQUIREMENTS ENFORCED IN SANDBOX

Entitlement Key Entitlement Value Mach Port Entitlement Availability
com.apple.smoot.subscriptionservice bool(”true”) com.apple.VideoSubscriberAccount.videosubscriptionsd Semi-Private
com.apple.developer.siri bool(”true”) com.apple.siri.vocabularyupdates Public

Table IV
METHODS BY NUMBER OF ARGUMENTS

Number of Arguments Methods With That
Number of Arguments

0 331
1 1078
2 924
3 442
4 167
5 75
6 16
7 8
8 1
9 5
10 1

two conditional sandbox rules allowing access to mach-ports
based on public or semi-private entitlements. These results
are represented by Table III. One mach-port was accessible
through a public entitlement, and one mach-port was acces-
sible through a semi-private entitlement. The methods with
error messages that specified entitlement requirements only
specified private entitlements (those not accessible to third
party applications on the App Store). The port associated
with the semi-private entitlement did not map to any NSXPC
methods (perhaps it uses another type of IPC interface). The
port associated with the Siri entitlement did map to 221
potential remote method invocations. However, our dynamic
tests did not cause any of these method invocations to trigger
completion handler responses even if the calling application
had the Siri entitlement.
Number of Arguments: The number of arguments in a
method’s declaration plays a significant role in determining
the difficulty of invoking a remote method successfully and
whether or not that method can be exploited. For example, a

method with zero arguments is trivial to invoke correctly, but
unlikely to be exploitable. At the other extreme, A method
containing 10 arguments has a larger attack surface but
it may be difficult to find valid values for all arguments.
Table IV shows the number of methods with various amounts
of arguments (i.e., 0 to 10 arguments). Note that a comple-
tion handler is treated as a single argument with respect to
a remote method, but the completion handler may have its
own arguments. Note that these values are inferred using all
1517 extracted potential NSXPC methods. Therefore, there
may be methods included that were not accessible or were
false positives (i.e., methods that are not remotely exposed).
Types of Arguments: Table V lists the data types that ap-
pear most frequently in declarations of the methods invoked
by Kobold. We categorize these data types into three groups,
primitives, documented, and undocumented. Primitive types
consist of those low level types that appear in the C program-
ming language (e.g., int, long, double). Documented types
(e.g., NSString) are abstractions constructed upon primitive
types, and they are documented officially by Apple [11].
Undocumented types (e.g., AFSpeechRequestOptions) are
abstractions built upon primitive types, but these data types
are not officially documented by Apple. While primitive
values can be fuzzed using random values, it is difficult
to find acceptable values for more complex types. Apple’s
documentation may provide hints regarding initialization of
documented types, but a thorough analysis of the values
expected by NSXPC remote methods may require dynamic
analysis, symbolic analysis, or extensive reverse engineering
of the remote method.
Intra-Port Entitlement Consistency: Table VI lists the
number of methods with successful completion handlers
with their respective mach-ports. The methods are also

1064



Table V
TOP 40 DATA TYPES IN EXTRACTED METHODS

Data Type
Occurrences in
Method
Declarations

Classification

void 1866 primitive
NSString * 488 documented
NSError * 426 documented

Bool 334 primitive
oneway void 234 primitive
NSDictionary * 185 documented
NSArray * 150 documented
NSData * 98 documented
NSUUID * 95 documented
unsigned long long 75 primitive
long long 66 primitive
NSURL * 66 documented
UIApplication * 47 documented
double 39 primitive
int 38 primitive
NSNumber * 24 documented
unsigned int 21 primitive
NSSet * 18 documented
IDSService * 18 undocumented
NSFileManager * 16 documented
NSURLSession * 15 documented
NSXPCListenerEndpoint * 14 documented
id 12 undocumented
NSDate * 11 documented
IDSAccount * 11 undocumented
DRDragSession * 11 undocumented
CSSpeechController * 11 undocumented
NSURLRequest * 10 documented
AFSpeechRequestOptions * 9 undocumented
unsigned char 8 undocumented
APSConnection * 8 undocumented
NSURLSessionTask * 7 documented
NSFileHandle * 7 documented
NDApplication * 7 undocumented
MCProfileConnection * 7 undocumented
AFAudioPlaybackRequest * 7 undocumented
PBItemCollection * 6 undocumented
IDSMessageContext * 6 undocumented
GKGameSession * 6 documented
GKCloudPlayer * 6 documented

divided into two categories: 1) those that do not require
entitlements; and 2) those that do require entitlements.
Entitlement requirements are inferred from error messages
provided in completion handlers. Mach-ports with methods
in both categories are considered to have inconsistent en-
titlement policies, and have been highlighted in Table VI.
As demonstrated with MDM functionality in Section VII,
inconsistent entitlement policies may represent access con-
trol flaws where security sensitive methods are accidentally
made available to unprivileged clients.

Triage strategy: Of all 3048 total invocations shown in
Figure 4, 1517 unique methods were called in several testing
campaigns, while the phone was monitored for undefined or
unexpected behaviour. A new testing campaign with a subset
of methods was started once such an event was triggered.

VII. FINDINGS

Kobold led to the discovery of confused deputy vulner-
abilities and daemon crashes. These findings were revealed
on an iOS 11 jailbroken device and were reproduced on a
stock iOS 12 device (the latest major version at the time of
writing). We disclosed our findings to Apple in the form of
Proof of Concept (PoC) iOS applications.

A. Confused Deputy Vulnerabilities

Table VII lists the confused deputy vulnerabilities de-
tected by Kobold. These vulnerabilities can be grouped
into three categories: 1) File Provider information leaks;
2) Microphone activation; 3) Unprotected Mobile Device
Management (MDM) services. These vulnerabilities were
discovered on a jailbroken iPhone 5s running iOS 11.1.2
and have been confirmed with PoC applications on a non-
jailbroken 6th Generation iPod Touch running iOS 12.0.1.
File Provider State Dump: The File Provider daemon
provides a method that replies with state information for
the applications with File Provider functionality running
on the device (e.g., Google Drive, Microsoft OneDrive).
This leaked state information can be abused by a third
party application in three ways. First, the leaked information
reveals the names of other third party apps that have been
installed if those applications use File Provider functionality.
Second, the leaked information reveals UUIDs used in app
directory names, which do not change upon rebooting the
device. Therefore, these leaked UUIDs could be used for
device fingerprinting. Finally, the third party app can infer
the names of files in File Provider directories. There is a
simple side channel in iOS that allows a process to determine
whether a file exists or not by attempting to read the file’s
metadata. If the file exists, a permission denied error may
occur, or the metadata may be read. If the file does not
exist, an error will specify that the file does not exist. Since
the attacker must correctly guess the file path, this side
channel is defeated by UUIDs in file paths. However, the
File Provider data leak reveals those UUIDs to third party
applications allowing them to begin inferring the names of
files in File Provider directories. This inference could be
accelerated through the use of a dictionary of interesting file
names to check for. In response to our disclosure, Apple has
resolved this issue with CVE-2018-4446.
Activate Voice Dictation: By invoking methods that start
voice dictation sessions, a third party application can briefly
activate the microphone without user permission (i.e., the
user has not enabled microphone access in their Privacy
Settings). This method causes a bell to ring, signalling
that the microphone has been activated. Using uninitialized
variables, the application does not gain access to the audio
recording, and the microphone is only activated for about
1 second. In response to our disclosure, Apple has resolved
this issue with CVE-2019-8502.

1065



Table VI
METHODS PER MACH PORT. INCONSISTENT ENTITLEMENT REQUIREMENTS HIGHLIGHTED.

Port Name Without Entitlement Requirements With Entitlement Requirements
com.apple.DragUI.druid.destination 1 0
com.apple.DragUI.druid.source 1 0
com.apple.FileProvider 28 0
com.apple.accessories.externalaccessory-server 1 0
com.apple.assistant.analytics 1 0
com.apple.assistant.dictation 3 0
com.apple.coreservices.lsuseractivitymanager.xpc 8 0
com.apple.devicecheckd 1 0
com.apple.managedconfiguration.mdmdservice 0 9
com.apple.managedconfiguration.profiled.public 21 50
com.apple.mobile.installd 1 18
com.apple.nano.nanoregistry.paireddeviceregistry 37 8
com.apple.nsurlsessiond 4 0
com.apple.nsurlstorage-cache 3 0
com.apple.parsecd 5 0
com.apple.pasteboard.pasted 8 0
com.apple.replayd 3 0
com.apple.sharingd.nsxpc 1 0
com.apple.voiceservices.tts 9 0
com.apple.wcd 3 0

Table VII
CONFUSED DEPUTY VULNERABILITIES

Effect Method Mach-Port
Leak names of installed apps with File Providers dumpStateTo:completionHandler: com.apple.FileProvider
Device fingerprinting dumpStateTo:completionHandler: com.apple.FileProvider
Infer file names in File Providers dumpStateTo:completionHandler: com.apple.FileProvider

Activate microphone
startRecordingFor
PendingDictationWithLanguageCode:
options:speechOptions:reply:

com.apple.assistant.dictation

Disable Text Replacement setKeyboardShortcutsAllowed:completion: com.apple.managedconfiguration.profiled.public
Disable Dictation setDictationAllowed:completion: com.apple.managedconfiguration.profiled.public
Block access to all websites addBookmark:completion: com.apple.managedconfiguration.profiled.public

Inconsistent MDM Access Control Policy: When
reviewing the entitlement requirements detected by
Kobold, we observed that the MDM management
service had inconsistent entitlement requirements. The
“com.apple.managedconfiguration.profiled.public” mach-
port provides 71 methods Kobold detects as accessible.
Of these 71 methods, the majority require MDM related
entitlements, but 21 of the methods have no apparent
entitlement requirements. A manual investigation of the
MDM methods that did not require entitlements led us to
three MDM services that allow a third party application
to disable system functionality. These MDM services are
effective even if the victim’s device has not been enrolled
with an MDM. First, access to all website on all mobile
browsers can be disabled, and users attempting to access
websites are challenged to enter an unknown pin code
with a recorded number of failed attempts. Second, the
text replacement or keyboard shortcuts functionality can
be disabled and the menu to configure new shortcuts is
disabled in Settings menu. Third, the dictation option for
voice to text functionality can be disabled and the toggle to
enable the feature is removed from the Settings menu.

B. Daemon Crashes

Kobold detected crashes on a jailbroken iPhone 5s running
iOS 11.1.2 and a stock 6th Generation iPod Touch running
iOS 12.0.1. The crashes detected are listed in Table VIII
which lists ten executables with a total of 14 unique crashes
based on stack trace analysis. The locationd and wcd21

crashes could not be triggered on the stock iPod, but we
speculate that this difference is due to hardware differences
since the iPod does not have a GPS sensor and does not
support Apple Watch connectivity. Three of the crashed
daemons run with root authority. If attackers are able to ex-
ploit the causes of these crashes, the root authority daemons
would be valuable targets.
Crash Types: We categorize three types of crash based
on the way the process was terminated: 1) abort signal;
2) segmentation fault; 3) killed by watchdog. First, seven
crashes (three daemons) terminate when the daemon sends
an abort signal. This signal could be the result of asserting
that a value is null and aborting the process in response.
Second, six crashes (six daemons) terminate when daemons

21a daemon related to the Apple Watch

1066



Table VIII
DAEMON CRASHES

Executable Mach-Port Method UID Crash Type

replayd com.apple.replayd setupBroadcastWithHostBundleID:broadcastExtensionBundleID:
broadcastConfigurationData:userInfo:handler: mobile Abort

replayd com.apple.replayd
startRecordingWindowLayerContextIDs:windowSize:
microphoneEnabled:cameraEnabled:broadcast:systemRecording:
captureEnabled:listenerEndpoint:withHandler:

mobile Abort

sharingd com.apple.sharingd.nsxpc createCompanionServiceManagerWithIdentifier:clientProxy:reply: mobile Abort
wcd com.apple.wcd acknowledgeUserInfoResultIndexWithIdentifier:clientPairingID: mobile Abort
wcd com.apple.wcd acknowledgeUserInfoIndexWithIdentifier:clientPairingID: mobile Abort
wcd com.apple.wcd acknowledgeFileResultIndexWithIdentifier:clientPairingID: mobile Abort
wcd com.apple.wcd acknowledgeFileIndexWithIdentifier:clientPairingID: mobile Abort
accessoryd com.apple.iap2d.xpc stopBLEUpdates:blePairingUUID: mobile Segfault
itunesstored com.apple.itunesstored.xpc willSwitchUser mobile Segfault
aggregated NONDETERMINISTIC NONDETERMINISTIC mobile Segfault

Preferences NONDETERMINISTIC NONDETERMINISTIC mobile Killed by
watchdog

UserEventAgent NONDETERMINISTIC NONDETERMINISTIC root Segfault
locationd NONDETERMINISTIC NONDETERMINISTIC root Segfault
powerlogHelper NONDETERMINISTIC NONDETERMINISTIC root Segfault

attempt to access invalid memory addresses at or near
the zero address. We speculate that these unusual memory
accesses are caused by Kobold’s default use of uninitialized
variables as remote method arguments. Since segmentation
faults imply that the daemon is attempting to use corrupted
values, we consider segmentation fault crashes more sig-
nificant than abort signal crashes. All of our root authority
daemon crashes are due to segmentation faults. Third, the
Preferences22 crash is unique in that the process freezes and
is killed by a watchdog process after 10 seconds of inactivity.
Quantifying Crashes: We quantify crashes in two ways,
number of daemons and number of unique crash stack traces.
The stack traces are included in the crash reports generated
by iOS. We developed a script to extract stack traces from
these crash reports and compare them to determine how
many unique stack traces were present for each daemon.
For example, the accessoryd daemon seems to crash for
every method we called on the com.apple.iap2d.xpc port.
However, a stack trace analysis revealed that each method
invocation for the port was triggering the same stack trace,
which implies that the same issue is causing the crash despite
invoking different methods. The wcd and replayd daemons
do generate unique stack traces when crashed by different
method invocations. These stack traces imply that multiple
bugs exist in wcd and replayd, but a single bug may be
causing the crashes for accessoryd.
Crash Causes: For those crashes that are consistently
repeatable, we isolate the remote method causing the crash.
Methods that trigger crashes were detected using a script
on a jailbroken device that killed our method invocation
application when a crash report was added to the system
log. Then, we manually tested the methods immediately
prior to the code line where our app stopped executing.

22Also known as Settings.

Each of these methods was found to cause crashes in
the receiving daemon if called with uninitialized argument
values. Note that the willSwitchUser method does not have
any arguments, but it still causes the iTunes Store daemon
to crash with a segmentation fault if it is invoked by a third
party application. This iTunes Store daemon crash represents
a bug, but without a field for attacker input, it is unlikely to
be exploitable. Five of the crashes were observed to occur
when running our method invocation app, but they did not
repeat consistently enough for us to assign a specific method
to the crash. These crashes are labeled in Table VIII as
nondeterministic.
Inconsistent Entitlement Enforcement: When investigat-
ing the methods crashing replayd, we noticed an inconsis-
tency in one method’s entitlement enforcement. A remote
method called startRecording23 is provided by replayd and
returns an error message specifying a required entitlement,
if the remote method is the only one invoked by our
application. However, if our application invokes a set of
twelve other remote methods before invoking the replayd
method, the entitlement requirement error is not returned.
Instead, the method triggers a prompt asking the user for per-
mission to record the screen. If the user accepts the prompt,
replayd will crash (the crash is likely due to Kobold’s use
of uninitialized variable values). This finding suggests that
state-based conditions (e.g., the set of methods previously
invoked) can lead to entitlement enforcement failures.

VIII. LIMITATIONS

Kobold has two types of limitations: 1) limitations inher-
ent to working with closed source systems; 2) limitations
that could be overcome with additional engineering effort.
Closed Source System: Several limitations of Kobold are
inherent to the closed source nature of iOS. Since we do

23Method name has been simplified. The full name appears in Table VIII

1067



not have ground truth for the set of third party accessible
NSXPC remote methods, we cannot quantify the number
of methods that Kobold may have failed to detect. While
the confused deputy vulnerabilities we present in this paper
are clear security concerns, we do not have an access
control policy specification to compare our findings to. A
jailbreak is not required to use Kobold, but a jailbreak would
provide logging tools that make dynamic analysis of IPC
functionality significantly easier. However, not all versions
of iOS have been jailbroken, and there is no guarantee of
future jailbreaks. Additionally, our model of the iOS sandbox
is not a perfect reversal of the iOS sandbox policies. New
sandbox filters were added in iOS 11 that iOracle was unable
to reverse engineer. Therefore, there may be mach ports that
are accessible to third party applications but not detected by
this version of Kobold.

Argument Values: While Kobold can statically extract the
data types of remote argument methods, it does not auto-
matically determine which values those arguments should
be initialized with. Simple variables can be easily assigned
various values (e.g., integers or strings), but correctly initial-
izing complex, undocumented class types requires significant
reverse engineering or dynamic analysis of the method being
invoked during normal runtime operations.

Scope: Kobold does not detect NSXPC remote methods
provided by shared libraries, and it does not detect the
other interfaces for remote methods other than NSXPC (e.g.,
XPC or Mach Interface Generator). The general approach of
combining static and dynamic analysis may be applicable
to these interfaces, but they are less amenable to static
analysis (i.e., class-dump will not detect their methods).
A small number (less than ten) of problematic method
invocations were intentionally removed from analysis due to
Xcode errors preventing compilation. The entitlement survey
performed by Kobold does not include paid applications
and only analyzes a sample of the free iOS applications
available at one time. A longitudinal study of significantly
more applications including paid applications may reveal
new semi-private entitlements as well as trends in their
distribution over time.

Black Box Testing: Kobold relies on error message seman-
tics to infer decentralized entitlement requirements for re-
mote methods. However, more sophisticated analysis meth-
ods such as symbolic execution or backtracing may de-
tect additional entitlement requirements missed by Kobold.
Kobold uses completion handler messages to determine
which remote methods were invoked successfully. However,
a significant number of the remote methods Kobold extracts
do not have completion handlers. Therefore, a grey box
testing form of confirming remote method invocation such as
automated setting of debugger breakpoints in daemon code
could reveal more third party accessible methods.

IX. RELATED WORK

Kobold is related to work in six fields: 1) iOS access
control policy analysis; 2) Android access control policy
analysis; 3) iOS IPC analysis; 4) iOS exploitation; 5) iOS
application analysis; and 6) fuzzing.
iOS Access Control: Kobold uses tools produced by two
prior works in order to identify mach-ports that are ac-
cessible to third party applications through the sandbox.
SandScout [10] reverse engineers and models iOS sandbox
policies, but it does not model the semantics of entitlements
requirements. However, iOracle [9] builds upon SandScout
in several ways including the modeling of Unix Permissions
and capabilities such as entitlements and sandbox exten-
sions. Therefore, iOracle allows Kobold to input a set of
third party accessible entitlements and automatically deter-
mine which mach-ports are accessible through the sandbox
for an application with those entitlements. SandScout and
iOracle build upon prior work by reverse engineers who
pioneered research into the iOS sandbox [3], [7], [13], [24].
Android Access Control: Several research papers discuss
Access Control in Android. Kratos [28], AceDroid [1], and
ACMiner [15] discover inconsistencies in security policy en-
forcement. ARF [16] identifies re-delegation vulnerabilities
in Android system services. Finally, Invetter [36] focuses on
the widespread yet undocumented input validation problem.
iOS IPC Analysis: To the best of our knowledge, Kobold is
the first systematic exploration of NSXPC remote methods,
but there has been prior work that investigates Apple’s IPC
mechanisms. Han et al. [18] fuzzed Apple driver inter-
faces by dynamically observing system behaviors to infer
dependencies between API calls (i.e., calling functions in
a certain order or using the return value of a function as
an argument to another function). The Pangu team [30]
presented their approach to fuzzing XPC services in order
to exploit data dereference operations. Beer [2] fuzzed XPC
services in order to identify opportunities for type confusion
attacks. Kydyraliev [22] explored Mach Interface Generator
(MIG) services by observing messages sent at runtime and
replaying those messages with mutations in order to trigger
crashes. Kobold differs from these prior works in two ways.
First, it seeks confused deputy vulnerabilities which must
consider both the method’s functionality and accessibility.
Second it uses static analysis to determine the mach-ports,
names, and argument types of remote methods instead of
dynamic analysis which may miss methods that were not
invoked at runtime.
iOS Attacks: Kobold assumes that the confused deputy
attacks and crashes we discovered can be deployed by a
third party app able to pass Apple’s app vetting process
and infiltrate the app store. This assumption is based on
three prior works on modifying iOS app behavior after
passing the vetting process. Wang et al. [29] used return
oriented programming (ROP) to modify their program’s

1068



control flow after it had passed the app vetting process and
been published to the App Store. XiOS [4] improved upon
the work of Wang et al. by reducing the attack’s complexity
and proposing an attack mitigation in the form of an in-line
reference monitor. Finally, Han et al. [19] used obfuscation
techniques conceptually similar to Java reflection in order
to bypass app vetting and invoke private API calls after
publishing to the app store.
iOS App Analysis: Kobold’s entitlement extraction is a form
of app analysis. PiOS [12] uses backtracing to determine
register values for Objective-C dispatch calls, allowing static
analysis to infer which function will be executed. This
anlaysis helps detect when applications invoke private API
calls. iRiS [8] adds a dynamic analysis component using
forced execution to resolve dispatches that were difficult to
infer through static analysis. Kobold uses a similar approach
as CRiOS [25] for app scraping, and CRiOS analyzes third
party applications for network security issues. Chen et al. [5]
use the intuition that malicious libraries detected in Android
applications may have similarly malicious counterparts on
the iOS platform. They analyze malicious Android libraries,
and use the findings from Android to help detect the
counterparts of those libraries on the iOS platform, which is
less amenable to analysis. iCredFinder [32] analyzes iOS
applications that use popular Software Development Kits
(SDKs) and automatically searches for misused credentials
associated with those SDKs.
Fuzzing: As future work, Kobold can be expanded by
applying state of the art fuzzing techniques. Mutational
fuzzing techniques such as those used by American Fuzzy
Lop (AFL) [35] could help generate input values for simple
data types (e.g., strings and integers). Furthermore, there
is already an experimental port [31] of AFL to the iOS
platform. Hybrid fuzzing techniques such as QSYM [34]
combine fuzzing with concolic analysis to efficiently choose
input values. Finally, any evaluation of a fuzzing system for
iOS should adhere to the guidelines set by Klees et al. [21]
in their evaluation of common flaws in fuzzing research.

X. CONCLUSION

In conclusion, Kobold allowed us to reveal and investigate
the relatively unexplored attack surface of NSXPC remote
methods available to third party applications. In order to
model the capabilities of third party applications, Kobold
automatically extracted entitlements from popular third party
applications on the App Store and discovered several semi-
private entitlements normally unavailable to developers. In-
voking the methods we discovered with Kobold revealed
several previously unknown access control flaws as well as
multiple daemon crashes.

ACKNOWLEDGMENTS

We thank David Wu and Iulia Mandă for their assistance.

This work was supported in part by the Army Research
Office (ARO) grant W911NF-16-1-0299, the National Sci-
ence Foundation (NSF) CAREER grant CNS-1253346, and
a grant of Romanian Ministry of Research and Innovation,
CCCDI - UEFISCDI, project number PN-III-P1-1.2-PCCDI-
2017-0272 / 17PCCDI-2018, within PNCDI III. Any opin-
ions, findings, conclusions, or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the funding agencies.

REFERENCES

[1] Y. Aafer, J. Huang, Y. Sun, X. Zhang, N. Li, and C. Tian,
“AceDroid: Normalizing Diverse Android Access Control
Checks for Inconsistency Detection,” in Proceedings of ISOC
Network and Distributed System Security Symposium (NDSS),
Feb. 2018.

[2] I. Beer, “Auditing and Exploiting Apple IPC,”
https://thecyberwire.com/events/docs/IanBeer JSS Slides.pdf,
2015, accessed: 2018-07-24.

[3] D. Blazakis, “The apple sandbox,” Arlington, VA, January,
2011.

[4] M. Bucicoiu, L. Davi, R. Deaconescu, and A.-R. Sadeghi,
“XiOS: Extended Application Sandboxing on iOS,” in Pro-
ceedings of the ACM Symposium on Information, Computer
and Communications Security (ASIACCS), 2015.

[5] K. Chen, X. Wang, Y. Chen, P. Wang, Y. Lee, X. Wang,
B. Ma, A. Wang, Y. Zhang, and W. Zou, “Following Devil’s
Footprints: Cross-Platform Analysis of Potentially Harmful
Libraries on Android and iOS,” in Proceedings of the IEEE
Symposium on Security and Privacy, 2016.

[6] K. Conger, “Researchers: Uber’s iOS App Had Se-
cret Permissions That Allowed It to Copy Your Phone
Screen,” https://gizmodo.com/researchers-uber-s-ios-app-had-
secret-permissions-that-1819177235, 2017, accessed: 2018-
07-24.

[7] D. A. Dai Zovi, “Apple ios 4 security evaluation,” Black Hat
USA, 2011.

[8] Z. Deng, B. Saltaformaggio, X. Zhang, and D. Xu, “iRiS: Vet-
ting Private API Abuse in iOS Applications,” in Proceedings
of the ACM Conference on Computer and Communications
Security (CCS), 2015.

[9] L. Deshotels, R. Deaconescu, C. Carabas, I. Manda, W. Enck,
M. Chiroiu, N. Li, and A.-R. Sadeghi, “iOracle: Automated
Evaluation of Access Control Policies in iOS,” in Proceedings
of the ACM Asia Conference on Computer and Communica-
tions Security (ASIACCS), 2018.

[10] L. Deshotels, R. Deaconescu, M. Chiroiu, L. Davi, W. Enck,
and A.-R. Sadeghi, “SandScout: Automatic Detection of
Flaws in iOS Sandbox Profiles,” in Proceedings of the
ACM Conference on Computer and Communications Security
(CCS), Oct. 2016.

1069



[11] A. Documentation, “Founda-
tion,” https://developer.apple.com/-
documentation/foundation?language=objc#overview, 2019,
accessed: 2018-11-13.

[12] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “Pios: De-
tecting privacy leaks in ios applications.” in Proceedings of
the Network and Distributed Systems Security Symposium
(NDSS), 2011.

[13] S. Esser, “ios 8 containers, sandboxes and entitle-
ments,” http://www.slideshare.net/i0n1c/ruxcon-2014-stefan-
esser-ios8-containers-sandboxes-and-entitlements, 2014, ac-
cessed: 2015-11-6.

[14] I. Ferber, “Data You Can Trust,”
https://developer.apple.com/videos/play/wwdc2018/222,
2018, accessed: 2018-07-24.

[15] S. A. Gorski III, B. Andow, A. Nadkarni, S. Manandhar,
W. Enck, E. Bodden, and A. Bartel, “ACMiner: Extraction
and Analysis of Authorization Checks in Androids Middle-
ware,” in Proceedings of the ACM Conference on Data and
Application Security and Privacy (CODASPY), March 2019.

[16] S. A. Gorski III and W. Enck, “ARF: Identifying Re-
Delegation Vulnerabilities in Android System Services,” in
Proceedings of the ACM Conference on Security and Privacy
in Wireless and Mobile Networks (WiSec), May 2019.

[17] M. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic De-
tection of Capability Leaks in Stock Android Smartphones.”
in Proceedings of the Network and Distributed Systems Se-
curity Symposium (NDSS), 2012.

[18] H. Han and S. K. Cha, “Imf: Inferred model-based fuzzer,”
in Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2017.

[19] J. Han, S. M. Kywe, Q. Yan, F. Bao, R. Deng, D. Gao,
Y. Li, and J. Zhou, “Launching Generic Attacks on iOS
with Approved Third-Party Applications,” in Proceedings of
the International Conference on Applied Cryptography and
Network Security (ACNS), 2013.

[20] N. Hardy, “The Confused Deputy: (or why capabilities might
have been invented),” SIGOPS Operating Systems Review,
vol. 22, no. 4, pp. 36–38, 1988.

[21] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Eval-
uating fuzz testing,” in Proceedings of the ACM Conference
on Computer and Communications Security (CCS), 2018.

[22] M. Kydyraliev, “Mining mach services within os x sandbox,”
http://2013.zeronights.org/includes/docs/Meder Kydyraliev -

Mining Mach Services within OS X Sandbox.pdf, 2013,
accessed: 2015-11-6.

[23] J. Levin, “A (long) evening with mo-
bile obliterator and a look into ios entitlements,”
http://newosxbook.com/articles/EveningWithMobileObliterator.html,
2013, accessed: 2015-11-9.

[24] C. Miller, D. Blazakis, D. DaiZovi, S. Esser, V. Iozzo, and
R.-P. Weinmann, iOS Hacker’s Handbook. John Wiley &
Sons, 2012.

[25] D. Orikogbo, M. Büchler, and M. Egele, “CRiOS: Toward
Large-Scale iOS Application Analysis,” in Proceedings of the
ACM Workshop on Security and Privacy in Smartphones and
Mobile Devices (SPSM), 2016.

[26] A. P. Release, “App Store shatters records on New
Year’s Day,” https://www.apple.com/newsroom/2017/01/app-
store-shatters-records-on- new-years-day/, 2017, accessed:
2018-07-24.

[27] ——. (2018) App Store kicks off 2018
with record-breaking holiday season.
https://www.apple.com/newsroom/2018/01/app-store-kicks-
off-2018-with-record-breaking-holiday-season/. Accessed:
2018-07-24.

[28] Y. Shao, J. Ott, Q. A. Chen, Z. Qian, and Z. Mao, “Kratos:
Discovering inconsistent security policy enforcement in the
android framework,” in Proceedings of the Network and
Distributed Systems Security Symposium (NDSS), 2016.

[29] T. Wang, K. Lu, L. Lu, S. Chung, and W. Lee, “Jekyll on
iOS: When Benign Apps Become Evil,” in Proceedings of
the USENIX Security Symposium, 2013.

[30] T. Wang, H. Xu, and X. Chen, “Review and Exploit Neglected
Attack Surface in iOS 8,” https://www.blackhat.com/docs/us-
15/materials/us-15-Wang-Review-And-Exploit-Neglected-
Attack-Surface-In-iOS-8.pdf, 2015, accessed: 2018-07-24.

[31] W. Wang and Z. Wang, “Make iOS App
more Robust and Security through Fuzzing,”
https://ruxcon.org.au/assets/2016/slides/Make iOS App more Robust-

and Security through Fuzzing-1476442078.pdf, 2016,
accessed: 2018-11-11.

[32] H. Wen, J. Li, Y. Zhang, and D. Gu, “An Empirical Study of
SDK Credential Misuse in iOS Apps,” in Proceedings of the
Asia-Pacific Software Engineering Conference, 2018.

[33] L. Xing, X. Bai, T. Li, X. Wang, K. Chen, X. Liao, S.-M. Hu,
and X. Han, “Cracking App Isolation on Apple: Unauthorized
Cross-App Resource Access on MAC OS,” in Proceedings
of the ACM Conference on Computer and Communications
Security (CCS), 2015.

[34] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM:
A Practical Concolic Execution Engine Tailored for Hybrid
Fuzzing,” in Proceedings of the USENIX Security Symposium,
2018.

[35] M. Zalewski, “Technical “whitepaper” for afl-fuzz,”
http://lcamtuf.coredump.cx/afl/technical details.txt, Year
Unspecified, accessed: 2018-11-11.

[36] L. Zhang, Z. Yang, Y. He, Z. Zhang, Z. Qian, G. Hong,
Y. Zhang, and M. Yang, “Invetter: Locating Insecure Input
Validations in Android Services,” in Proceedings of the
ACM Conference on Computer and Communications Security
(CCS), 2018.

1070


