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Abstract—In this paper, we apply machine learning to dis-
tributed private data owned by multiple data owners, entities
with access to non-overlapping training datasets. We use noisy,
differentially-private gradients to minimize the fitness cost of the
machine learning model using stochastic gradient descent. We
quantify the quality of the trained model, using the fitness cost,
as a function of privacy budget and size of the distributed datasets
to capture the trade-off between privacy and utility in machine
learning. This way, we can predict the outcome of collaboration
among privacy-aware data owners prior to executing poten-
tially computationally-expensive machine learning algorithms.
Particularly, we show that the difference between the fitness of
the trained machine learning model using differentially-private
gradient queries and the fitness of the trained machine model in
the absence of any privacy concerns is inversely proportional to

the size of the training datasets squared and the privacy budget
squared. We successfully validate the performance prediction
with the actual performance of the proposed privacy-aware
learning algorithms, applied to: financial datasets for determining
interest rates of loans using regression; and detecting credit card
frauds using support vector machines.

Index Terms—Machine learning; Differential privacy; Stochas-
tic gradient algorithm.

I. INTRODUCTION

A. Motivation and Contributions

Data analysis methods using machine learning (ML) can

unlock valuable insights for improving revenue or quality-of-

service from, potentially proprietary, private datasets. Having

large high-quality datasets improves the quality of the trained

ML models in terms of the accuracy of predictions on new,

potentially untested data. The subsequent improvements in

quality can motivate multiple data owners to share and merge

their datasets in order to create larger training datasets. For in-

stance, financial institutes may wish to merge their transaction

or lending datasets to improve the quality of trained ML mod-

els for fraud detection or computing interest rates. However,

government regulations (e.g., the roll-out of the General Data

Protection Regulation in EU, the California Consumer Privacy

Act or the development of the Data Sharing and Release

Bill in Australia) increasingly prohibit sharing customer’s data

without consent [1]. Our work here is motivated by the need to

conciliate the tension between quality improvement of trained

ML models and the privacy concerns for data sharing.

We investigate a machine learning setup in which a learner

wants to train a model based on multiple datasets from

different data owners. For the purpose of preserving privacy for

data contributors, the learner can only submit queries to data

owners and they respond by providing differentially-private
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Fig. 1. The communication structure between the learner and the distributed
data owners for submitting queries and providing differentially-private (DP)
responses.

(DP) responses as illustrated in Figure 1. We specifically

consider honest-but-curious threat models in which different

private data owners do not trust each other (or the central

learner) for sharing private training datasets, but trust the

learner to train the model correctly. As an example, in fi-

nancial services, a central learner, such as a central bank

or government, can be trusted for facilitating computations

among banks although they may not trust each other or the

learner for accessing private data. Another example is for smart

grid in which electricity retailers are private data owners and

the electricity market operator can facilitate learning. In this

paper, the learner submits a gradient query to each data owner.

Upon receiving DP responses from data owners to the gradient

queries, the learner adjusts the parameters of the ML model in

the direction of the average of the DP gradients. Therefore, the

quality of the DP responses (in terms of the magnitude of the

additive DP noise) from the data owners to the gradient queries

determines the performance of the ML training algorithm.

An important parameter in the ML training algorithm is

the step size, the amount by which the model parameters

are adjusted in each iteration. If the fitness cost of the ML

meets the assumptions of smoothness, strong convexity, and

Lipschitz-continuity of the gradient, we can prove that, by

selecting the step sizes to be inversely proportional with the

iteration number and inversely proportional with the maximum

number of iterations squared (see Algorithm 1 in Section II),

the difference between the fitness of the trained ML model

using DP gradient queries and the fitness of the trained ML

model in the absence of any privacy concerns becomes small.

In fact, the magnitude of the difference becomes inversely
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proportional to the size of the training datasets squared and the

privacy budgets of the data owners squared; see Theorem 2 in

Section III. Several ML models and fitness costs, such as linear

and logistic regression, satisfy the above-mentioned assump-

tions. This enables us to predict the outcome of collaboration

among privacy-aware data owners and the learner in terms of

the fitness cost of the ML training model. However, if the

fitness function does not meet these assumptions, we must

select the step size to be inversely proportional to the square

root of the iteration number. This way, the step size fades away

much slower and the effect of the DP noise is more pronounced

on the iterates of the learning algorithm. Therefore, we must

add an averaging layer on top of the algorithm to reduce the

negative impact of the DP noise; see Algorithm 2 in Section II.

This is based on the developments of [2] with appropriate

changes in the averaging step to suit the ML problem with DP

gradient queries. In this case, we can prove that the difference

between the fitness of the trained ML model using DP gradient

queries and the fitness of the trained ML model in the absence

of any privacy concerns is inversely proportional to the size

of the training datasets (no longer squared) and the privacy

budget (no longer squared); see Theorem 3 in Section III.

In this paper, we focus on the case where the datasets in

possession of the private data owners in Figure 1 are mutually

exclusive or non-overlapping, i.e., two identical records are not

shared across the datasets. In many real-life applications within

the financial and energy sectors, this is a realistic assumption,

e.g, transactional records (e.g. for purchasing goods) are

unique by the virtue of timestamps, amounts, and the unique-

ness of purchases by an individual. This assumption is set in

place to ensure differential privacy using independent additive

noises. In the absence of such an assumption, there also

needs to be a privacy-preserving mechanism for identifying

those common entries without potential information leakage

regarding non-common entries, which itself is a daunting task

and open problem for research.

For experimental verification of the theoretical results, two

financial datasets are used in this paper. First, we use a

regression model on a dataset containing information on loans

made on Lending Club, a peer-to-peer lending platform [3], to

automate the process of setting interest rates of loans. Second,

we train a support vector machine for detecting fraudulent

transactions based on a dataset containing transactions made

by European credit card-holders in September 2013 [4]. We

use the experiments to validate theoretical predictions and to

gain important insights into the outcome of collaborations

among privacy-aware data owners. For instance, even if the

learner has access to one large dataset with relaxed privacy

constraints, the performance of the trained ML model can

be very bad if small conservative datasets (i.e., datasets with

very small privacy budgets) also contribute to the learning.

Therefore, it is best to exclude smaller conservative datasets

from collaboration. This is a counter-intuitive observation

as it clearly indicates that more data is not always good,

if it is obfuscated by conservative data owners. Larger, but

conservative, datasets are sometimes worth including in the

training as they do not degrade performance heavily with their

conservative privacy budgets, yet improve the performance of

the trained ML model because of their size. These observations

can be alternatively interpreted as: collaboration in training a

model with a dataset can only be useful if and only if it has

enough information (i.e., enough data entries) to suppress the

impact of random noise added for privacy guarantees.

In summary, this paper makes the following contributions:

• We develop DP gradient descent algorithms for training

ML models on distributed private datasets owned by

different entities; see Algorithms 1 and 2 in Section II.

• We prove that the quality of the trained ML model

using DP gradient descent algorithm scales inversely with

privacy budgets squared, and the size of the distributed

datasets squared, which can establish a trade-off between

privacy and utility in privacy-preserving ML;

• We develop a theory that enables to predict the outcome

of a potential collaboration among privacy-aware data

owners (or data custodians) in terms of the fitness cost

of the ML training model prior to executing potentially

computationally-expensive ML algorithms on distributed

privately-owned datasets; see Theorems 2 and 3 in Sec-

tion III. The bounds in these theorems are not necessarily

optimal, i.e., there might exist better performance bounds

for other privacy-preserving learning algorithms, but, if

the data owners follow Algorithms 1 and 2, they can

predict their success or failure.

• We validate our theoretical analysis by evaluating our

differentially private ML algorithms using distributed

non-overlapping financial datasets belonging to multiple

institutes/banks for determining interest rates of loans

using regression, and for detecting credit card fraud using

support vector machine classifier; We further validate the

predictions of the analysis with the actual performance of

the proposed privacy-aware learning algorithms applied to

the distributed financial datasets; see Section IV.

• Our experimental results indicate that, in the case of three

banks collaborating to train a support vector machine

classifier to detect credit card fraud, within only 100

iterations, the fitness of the trained model using DP

gradient queries is in average within 90% of the fitness of

the trained model in the absence of privacy concern if the

privacy budget is equal to 1 and each bank has access to

a dataset of 30,000 records of credit card transactions and

their validity. We observe similar performance results for

training a regression model over interest rates of loans

with the privacy budget of 10 and datasets of 350,000

records each.

B. Related Work

ML using Secure Multi-Party Computation and Encryp-

tion. Secure multi-party computation provide avenues for se-

curing the iterations of distributed ML algorithms across mul-

tiple data owners. In the past, secure multi-party computation

has been used in various ML models, such as decision trees

[5], regression [6], association rules [7], and clustering [8],
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[9]. Training ML models using encrypted data was discussed

in [10]–[14]. In [15], efficient conversion of models for use

of encrypted input data was discussed. The use of secure

multi-party computation reduces the computational efficiency

of ML algorithms by adding a non-trivial computational and

communication performance overhead.

ML with Differential Privacy. A natural way for alle-

viating privacy concerns is to deploy privacy-enabled ML

using differential privacy (DP) [16]–[19]. In [18], a privacy-

preserving regularized logistic regression algorithm is pro-

vided for learning from private databases by bounding the

sensitivity of regularized logistic regression, and perturbing

the learned classifier with noise proportional to the sensitivity.

This technique is proved to be DP and simulations are used to

investigate the trade-off between privacy and learning utility.

In [17], a large class of optimization-based DP machine

learning algorithms are developed by appropriately perturbing

the objective function of the ML training algorithm. The

mechanism is applied to linear and logistic regression models

and shown to provide high accuracy. In the mentioned studies,

privacy-preserving ML, however, often relies on an entire

dataset, constructed by merging smaller datasets, being stored

in one location. The ML model is then either trained on

the aggregated dataset, and is systematically obfuscated using

additive noise to guarantee differential privacy, or trained

on an obfuscated centrally-located data. Such methods do

not address the underlying problem that the smaller datasets

are owned by multiple entities with restrictions on sharing

sensitive data.

Distributed/Collaborative Privacy-Preserving ML. ML

based on distributed private datasets has been recently investi-

gated in, e.g., [20]–[24]. Note that this problem is intimately

related to distributed optimization using differentially-private

oracles, as such ML problems can be cast as distributed

optimization problems in which distributed training datasets

are represented within cost functions or constraints of the

entities. Using stochastic gradient descent with additive Gaus-

sian/Laplace noise to ensure DP is also common in the

literature; (e.g., [25]–[28]). In [25], noisy gradients are used

to train a deep neural network. The scale of the required

additive noise for DP is reduced in [26] by employing the

idea of moment accountant, instead of standard composition

rules. Stochastic gradient descent is also utilized in [27] for

recurrent neural network language models. Generalizations for

obfuscating individual and group-level trends by DP additive

noise are presented in [28]. Because iterative methods rely on

multiple rounds of inquiries of private datasets, for instance,

by submitting multiple gradient queries, the privacy budget

must be inversely scaled by the total number of iterations to

ensure that a reasonable privacy guarantee can be achieved

(alternatively, privacy guarantees get weaker as the number of

iterations grows because of the composition rule of differential

privacy). Hence, if the parameters of the optimization algo-

rithm are not carefully chosen, bounds on the performance of

the ML training algorithm deteriorates with an increasing total

number of iterations; e.g., see [29]. In [20], [21], the privacy

budget was kept constant and therefore by communicating

more, as the number of the iterations grows, the privacy

guarantee weakens. However, in those studies, if the privacy

budget had been scaled inversely proportional to the total

number of iterations, privacy guarantees would be maintained

over the entire horizon but performance would deteriorate with

increasing total number of iterations, as in [29].

All these studies, however, do not address the issues of

convergence of the learning algorithm, selection of appropriate

step size in the stochastic gradient descent, and forecasting of

the quality of the trained ML model based on the privacy

budget prior to running extensive potentially computationally-

expensive experiments. These missing steps are some of the

important contributions of this paper.

C. Paper Organization

The rest of the paper is organized as follows. We introduce

our system model and propose privacy-aware ML algorithms

with distributed private datasets in Section II. We analyze and

provide theoretical results for predicting the performance of

the privacy-preserving training algorithms in Section III. We

present the experimental results in Section IV. Finally, we

conclude the paper in Section V.

II. ML TRAINING ALGORITHM BASED ON DISTRIBUTED

PRIVATE DATA WITH DP GRADIENT QUERIES

A. Setup

Consider a group of N ∈ N private agents or data owners

N := {1, . . . , N} that are connected to a node responsible

for training a ML model, identified as a learning agent, over

an undirected communication graph as in Figure 1. Each

agent has access to a set of private training data Di :=
{(xi, yi)}ni

i=1 ⊆ X × Y ⊆ R
px × R

py , where xi and yi,
respectively, denote inputs and outputs. Each data owner,

for instance, could be a private bank/financial institution. In

this case, the private datasets can represent information about

loan applicants (such as salary, employment status, and credit

rating1) as inputs and historically approved interest rates per

annum by the bank (in percentage points) as outputs.

Assumption 1. Private datasets are mutually exclusive, i.e.,

Di ∩ Dj = ∅ for all i, j ∈ N .

Assumption 1 states that two identical records, equal in

every possible aspect, cannot be in two or more datasets. This

is a realistic assumption in many real-life applications, such as

financial and energy data. For instance, across multiple banks

and financial-service providers, transaction records (e.g. for

purchasing goods) are unique by the virtue of timestamps,

amounts, and the uniqueness of purchases for an individual. In

energy systems, one household cannot transact (for purchasing

power) with two or more energy retailers and thus its consump-

tion pattern can only be stored by one retailer. The reasons

behind this assumption are two-fold. First, to guarantee ǫ-
differential privacy, we need to ensure that the records are not

1Categorical attributes, such as gender, can always be translated into
numerical ones according to a rule.
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repeated so that an adversary cannot reduce the noise levels by

averaging the reports containing information about repeated

entries and thus exceeding ǫ (due to the composition rule

for differential privacy). If the datasets had common entries,

there would need to be a privacy-preserving mechanism for

identifying those common entries without potential informa-

tion leakage with respect to non-common entries, which is

a daunting task. The mutually exclusive or non-overlapping

nature of the datasets also results in statistical independence

of additive privacy-preserving noise. This independence is

extremely useful in computing the magnitude of the addi-

tive noise for forecasting the performance of privacy-aware

learning algorithms. If records can appear in at most κ ∈
{1, . . . , N} datasets and we do not exclude the overlapping

entries during the learning, we must ensure that the gradient

queries are DP with privacy budget ǫi/κ, ∀i ∈ N . This is

to ensure that we can guarantee privacy budget ǫi for the

repeated entries across the datasets by using the composition

rule for differential privacy. This results in degradation of

the fitness of the trained ML model with privacy-preserving

algorithms. For instance, in Theorem 2, we show that the

difference between the fitness of the trained ML model using

DP gradient queries and the fitness of the trained ML model in

the absence of any privacy concerns is inversely proportional

to the size of the training datasets squared and the privacy

budget squared. Therefore, when allowing repeated entries,

the difference between the fitness of the private ML model

and the fitness of the trained machine model without privacy

concerns degrades by a factor of κ2.

The learning agent is interested in extracting a meaningful

relationship between the inputs and outputs using ML model

M : X × R
pθ → Y and the available training datasets Di,

∀i ∈ N , by solving the optimization problem in

θ∗ ∈ argmin
θ∈Θ

[

g1(θ) +
1

n

∑

j∈N

∑

{x,y}∈Dj

g2(M(x; θ), y)

]

, (1)

where g2(M(x; θ), y) is a loss function capturing the “close-

ness” of the outcome of the trained ML model M(x; θ) to the

actual output y, g1(θ) is a regularizing term, n :=
∑

ℓ∈N nℓ,

and Θ := {θ ∈ R
pθ | ‖θ‖∞ ≤ θmax}. Note that a large enough

θmax can always be selected such that the search over Θ does

not add any conservatism (in comparison to the unconstrained

case), if desired. We use f(θ) to denote the cost function of (1)

for the sake of the brevity of the presentation, i.e.,

f(θ) := g1(θ) +
1

n

∑

{x,y}∈
⋃

j∈N Dj

g2(M(x; θ), y). (2)

Remark 1 (Generality of Optimization-Based ML). In an

automated loan assessment example, a bank maybe inter-

ested in employing a linear regression model to estimate the

interest rate of the loans based on attributes of customers

(thus developing an “AI platform” for loan assessment and

delivery). A linear regression model, as the name suggests,

considers a linear relationship between input x and output y
in the form of y = M(x; θ) := θ⊤x, where θ ∈ R

pθ is the

parameter of the ML model. We can train the regression model

by solving the optimization problem (1) with g2(M(x; θ), y) =
‖y−M(x; θ)‖22, and g1(θ) = 0. In addition to linear (or non-

linear) regression discussed earlier, which clearly is of the

form in (1), several other ML algorithms follow this formula-

tion. Another example is linear support vector machines (L-

SVM). In this problem, it is desired to obtain a separating

hyper plane of the form {x ∈ R
px : θ⊤[x⊤ 1]⊤ = 0}

with its corresponding classification rule sign(M(x; θ)) with

M(x; θ) := θ⊤[x⊤ 1]⊤ to group the training data into two sets

(corresponding to y = +1 and y = −1). This problem can

be cast as (1) with g1(θ) := (1/2)θ⊤θ and g2(M(x; θ), y) :=
max(0, 1−M(x; θ)y). We can easily see that the extension to

non-linear SVM can also be cast as an optimization-based ML

problem. Another example is artificial neural network (ANN).

In this case, M(x; θ) describes the input-output behaviour

of the ANN with θ capturing parameters, such as internal

thresholds. This problem can be cast as (1) with g1(θ) := 0
and g2(M(x; θ), y) := ‖y −M(x; θ))‖2.

If the data owners could come to an agreement to share

private data (and it was not illegal to disclose customers’

private information without their consent), the learning agent

could train the ML model by solving the optimization prob-

lem (1) directly. In practice, however, data owners may not

be able to share their private data. In this case, the learning

agent can submit queries Qi(Di; k) ∈ Q to agent i ∈ N for

k ∈ T := {1, . . . , T }, where T denotes the number of com-

munication rounds (i.e., the number of queries) agreed upon

by all the data owners prior to the exchange of information,

index k identifies the current communication round, and Q
denotes the output space of the query. Agent i ∈ N can then

provide a differentially-private response Qi(Di; k) ∈ Q to the

query Qi(Di; k) ∈ Q.

Definition 1 (Differential Privacy). The response policy of

data owner ℓ ∈ N is ǫℓ-differentially private over the horizon

T if

P

{

(Qℓ(Dℓ; k))
T
k=1 ∈ Y

}

≤ exp(ǫℓ)P

{

(Qℓ(D′
ℓ; k))

T
k=1 ∈ Y

}

,

where Y is any Borel-measurable subset of QT , and Dℓ and

D′
ℓ are two adjacent datasets differing at most in one entry,

i.e., |Dℓ \ D′
ℓ| = |D′

ℓ \ Dℓ| ≤ 1.

The learning agent then processes all the received responses

to the queries in order to generate its ML model:

θ̂ := ς((Qj(Dj ; k))k∈T ,j∈N ),

where ς :
∏

k∈T QT → R
pθ is a mapping used by the learning

agent for fusing all the available information.

In the next subsection, we present an algorithm for gener-

ating queries, and then use the provided differentially-private

responses for computing a trained ML model.
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B. Algorithm

In the absence of privacy concerns, one strategy for training

the ML model by the learning agent is to provide unfettered

access to the original private data of the data owners in

N . In this case, the learning agent can follow the projected

(sub)gradient descent iterations in

θ[k + 1] = ΠΘ[θ[k]− ρkξf (θ[k])], (3)

where ρk > 0 is the step-size at iteration k, ξf (θ[k]) is a

sub-gradient, an element of sub-differentials ∂θf(θ[k]), of the

cost function f with respect to the variable θ evaluated at

θ[k] [30], and ΠΘ[·] denotes projection operator into the set

Θ defined as ΠΘ[a] := argminb∈Θ ‖a−b‖2. For continuously

differentiable functions, the gradient is the only sub-gradient.

The use of sub-gradients, instead of gradient in this paper,

is motivated by the possible choice of non-differentiable loss

functions in ML, e.g., the cost function of the L-SVM.

Assumption 2. g1 and g2 are convex functions of θ.

Assumption 2 implies that f is also a convex function of θ.

The existence of sub-differentials is guaranteed for convex

functions [30]. We define ḡx,y2 (θ) = g2(M(x; θ), y). The

update law in (3) can be rewritten as

θ[k + 1] = ΠΘ

[

θ[k]− ρkξg1 (θ[k])

− ρk
n

∑

ℓ∈Nj

∑

{x,y}∈Dℓ

ξḡx,y
2

(θ[k])

]

,

= ΠΘ

[

θ[k]− ρkξg1 (θ[k])

− ρk
n

∑

ℓ∈Nj\{j}

nℓQℓ(Dℓ; k)

]

, (4)

where ξg1 is a sub-gradient of g1, ξḡx,y
2

is a sub-gradient of

ḡx,y2 , and Qℓ(Dℓ; k) is a query that can be submitted by the

learning agent to data owner ℓ ∈ N in order to provide the

aggregate sub-gradient:

Qℓ(Dℓ; k) =
1

nℓ

∑

{x,y}∈Dℓ

ξḡx,y
2

(θ[k]). (5)

Responding to the query Qℓ(Dℓ; k) clearly intrudes on the

privacy of the individuals in dataset Dℓ. Therefore, data owner

ℓ only responds in a differentially-private manner by reporting

the noisy aggregate:

Qℓ(Dℓ; k) = Qℓ(Dℓ; k) + wℓ[k], (6)

where wℓ[k] is an additive noise to establish differential

privacy with privacy budget ǫℓ over the horizon T ; see Defini-

tion 1. As stated before, here, the horizon T is the total number

of iterations of the projected sub-gradient algorithm. Note that

each neighbour responds to one query in each iteration.

Assumption 3. Ξ := max(x,y)∈X×Y ‖ξḡx,y
2

(θ[k])
∥

∥

1
<∞.

Algorithm 1 ML training algorithm with distributed private

datasets using DP gradients for strongly-convex smooth fitness

cost.

Require: T
Ensure: (θ[k])Tk=1

1: Initialize θ[1]
2: for k = 1, . . . , T − 1 do

3: Learner submits query Qℓ(Dℓ; k) to data owners in N
4: Data owners return DP responses Qℓ(Dℓ; k)
5: Learner follows the update rule

θ[k + 1] = θ[k]− ρ

T 2k

(

ξg1(θ[k]) +
∑

ℓ∈N

nℓ

n
Qℓ(Dℓ; k)

)

,

6: end for

Assumption 3 implies the gradients or the sub-gradients of

fitness function have a bounded magnitude. For strongly con-

vexity loss functions with Lipschitz gradients, this assumption

can be satisfied. This is because, for strongly convex functions,

the decision variables, i.e., the ML model, remains within a

compact set. However, for non-strongly convex functions, we

need to restrict the ML models to the compact set Θ; see (1).

Theorem 1. The policy of data owner ℓ in (6) for respond-

ing to the queries is ǫℓ-differentially private over horizon

{1, . . . , T } if wℓ[k] are i.i.d.2 noises with the density function

p(w) =

(

1

2b

)pθ

exp

(

− ‖w‖1
b

)

with scale b = 2ΞT/(nℓǫℓ).

Proof. See Appendix A.

Theorem 1 states that i.i.d. Laplace additive noise can ensure

DP gradients. Each response in (6), for a given k, using the

additive noise density in Theorem 1 is (ǫℓ/T )-differentially

private. Therefore, over the whole horizon {1, . . . , T }, all

the responses meet the definition of ǫℓ-differential privacy.

This follows from the composition of T differentially-private

mechanisms [31]. In [20], [21], each response is constructed

to ensure ǫ-differential privacy, which implies that the overall

algorithm is ǫT -differentially private, thus reducing the privacy

guarantee with increasing the number of the iterations.

In the presence of the additive noise, the iterates of the

learner follow the stochastic map

θ[k + 1] = ΠΘ[θ[k]− ρk(ξf (θ[k]) + w[k])], (7)

where

w[k] :=
1

n

∑

ℓ∈N

nℓwℓ[k].

Algorithm 1 summarizes our proposed ML algorithm with

distributed private datasets using DP gradients. Note that, in

Algorithm 1, the step size, or the learning rate, decreases with

the iteration number k. This is done to reduce the influence of

2independently and identically distributed
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Algorithm 2 ML algorithm with distributed private datasets

using DP sub-gradients.

Require: T , c1
Ensure: (θ[k])Tk=1

1: Initialize θ[1] within Θ
2: for k = 1, . . . , T − 1 do

3: Learner submits query Qℓ(Dℓ; k) to data owners in N
4: Data owners return DP responses Qℓ(Dℓ; k)
5: Learner follows the update rule

θ[k + 1] = ΠΘ

[

θ[k]− c1√
k

(

ξg1(θ[k])+
∑

ℓ∈N

nℓ

n
Qℓ(Dℓ; k)

)]

,

6: Learner follows the averaging rule

θ̄[k + 1] =
k − 1

1/
√
T + k

θ̄[k] +
1/

√
T + 1

1/
√
T + k

θ[k].

7: end for

the privacy-preserving additive noise in the performance of the

trained model. In the non-private training (i.e., when ǫ = +∞),

we do not need to reduce the step size with iteration number

k as there is no privacy-preserving noise. In fact, we can

select a constant learning rate to extract the non-private model;

see [32] for convergence analysis of optimization algorithms

with constant steps sizes.

In Section III, we observe that the performance of Al-

gorithm 1 can only be assessed under the assumptions of

differentiability, smoothness, and strong convexity of the fit-

ness cost. These assumptions are satisfied for several ML

models and fitness costs, such as regression. To avoid these

assumptions and to also reduce the effect of the additive noise,

we can define the averaging variable

θ̄[k + 1] =

(

1− 1/
√
T + 1

1/
√
T + k

)

θ̄[k] +
1/

√
T + 1

1/
√
T + k

θ[k]

=
k − 1

1/
√
T + k

θ̄[k] +
1/

√
T + 1

1/
√
T + k

θ[k]. (8)

Algorithm 2 summarizes the proposed ML algorithm with

distributed private datasets using DP sub-gradients with the

additional averaging step as per equation (8). Now, we are

ready to analyze the performance our privacy-preserving ML

training algorithms.

III. PREDICTING THE PERFORMANCE OF ML ON

DISTRIBUTED PRIVATE DATA

For Algorithm 1, we can prove the following convergence

result under the assumptions of differentiability, smoothness,

and strong convexity of the ML fitness function.

Theorem 2. Assume that f is a L-strongly convex

continuously-differentiable function with λ-Lipschitz gradient

and θmax = ∞ (i.e., there is no constraint). For any ε > 0,

there exists a large enough T such that the iterates of

Algorithm 1 satisfy

min
1≤k≤T

E{f(θ[k])} − f(θ∗) ≤8Ξ2ρ

Ln2

(

∑

ℓ∈N

1

ǫ2ℓ

)

+ ε, (9)

and

min
1≤k≤T

E{‖θ[k]− θ∗‖22} ≤32Ξ2ρ

L2n2

(

∑

ℓ∈N

1

ǫ2ℓ

)

+
ε

4L
. (10)

Proof. See Appendix B.

Theorem 2 establishes the convergence of Algorithm 1 for

smooth strongly convex functions. This quantifies the trade-off

between privacy and utility by capturing the closeness to the

trained ML model with and without taking into account the

privacy constraints of the data owners. In fact, the inequalities

in (9) and (10) enable us to predict the outcome of a potential

collaboration among privacy-aware data owners (or data cus-

todians) in terms of the fitness cost of the ML training model

prior to executing potentially computationally-expensive ML

algorithms on distributed privately-owned datasets.

To relax the conditions required for convergence of the ML

training, we can use Algorithm 2. In this case, we do not

even need the fitness function to be differentiable because the

algorithm uses sub-gradients, rather than gradients. For the

noisy projected sub-gradient decent algorithm in Algorithm 2,

the following result can be proved.

Theorem 3. For any T , there exists large enough constants3

c1, c2 > 0 such that the iterates of Algorithm 2 satisfy

E{f(θ̄[T ])} − f(θ∗) ≤ c2Ξ

n

√

∑

ℓ∈N

1

ǫ2ℓ
, (11)

Further, if g1 is a L-strongly convex function,

E

{

∥

∥θ̄[T ]− θ∗
∥

∥

2

2

}

≤ 4c2Ξ

Ln

√

∑

ℓ∈N

1

ǫ2ℓ
. (12)

Proof. See Appendix C.

The upper bounds on the performance of the training Algo-

rithms 1 and 2 in Theorems 2 and 3 are increasing functions of

(1/n2)
∑

ℓ∈N 1/(ǫℓ)
2 and (1/n)[

∑

ℓ∈N 1/(ǫℓ)
2]1/2, respec-

tively. By increasing ǫℓ, i.e., relaxing the privacy guarantees

of data owners, the performance of the ML training algorithm

improves, as expected because of having access to better

quality gradient oracles.

Remark 2 (Comparison with Central Bounds). Under the

assumption that all the data owners have equal privacy

budgets ǫi = ǫ, ∀i, the bound in (9) scales as ǫ−2 and the

bound in (11) scales as ǫ−1. These bounds are in line with

the lower and the upper bounds in [33] for strongly convex

and general convex loss functions. The same outcome also

3Note that the constants in the statement of the theorem can be functions
of T and, therefore, the bounds in (11) and (12) are useful for comparing
the variations in the performance of the sub-gradient descent algorithm for
various privacy budgets and sizes of the datasets as long as T is fixed.
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holds if N = 1 and ǫ1 = ǫ, which is the case of centralized

privacy-preserving learning.

Finally, we note that these results provide bounds on the

distance between the non-private ML model and the privacy-

preserving ML models learned in a distributed manner as a

function of the privacy budgets and the size of the datasets.

Issues, such as non-independent and non-identical datasets, in-

fluence the performance of the non-private model and thus also

indirectly influence the performance of the privacy-preserving

models. In the next section, although the datasets are not

restricted be i.i.d. (e.g., the number of fraudulent transactions

in the credit card fraud detection is low and arguably contains

activities that have originated from same/similar fraudsters),

the theoretical bounds tightly match the experimental results.

IV. EXPERIMENTAL VALIDATION OF THE PERFORMANCE

OF ML ON DISTRIBUTED PRIVATE DATA

In this section, we examine the results of the paper, specifi-

cally the performance of Algorithm 2, on two financial datasets

on lending and credit card fraud. Particularly, we use the

relative fitness of the iterates in Algorithm 2 to illustrate its

performance. The relative fitness of θ is given by

ψ(θ) :=
f(θ)

f(θ∗)
− 1. (13)

This measure shows how good θ is in comparison to the

optimal ML model θ∗ in terms of the training cost in (1).

We opt for studying the relative fitness, scaled by f(θ∗) as

opposed as the absolute fitness f(θ) − f(θ∗), because we

consider datasets with different sizes for two distinct ML

learning models and thus we want to factor out the effects

of the variations of f(θ∗). Finally, note that, by construction,

ψ(θ) ≥ 0. Further, the lower the value of ψ(θ), the better

θ performs in comparison to θ∗. In what follows, we use

Algorithm 1 with ǫ = +∞ for non-private learning of θ∗; this

is equivalent to setting the magnitude of the additive privacy-

preserving noise in the gradients to zero.

A. Lending Dataset

First, we use a lending dataset with a linear regression model

to demonstrate the value of the methodology and to validate

the theoretical results.

1) Dataset Description: The dataset contains information

regarding nearly 890,000 loans made on a peer-to-peer lending

platform, called the Lending Club, which is available on

Kaggle [3]. The inputs contain loan attributes, such as total

loan size, and borrower information, such as number of credit

lines, state of residence, and age. The outputs are the interest

rates of the loans per annum. We encode categorical attributes,

such as state of residence and loan grade assigned by the Loan

Club, with integer numbers. We also remove unique identifier

attributes, such as id and member id, as well as irrelevant

attributes, such as the uniform resource locator (URL) for the

Loan Club page with listing data. Finally, we perform feature

selection using the Principal Component Analysis (PCA) to

select the top ten important features. This step massively

improves the numerical stability of the algorithm. For the PCA,

we only use the last ten-thousand entries of the dataset to

ensure that the feature selection does not violate the distributed

nature of the algorithm. Note that, if we were to use the

entire dataset for the PCA, the data should have been available

at one location for processing which is contradictory to the

assumptions of the paper regarding the distributed nature of the

dataset and the privacy requirements of the data owners. After

performing the PCA, the eigenvectors corresponding to the

most important features are communicated to the distributed

datasets. The first n1 entries of the Lending Club are assumed

to be the private data of the first data owner. The entries

between n1 + 1 to n1 + n2 belong to the second data owner

and the entries between n1 + n2 + 1 to n1 + n2 + n3 are

with the third data owner. Note that, by construct, these

distributed datasets are non-overlapping, i.e., they do not share

identical records. We may use any other approach for splitting

the Lending Club dataset among the private data owners as

long as the distributed datasets are not overlapping. The data

owners then balance their datasets using the-said eigenvectors.

The balancing refers to a transformation of the dataset using

the eigenvectors to extract the most important independent

features. The eigenvectors, here, serve as a common dictionary

between the data owners for communication and training.

2) Experiment Setup: The experiments demonstrate the

outcome of collaborations among N = 3 financial institutes,

e.g., banks, for training a ML model to automate the process

of assigning interest rates to loan applications based on the

attributes of the borrower and the loan. Each institute has

access to a private dataset of ni historical loan applications

and approved interest rates. The value of ǫi for each insti-

tute essentially determines eagerness for collaboration and

openness to sharing private proprietary datasets. For a linear

regression model, we consider a linear ML model relating

the inputs and the outputs as in y = M(x; θ) := θ⊤x with

θ ∈ R
pθ denoting the parameters of the ML model. We

train the model by solving the optimization problem (1) with

g2(M(x; θ), y) = ‖y −M(x; θ)‖22, and g1(θ) = 0.

3) Results: First, we demonstrate the behaviour (e.g., con-

vergence) of the iterates of the stochastic gradient descent

procedure in Algorithm 2. Consider the case where n1 = n2 =
n3 = 250, 000. Figure 2 shows the statistics of the relative

fitness of the stochastic gradient method in Algorithm 2 for a

ML model determining lending interest rates, ψ(θ̄[k]), versus

the iteration number k for T = 100 for three choices of privacy

budgets ǫ1 = ǫ2 = ǫ3 to illustrate the convergence of the

learning algorithm as established in Theorem 3. The algorithm

is stochastic because the data owners provide differentially-

private responses to the gradient queries, obfuscated with

Laplace noise in Theorem 1. Thus each run of the algorithm

follows a different relative fitness trend. The boxes, i.e., the

vertical lines at each iterations, illustrate the range of 25%

to 75% percentiles of the relative fitness extracted from one-

hundred runs of the algorithm. The black lines show the

median relative fitness versus the iteration number. The effect

of the privacy budgets on the quality of the iterates at the
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Fig. 2. Statistics of relative fitness of the stochastic gradient method in Algorithm 2 for learning lending interest rates versus the iteration number for
T = 100 with various choices of privacy budgets. The boxes, i.e., the vertical lines at each iterations, illustrate the range of 25% to 75% percentiles for
extracted from a hundred runs of the algorithm and the black lines show the median relative fitness.
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Fig. 3. Relative fitness of the stochastic gradient method in Algorithm 2 for
learning lending interest rates after T = 100 iterations versus the size of the
datasets and the privacy budgets.
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Fig. 4. Relative fitness of the stochastic gradient method in Algorithm 2
for learning lending interest rates after T = 100 iterations versus the privacy
budgets. The solid line illustrate the bound in Theorem 2.

end of T iterations is evident, as expected from Theorem 3.

As ǫ1 = ǫ2 = ǫ3 increases, i.e., the data owners become

more willing to share data, the performance of the trained

ML model improves. For instance, by increasing the privacy

budget from ǫ1 = ǫ2 = ǫ3 = 1 to ǫ1 = ǫ2 = ǫ3 = 10, the

relative fitness of the algorithm improves (i.e., decreases), on
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Fig. 5. Relative fitness of the stochastic gradient method in Algorithm 2 for
learning lending interest rates after T = 100 iterations versus the size of the
datasets. The solid line illustrate the bound in Theorem 2.

average, by approximately 100-fold.

After establishing the desired transient behaviour of the

algorithm, we can investigate the effect of the size of the

datasets and the privacy budgets on the performance of the

trained ML model, i.e., the ML model after all the iterations

have passed. Figure 3 shows the expectation (i.e., the statistical

mean) of the relative fitness of the stochastic gradient method

in Algorithm 2 for the trained ML model after T = 100
iterations versus the size of the datasets n1 = n2 = n3

and the privacy budgets ǫ1 = ǫ2 = ǫ3. As predicted by

Theorem 3, the fitness improves as the size of the datasets

n1 = n2 = n3 and/or the privacy budgets ǫ1 = ǫ2 = ǫ3
increase. To quantify the tightness of the upper-bound in

Theorem 3 for Algorithm 2, we isolate the effects of the size

of the datasets and the privacy budgets on the relative fitness.

Figure 4 illustrates the expectation of the relative fitness of

the stochastic gradient method in Algorithm 2 after T = 100
iterations versus the privacy budgets ǫ1 = ǫ2 = ǫ3. In this

figure, the markers (i.e., �, �, and ) are from the experiments

and the solid lines are fitted to the experimental data. We can

see that the slope of the linear lines in the log-log scale in

Figure 4 is −2. This shows that ψ(θ̄[k]) ∝ ǫ−2
i . Hence, our
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Fig. 6. Relative fitness of the stochastic gradient method in Algorithm 2 for learning lending interest rates after T = 100 iterations versus the size of the
dataset and the privacy budget of the first data owner for four distinct scenarios of collaboration.
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Fig. 7. Statistics of relative fitness of the stochastic gradient method in Algorithm 2 for fraud detection versus the iteration number for T = 100 with various
choices of privacy budgets. The boxes, i.e., the vertical lines at each iterations, illustrate the range of 25% to 75% percentiles for extracted from a hundred
runs of the algorithm and the black lines show the median relative fitness.
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Fig. 8. Relative fitness of the stochastic gradient method in Algorithm 2 for
fraud detection after T = 100 iterations versus the size of the datasets and
the privacy budgets.

bound in Theorem 3 is not tight as it states that ψ(θ̄[k]) is

upper bounded by a function of the form ǫ−1
i . This is because

Theorem 3 does not use the fact that the cost function for

the regression is strongly convex and has Lipschitz gradients.

These assumptions are utilized in Theorem 2 and the bounds

in this theorem are in fact tight, as Theorem 2 states that

ψ(θ̄[k]) is upper bounded by a function of the form ǫ−2
i .
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Fig. 9. Relative fitness of the stochastic gradient method in Algorithm 2 for
fraud detection after T = 100 iterations versus the privacy budgets. The solid
line illustrate the bound in Theorem 2.

Figure 5 shows the expectation of the relative fitness of the

stochastic gradient method in Algorithm 2 after T = 100
iterations versus the size of the datasets n1 = n2 = n3.

Similarly, the slop of the linear lines in the log-log scale in

Figure 5 is −2 pointing to that ψ(θ̄[k]) ∝ n−2
i . This is again a

perfect match for our theoretical bound in Theorem 2 (because

n = n1 + n2 + n3 = 3ni).
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Fig. 10. Relative fitness of the stochastic gradient method in Algorithm 2 for
fraud detection after T = 100 iterations versus the size of the datasets. The
solid line illustrate the bound in Theorem 2.

Finally, we consider a few scenarios of collaboration for

the data owners. Specifically, we evaluate the performance of

the learning algorithm for four distinct scenarios in which the

second and the third data owners have: (i) small datasets and

small privacy budgets (i.e., reluctant to share due to privacy

concerns); (ii) small datasets and large privacy budgets (i.e.,

eager to share); (iii) large datasets and small privacy budgets;

(iv) large datasets and large privacy budgets. For each case, we

vary the privacy budget and the size of the dataset of the first

data owner. This allows us to investigate the potential benefit to

data owners from collaboration in various scenarios. Figure 6

illustrates the expectation of the relative fitness of the stochas-

tic gradient method in Algorithm 2, after T = 100 iterations,

versus the size of the dataset n1 and the privacy budget ǫ1 for

four distinct scenarios of collaboration. The first scenario in

Figure 6 (the left most plot) shows that there is no point in

collaboration with small data owners, even if the size of the

dataset of the first data owner is large and it is eager to share

its data; the relative fitness (capturing the distance between

private ML model and the non-private model) is very large, it

does not change significantly with ǫ1, and it still remains large

for relative large datasets n1 = 105. We could foresee this

from the bound in Theorem 3 without running Algorithm 2.

This bound shows that ψ(θ̄[k]) ∝ 1/(2000+n1)
√

200 + 1/ǫ21;

hence, no matter how large ǫ1 gets (even if ǫ1 = ∞), the

error’s coefficient remains large due to small privacy budgets

of the other two data owners and n1 must become considerably

large to compensate for it. In the second scenario (the second

left most plot in Figure 6), the effect of ǫ1 and n1 are more

pronounced. This is because, although the other two data

owners are small, they do not hinder the learning process by

adding large amounts of privacy-preserving noise because of

their conservatively small privacy budgets. The third scenario

is similar to the first one, albeit with better relative fitness as

conservative data owners are relatively larger. The best sce-

nario for collaboration, unsurprisingly, is the fourth scenario in

which phenomenal performances can be achieved even without

much consideration towards the size of the first dataset or its

privacy budget as the other two datasets are large and eager

to collaborate for learning.

B. Credit Card Fraud Detection

In this subsection, we use a credit card dataset with a

L-SVM classifier to further demonstrate the value of the

methodology and to validate the theoretical results.

1) Dataset Description: The datasets contains transactions

made by European credit card holders in September 2013

available on Kaggle [4]. The inputs are vectors extracted by

PCA (to avoid confidentiality issues) as well as the amount

of the transaction. The output is a class, determining if the

transactions was deemed fraudulent or not. The dataset is

highly unbalanced, as the positive class (frauds) account for

0.172% of all transactions.

2) Experiment Setup: The experiments demonstrate the

outcome of collaborations among N = 3 financial institutes

for training a SVM classifier to detect fraudulent activities

automatically and rapidly. Each institute has access to a

private dataset of ni historical credit card transactions and

their authenticity. The value of ǫi for each institute deter-

mines eagerness for collaboration. In L-SVM, the model

is M(x; θ) := θ⊤[x⊤ 1]⊤, and g1(θ) := (1/2)θ⊤θ and

g2(M(x; θ), y) := max(0, 1−M(x; θ)y).

3) Results: First, we investigate the transient behaviour of

the iterates of Algorithm 2. Assume that n1 = n2 = n3 =
30, 000. Figure 7 shows the statistics of the relative fitness of

the iterates of Algorithm 2 for training a fraud detection SVM

classifier, ψ(θ̄[k]), versus the iteration number k for T = 100
for three choices of privacy budgets ǫ1 = ǫ2 = ǫ3. The boxes,

i.e., the vertical lines at each iterations, illustrate the range

of 25% to 75% percentiles of relative fitness extracted from

one-hundred runs of the algorithm and the black lines show

the median relative fitness. As expected from Theorem 3, the

performance of the trained SVM classifier gets closer to the

SVM classifier trained with no privacy constraints θ∗ as the

privacy budgets increases.

Now, we can demonstrate the effect of the size of the

datasets and the privacy budgets on the performance of the

trained SVM classifier at the end of T training iterations.

Figure 8 shows the expectation of the relative fitness of the

stochastic gradient method in Algorithm 2 after T = 100
iterations versus the size of the datasets n1 = n2 = n3 and the

privacy budgets ǫ1 = ǫ2 = ǫ3. Similar to the theoretical results

in Theorem 3, the fitness improves by increasing the size of the

datasets n1 = n2 = n3 and the privacy budgets ǫ1 = ǫ2 = ǫ3.

We can also isolate the effects of the size of the datasets

and the privacy budgets. Figure 9 illustrates the expectation

of the relative fitness of the iterates of Algorithm 2 after

T = 100 iterations versus the privacy budgets ǫ1 = ǫ2 = ǫ3.

As all linear slopes in the log-log scale in Figure 9 are −2,

the bound in Theorem 2 seems to be a perfect fit. Figure 5

shows the expectation of the relative fitness of the iterates of

Algorithm 2 after T = 100 iterations versus the size of the

datasets n1 = n2 = n3 revealing the exact behaviour predicted

in the bound in Theorem 2.
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Fig. 11. Relative fitness of the stochastic gradient method in Algorithm 2 for a trained ML model determining lending interest rates after T = 100 iterations
versus the size of the dataset and the privacy budget of the first data owner for four distinct scenarios of collaboration.

Finally, we evaluate the performance of the learning algo-

rithm for four distinct scenarios, in which the second and the

third data owners have: (i) small datasets and small privacy

budgets; (ii) small datasets and large privacy budgets; (iii)

large datasets and small privacy budgets; (iv) large datasets

and large privacy budgets. Figure 11 illustrates the expectation

of the relative fitness of Algorithm 2 after T = 100 iterations

versus the size of the dataset n1 and the privacy budget ǫ1 for

four distinct scenarios of collaboration. The first scenario in

Figure 11 (the left most plot) illustrates that there is no point

in collaboration with small data owners even if the size of

the dataset of the first data owner is large and it is eager to

share its data. In the second scenario (the second left most plot

in Figure 11), the effect of ǫ1 and n1 are more pronounced

because the privacy budgets of the second and the third data

owners are large and thus they do not degrade the performance

of the learning algorithm by injecting excessive privacy-

preserving noise. The third scenario is again similar to the first

one, albeit with better results as conservative data owners are

relatively larger. The best scenario for collaboration, similar

to the loan example, is the fourth scenario in which the

training performances with and without privacy constraints are

identical, so long as the dataset of the first subsystem is large,

or its privacy budget is not too small.

V. DISCUSSIONS, CONCLUSIONS, AND FUTURE RESEARCH

We considered privacy-aware optimization-based ML on

distributed private datasets. We assumed that the data owners

provide DP responses to gradient queries. The theoretical anal-

ysis of the proposed DP gradient descent algorithms provided

a way for predicting the quality of ML models based on the

privacy budgets and the size of the datasets. We proved that

the difference between the training model with and without

considering privacy constrains of the data owners is bounded

by (
∑

ℓ∈N nℓ)
−2
∑

ℓ∈N ǫ−2
ℓ in our proposed algorithms under

smoothness and strong-convexity assumptions for the fitness

cost. The empirical results with real-world financial datasets

split between multiple institutes/banks while using regression

and support vector machine models demonstrated that the

relative fitness in fact follows ǫ−2
i and n−2

i for the proposed

algorithm. This shows the tightness of the upper bounds on the

difference between the trained ML models with and without

privacy constraints from the theoretical analysis, which can

be utilized for quantification of the privacy-utility trade-off in

privacy-preserving ML.

Note that the data owners, themselves, can also play the

role of the learner in Figure 1. In this case, the data owner

who is interested in learning a model can query the other data

owners to provide DP gradients to use for learning. Now, in

this case, as the other data owners cannot access the trained

model or the query responses, the data owner who is training

the model can set its own privacy budget to infinity. Following

this approach, by creating N copies of the algorithm discussed

in this paper, we can remove the central learner and each data

owner can learn its own ML model.

The results of this paper can be used or extended in multiple

directions for future research:

• We can extend the framework to multiple learners aiming

to train separate privacy-aware ML models with similar

structures based on their own datasets and DP responses

from other learners and private data owners. This is closer

in nature to the distributed or federated ML framework

over an arbitrary connected communication network.

Note that, in this paper, the communication structure

among the learner and the data owners is over a star

graph with the learner at the center.

• The results of this paper can be used to understand the

behaviour of data owners and learners in a data market for

ML training. The utility-privacy trade-off in this paper,

in terms of the quality of the trained ML models, can be

used in conjunction with the cost of sharing private data

of costumers with the learner (in terms of loss of repu-

tation, legal costs, implementation of privacy-preserving

mechanisms, and communication infrastructure) to setup

a game-theoretic framework for modeling interactions

across a data market. The learner can compensate the

data owners for access to their private data, by essentially

paying them for choosing larger privacy budgets. After

negotiations between the data owners and the learners for

setting the privacy budgets, the algorithm of this paper
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can be used to then train ML models, while knowing in

advance the expected quality of the trained model.

• Synchronous updates of the algorithm is indeed a bottle-

neck of the proposed algorithm. Future work can focus

on extending the results of this paper to asynchronous

gradient updates where, at each iteration, only a subset

of the data owners update the ML model. To be able to

ensure the convergence of the asynchronous algorithm,

we need to ensure that all the data owners update the

model as frequently as required.

• Another direction for future research is to extend the

framework of this paper to adversarial learning scenarios

that can admit more general adversaries (than the case of

curious-but-honest adversaries in this paper).
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APPENDIX A

PROOF OF THEOREM 1

First, because of (6), we have

‖Qℓ(Dℓ; k)−Qℓ(D′
ℓ; k))‖1 =

1

nℓ

∥

∥

∥

∥

∥

∑

{x,y}∈Dℓ

ξḡx,y
2

(θ[k])

−
∑

{x,y}∈D′
ℓ

ξḡx,y
2

(θ[k])

∥

∥

∥

∥

∥

1

=
1

nℓ
‖ξḡx,y

2

(θ[k])|{x,y}∈Dℓ⊆D′
ℓ

−ξḡx,y
2

(θ[k])|{x,y}∈D′
ℓ
⊆Dℓ

‖1.
This implies that ‖Qℓ(Dℓ; k) − Qℓ(D′

ℓ; k))‖1 ≤
(2/nℓ)max{x,y}∈D′

ℓ
⊆Dℓ∪Dℓ⊆D′

ℓ
‖ξḡx,y

2

(θ[k])‖1 ≤ 2Ξ/nℓ,

where the last inequality follows from Assumption 3. Noting

the exponential form of the Laplace random variable, we get

p((Qℓ(Dℓ; k))
T
k=1)

p((Qℓ(D′
ℓ; k))

T
k=1)

=

T
∏

k=1

exp

(

‖Qℓ(D′
ℓ; k)‖1
b

−‖Qℓ(Dℓ; k)‖1
b

)

≤
T
∏

k=1

exp(2Ξ/bnℓ)

= exp(2ΞT/bnℓ),

where, by some abuse of notation, p(·) denotes the prob-

ability density of the variable in its argument. Substituting

b = 2ΞT/(nℓǫℓ) in this inequality concludes the proof.

APPENDIX B

PROOF OF THEOREM 2

The magnitude of the DP noise is

E{‖w[k]‖22} =E

{∥

∥

∥

∥

(

1
∑

ℓ∈N nj

)

∑

j∈N

nℓwℓ[k]

∥

∥

∥

∥

2

2

}

=

(

1
∑

ℓ∈N nj

)2
∑

ℓ∈N

n2
ℓE{‖wℓ[k]‖22}

=

(

1
∑

ℓ∈N nj

)2
∑

ℓ∈N

8Ξ2T 2

ǫ2ℓ

=
8Ξ2T 2

n2

∑

ℓ∈N

1

ǫ2ℓ
.

Because ∇f is λ-Lipschitz, f(z1) ≤ f(z2) +∇f(z2)⊤(z1 −
z2) + 0.5λ‖z2 − z1‖22 for all z1, z2 [34] and therefore

E{f(θ[k + 1])} ≤E{f(θ[k])}
+ E{∇f(θ[k])⊤(θ[k + 1]− θ[k])}

+
λ

2
E{‖θ[k + 1]− θ[k]‖22}

≤E{f(θ[k])}

+ ρk

(

λρk
2

− 1

)

E{‖∇f(θ[k])‖22}

+ ρ2k
8Ξ2T 2

n2

∑

ℓ∈N

1

ǫ2ℓ
.

For all ρk ≤ 1/λ, we have

E{f(θ[k + 1])} ≤E{f(θ[k])} − ρk
2
E{‖∇f(θ[k])‖22}

+ ρ2k
8Ξ2T 2

n2

∑

ℓ∈N

1

ǫ2ℓ
. (14)

For ε > 0, we may define

k0 := inf
k

{

k

∣

∣

∣

∣

E{‖∇f(θ[k])‖22} ≤ 16Ξ2T 2ρk
n2

∑

ℓ∈N

1

ǫ2ℓ
+ ε

}

.

Here, k0 is the iteration number at which the magnitude of

the last term in the right hand side of (14) (a positive value)

becomes larger than the magnitude of the second to the last

term in the right hand side of (14) (a negative value). In

essence, at k0, the upper bound on the cost function does not

reduce. If T is large enough, we can easily show that there

exists k0 <∞. This can be proved by contrapositive. Assume

that this not the case. Therefore,

lim
k→0

E{f(θ[k])} =E{f(θ[1])}

+

k
∑

t=2

(E{f(θ[t])} − E{f(θ[t− 1])})

≤E{f(θ[1])} −
k
∑

t=2

ερk

=−∞.

This is however not possible. Since f is L-strongly convex,

Polyak-Lojasiewicz inequality [34] implies that

E{f(θ[k0])} − f(θ∗) ≤ 1

2L
E{‖∇f(θ[k])‖22}

≤8Ξ2T 2ρk
Ln2

∑

ℓ∈N

1

ǫ2ℓ
+

ε

2L
.

Now, because k0 ≤ T , we get

min
1≤k≤T

E{f(θ[k])} − f(θ∗) ≤E{f(θ[k0])} − f(θ∗)

≤8Ξ2T 2ρk
Ln2

∑

ℓ∈N

1

ǫ2ℓ
+

ε

2L
.

Again, because f is L-strongly convex, we can see that

f(θ∗) ≤ f(tθ + (1− t)θ∗)

≤ tf(θ) + (1− t)f(θ∗)− L

2
t(t− 1)

∥

∥θ − θ∗
∥

∥

2

2
,

for all t ∈ (0, 1). Setting t = 1/2 results in
∥

∥θ − θ∗
∥

∥

2

2
≤ 4(f(θ)− f(θ∗))/L. (15)

Hence,

min
1≤k≤T

‖θ[k]− θ∗‖22 ≤ 4

L

(

min
1≤k≤T

E{f(θ[k])} − f(θ∗)

)

≤32Ξ2T 2ρk
L2n2

∑

ℓ∈N

1

ǫ2ℓ
+

ε

8L2
.

This concludes the proof.
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APPENDIX C

PROOF OF THEOREM 3

The proof for this theorem follows from modification of the

results of [2]. In fact, the inequality in (11) follows from the

result of [2] using the optimal selection of c in [29]. The only

difference with the proofs in [2] is to appreciate that

ζk − ζk−1 ≤ 2√
TT (T + 1)

,

where

ζk :=
1/

√
T + 1

1/
√
T + k

T
∏

m=k+1

m− 1

1/
√
T +m

.

The inequality follows from that

ζk − ζk−1 =
(1/

√
T )(1/

√
T + 1)

(k − 1 + 1/
√
T )(k + 1/

√
T )

×
T
∏

m=k+1

m− 1

1/
√
T +m

=
(1/

√
T )(1/

√
T + 1)

(k − 1 + 1/
√
T )(k + 1/

√
T )

×
∏T

m=k+1(m− 1)
∏T

m=k+1(1/
√
T +m)

= (1/
√
T )(1/

√
T + 1)

∏T−1
m=km

∏T
m=k−1(1/

√
T +m)

= (1/
√
T )(1/

√
T + 1)

∏T−1
m=km

∏T+1
m=k(1/

√
T +m− 1)

=
(1/

√
T )(1/

√
T + 1)

T (T + 1)

T+1
∏

m=k

m

(1/
√
T +m− 1)

≤ 2√
T

1

T (T + 1)
.

If f is L-strongly convex, the proof of the inequality in (12)

follows from (15).
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