
Dragonblood: Analyzing the Dragonfly
Handshake of WPA3 and EAP-pwd

Mathy Vanhoef
New York University Abu Dhabi

Mathy.Vanhoef@nyu.edu

Eyal Ronen
Tel Aviv University and KU Leuven

eyal.ronen@cs.tau.ac.il

Abstract—The WPA3 certification aims to secure home net-
works, while EAP-pwd is used by certain enterprise Wi-Fi net-
works to authenticate users. Both use the Dragonfly handshake
to provide forward secrecy and resistance to dictionary attacks.
In this paper, we systematically evaluate Dragonfly’s security.
First, we audit implementations, and present timing leaks and
authentication bypasses in EAP-pwd and WPA3 daemons. We
then study Dragonfly’s design and discuss downgrade and denial-
of-service attacks. Our next and main results are side-channel
attacks against Dragonfly’s password encoding method (e.g. hash-
to-curve). We believe that these side-channel leaks are inherent
to Dragonfly. For example, after our initial disclosure, patched
software was still affected by a novel side-channel leak. We also
analyze the complexity of using the leaked information to brute-
force the password. For instance, brute-forcing a dictionary of
size 1010 requires less than $1 in Amazon EC2 instances. These
results are also of general interest due to ongoing standard-
ization efforts on Dragonfly as a TLS handshake, Password-
Authenticated Key Exchanges (PAKEs), and hash-to-curve. Fi-
nally, we discuss backwards-compatible defenses, and propose
protocol fixes that prevent attacks. Our work resulted in a new
draft of the protocols incorporating our proposed design changes.

I. INTRODUCTION

After the disclosure of key reinstallation attacks (KRACKs)

in WPA2 [1], the Wi-Fi Alliance released WPA3 as the succes-

sor of WPA2 [2]. It is important to remark that WPA3 does not

define new protocols. Instead, it is a certification that defines

which existing protocols a device must support. Simplified,

WPA3 mandates support of the Dragonfly handshake, and

its only new feature is a transition mode where WPA2 and

WPA3 are simultaneously supported for backwards-compat-

ibility. Unfortunately, the security guarantees of WPA3 and

its Dragonfly handshake are unclear. For example, a close

variant of Dragonfly received significant criticism while being

standardized [3]–[5], while a different variant of Dragonfly has

a formal security proof [6]. These contradictory claims raise

the question of whether Dragonfly is secure in practice.
We systematically evaluate the security of Dragonfly and its

usage in WPA3 and EAP-pwd. The EAP-pwd protocol is used

by some enterprise Wi-Fi networks to authenticate users, while

WPA3 is used in personal Wi-Fi networks. Both protocols

rely on Dragonfly to provide forward secrecy and protection

against offline dictionary attacks. The Dragonfly variant used

in WPA3 is also known as Simultaneous Authentication of

Equals (SAE). To evaluate the security of Dragonfly, we audit

and reverse engineer implementations, study risks specific to

WPA3, analyze standards for timing and cache side-channels,

use tools to detect implementation-specific side-channels, and

explain how the side-channel leaks enable offline brute-force

attacks. We confirmed all results against proprietary and open

source implementations of WPA3 and EAP-pwd. Additionally,

we released open source tools so users can check if implemen-

tations are vulnerable, and so results are easier to replicate [7].

To inspect WPA3 and WPA-pwd implementations, we wrote

a test harness to see if edge cases in the Dragonfly handshake

are properly handled. This revealed authentication bypasses

and reflection attacks in multiple implementations. We also

audited and reverse engineered firmware, revealing additional

vulnerabilities such as known and novel side-channel leaks.

We then study the usage of Dragonfly in WPA3. Here we

bypass WPA3-SAE’s denial-of-service defense, and overload

the CPU of a high-end Access Point (AP). Surprisingly, the

cause of SAE’s high overhead are defenses against known

timing side-channels. Second, we demonstrate a downgrade

and dictionary attack against WPA3 when it is operating in

transition mode, and we discover a downgrade attack against

SAE itself. Additionally, we present implementation-specific

downgrade and dictionary attacks that work even when the

victim uses WPA3-only networks.

Our main results are side-channel attacks against Dragonfly.

These were found by analyzing specifications, and using tools

to detect implementation-specific leaks. Our attacks consist of

timing side-channels and new micro-architectural cache side-

channels. These attacks apply to WPA3 and EAP-pwd, leak

information about the password, and work even against im-

plementations that have defenses against known side-channel

leaks. As a result, our findings are also of more general interest

since they affect ongoing standardization efforts in PAKE and

hash-to-element algorithms [8]–[10]. We also show that these

timing and cache leaks enable offline brute-force attacks. For

instance, searching through a dictionary of size 1010, which

is larger than all available password dumps, can be done for

less than $1 in GPU-enabled Amazon EC2 instances.

We believe more openness while creating WPA3 and

Dragonfly could have prevented most attacks. For example,

excluding the MAC addresses from Dragonfly’s password

encoding method, or using constant-time algorithms, would

have mitigated most attacks.

In collaboration with the Wi-Fi Alliance and CERT/CC we

notified affected vendors, and we also helped write patches to

prevent most attacks. Affected vendors and allocated Common

Vulnerabilities and Exposures (CVE) IDs can be found at [11].

During this coordinate disclosure, the Wi-Fi Alliance privately

created recommendations to securely implement WPA3, in

517

2020 IEEE Symposium on Security and Privacy

© 2020, Mathy Vanhoef. Under license to IEEE.
DOI 10.1109/SP40000.2020.00031

which they claim Brainpool curves are safe to use [12].

However, using Brainpool curves requires extra defenses, and

we found that patched WPA3 implementations were still vul-

nerable when using Brainpool curves. This resulted in a second

disclosure round, and highlights the difficulty of implementing

Dragonfly without side-channels leaks. It also affirms that

security protocols should be designed to be efficient and easy

to implement securely. Fortunately, our proposed protocol

changes that prevent most attacks are being incorporated into

WPA3 and EAP-pwd [13]–[15].

Summarized, our contributions are:

• We audit EAP-pwd and SAE implementations, and find

several vulnerabilities that range from novel side-channel

leaks to authentication bypasses (Section III).

• We present denial-of-service, downgrade, and dictionary

attacks against WPA3 and SAE (Section IV).

• We discuss known and novel timing side-channels in SAE

and EAP-pwd, and abuse them in practice (Section V).

• We exploit cache side-channels in SAE (Section VI).

• We show how our side-channel leaks enable offline brute-

force attacks (Section VII).

Finally, we discuss related work in Section VIII, and we give

concluding remarks and recommendations in Section IX.

II. BACKGROUND

In this section we introduce Dragonfly as used in WPA3 and

EAP-pwd [2], [16] and cover parts of the 802.11 standard [17].

A. The Dragonfly Handshake

The Dragonfly handshake prevents offline dictionary attacks

and provides forward secrecy [18]. It is a Password Authen-

ticated Key Exchange (PAKE), meaning it turns a password

into a high-entropy key. It was designed by Harkins in 2008,

and is used in practice by both WPA3 and EAP-pwd [2], [16].

Variants are also used in TLS-PWD and IKE-PSK [19]–[21].

However, only 802.11 and WPA3 officially adopted Dragonfly.

None of the other RFCs that define a Dragonfly variant

are standards-track RFCs, meaning they are not endorsed by

e.g. the Internet Engineering Task Force (IETF).

Dragonfly supports Elliptic Curve Cryptography (ECC) with

elliptic curves over a prime field (ECP groups), and Finite

Field Cryptography (FFC) with multiplicative groups modulo a

prime (MODP groups). We use G for the generator of a group

and q for the order of G. Lowercase letters denote scalars, and

uppercase letters denote group elements. Elliptic curves are

defined over the equation y2 = x3+ ax+ b mod p where p is

a prime and a, b, and p depend on the curve being used. We

use O to represent the point at infinity. For both MODP and

ECP groups, all calculations are done modulo their prime p.

Password Derivation. Before initiating the Dragonfly hand-

shake, the pre-shared password is converted to a group element

using a hash-to-element method. The hash-to-element method

for MODP groups is called hash-to-group, and the one for

elliptic curves is called hash-to-curve. In both algorithms the

password element P is generated using a try-and-increment

Listing 1: Hash-to-curve method. If token is None the SAE

variant is executed, otherwise it executes the EAP-pwd variant.

1 def hash_to_curve(password, id1, id2, token=None):
2 found, counter, base = False, 0, password
3 label = "EAP-pwd" if token else "SAE"
4 k = 0 if token else 40
5 while counter < k or not found:
6 counter += 1
7 seed = Hash(token, id1, id2, base, counter)
8 value = KDF(seed, label + " Hunting and Pecking", p)
9 if value >= p: continue

10 if is_quadratic_residue(value^3 + a * value + b, p):
11 if not found:
12 x, save, found = value, seed, True
13 base = random()
14

15 y = sqrt(x^3 + a * x + b) mod p
16 P = (x, y) if LSB(save) == LSB(y) else (x, p - y)
17 return P

strategy, where in each iteration a hash is first computed over

the password, an incremental counter, and the peer’s identities

(IDs). With EAP-pwd, the input of the hash also includes

a random token generated by the server. The hash-to-curve

variant uses the hash output as the x coordinate of a point,

and it then checks if there is a solution for y over the equation

y2 = x3+ax+b mod p (see Listing 1). If a solution exists, the

password element is the point (x, y). Otherwise, the counter is

incremented, and another attempt is made to find a solution for

y using the new x value. We discuss the hash-to-group method

in Section V, and unless otherwise noted, we assume the

elliptic curve variant is used since it is more widely deployed.

To mitigate timing leaks, WPA3-SAE executes the while

loop k times no matter when P is found. However, no value

for k is suggested, and EAP-pwd does not even have this

defense. Other variants of Dragonfly use k = 40 [20], [22],

and several SAE implementation also use this value (see

Section III-D). In the extra iterations, operations are based on

a random password. Information may also leak when checking

if there is a solution for y in line 10. The EAP-pwd standard

does not realize this, and directly tries to calculate y, which

may take longer when there is a solution. In contrast, WPA3

recommends to first check if there is a solution using the

Legendre function before calculating y. Unfortunately, even

a Legendre function can leak info if not carefully imple-

mented [23]. To prevent this, an update to 802.11 recommends

Quadratic Residue (QR) blinding [24], [25]. With this defense,

a random number is first generated, squared, and multiplied

to the number being checked. The result is then multiplied

with a random quadratic (non-)residue, before executing the

Legendre function [17, §12.4.4.2.2].

Commit and Confirm Phase. The Dragonfly protocol itself

consists of a commit and confirm phase. Figure 1 illustrates

these phases, and the corresponding curve operations. Both

peers can initiate the handshake concurrently, which may

happen in mesh networks after a connection loss. However,

in infrastructure WPA3 networks the client always sends the

first commit, while with EAP-pwd the RADIUS authentication

518

Alice (e.g. a client) Bob (e.g. an AP)

Pick random rA and mA

sA = (rA +mA) mod q
EA = −mA · P

Pick random rB and mB

sB = (rB +mB) mod q
EB = −mB · P

Auth-Commit(sA, EA)

Auth-Commit(sB , EB)

Verify sB and EB

K = rA · (sB ·P +EB)
κ = Hash(K)
tr = (sA, EA, sB , EB)
cA = HMAC(κ, tr)

Verify sA and EA

K = rB · (sA ·P +EA)
κ = Hash(K)
tr = (sB , EB , sA, EA)
cB = HMAC(κ, tr)

Auth-Confirm(cA)

Auth-Confirm(cB)

Verify cB Verify cA

Fig. 1: WPA3’s SAE handshake. Both stations can simulta-

neously initiate the handshake, hence the crossed arrows. We

assume elliptic curves are used, though similar operations are

performed when using multiplicative groups.

server always sends the first commit frame. In this paper we

consider the RADIUS server and AP to be the same entity.

In the commit phase, each peer picks two random numbers

ri,mi ∈ [2, q[such that ri + mi ∈ [2, q[(see Fig. 1). They

then calculate Ei = −mi · P and send si and Ei to each

other using a commit frame. On reception of these values, each

peer verifies that the received si is within the range [1, q[, and

that Ei is a valid point on the curve [17, §12.4.5.4]. If one of

these checks fails, the handshake is aborted. Forward secrecy

is provided since deriving mi given P and Ei is hard, i.e., it

relies on the elliptic curve discrete logarithm problem.

In the confirm phase, each peer calculates the secret

point K . The x-coordinate of this point is processed using a

hash function to derive the key κ, and a HMAC is computed

over the handshake summary tr with as key κ. The result of

this hash, denoted by ci, is sent to the other peer in a confirm

frame. On reception of ci, the receiver verifies its value. It if

differs from the expected value, the confirm frame is ignored.

Otherwise the handshake succeeds and the negotiated key is κ.

B. Dragonfly in WPA3 and EAP-pwd

Dragonfly is mainly used in personal WPA3 networks, and

in enterprise WPA2/3 networks that authenticate clients using

EAP-pwd. In other words, only Wi-Fi networks employ Drag-

onfly, and our attacks apply to both network configurations.

The Dragonfly variant used in personal WPA3 networks is

called Simultaneous Authentication of Equals (SAE). The SAE

handshake was added to 802.11 in 2011 [26], and requires

that the pre-shared key is stored in plaintext. In the hash-to-

element algorithm, the identities of both peers are their MAC

addresses. After executing SAE, the negotiated high-entropy

key is used in a 4-way handshake to derive a fresh session

key. Although WPA3 still uses WPA2’s 4-way handshake, it is

not vulnerable to dictionary attacks because the key generated

by SAE has much higher entropy than an ordinary password.

The SAE handshake explicitly supports mesh networks, by

allowing both peers to initiate the handshake concurrently.

Enterprise Wi-Fi networks can use various EAP-based au-

thentication methods. We focus on EAP-pwd, which was de-

fined in 2010 and is based on Dragonfly [16]. It allows devices

to store passwords in plaintext or in hashed forms. Note that

the difference between enterprise WPA2 and WPA3 networks,

is that with WPA3 all ciphers must offer at least 192 bits of

security (e.g. at least 384-bit elliptic curves must be used).

In EAP-pwd, the AP initiates the handshake, and commit and

confirm frames are encapsulated in 802.1X frames.

C. WPA3-SAE Transition Mode

To accommodate devices that do not support WPA3, a net-

work can operate in a transition mode where WPA2 and WPA3

are simultaneously supported using the same password. In this

mode the AP advertises Management Frame Protection (MFP)

as optional. Older clients then connect using WPA2 without

MFP, while modern clients connect using WPA3’s SAE with

MFP enabled. The only requirement placed on WPA3 clients

is that they must use MFP, even though it is advertised as

optional. The WPA3 certification does not discuss the security

of transition mode [2]. Nevertheless, one would expect that if

all devices support WPA3, it is as secure as normal WPA3.

Unfortunately, in Section IV-A we show this is not the case.

III. A SYSTEMATIC ANALYSIS OF DRAGONFLY

In this section we describe our methodology, and we evalu-

ate the security of EAP-pwd and WPA3-SAE implementations.

A. Methodology

We first evaluate the security of EAP-pwd and SAE imple-

mentations. This is done by creating a black-box test harness to

check if corner cases in the specification are properly handled.

We also audit open source implementations, and reverse engi-

neer closed ones. This revealed several vulnerabilities, where

the most severe ones can be abused to bypass authentication.

In a second step we inspect the WPA3-SAE specification,

and study the risks of deploying Dragonfly in Wi-Fi networks.

This uncovered two downgrade attacks, and a denial-of-service

attack caused by Dragonfly’s high overhead (see Section IV).

Most importantly, we also inspect EAP-pwd and SAE for

new side-channel leaks. We do this by analyzing their specifi-

cations for design flaws, and by using MicroWalk to detect

side-channel leaks in implementations [27]. This revealed

several novel attacks (see Section V and VI).

B. Threat Models

All our attacks are against Wi-Fi clients or APs, and several

apply to both. This means we must always be within range

of the target to perform our attacks. Unless otherwise noted,

when the target is an AP, we masquerade as a client and send

(malicious) frames to the AP. When the target is a client, we

create a rogue AP that clones a network saved by the victim,

519

TABLE I: EAP-pwd (top) and SAE (bottom) tools that accept

an invalid scalar/element (2nd column), do not detect reflection

attacks (3rd column), or have known timing leaks (k-columns).

In Section V we cover novel timing attacks.

Software Invalid Reflect k = 0 k ≤ 4

FreeRADIUS � � � �
Radiator � � � �
hostapd 2.0-2.7 � � 2.0-2.6 2.0-2.6
wpa supplicant 2.0-2.7 � — 2.0-2.6 2.0-2.6
Aruba client � — � �
iwd 0.2-0.16 � — 0.2-0.14 0.2-0.14

hostapd 2.1-2.7 � — � 2.1-2.4
wpa supplicant 2.1-2.7 � 2.1-2.4 � 2.1-2.4
iwd 0.7-0.16 � � � �

meaning the targeted client will automatically connect to it.

We can even force the victim into connecting to our rogue AP

by using a higher signal strength than the legitimate AP, or by

jamming the legitimate AP [28].

In our side-channel attacks of Section V and VI, we need to

perform numerous handshakes with different MAC addresses.

When targeting an AP this can be done by masquerading

as different clients. When targeting a client, we can set up

multiple rogue APs that each use a different MAC address but

all advertise the same network. One obstacle when attacking

clients is that most will temporarily blacklist the rogue AP if

the handshake repeatedly fails. However, all clients we tested

blacklist only a specific MAC address. Hence, if a handshake

fails, the targeted client will still connect to a rogue AP with

a different MAC address.

In our cache attacks of Section VI, we assume the adversary

can also monitor cache access patterns on the target’s machine.

This can only be done when running code on the same physical

hardware (e.g. in a different process or virtual machine). This

threat model is similar to the one in recent attacks against

TLS [29]–[31]. However, we can also target clients, and

can run our attack from any unprivileged user-mode process

(e.g. Android application). It is even possible to perform such

attacks by injecting JavaScript in older browsers [32].

C. Test Harness and Discovered Flaws

We created black-box tests for EAP-pwd and SAE to verify

whether the following three checks are implemented. First, the

receiver of a commit frame must check that the scalar is in the

range [2, q[, and must check that the element is a member of

the group (e.g. that point EA is on the curve). Additionally, the

initiator must detect reflection attacks where the peer reflects

the scalar and element. Table I lists the tested implementations

and discovered attacks. For hostapd and wpa supplicant we

tested version 2.0 up to 2.7. Note that support for SAE was

added in version 2.1 of these tools. The Aruba client is a driver

that adds support for EAP-pwd to Windows.

Surprisingly, none of the EAP-pwd implementations vali-

date the received scalar or element. We abuse this in an invalid

curve attack, where the adversary sends a point that is on an

invalid curve with a very small number of elements, making

the key K guessable [33], [34]. The attack works both against

clients and APs. To attack an AP (i.e. RADIUS server) we send

a commit frame with an invalid point, and wait for the server’s

confirm frame. We then brute-force the key κ by guessing

its value, and verifying a guess by reconstructing the server’s

confirm frame and comparing it with the received one. To

attack a client, we send an invalid point that causes K to have

only three possible values, namely the point at infinity and two

points with the same x-coordinate. We then guess the key κ
and send a confirm frame. If the guess was correct, which

has a 66% chance since κ is only based on the x-coordinate

of K, the victim replies with a confirm frame. In both attacks,

we bypass authentication. We confirmed this attack against all

client and server-side implementations of EAP-pwd.

All server-side EAP-pwd implementations were vulnerable

to reflection attacks. This attack allows the adversary to

authenticate as the victim, but does not reveal the session

key κ. Note that clients cannot be vulnerable to reflection

attacks, because they do not initiate the EAP-pwd handshake.

For SAE, wpa supplicant 2.1 to 2.4 are affected by re-

flection attacks. This can be abused to set up a rogue AP,

and complete the SAE handshake, though traffic cannot be

intercepted since κ is unknown. We also found that iwd did not

verify the received scalar. To exploit this, we send a scalar sB
equal to the order of the elliptic curve such that sB ·P equals

the point at infinity O. We then construct a valid point EB

such that O+EB , when computed by iwd, equals the point at

infinity O, causing κ to be zero. Since iwd can be forced into

using this curve, the bug is exploitable, and allows an attacker

to act as a rogue AP and intercept the client’s traffic.

D. Code Audits and Reverse Engineering

We also checked for known timing leaks by auditing open

source implementations and reverse engineering closed ones.

Known timing leaks. The initial specification of EAP-pwd

and SAE did not perform extra iterations in the hash-to-curve

method, meaning they stop once a solution for y is found [16],

[26]. Only SAE got updated to perform extra iterations [35].

The CFRG proposed this defense, and advised to always per-

form 40 iterations based on a back-of-the-envelope calculation

by Igoe [22]. Information may also leak when checking if

there is a solution for y in line 10 of Listing 1. The EAP-pwd

standard has no defenses against this (recall Section II-A),

while 802.11 adopted a blinded quadratic residue test in an

update to the standard [17, §12.4.4.2.2].

Since Dragonfly has a history of side-channels leaks, we

evaluate which defenses are deployed in practice. One may

also wonder why Dragonfly did not use an alternative design

that avoids side-channel leaks. For example, CFRG members

suggested to exclude the peer’s identities from the hash-to-

element method [36]–[40]. With this change, the password

element can be calculated offline, reducing the impact of

side-channel leaks. Unfortunately, the designers dismissed this

advice, meaning the above defenses are essential in practice.

Results. Code audits revealed that version 2.1 up to 2.4

of hostapd and wpa supplicant use k = 4 for SAE, while

520

newer versions use k = 40. However, this update was not

considered security-critical, meaning these old versions remain

vulnerable to timing attacks. All versions of iwd use k = 20
for SAE, making timing attacks hard but in theory possible.

No extra iterations are performed in EAP-pwd’s hash-to-curve

of FreeRADIUS, Radiator, Aruba, iwd 0.16 and lower, and in

version 2.0 to 2.6 of hostapd and wpa supplicant. This can be

abused against clients to recover the point P , but is non-trivial

to exploit against APs (see Section V-D).

In FreeRADIUS, the hash-to-curve algorithm of EAP-pwd

aborts when 11 or more iterations are needed. This means that

one out of every 2048 handshakes fails, which reveals that the

password element was not found in the first 10 iterations. We

successfully abused this side-channel leak to brute-force the

password using the techniques of Section VII.

After reversing Aruba’s EAP-pwd client for Windows, we

found that it generated random numbers based on the current

system time. This allows an adversary to predict mA and

recover the password from EA. Aruba’s client also aborts

the hash-to-curve algorithm when more than 30 iterations are

needed. This means one in every billion handshakes fails, in

which case enough info is leaked to brute-force the password.

In addition to the devices in Table I, we reverse engineered

two firmware images of Cypress. These firmware images

are run on Wi-Fi radios, and allow devices to offload the

SAE handshake to the Wi-Fi radio. Interestingly, they execute

at minimum only k = 8 iterations, which is considered

insufficient to prevent information leaks. We conjecture this

was done because always executing 40 iterations is too costly

for these lightweight radios (see Section IV).

IV. WI-FI-CENTRIC ATTACKS

In this section we present downgrade and dictionary attacks

against WPA3-SAE. We also compare Dragonfly’s high over-

head with other hash-to-curve methods, and abuse its high

overhead by defeating SAE’s denial-of-service (DoS) defense.

A. Downgrade & Dictionary Attacks

1) Attacking WPA3 Transition Mode. In the transition mode

of WPA3, an AP accepts connections using WPA3-SAE and

WPA2 with the same password. This provides compatibility

with older clients, while WPA2’s 4-way handshake detects

downgrade attacks. That is, if an adversary modifies beacons to

trick the client into thinking the AP only supports WPA2, the

client will detect this downgrade attack during WPA2’s 4-way

handshake. This is because the 4-way handshake contains

an authenticated RSNE element listing the AP’s supported

cipher suites, allowing a client to detect if an adversary forged

the RSNEs in beacons. This means WPA3 provides forward

secrecy, even when using the transition mode of WPA3-SAE.

The problem is that, although downgrade attacks are de-

tected by WPA2’s 4-way handshake, by that point an adversary

has captured enough data to perform a dictionary attack. This

is because capturing a single authenticated 4-way handshake

message to carry out a dictionary attack [41]. Moreover, a

man-in-the-middle position is not needed to perform the attack.

TABLE II: Clients affected by downgrade attacks when the AP

operates in transition mode (column Trans) or in WPA3-only

mode (column 3-Only). On the last 3 devices the network must

be configured manually, while on other devices the network is

selected from a list of nearby ones.

Device Software Trans 3-Only

MSI GE60 iwd v0.14 � �
Latitude 7490 Net. Manager 1.17 � �
Google Pixel 3 qpp1.190205.018.b4 � �
Galaxy S10 g975usqu1asba � �
AP of vendor A Firmware 10.20.0168 � �
RaspberryPi 1 b+ OpenWRT r9576 � �
MSI GE60 wpa supplicant 2.7 � �

The only requirements are that we know the SSID of the

network, and that we are close to a client. If these conditions

are met, the adversary can broadcast a WPA2-only network

with the given SSID. This causes the client to connect to

our rogue AP using WPA2. The adversary can forge the first

message of the 4-way handshake, since this message is not

authenticated (stage 3© of Fig. 7 in the Appendix). In response,

the victim will transmit message 2 of the 4-way handshake,

which is authenticated. Based on this authenticated handshake

message, a dictionary attack can be carried out [41].

We tested the above attack against the client-side imple-

mentations of WPA3 listed in Table II. Note that with the first

four devices, the network to connect to is selected by the user

from a list of nearby ones. Here iwd and the Galaxy S10 are

vulnerable, though Linux’s NetworkManager and the Google

Pixel 3 were not affected. With the last three devices, the

network to connect with must be manually configured. That

is, we had to specify the name of the network, and that it uses

WPA3 in transition mode. We then let this device connect to

the WPA3 network. After that we replaced the WPA3 network

by a rogue WPA2-only network with the same name. This

revealed that these three devices all tried to connect to the

WPA2 network, allowing subsequent dictionary attacks.

We also discovered an implementation-specific downgrade

attack. More precisely, some devices connect to the rogue

WPA2 network, even when the legitimate (i.e. original) net-

work only supports WPA3 (column 3-Only in Table II). For

example, iwd and the Galaxy S10 are affected by this attack,

meaning downgrade to dictionary attacks are possible even if

the target network only supports WPA3.

2) Attacking SAE’s Group Negotiation. The SAE hand-

shake can be run using different elliptic curve or multiplicative

groups, and the 802.11 standard allows station to prioritize

groups in a user-configurable order [17, §12.4.4.1]. Although

this provides flexibility, it requires a secure method to negoti-

ate the group to use. Unfortunately, the mechanism that SAE

uses to negotiate the desired group is straightforward to attack.

With SAE, the group is negotiated by letting the client

include its desired group in the commit frame, along with a

valid scalar si and element Ei. If the AP does not support this

group, it replies using a commit frame with a status field equal

to “unsupported group” (stage 1© in Fig. 2). In turn the client

521

Client Adversary AP

Auth-Commit(group=21, sA, EA)
Block

Auth-Commit(status=unsupported)
1©

Auth-Commit(group=19, s′A, E′
A)

Auth-Commit(group=19, sB , EB)

confirm phase

2©

Fig. 2: Downgrade attack against SAE’s group selection: a

man-on-the-side can force the client (initiator) into using a

different cryptographic group during the SAE handshake.

sends a new commit frame using its next preferred group,

along with a new si and Ei. This process continues until

the client selects a curve that the AP supports. Unfortunately,

there is no mechanism to detect if someone interfered with

this process. This makes it straightforward to force the client

into using a different group by forging a commit frame that

indicates the AP does not support the selected group.

Figure 2 illustrates the resulting group downgrade attack,

where the adversary acts as man-on-the-side. The client first

constructs a commit frame requesting group 21 (curve P-521).

However, the adversary blocks this frame from arriving at

the AP (stage 1© in Fig. 2). The adversary then forges a

commit frame that indicates the AP does not support the

requested group. In response, the client picks its second

preferred group, which in our example is group 19 (curve

P-256). From this point onwards, a normal SAE handshake is

executed using group 19 (stage 2© in Fig. 2). This negotiation

process is never cryptographically validated, meaning the

downgrade attack is not detected. We confirmed this attack

against wpa supplicant. To block specific commit frames, we

modified Atheros firmware to read the header of frames while

they are still being transmitted, to then jam the remaining

content in case it is a commit frame we want to block [28].

It is also possible to force the victim into using a bigger or

more secure cryptographic group. This may be useful when

performing denial-of-service or timing attacks.

3) Countermeasures. To mitigate our downgrade to dictio-

nary attack, a client should remember if a network supports

WPA3-SAE. That is, after successfully connecting using SAE,

the client should store that the network supports SAE. From

this point onward, the client must never connect to the network

using a weaker handshake. This trust-on-first-usage is similar

to the one of SSH, and similar to the Strict-Transport-Security

header of HTTPS [42]. Note that Linux’s NetworkManager

and the Google Pixel 3 already employ a similar defense. In

case the client notices that the network no longer supports

WPA3-SAE, it can prompt the user for the network’s pass-

word. This would prevent automatic downgrade attacks, while

still allowing the user to override our defense by reentering the

password. To handle networks where only some APs support

WPA3, a flag can be added to the RSNE that indicates only

some APs of a network support WPA3, meaning downgrade

attacks against this network cannot be prevented. Another

TABLE III: Operations needed to hash to a curve if a constant

time Legendre function is used [8] instead of quadratic residue

blinding. With Brainpool curves costs double (see Section V).

Method Hash x+ y x · y x2 xy x−1 √
x

Dragonfly 80 80 40 40 80 0 1
Icart 1 5 6 3 1 1 0
SWU 2 8 6 5 2 1 1
S-SWU 1 6 4 4 1 1 1

defense, which requires no software patches, is to deploy

separate WPA2 and WPA3 networks with different passwords.

Group downgrade attacks can be mitigated by including a

bitmap of the supported groups in the RSNE during the 4-way

handshake. This will enable a station to detect if a downgrade

attack took place, and to subsequently abort the handshake.

B. The High Overhead of Dragonfly

We now compare Dragonfly’s overhead with other methods.

This reveals that, due to defenses against known side-channels,

its overhead is intolerably high. We then defeat SAE’s denial-

of-service defense and abuse this high overhead in practice.

Analyzing and Comparing Dragonfly’s Overhead. When

counting the number of operations that Dragonfly’s hash-to-

curve method requires, we find that it requires an order of

magnitude more operations than alternative methods (see Ta-

ble III). This high overhead is caused by the try-and-increment

loop, where at least 40 iterations are always executed to

mitigate timing leaks. When using Dragonfly with Brainpool

curves, roughly 80 instead of 40 iterations must be executed

at minimum (see Section V-B), meaning all operations except

the square root further double in number. Note that in Table III

we assume Dragonfly uses a constant-time Legendre function

to determine if a number is a quadratic residue. This underesti-

mates the running time of implementations, because the 802.11

standard recommends using a blinding technique instead of a

constant-time Legendre function (recall Section III-C). Using

the blinding technique would add an additional 120 multi-

plications and 40 random number generations, making the

algorithm even less efficient.

The designers of Dragonfly realized that an adversary can

abuse the high overhead by spoofing commit frames in a DoS

attack. To defend against this an anti-clogging mechanism

was added to SAE [26, §8.2a.6]. In this defense the client

must reflect a secret cookie sent by the AP, before the AP

processes the client’s commit frame. This is inspired by IP-

based protocols such as IKEv2, where such defenses prevent

an adversary from initiating handshakes using spoofed IP

addresses [43], [44]. Although an adversary can still use its

real address in forged frames, the idea is that these frames can

then be throttled based on their source address.

Defeating SAE’s Anti-Clogging Defense. The anti-clogging

mechanism of SAE was designed to prevent DoS attacks

that flood a victim with commit frames from forged MAC

addresses [17, §12.4.6]. However, unlike IP addresses, it is

trivial to spoof MAC addresses. Additionally, in any broadcast

522

medium like Wi-Fi, an adversary can easily capture and replay

secret cookies. To demonstrate this, we created a tool where

the adversary acts as a client, injects commit frames using

spoofed MAC addresses, and reflects any secret cookies it

receives. We used the virtual interface support of Atheros chips

to acknowledge all frames sent to forged MAC addresses.

This assures the AP does not retransmit replies, meaning more

commit exchanges can be spoofed to overload the AP.

In our experiments, the adversary uses a Raspberry Pi B+

with a 700 MHz CPU and a WNDA3200 Wi-Fi dongle, and

the target is a professional AP with a 1200 MHz CPU. We first

perform the attack using curve P-521, and found that spoofing

8 commit exchanges per second causes the AP’s CPU usage

to reach 100% (see Fig. 5 in the Appendix). Clients that now

try to connect using WPA3 either face long delays, or cannot

connect at all. During the attack, the CPU usage of the attacker

was only 2.7%. It is worrying that such a devastating attack

is possible against a modern security protocol. When using

curve P-256, the target’s CPU overloads when spoofing 70

commit exchanges per second (see Figure 6 in the Appendix).

This attack consumes 14.2% of the attacker’s CPU. Since all

APs must support curve P-256, this shows our attack can be

performed against any WPA3 network using cheap devices.

Figure 5 and 6 also show the amount of airtime consumed

by the injected frames. This is just a fraction of the available

airtime, showing our attack is more efficient than a straight-

forward DoS where an attacker simply jams the channel.

Countermeasures. Dragonfly can be modified such that the

password element is independent of the peers’ identities. The

password element can then be calculated offline and reused in

all handshakes, preventing our attack. Another option is using

a more efficient hash-to-curve method (e.g. one of Table III).

A backwards-compatible defense is to derive the password

element in a low-priority background thread. Although legiti-

mate WPA3 clients would still be unable to connect during

an attack, this assures other functionality is not impacted.

Additionally, larger curves or MODP groups can be disabled

by default, to reduce the impact of DoS attacks.

Side-Channel Defenses are Too Costly. Our DoS attack

shows that Dragonfly’s timing leak defenses are too costly.

This overhead even caused handshake timeouts when quadratic

residue blinding was added to hostapd [45]. To avoid timeouts

the standard was updated to give stations 2 seconds, instead

of 40 ms, to process commit frames [46]. However, even

with this longer timeout, we believe that lightweight devices

will not fully implement all defenses because they are too

costly. In fact, in Section III-D we found two Wi-Fi radios that

perform at minimum only 8 instead of 40 iterations, making

them vulnerable to timing attacks. For Brainpool curves the

overhead is even more problematic, because for them the cost

of side-channel defenses doubles (see Section V).

V. TIMING ATTACKS

In this section we show that the hash-to-group and hash-to-

curve methods are vulnerable to (novel) timing attacks. The

Listing 2: Hash-to-group method in Python-like pseudocode.

If token is None the SAE variant is executed [17, §12.4.4.3.2],

otherwise it executes the EAP-pwd variant [16].

1 def hash_to_group(password, id1, id2, token=None):
2 label = "EAP-pwd" if token else "SAE"
3 for counter in range(1, 256):
4 seed = Hash(token, id1, id2, password, counter)
5 value = KDF(seed, label + " Hunting and Pecking", p)
6 if value >= p: continue
7

8 P = value(p−1)/q mod p
9 if P > 1: return P

obtained info can be used to recover the victim’s password.

A. Variable Number of Iterations

Both the SAE and EAP-pwd protocol also support MODP

groups, in which case the hash-to-group method in Listing 2

is used. Although the Crypto Forum Research Group (CFRG)

warned that lines 5 and 9 cause timing leaks [47], their

proposed defenses are not part of SAE or EAP-pwd. We

believe this is due to misunderstandings about which defenses

are required. In particular, line 9 in fact causes no leaks. The

CFRG’s false warning was due to a misinterpretation of the

hash-to-group method [48]. This false warning likely caused

EAP-pwd and SAE not to use any defenses at all. Surprisingly,

this misunderstanding also caused an unnecessary defense to

be used in Dragonfly’s TLS-PWD variant [20]. To remedy

these misunderstandings, we analyze both hash-to-group and

hash-to-curve for (novel) timing leaks, exploit the leaks in

practice, and discuss backwards-compatible defenses.

We first clarify why line 9 causes no leaks. This line takes a

random value and turns it to a member of a q-sized subgroup.

It only results in 0 or 1 if value is a member of a different-

sized subgroup. For all MODP groups, this probability is lower

than 2−322, meaning in practice it never causes extra iterations.

Line 5 causes extra iterations when the output of the Key

Derivation Function (KDF) returns a number bigger or equal

to the prime p. The CFRG warned about this, but did not

analyze the leak in detail [47]. The number of bits returned

by KDF is equal to the number of bits needed to represent p,

meaning the probability that value is bigger than p depends on

the group being used. For most MODP groups this probability

is negligible, because p is close to a power of two. However,

for the RFC 5114 groups 22, 23, and 24, the probability that

the output of KDF is bigger than p is high [49]. For example,

for group 22 this probability equals 30.84%, and for group 24

the probability is 47.01% (see column 3 in Table IV).

Since the KDF output depends on the password, the num-

ber of executed iterations also depends on the password. If

someone learns this number, they learn that passwords which

need a different number of iterations are not being used. For

hash-to-group the number of executed iterations X follows a

geometric distribution:

Pr[X = n] = Pr[value ≥ p]n−1 · (1− Pr[value ≥ p]) (1)

523

TABLE IV: Timing leaks for MODP groups (top) and Brain-

pool curves (bottom). Column 3 shows the probability that

the KDF output is bigger or equal to p, column 4 shows

the average number of iterations needed to find the password

element, and the last column contains the lowest k such that

needing more than k iterations has a probability below 2−40.

Group len(p) Pr[value ≥ p] E[X] k

22 1024 30.84% 1.44 24
23 2048 32.40% 1.48 25
24 2048 47.01% 1.89 37

27 224 15.72% 2 · 1.19 51
28 256 33.60% 2 · 1.51 69
29 384 45.03% 2 · 1.82 86
30 512 33.26% 2 · 1.50 68

Hence the average number of iterations needed to derive P
for MODP groups equals E[X] = (1− Pr[value ≥ p])

−1
. For

group 22, this equals 1.45, and for group 24 this equals 1.89
iterations. In other words, on average one timing measurement

allows the adversary to learn the result of multiple iterations.

Moreover, the MAC addresses (i.e. identities) of the peers also

influence the output of the KDF, and hence also influence

the number of executed iterations. This means we can attack

clients and APs by spoofing MAC addresses, and for each

address measure the number of executed iterations. We show in

Section VII how this info can be used to recover the password.

B. Timing Attacks against Brainpool Curves

During our initial coordinated disclosure, the Wi-Fi Alliance

privately created recommendations to mitigate our attacks [12].

These recommendations state that Brainpool curves are safe to

use, and that no extra defenses are needed when using them.

However, even though the hash-to-curve method already has

timing leak defenses, it still suffers from timing leaks when

using Brainpool curves. The problem is that, similar to hash-

to-group, the hash-to-curve method also checks if the KDF

output is smaller than p (line 8 in Listing 1). For most curves

this is not an issue, since their prime is close to a power of

two, but with Brainpool curves this check can fail with high

probability (see group 27 to 30 in Table IV).

When the KDF output is too big, the hash-to-curve algo-

rithm does not check if the output is a quadratic residue.

Since the KDF output depends on the password, the execution

time depends on the password as well, resulting in a timing

leak. However, due to the existing defense of executing extra

iterations based on a random password, this leak is non-trivial

to exploit. The problem is that, in the extra iterations, a random

number of them have a KDF output smaller than p, meaning

the execution time of the hash-to-curve method is also random.

Nevertheless, the variance of the execution time depends

on when the password element is found. That is, the more

iterations that use the real password (called real iterations), the

lower the variance. Additionally, the average execution time

depends on the number of real iterations and on how many of

those real iterations have a KDF output smaller than p. In other

words, when using Brainpool curves, the variance and average

of the execution time leak info about the password. However,

we cannot determine in which iteration(s) the KDF output was

smaller than p. For example, if in 1 out of 5 real iterations

the KDF output was below p, timing info cannot reveal in

which iteration this occurred. On top of this, determining the

number of real iterations is non-trivial in practice. Although

the variance of the timing measurements depends on the

number of real iterations, a large number of measurements are

needed to accurately differentiate MAC addresses that result in

a different number of real iterations. Nevertheless, the variance

and average execution time differences do form a fingerprint

of the password. In Section VII we show how this fingerprint

can be used to recover the password.

C. Experiments against WPA3-Enabled APs

Our first two experiments target APs (recall Section III-B

for our threat models). We used a Raspberry Pi 1 B+ for

the AP because its 700 MHz CPU matches the typical CPU

of home routers and professional APs [50]. The Raspberry

Pi used a WNDA3200 Wi-Fi dongle. Hostapd was used as

the AP daemon, since it is the most widely used daemon

in both professional and home routers. We wrote a tool that

spoofs commit frames, and measures response times. After

each measurement, a deauthentication frame is sent, causing

the target to clear all state related to the spoofed address and

enabling us to rapidly perform new measurements.

Two optimizations are important. First, we use virtual

interface support of Atheros chips to acknowledge frames sent

to spoofed MAC addresses. This stops the AP from retransmit-

ting frames, making the attack more reliable. Second, response

times are influenced by background traffic and background

tasks on the AP. Both sources of noise are problematic because

they are not constant throughout an attack. To handle this, we

interleave the time measurements of spoofed MAC addresses,

instead of performing all measurements for each address one

by one. As a result, temporal noise equally influences the

timings of all addresses, instead of only affecting one address.

In our setup we attacked hostapd 2.6 using MODP group 22.

We spoofed 20 addresses and made 1 000 measurements for

each address. Figure 3a shows the response time distributions

of selected MAC addresses that result in a various number of

iterations. We evaluated several statistical tests to differentiate

addresses that result in a different number of iterations, such as

simple averages, Student’s and Welch’s T-test, Mann-Whitney

U test, Wilcoxon signed-rank test, one-way ANOVA, and

Crosby’s box test [51]. Here there is a trade-off between

the number of differences detected, and the chance of false

positives. We want to detect as many differences without

false positives. Even under these conditions, Crosby’s box test

outperformed all classical tests. When using this test with a

low percentile of 5 and high percentile of 35, we need 75 mea-

surements per address to differentiate all addresses that require

a different number of iterations with 99.5% confidence. These

pairwise comparisons are then used to sort MAC addresses

based on the number of executed iterations. From this ranking

we derive bounds on how many iterations each MAC address

524

(a) WPA3 AP with MODP group 22. (b) WPA3 AP with Brainpool curve 29. (c) EAP-pwd client with curve P-256.

Fig. 3: Response time distributions of example timing attacks for selected parameters. The victim uses a Raspberry Pi 1 B+.

Graph 3a targets hostapd 2.6, graph 3b hostapd 2.8, and graph 3c iwd 0.14. The legend in 3b shows the parameters n/m,

where m is the number of real iterations, and n the number of real iteration with a too high KDF output.

executed. We tested this approach by successfully using it to

recover the password with the techniques in Section VII.

We tested the Brainpool timing attack against hostapd 2.8

using Brainpool curve 29. We spoofed 20 MAC addresses,

and for each address made 2 000 measurements. The resulting

timing distributions of four selected addresses are shown in

Figure 3b. Recall that the response time of each address is

determined by the number of real iterations, and by how many

real iterations have a KDF output smaller than the prime p. The

various tops around the median of each distribution are caused

by the dummy iterations performed on a random password,

and correspond to how many of the extra iterations had a KDF

output smaller than p. Also notice how addresses with fewer

real iterations have a lower variance. To differentiate addresses

that result in a different average timing response, we again use

Crosby’s box test. To differentiate addresses with a difference

variance, we use the Levene test. In our setup, Crosby’s box

test with a low percentile of 45 and high percentile of 60

correctly (i.e. without false positives) found most differences

with 300 timing measurements per address.

D. Attacking SAE and EAP-pwd Clients

Our next experiment targets clients (recall Section III-B). To

simulate devices that offload the SAE handshake to their Wi-Fi

chip, we tested our attacks against a Raspberry Pi 1 B+ with

iwd as a lightweight client. Running iwd on the Raspberry Pi

required recompiling Linux to enable recent kernel features.

To attack a WPA3-SAE client, we need to know when it

starts executing the hash-to-element method. Since the client

initiates the handshake, we cannot do this for the first commit

frame it sends. Instead, the rogue AP responds to the client

that the offered group is not supported. This causes the client

to build a commit frame for another group, which requires

executing the hash-to-element from scratch. We can measure

how long this takes, and hence perform timing attacks against

both WPA3-SAE and EAP-pwd clients.

As an example, we perform a timing attack against an iwd

client using EAP-pwd with curve P-256. With EAP-pwd, the

number of executed iterations are influenced by the client’s

username, the identity of the server, and by a token generated

by the server (see e.g. line 7 in Listing 1). Because the server

always generates a new random token, we cannot attack it.

Instead we attack the client by spoofing 20 different tokens.

The resulting timing measurements for selected tokens are

shown in Figure 3c. Using Crosby’s box test with a low

percentile of 5 and high percentile of 45, we can recover the

number of iterations using 30 timing measurements per token.

E. Discussion and Countermeasures

We recommend preventing the MODP timing attacks by

disabling groups 22, 23, and 24 since these groups are also

considered insecure due to their many subgroups [52]. Follow-

ing RFC 8247, groups 1, 2, and 5 should also be disabled [53].

A backwards-compatible defense is executing extra dummy

iterations like was done in hash-to-curve. To have the same

security guarantees as with NIST curves in hash-to-curve,

implementations should set the security parameter k such that

the probability of needing more than k iterations to find P is

below 2−40 (see Table IV for these values).

A backwards-compatible defense against the Brainpool tim-

ing attack is executing line 10 even if the KDF output is too

big, and using constant-time select utilities to return the proper

result. Additionally, to have the same security guarantees as

with NIST curves, implementations should set the security

parameter k such that the probability of needing more than

k iterations is below 2−40 (see Table IV). Unfortunately,

resource-constrained devices may be unable to perform that

many iterations due to the resulting overhead. In fact, in

Section III-D we already found firmware for lightweight Wi-Fi

radios that uses only k = 8. This highlights that the hash-to-

curve algorithm of Dragonfly is flawed by design, and that

leaks are hard to mitigate in practice.

A better defense is to exclude the MAC addresses (i.e. iden-

tities) from the hash-to-element methods. Similar to our de-

fense from Section IV-B against DoS attacks, this would allow

the password element to be calculated offline and then reused.

Although timing leaks may still occur, for a given password

the execution time would then always be identical, meaning

on average only two password bits are leaked. This change

also makes it harder to trigger and measure executions of the

algorithm. Another option is to use a constant-time hash-to-

curve method (e.g. one of Table III).

525

VI. CACHE-BASED ATTACKS ON ECC GROUPS

In this section we demonstrate that implementations of the

hash-to-curve algorithm of SAE may be vulnerable to cache-

based side-channel attacks. The leaked information will later

on be used to recover a target’s password.

The goal of our attack is to learn if the Quadratic Residue

(QR) test in the first iteration of the hash-to-curve algorithm

succeeded or not. This information will be used in the offline

password brute-force attack of Section VII to recover the

target’s password. Unlike the hash-to-element method, the

implementation of the hash-to-curve algorithm for ECC groups

does include mitigations against side-channel attacks. Those

mitigations include performing extra dummy iterations on

random data [17, §12.4.4.3.2], and blinding of the underlying

cryptographic calculation of the quadratic residue test [25].

The resulting code of wpa supplicant and hostapd implemen-

tation we reviewed is pseudo-constant time, i.e., there might

be some minor variation in run time, but they are too minute to

be measured by an adversary. However, such pseudo-constant

time implementations might still be vulnerable to different

types of micro-architectural side-channel attacks [29]–[31].

A. Micro-Architectural Side-Channel Attacks

Modern processors try to optimize their behavior (e.g. mem-

ory access, branch prediction) by saving an internal state that

depends on the past. Micro-architectural side-channel attacks

exploit leaked information about the running of other programs

due to sharing of this state (for a survey see [54]). Cache-based

side-channel attacks exploit the state of the memory cache

(either instructions or data) and have been widely used to break

cryptographic primitives [55]–[59]. Cache attacks can be seen

as a way to partly circumvent process (or virtual machine)

isolation. Although an attacker running code in an unprivileged

process is not able to read the memory of the target process, he

can still learn information about the memory access patterns.

In the FLUSH+RELOAD attack [58], the adversary starts by

evicting (or flushing) a memory location from the cache. After

waiting for a predetermined interval, he measures the time it

takes to reload the flushed location and then flushes it again. If

during the interval the victim accesses this memory location,

it will be cached, and the reload time for the attacker will be

short. Otherwise, the reloading of the flushed memory location

will be much slower. In this way, the attacker can trace the

victim’s memory access patterns.

B. Attacking the hostap Implementation

We target the sae_derive_pwe_ecc function of the latest

hostap code before our initial disclosure (commit 0eb34f8f2)

with the default curve P-256. Our test machine uses a 4-core

Intel Core i7-7500 processor, with a 4 MiB cache and 16 GiB

memory, running Ubuntu 18.04.1. We monitor the instruction

cache accesses of wpa supplicant with an unprivileged user-

mode spy process (recall Section III-B for our thread model).

This is accomplished using the FLUSH+RELOAD attack of the

Mastik toolkit [58], [60].

Fig. 4: Probability distribution for attack results

We want to leak the result of the QR test in the first iteration

of the hash-to-curve algorithm. We can try to attack the blinded

QR test code, or the code that checks the result of the test. A

simple cache attack against the blinded QR test is infeasible as

the two possible code paths are compiled into a single cache

line (see Listing 4 line 21).1

The two code paths of the branch inside the iteration

loop (see Listing 6 line 29) are compiled into two separate

cache lines. Therefore we can monitor cache access to nQR

case cache line which is the target of the conditional jump

(see Listing 7 line 9). To differentiate between the branches

taken in the first and subsequent iterations, we created a

synchronization “clock” by monitoring another cache line that

is accessed once every iteration (similarly to [63]).
On our test platform, monitoring two cache lines repeatedly

over time caused a high rate of false positives (i.e. false

detection of access to cache lines). This error rate increases

considerably when the monitored cache lines are close. Conse-

quently, for our “clock” monitor a cache line far away from the

nQR cache line (in our case the function sha256_prf_bits).
1) Template Attack. We want to learn the result of the QR

test in the first iteration for each cache trace we measured.

However, our measurements are noisy, and the measured cache

access patterns to the two monitored cache lines show a high

variance between different traces with the same result. This

might be due to OS-related noise, speculative execution, or due

to the influence of the random dummy iterations on the branch

predictor. To overcome this, we perform a simplified variant of

a cache template attack [64], [65]. That is, we measure a trace

of the cache access pattern by monitoring the two addresses

(the “clock” and the non-QR case) in fixed intervals of 5 · 104
clock cycles (each iteration takes roughly 2 · 105 clock cycles

on our test machine). We encode each measurement as a bit,

with value one if the measured cache line was accessed and

zero if it wasn’t. Each interval corresponds to two bits. We

encode each interval in the trace into two bits that correspond

to the two memory locations.
Our attack returns the first two non zero intervals. This

means the return value consists of 4 bits (resulting in 9 possible

return values). Figure 4 shows the distribution of these return

values when the first iteration of the hash-to-curve algorithm

results in a non-QR number (nQR), and when the first iteration

results in a QR number (QR).
To overcome the noise and achieve a high success rate, we

repeat the attack for 20 times for each MAC address, and use

1More advanced micro architectural attacks targeting the branch predic-
tor [31], [61], [62] will fail due to the extra random iterations.

526

a simple linear classifier to get the result.

We trained our classifier with two training sets of 100 · 20
traces for each of the non-QR and the QR cases. We then tested

our attack and linear classifier on a larger test set of 400 · 20
traces for each case. We achieved a 100% success rate (400
out of 400) in the non-QR case, and a 99.5% success rate (398
out of 400) in the QR case.

C. Cache Attacks against Brainpool Curves

After our initial coordinate disclosure, hostap mitigated

the vulnerabilities described in Section VI-B. However, as

discussed in Section V-B, the patched code still has a secret-

dependent branch that can be exploited when using Brainpool

Curves (see Listing 5). This allows for a new cache attack

similar to our original one in the same attack scenario. Using

the same test setup and technique, targeting the latest patched

version of hostap (commit e0e15fc23).

The fixed interval of our attack is reduced to 5·103 clock cy-

cles (if the resulting hash is larger than the modulus then the it-

eration is very short). For our clock we monitor a cache line in-

side the hmac_sha256_vector function that is accessed once

in each iteration (called by sha256_prf_bits). The second

monitored cache line is inside the crypto_bignum_init_set

function that is called only if the resulting hash is smaller than

the modulus (see Listing 5 Line 16). This new attack is more

robust than the original one, achieving 100% success rate using

only 10 traces for each MAC address.

D. Discussion and Countermeasures

We believe that all Dragonfly variants are affected by our

attack. Similar to our timing attacks, the ideal solution is

to use a constant-time hash-to-curve method, and to exclude

the peer’s identities from the password element computation.

As a backwards-compatible defense, a constant-time Legen-

dre function can be used, secret-dependent branches can be

replaced with constant-time select utilities, and at least k
iterations must always be executed. Additionally, when using

Brainpool curves, line 10 in the hash-to-curve algorithm of

Listing 1 should always be executed.

VII. BRUTE-FORCING THE PASSWORD

In this section we show how to recover the password using

the information obtained from our side-channel attacks.

A. Abusing Leaked Information

Most side-channels reveal if an element test in an iteration

failed or not. An element test refers to any check done in a

single iteration, such as testing if the KDF output is smaller

than p, or checking if a number if a quadratic residue. A

failed element test causes another iteration, while a successful
element test means the current iteration continues executing. A

successful element test does not imply the password element

is found. For instance, the test that checks if the KDF output

is lower than p might succeed, but this value may not result in

a quadratic residue. We let pe denote the probability that the

element test failed. For quadratic residue tests, pe is close to

Listing 3: Code to check whether a password causes the same

element test results as recovered by our side-channels, i.e., it

checks whether the password may be in use by the victim.

1 def check_password(pw, data, id2):
2 # pw: Password to test.
3 # data: Element test results for each spoofed identity or
4 # token, and counter value used in each element test.
5 # id2: identity of the target (e.g. MAC address).
6 for id1, token, counter, result in tests:
7 if simulate(pw, token, id1, id2, counter) != result:
8 return False
9 return True

50%, and for KDF output tests the values for pe are listed in

Table IV under Pr[value ≥ p]. Recall that one MODP timing

measurement can reveal the result of multiple (failed) element

tests, and a cache-attack reveals the result of a single element

test. Also note that if we are unsure whether a spoofed address

resulted in say 4 or 5 iterations, this still learns us that the first

three element tests failed.
Element tests are used to prune wrong passwords by simu-

lating the test on candidate passwords, and pruning passwords

if the simulated result differs from the real result. By represent-

ing side-channel leaks as element tests, we can use the same

brute-force method for all our side-channel attacks. Moreover,

we can mix element tests of different side-channel leaks.
Our goal is to recover the password from a given dictionary.

We do this by iterating over the dictionary, and using element

tests to prune bad passwords. If this prunes all passwords, the

target’s password was not in the dictionary. Passwords that

are not pruned can be tested by using them to connect to the

network. The algorithm that implements this brute-force search

is straightforward: it gets as input a dictionary, and a set of

element test results. For every password in the dictionary, it

uses the function shown in Listing 3 to check if the password

may be in use by the victim. Notice that this algorithm can be

run offline, without requiring any interactions with the target.
A different approach is needed for Brainpool timing attacks,

because there we cannot recover test results of specific iter-

ations. For address pairs where one has a larger variance or

execution time than the other, we simulate the hash-to-curve on

the guessed password, and prune the password if the simulated

execution time does not match the measured differences.

B. Brute-force Success Analysis
The probability of pruning a password using a single

element test depends on whether it is a failed or successful

test. A failed element test has a probability of 1− pe to prune

a random (incorrect) password, while a successful test has a

probability of pe to prune a password. Therefore, when we are

given n element tests, we first want to know the probability

that k of them are failed element tests. This probability equals

Pr[Sn = k] =

(
n

k

)
· (1− pe)

k · pn−k
e (2)

where Sn follows a binomial distribution with a success

probability of 1− pe. Note that every element test is indepen-

dent, because in each iteration the hash inputs are different,

527

resulting in independent hash outputs and quadratic tests. The

probability that a password is not pruned by all n element

tests now is (1 − pe)
k · pn−k

e , meaning the probability that d
incorrect passwords are eliminated equals:

Pr[E = d | Sn = k] =
(
1− (1− pe)

k · pn−k
e

)d
(3)

Here random variable E denotes the number of pruned pass-

words when given n element test results, and the conditional

probability assumes that k out of the n element tests are failed

ones. Based on the above two formulas, we can calculate the

probability of eliminating d passwords given n element tests:

Pr[Zd ≤ n] =
n∑

k=0

Pr[Sn = k] · Pr[E = d | Sn = k] (4)

Here random variable Zd denotes the number of element tests

needed to prune d random passwords. Intuitively, this formula

calculates the probability of pruning E = d passwords, given

that k out of n elements tests are failed ones. We confirmed

this formula by running 105 runs of the brute-force algorithm

on 103 passwords, where each run used random simulated

element test results (e.g. simulated timing measurements).

Taking the RockYou dump as reference [66], which contains

about 1.4·107 passwords, brute-force attacks with curve P-256

require 29 element tests to uniquely recover the password with

a probability above 95%. Since our cache attack can detect a

QR with 100% accuracy, and a non-QR with 99.5% accuracy,

the probability that on average all measurement are correct is

0.99512.5 = 0.939. The probability of uniquely recovering the

password becomes at least 0.892. That is, with 25 cache-based

element test results, the probability of uniquely recovering the

password from the RockYou dump is close to 90%.

We can also determine the average number of element tests �
needed to prune all incorrect passwords from the dictionary:

� =

∞∑
i=1

i ·Pr[Zd = i] =
∞∑
i=1

i ·(Pr[Zd ≤ i]− Pr[Zd ≤ i− 1])

(5)

We confirmed this formula by brute-forcing a password 105

times with random element tests. For the RockYou dump,

on average 28.28 MODP-based element tests are needed to

uniquely recover the password. With tests based on curve

P-256, the adversary needs on average 25.11 element tests.

C. Computational Requirements

To estimate the offline computational costs of brute-force

attacks using a dictionary of size d, we derive the expected

number of element tests that must be simulated in the brute-

force algorithm (line 7 in Listing 3). We assume the algorithm

first uses failed element tests, since these tests have a higher

probability to prune passwords. Namely, a failed element test

has a probability of 1 − pe to prune a random password.

Assuming k′ out of n element tests are failed ones, the average

number of simulated element tests to prune one password is

k′∑
n=1

n ·pn−1
e · (1−pe)+pk

′
e ·

∞∑
n=1

(k′+n) · (1−pe)
n−1 ·pe (6)

TABLE V: Cost of a brute-force attack for various dictionaries.

Group / Dictionary $ for MODP 22 $ for
Dictionary Size Brainpool 28 P-256

RockYou [66] 1.4 · 107 2.1 · 10−6 4.4 · 10−4

HaveIBeenPwned [68] 5.5 · 108 8.0 · 10−5 1.7 · 10−2

Probable Wordlists [69] 8.0 · 109 1.2 · 10−3 2.5 · 10−1

8 Low Case 2.1 · 1011 3.0 · 10−2 6.5
8 Letters 5.3 · 1013 7.8 1.7 · 103
8 Alphanumerics 2.2 · 1014 3.2 · 101 6.7 · 103
8 Symbols 4.6 · 1014 6.7 · 101 1.4 · 104

The first term assumes the password is pruned by a failed

element tests, and the second term assumes it is pruned by a

successful element test. In case pe = 0.5 this formula equals 2.

If we collect the average number of element tests � needed

to brute-force a dictionary of size d, on average at least �� ·
pe� element tests are failed ones. For MODP group 22 and a

dictionary of size d ≥ 105, this would mean that on average we

have to perform 1.45d element tests, and with the Brainpool

curve 28 cache-attack we have to perform 1.51d tests. With

curve P-256 we always need 2d tests on average. We confirmed

this formula by running 105 runs of the brute-force algorithm,

and in each run used 103 random passwords, assuming pe =
0.3084. Our formula also implies that if pe < 0.5, having

more failed element tests increases the efficiency of the brute-

force algorithm. Hence there is a trade-off between performing

additional side-channel attacks to obtain extra failed element

tests, and performing a more expensive brute-force search.

D. Computational Costs in Practice
To estimate the cost of performing an offline brute-force

attack, we run benchmarks on a NVIDIA V100 GPU. When

brute-forcing using element test results based on MOD

group 22, or cache attacks against Brainpool curve 28, we

assume that the computational cost is dominated by the SHA56

operation. When using element tests based on P-256, we

assume the cost is dominated by the Legendre function.
Based on the Hashcat benchmark for SHA256, we can

evaluate 7.56 ·109 hashes per second. For Brainpool curve 28,

we need an average of 1.51 element tests to prune a password,

and one element test requires three SHA256 operations. Hence

we get a total rate of roughly 1.67 · 109 passwords per second

for Brainpool (and a slightly higher rate for MODP group 22).

We also benchmarked the Legendre symbol calculation for

P-256 using the PowMod function from the XMP library [67],

achieving 15.74 · 109 operations per second. This was done

without any curve specific optimizations. Since we need an

average of two elements tests to prune a password, we get a

total rate of roughly 7.87 · 109 passwords per second.
Table V shows the resulting cost of brute-forcing dictio-

naries of various sizes for MODP group 22 and Brainpool

curve 28, and the more costly attack against the P-256 curve.

In our calculations we used the current $7.344 per hour spot

price on Amazon AWS cloud for p3.16xlarge with 8 V100

GPUs [70].
When using Brainpool timing leaks to brute-force pass-

words, we cannot use the same analysis. This is because,

528

if we treat the detected variance or execution time differ-

ences as element tests, then element tests may no longer be

independent. For example, when using the observation that

address A resulted in a higher execution time than address B,

then when using this test to prune passwords, on average 0.43
percent of passwords remain. When also using the observation

that address A has a higher execution than address C, this

combination does not mean 0.432 passwords remain, meaning

both tests are dependent. When only using tests based on

average execution times that do not share a MAC address,

on average 6.02 hashes and 4.00 quadratic tests are needed to

prune one password (for Brainpool curve 28). More efficient

brute-forcing strategies for Brainpool timing measurements,

including their costs analysis, are left as future work.

VIII. RELATED WORK

After the introduction of WPA, it was quickly found to be

vulnerable to dictionary attacks [41]. Later, He and Mitchell

formally analyzed WPA’s 4-way handshake, and discovered a

DoS vulnerability [71], [72]. This resulted in the standardiza-

tion of a slightly improved variant [17]. He et al. continued to

analyze the 4-way handshake, and proved its correctness [73].

However, implementations of the 4-way handshake were still

vulnerable to downgrade attacks [74]. Recently, Vanhoef and

Piessens discovered that WPA2 was vulnerable to key reinstal-

lation attacks [1], [75]. Finally, Kohlios and Hayajneh provide

an overview of WPA2 and the differences with WPA3 [76].

Researchers also discovered several DoS attack against

Wi-Fi networks. The most well-known is the deauthentica-

tion attack [77]. Other DoS attacks exploit weaknesses in

TKIP [78]. Additionally, Könings et al. found several DoS

vulnerabilities in the physical and MAC layer of 802.11 [79],

and other researchers constructed jammers using commodity

hardware [28], [80]. A detailed survey of DoS attacks at the

physical and MAC layer is given by Bicakci and Tavli [81].

Aiello et al. show how susceptibility to denial-of-service

attacks can be balanced with the need for perfect forward

secrecy [82]. To the best of our knowledge, our clogging attack

against WPA3 is the first that overloads the CPU of the victim.

An initial version of Dragonfly was vulnerable to an offline

dictionary attack [83]. A modified variant was then specified

in 2008 [18]. Several close variants of it have been defined

over the years [16], [19]–[21]. Trevor Perrin did a review of

an improved draft of the handshake [37], and later provided

an overview of other people’s comments on the handshake [3].

Struik reviewed a draft of the handshake [4]. Clarke and

Hao discovered a small subgroup attack against a draft of

Dragonfly, which was mitigated in a new draft [84]. Lancrenon

and Skrobot provided a security proof of a close variant of

Dragonfly [6]. Finally, Alharbi et al. designed a variant of

Dragonfly that attempts to keep computational costs low [85].

Other types of PAKEs have also been proposed by re-

searchers over the years [86]–[94], some of which have been

submitted as RFCs [95]–[100], [100]. Finally, there is also

research into post-quantum PAKEs [101], [102].

IX. CONCLUSION AND RECOMMENDATIONS

In light of our attacks, we believe that WPA3 does not meet

the standards of a modern security protocol. Since EAP-pwd

uses a close variant of WPA3’s Dragonfly handshake, it is

affected by similar flaws. We believe that a more open design

process would have avoided these weaknesses.

Most of our attacks abuse the password encoding method

of Dragonfly, i.e., abuse its hash-to-group and hash-to-curve

method. This indicates that implementing these methods with-

out side-channel leaks is very tedious. Additionally, Dragonfly

supports a large variety of cryptographic groups, making it

hard to fully analyze the handshake. Both points are evidenced

by the fact that after our initial disclosure, patched implemen-

tations were still vulnerable to a novel side-channel attack.

Interestingly, a minor change to Dragonfly’s password en-

coding algorithm would have prevented most attacks. That is,

the peer’s MAC addresses (i.e. identities) can be excluded from

the password encoding algorithm, and instead included later

on in the handshake. For EAP-pwd the server’s random token

must also be excluded. This allows the password element to be

computed offline, meaning an attacker can no longer actively

trigger executions of the password encoding method. It also

means that for a given password the execution time of the pass-

word encoding method is always the same, limiting the amount

of info being leaked, which cannot help an attacker to guess

the password by much [103]. Surprisingly, when the CFRG

was reviewing a variant of Dragonfly, they in fact suggested

this type of change [36]–[40]. If this criticism would have

incorporated, most of our attacks would have been avoided.

Fortunately, our work resulted in (draft) updates to the standard

that do incorporate our proposed design changes [13]–[15].

We conjecture that resource-constrained devices will not

fully implement all backwards-compatible side-channel de-

fenses, because the resulting overhead is too high. In fact,

we already found Wi-Fi radios that only partly mitigate tim-

ing attacks. Moreover, correctly implementing all backwards-

compatible side-channel countermeasures is non-trivial. This

is worrisome, because security protocols should be designed to

reduce the change of implementation vulnerabilities. Finally,

although WPA3 and its Dragonfly handshake have their flaws,

we still consider it an improvement over WPA2.

ACKNOWLEDGMENT

We thank Yuval Yarom for his helpful insights. We also want

to thank Philipp Ebbecke, and an anonymous contributor, for

their help in testing downgrade attacks against the Pixel 3 and

Galaxy S10. Mathy Vanhoef holds a Postdoctoral fellowship

from the Research Foundation Flanders (FWO). This work is

partially supported by an ISF grant number 1523/14, and by

the Center for Cyber Security at New York University Abu

Dhabi (NYUAD). Eyal Ronen is a member of CPIIS.

REFERENCES

[1] M. Vanhoef and F. Piessens, “Key reinstallation attacks: Forcing nonce
reuse in WPA2,” in CCS, 2017.

529

[2] Wi-Fi Alliance, “WPA3 specification version 1.0,” Retrieved 6
April 2019 from https://www.wi-fi.org/file/wpa3-specification-v10,
Apr. 2018.

[3] T. Perrin, “[TLS] question regarding CFRG process,” Retrieved 29
October 2018 from https://www.ietf.org/mail-archive/web/tls/current/
msg10962.html, 2013.

[4] R. Struik, “[Cfrg] review of draft-irtf-dragonfly-02 (triggered by
[TLS] working group last call for draft-ietf-tls-pwd),” Retrieved
9 November 2018 from https://www.ietf.org/mail-archive/web/cfrg/
current/msg03527.html, Nov. 2013.

[5] J. Salowey, “[TLS] conclusion of WGLC draft-ietf-tls-pwd,” Re-
trieved 7 April from https://mailarchive.ietf.org/arch/msg/tls/Fep2-
E7xQX7OQKzfxOoFInVFtm4, Dec. 2013.

[6] J. Lancrenon and M. Škrobot, “On the provable security of the
Dragonfly protocol,” in Information Security. Springer International
Publishing, 2015.

[7] M. Vanhoef and E. Ronen. (2019) Dragonblood tools: Dragonslayer,
dragondrain, dragontime and dragonforce. [Online]. Available: https://
wpa3.mathyvanhoef.com/#tools

[8] S. Scott, N. Sullivan, and C. A. Wood, “Hashing to Elliptic Curves,”
Internet Engineering Task Force, Internet-Draft draft-irtf-cfrg-hash-
to-curve-03, Mar. 2019, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-03

[9] S. V. Smyshlyaev, “Overview of existing PAKEs and PAKE
selection criteria,” Retrieved 31 May 2019 from https://www.ietf.org/
proceedings/104/slides/slides-104-cfrg-pake-selection-01.pdf, Mar.
2019.

[10] N. Sullivan, D. H. Krawczyk, O. Friel, and R. Barnes, “Usage of
OPAQUE with TLS 1.3,” Internet Engineering Task Force, Internet-
Draft draft-sullivan-tls-opaque-00, Mar. 2019, work in Progress.
[Online]. Available: https://datatracker.ietf.org/doc/html/draft-sullivan-
tls-opaque-00

[11] CERT/CC. (2019) Vulnerability note vu#871675: Security issues with
WPA3. [Online]. Available: http://www.kb.cert.org/vuls/id/871675

[12] Wi-Fi Alliance, “WPA3 security considerations overview,” Re-
trieved 24 May 2019 from https://www.wi-fi.org/file/wpa3-security-
considerations, Apr. 2019.

[13] D. Harkins, “Disposition of some SAE comments from LB236
and some comments made outside of LB236,” Retrieved 3 Au-
gust 2019 form https://mentor.ieee.org/802.11/dcn/19/11-19-0387-02-
000m-addressing-some-sae-comments.docx, Mar. 2019.

[14] ——, “Finding PWE in constant time,” Retrieved 24 July 2019 from
https://mentor.ieee.org/802.11/dcn/15/11-19-1173-08-000m-pwe-in-
constant-time.docx, Jul. 2019.

[15] ——, “Improved Extensible Authentication Protocol Using Only a
Password,” Internet Engineering Task Force, Internet-Draft draft-
harkins-eap-pwd-prime-00, Jul. 2019, work in Progress. [Online].
Available: https://datatracker.ietf.org/doc/html/draft-harkins-eap-pwd-
prime-00

[16] D. Harkins and G. Zorn, “Extensible authentication protocol (EAP)
authentication using only a password,” RFC 5931, Aug. 2010.

[17] IEEE Std 802.11, Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Spec, 2016.

[18] D. Harkins, “Simultaneous authentication of equals: A secure,
password-based key exchange for mesh networks,” in The Second
International Conference on Sensor Technologies and Applications
(SENSORCOMM), Aug 2008, pp. 839–844.

[19] ——, “Secure pre-shared key (PSK) authentication for the internet key
exchange protocol (IKE),” RFC 6617, Jun. 2012.

[20] ——, “Secure Password Ciphersuites for Transport Layer Security
(TLS),” RFC 8492, 2019.

[21] ——, “Dragonfly key exchange,” RFC 7664, Nov. 2015.
[22] K. M. Igoe, “Re: [Cfrg] status of DragonFly,” Retrieved 9 Septem-

ber 2018 from https://www.ietf.org/mail-archive/web/cfrg/current/
msg03264.html, Dec. 2012.

[23] T. Icart, “How to hash into elliptic curves,” in Advances in Cryptology
(CRYPTO), 2009.

[24] S. Fluhrer, “Re: [cfrg] requesting removal of CFRG co-chair,” Re-
trieved 7 April 2019 from https://mailarchive.ietf.org/arch/msg/cfrg/
WXyM6pHDjGRZXZzSc HlERnp0Iw, Jan. 2014.

[25] D. Harkins, “Addressing a side-channel attack on SAE,” Retrieved
9 September 2018 from https://mentor.ieee.org/802.11/dcn/14/11-14-
0640-00-000m-side-channel-attack.docx, 2014.

[26] IEEE Std 802.11s, Amendment 10: Mesh Networking, 2011.

[27] J. Wichelmann, A. Moghimi, T. Eisenbarth, and B. Sunar, “Microwalk:
A framework for finding side channels in binaries,” in ACSAC, 2018.

[28] M. Vanhoef and F. Piessens, “Advanced Wi-Fi attacks using commodity
hardware,” in ACSAC, 2014.

[29] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar, “Lucky 13 strikes
back,” in ASIA CCS, 2015.

[30] E. Ronen, K. G. Paterson, and A. Shamir, “Pseudo constant time
implementations of TLS are only pseudo secure,” in CCS, 2018.

[31] E. Ronen, R. Gillham, D. Genkin, A. Shamir, D. Wong, and Y. Yarom,
“The 9 lives of bleichenbacher’s CAT: new cache attacks on TLS
implementations,” in To appear in the IEEE Symposium on Security
and Privacy. IEEE Computer Society, 2019.

[32] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis,
“The spy in the sandbox: Practical cache attacks in javascript and their
implications,” in CCS, 2015.

[33] I. Biehl, B. Meyer, and V. Müller, “Differential fault attacks on elliptic
curve cryptosystems,” in Advances in Cryptology (CRYPTO). Springer,
2000.

[34] A. Antipa, D. Brown, A. Menezes, R. Struik, and S. Vanstone,
“Validation of elliptic curve public keys,” in Public Key Cryptography
(PKC). Springer, 2002, pp. 211–223.

[35] IEEE Std 802.11, Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Spec, 2012.

[36] D. Kügler, “Re: [IPsec] PAKE selection: SPSK,” Retrieved
23 April 2019 from https://mailarchive.ietf.org/arch/msg/ipsec/
NEicYFDYJYcQuNdknY0etLyfITA, May 2010.

[37] T. Perrin, “[TLS] review of Dragonfly PAKE,” Retrieved 9
September 2018 from https://www.ietf.org/mail-archive/web/tls/
current/msg10922.html, Dec. 2013.

[38] K. M. Igoe, “[Cfrg] status of DragonFly,” Retrieved 8 Novem-
ber 2018 from https://www.ietf.org/mail-archive/web/cfrg/current/
msg03258.html, Dec. 2012.

[39] ——, “[Cfrg] status of DragonFly,” Retrieved 8 November 2018 from
https://www.ietf.org/mail-archive/web/cfrg/current/msg03261.html,
Dec. 2012.

[40] R. Struik, “Re: [cfrg] small editorial error in and question on draft-
irtf-cfrg-dragonfly-01 (was: Re: CFRG meeting at IETF 87),” Re-
trieved 10 April 2019 from https://mailarchive.ietf.org/arch/msg/cfrg/
Z-nnOKTA4ddmFd17l5KzlRwWm5Y, Jul. 2013.

[41] R. Moskowitz, “Weakness in passphrase choice in WPA interface,”
Retrieved 26 September 2018 from https://wifinetnews.com/archives/
2003/11/weakness in passphrase choice in wpa interface.html,
2003.

[42] Mozilla, “Strict-transport-security - HTTP,” Retrieved 3 Febru-
ary 2019 from https://developer.mozilla.org/en-US/docs/Web/HTTP/
Headers/Strict-Transport-Security, 2019.

[43] C. Kaufman, P. Hoffman, Y. Nir, P. Eronen, and T. Kivinen, “Internet
key exchange protocol version 2 (IKEv2),” RFC 7296, Oct. 2014.

[44] R. Oppliger, “Protecting key exchange and management protocols
against resource clogging attacks,” in Secure Information Networks.
Springer, 1999, pp. 163–175.

[45] M. Honma, “[PATCH] mesh: Fix mesh SAE auth on low spec devices,”
Retrieved 19 September 2018 from http://lists.shmoo.com/pipermail/
hostap/2015-July/033304.html, Jul. 2015.

[46] G. Bajko, “SAE reauthentication timer value,” Retrieved 19 Septem-
ber 2018 from https://mentor.ieee.org/802.11/dcn/17/11-17-1030-01-
000m-sae-retry-timeout-clarification.docx, Jul. 2017.

[47] S. Fluhrer, “Re: [Cfrg] status of DragonFly,” Retrieved 8 Novem-
ber 2018 from https://www.ietf.org/mail-archive/web/cfrg/current/
msg03265.html, Dec. 2012.

[48] ——, private communication, Nov. 2018.

[49] M. Lepinski and S. Kent, “Additional Diffie-Hellman Groups for Use
with IETF Standards,” RFC 5114, 2008.

[50] WikiDevi, “Semantic search: wireless routers,” Last retrieved 14
November 2018 form https://wikidevi.com/, 2018.

[51] S. A. Crosby, D. S. Wallach, and R. H. Riedi, “Opportunities and limits
of remote timing attacks,” ACM Trans. Inf. Syst. Secur., vol. 12, no. 3,
2009.

[52] L. Valenta, D. Adrian, A. Sanso, S. Cohney, J. Fried, M. Hastings,
J. A. Halderman, and N. Heninger, “Measuring small subgroup attacks
against diffie-hellman,” in 24th Annual Network and Distributed System
Security Symposium NDSS, 2017.

530

[53] Y. Nir, T. Kivinen, P. Wouters, and D. Migault, “Algorithm Implementa-
tion Requirements and Usage Guidance for the Internet Key Exchange
Protocol Version 2 (IKEv2),” RFC 8247, 2017.

[54] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of microarchitec-
tural timing attacks and countermeasures on contemporary hardware,”
J. Cryptographic Engineering, vol. 8, no. 1, 2018.

[55] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and counter-
measures: The case of AES,” in CT-RSA, 2006.

[56] D. J. Bernstein, “Cache-timing attacks on AES,” 2005.

[57] O. Acıiçmez, “Yet another microarchitectural attack: Exploiting I-
Cache,” in CSAW, 2007.

[58] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A high resolution, low
noise, L3 cache side-channel attack,” in USENIX Security, 2014.

[59] D. Genkin, L. Pachmanov, E. Tromer, and Y. Yarom, “Drive-by key-
extraction cache attacks from portable code,” in ACNS, 2018.

[60] Y. Yarom, “Mastik: A micro-architectural side-channel toolkit,” https://
cs.adelaide.edu.au/∼yval/Mastik/Mastik.pdf, 2017.

[61] O. Acıiçmez, S. Gueron, and J. Seifert, “New branch prediction
vulnerabilities in OpenSSL and necessary software countermeasures,”
in IMA Int. Conf., 2007.

[62] D. Evtyushkin, R. Riley, N. B. Abu-Ghazaleh, and D. Ponomarev,
“BranchScope: A new side-channel attack on directional branch pre-
dictor,” in ASPLOS, 2018.

[63] Y. Yarom, D. Genkin, and N. Heninger, “Cachebleed: A timing attack
on openssl constant time RSA,” in CHES, ser. Lecture Notes in
Computer Science, vol. 9813. Springer, 2016, pp. 346–367.

[64] B. B. Brumley and R. M. Hakala, “Cache-timing template attacks,”
in ASIACRYPT, ser. Lecture Notes in Computer Science, vol. 5912.
Springer, 2009, pp. 667–684.

[65] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks:
Automating attacks on inclusive last-level caches,” in USENIX Security,
2015.

[66] N. Cubrilovic, “RockYou hack: From bad to worse,” Retrieved
15 November 2018 from https://techcrunch.com/2009/12/14/rockyou-
hack-security-myspace-facebook-passwords/, 2009.

[67] NVlabs, “Xmp - cuda accelerated(x) multi-precision library,” 2016.
[Online]. Available: https://github.com/NVlabs/xmp

[68] T. Hunt, “Have i been pwned?” Last retrieved 23 June 2019 from
https://haveibeenpwned.com/, 2019.

[69] Ben, “Probable wordlists - version 2.0,” Last retrieved 23 June from
https://github.com/berzerk0/Probable-Wordlists, 2019.

[70] Amazon, “Amazon EC2 spot instances pricing,” Retrieved 31 May 2019
from https://aws.amazon.com/ec2/spot/pricing/, 2019.

[71] C. He and J. C. Mitchell, “Analysis of the 802.1 i 4-Way handshake,”
in WiSe. ACM, 2004.

[72] J. Mitchell and C. He, “Security analysis and improvements for IEEE
802.11i,” in NDSS, 2005.

[73] C. He, M. Sundararajan, A. Datta, A. Derek, and J. C. Mitchell, “A
modular correctness proof of IEEE 802.11i and TLS,” in CCS, 2005.

[74] M. Vanhoef and F. Piessens, “Predicting, decrypting, and abusing
WPA2/802.11 group keys,” in USENIX Security, 2016.

[75] ——, “Release the kraken: new KRACKs in the 802.11 standard,” in
CCS, 2018.

[76] C. P. Kohlios and T. Hayajneh, “A comprehensive attack flow model
and security analysis for Wi-Fi and WPA3,” 2018.

[77] J. Bellardo and S. Savage, “802.11 denial-of-service attacks: real
vulnerabilities and practical solutions,” in USENIX Security, 2003.

[78] S. M. Glass and V. Muthukkumarasamy, “A study of the TKIP
cryptographic DoS attack,” in International Conf. on Networks. IEEE,
2007.

[79] B. Könings, F. Schaub, F. Kargl, and S. Dietzel, “Channel switch and
quiet attack: New DoS attacks exploiting the 802.11 standard,” in LCN,
2009.

[80] M. Schulz, F. Gringoli, D. Steinmetzer, M. Koch, and M. Hollick,
“Massive reactive smartphone-based jamming using arbitrary wave-
forms and adaptive power control,” in WiSec, 2017.

[81] K. Bicakci and B. Tavli, “Denial-of-service attacks and countermea-
sures in IEEE 802.11 wireless networks,” Comput. Stand. Interfaces,
vol. 31, no. 5, 2009.

[82] W. Aiello, S. M. Bellovin, M. Blaze, J. Ioannidis, O. Reingold,
R. Canetti, and A. D. Keromytis, “Efficient, DoS-resistant, secure key
exchange for internet protocols,” in CCS, 2002.

[83] S. Fluhrer, “Re: [Cfrg] I-D for password-authenticated EAP method,”
Retrieved 9 November 2018 from https://www.ietf.org/mail-archive/
web/cfrg/current/msg02206.html, Feb. 2008.

[84] D. Clarke and F. Hao, “Cryptanalysis of the dragonfly key exchange
protocol,” IET Information Security, vol. 8, no. 6, pp. 283–289, 2014.

[85] E. Alharbi, N. Alsulami, and O. Batarfi, “An enhanced Dragonfly
key exchange protocol against offline dictionary attack,” Journal of
Information Security, vol. 6, no. 02, p. 69, 2015.

[86] S. M. Bellovin and M. Merritt, “Encrypted key exchange: Password-
based protocols secure against dictionary attacks,” in IEEE Computer
Society Symposium on Research in Security and Privacy. IEEE, 1992.

[87] M. Steiner, G. Tsudik, and M. Waidner, “Refinement and extension of
encrypted key exchange,” ACM SIGOPS Operating Systems Review,
vol. 29, no. 3, pp. 22–30, 1995.

[88] D. P. Jablon, “Strong password-only authenticated key exchange,” ACM
SIGCOMM Computer Communication Review, vol. 26, no. 5, pp. 5–26,
1996.

[89] T. D. Wu et al., “The secure remote password protocol.” in NDSS,
vol. 98. Citeseer, 1998, pp. 97–111.

[90] S. Shin, K. Kobara, and H. Imai, “Security proof of AugPAKE.” IACR
Cryptology ePrint Archive, vol. 2010, p. 334, 2010.

[91] S. V. Smyshlyaev, I. B. Oshkin, E. K. Alekseev, and L. R. Ah-
metzyanova, “On the security of one password authenticated key
exchange protocol,” Cryptology ePrint Archive, Report 2015/1237,
2015, https://eprint.iacr.org/2015/1237.

[92] S. Jarecki, H. Krawczyk, and J. Xu, “Opaque: An asymmetric pake
protocol secure against pre-computation attacks,” Cryptology ePrint
Archive, Report 2018/163, 2018, https://eprint.iacr.org/2018/163.

[93] M. Abdalla and D. Pointcheval, “Simple password-based encrypted key
exchange protocols,” in CT-RSA. Springer, 2005, pp. 191–208.

[94] J. Becerra, D. Ostrev, and M. Škrobot, “Forward secrecy of SPAKE2,”
in International Conference on Provable Security (ProvSec). Springer,
2018.

[95] T. Wu, “The SRP authentication and key exchange system,” RFC 2945,
Sep. 2000.

[96] D. Taylor, T. Wu, N. Mavrogiannopoulos, and T. Perrin, “Using the
secure remote password (SRP) protocol for TLS authentication,” RFC
5054, Sep. 2007.

[97] S. Shin and K. Kobara, “Efficient augmented password-only authenti-
cation and key exchange for IKEv2,” RFC 6628, Jun. 2012.

[98] S. Smyshlyaev, E. Alekseev, I. Oshkin, and V. Popov, “The security
evaluated standardized password-authenticated key exchange (SES-
PAKE) protocol,” RFC 8133, Mar. 2017.

[99] F. Hao, “J-PAKE: Password-authenticated key exchange by juggling,”
RFC 8236, Sep. 2017.

[100] W. Ladd and B. Kaduk, “SPAKE2, a PAKE,” Internet Engineering
Task Force, Internet-Draft draft-irtf-cfrg-spake2-07, Nov. 2018, work
in Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-irtf-cfrg-spake2-07

[101] J. Ding, S. Alsayigh, J. Lancrenon, R. Saraswathy, and M. Snook,
“Provably secure password authenticated key exchange based on
RLWE for the post-quantum world,” in CT-RSA. Springer, 2017, pp.
183–204.

[102] X. Gao, J. Ding, L. Li, S. RV, and J. Liu, “Efficient implementation
of password-based authenticated key exchange from RLWE and post-
quantum TLS,” Cryptology ePrint Archive, Report 2017/1192, 2017,
https://eprint.iacr.org/2017/1192.

[103] M. Naor, B. Pinkas, and E. Ronen, “How to (not) share a password:
Privacy preserving protocols for finding heavy hitters with adversarial
behavior,” IACR Cryptology ePrint Archive, vol. 2018, p. 3, 2018.

531

APPENDIX A

EXPERIMENTS

No. of commit exchanges per second

U
til

iz
at

io
n

of
 re

so
ur

ce

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50 60 70 80 90 100

Target CPU
Attacker CPU
Total airtime

Fig. 5: DoS attack against an AP from vendor A using

curve P-256. The attacker uses a Raspberry Pi 1 B+, and

its CPU usage is shown in the small dashed line. The long

dashed line shows the airtime consumed by all SAE frames.

U
til

iz
at

io
n

of
 re

so
ur

ce

No. of commit exchanges per second

0%
20%
40%
60%
80%

100%

0 1 2 3 4 5 6 7 8 9 10

Target CPU
Attacker CPU
Total airtime

Fig. 6: DoS attack against an AP from vendor A using

curve P-521. The attacker uses a Raspberry Pi 1 B+, and

its CPU usage is shown in the small dashed line. The long

dashed line shows the airtime consumed by all SAE frames.

Client (victim) Access Point (adversary)

Beacons(RSNE with only WPA2 support)

Select WPA2
1©

Msg1(ANonce)

Derive PTK
Msg2(SNonce, MIC; RSNE)

Perform dictionary attack

2©

Fig. 7: Dictionary attack against WPA3-SAE when

it is operating in transition mode, by attempting to

downgrade the client into directly using WPA2’s 4-way

handshake.

APPENDIX B

SOURCE CODE

Listing 4: Side-channel protected quadratic residue test.

1 static int is_quadratic_residue_blind(
2 struct sae_data *sae, const u8 *prime, size_t bits,
3 const struct crypto_bignum *qr,
4 const struct crypto_bignum *qnr,
5 const struct crypto_bignum *y_sqr)
6 {
7 struct crypto_bignum *r, *num;
8 int r_odd, check, res = -1;
9

10 /* Use the blinding technique to mask y_sqr while
11 * determining whether it’s a quadratic residue mod p
12 * to avoid leaking timing info while determining
13 * the Legendre symbol.
14 * v = y_sqr
15 * r = a random number between 1 and p-1, inclusive
16 * num = (v * r * r) modulo p
17 */
18 r = get_rand_1_to_p_1(prime, sae->tmp->prime_len,
19 bits, &r_odd);
20 ...
21 if (r_odd) {
22 /* num = (num * qr) module p
23 * LGR(num, p) = 1 ==> quadratic residue */
24 if (crypto_bignum_mulmod(num, qr, sae->tmp->prime,
25 num) < 0)
26 goto fail;
27 check = 1;
28 } else {
29 /* num = (num * qnr) module p
30 * LGR(num, p) = -1 ==> quadratic residue */
31 if (crypto_bignum_mulmod(num, qnr, sae->tmp->prime,
32 num) < 0)
33 goto fail;
34 check = -1;
35 }
36 res = crypto_bignum_legendre(num, sae->tmp->prime);
37 ...
38 res = res == check;
39 ...

Listing 5: Verification of the KDF output in the patched

version of hash-to-curve.

1 static int sae_test_pwd_seed_ecc(struct sae_data *sae,
2 const u8 *pwd_seed, const u8 *prime, const u8 *qr,
3 const u8 *qnr, u8 *pwd_value)
4 {
5 ...
6 if (sha256_prf_bits(pwd_seed, SHA256_MAC_LEN,
7 "SAE Hunting and Pecking", prime,
8 sae->tmp->prime_len, pwd_value,
9 bits) < 0)

10 return -1;
11 ...
12 if (const_time_memcmp(pwd_value, prime,
13 sae->tmp->prime_len) >= 0)
14 return 0;
15 x_cand = crypto_bignum_init_set(pwd_value,
16 sae->tmp->prime_len);
17 ...
18 }

532

Listing 6: SAE password derivation using hash-to-curve.

1 static int sae_derive_pwe_ecc(
2 struct sae_data *sae, const u8 *addr1,
3 const u8 *addr2, const u8 *password,
4 size_t password_len, const char *identifier)
5 {
6 ...
7 if (random_get_bytes(dummy_password,
8 dummy_password_len) < 0)
9 return -1;

10 ...
11 /* Create a random quadratic residue (qr) and quadratic
12 * non-residue (qnr) mod p for blinding purposes during
13 * the loop.
14 */
15 if (get_random_qr_qnr(prime, prime_len, sae->tmp->prime,
16 bits, &qr, &qnr) < 0)
17 return -1;
18 ...
19 /* Continue for at least k iterations to protect against
20 * side-channel attacks that attempt to determine the
21 * number of iterations required in the loop.
22 */
23 for (counter = 1; counter <= k || !x; counter++) {
24 ...
25 res = sae_test_pwd_seed_ecc(sae, pwd_seed, prime
26 qr, qnr, &x_cand);
27 if (res < 0)
28 goto fail;
29 if (res > 0 && !x) {
30 ...
31 x = x_cand; /* saves the current x value */
32 ...
33 /* Use a dummy password for the following
34 * rounds, if any. */
35 addr[0] = dummy_password;
36 len[0] = dummy_password_len;
37 } else if (res > 0) {
38 crypto_bignum_deinit(x_cand, 1);
39 }
40 }
41 ...

Listing 7: Assembly output of SAE’s hash-to-curve method.

1 000000000002efe0 <sae_derive_pwe_ecc>:
2 ...
3 2f2c8: e8f3170500 callq 80ac0 <sha256_prf_bits>
4 ...
5

6 2f719: e8f2fa0400 callq 7f210 <crypto_bignum_legendre>
7 ...
8 2f751: e81af70400 callq 7ee70 <crypto_bignum_deinit>
9 2f75d: 0f8559010000 jne
2f8bc <sae_derive_pwe_ecc+0x8dc>

10 ...
11 ; handle qr case code range
12 2f7d2: 0f8660faffff jbe
2f238 <sae_derive_pwe_ecc+0x258>

13 ...
14 ; start nqr case code
15 2f8bc: 488b7c2440 mov 0x40(%rsp),%rdi
16 2f8c1: be01000000 mov $0x1,%esi
17 2f8c6: e8a5f50400 callq 7ee70 <crypto_bignum_deinit>
18 2f8cb: e994faffff jmpq
2f364 <sae_derive_pwe_ecc+0x384>

19 ; end nqr case code
20 ...

533

