
SPIDER: Enabling Fast Patch Propagation
in Related Software Repositories

Aravind Machiry†, Nilo Redini†, Eric Camellini¶, Christopher Kruegel†, and Giovanni Vigna†
†University of California, Santa Barbara

{machiry, nredini, chris, vigna}@cs.ucsb.edu
¶Politecnico di Milano

eric.camellini@gmail.com

Abstract—Despite the effort of software maintainers, patches to
open-source repositories are propagated from the main codebase to
all the related projects (e.g., forks) with a significant delay. Previous
work shows that this is true also for security patches, which represents
a critical problem. Vulnerability databases, such as the CVE database,
were born to speed-up the application of critical patches; however,
patches associated with CVE entries (i.e., CVE patches) are still
applied with a delay, and some security fixes lack the corresponding
CVE entries. Because of this, project maintainers could miss security
patches when upgrading software.

In this paper, we are the first to define safe patches (sps). An sp is a
patch that does not disrupt the intended functionality of the program
(on valid inputs), meaning that it can be applied with no testing; we
argue that most security fixes fall into this category. Furthermore, we
show a technique to identify sps, and implement SPIDER 1, a tool based
on such a technique that works by analyzing the source code of the
original and patched versions of a file. We performed a large-scale
evaluation on 341,767 patches from 32 large and popular source code
repositories as well as on 809 CVE patches. Results show that SPIDER
was able to identify 67,408 sps and that most of the CVE patches are
sps. In addition, SPIDER identified 2,278 patches that fix vulnerabili-
ties lacking a CVE; 229 of these are still unpatched in different vendor
kernels, which can be considered as potential unfixed vulnerabilities.

I. INTRODUCTION

The open-source software model revolutionized the software
industry, and prior research shows that it is more secure [70], [33]
than its closed-source counterpart. However, propagating changes
and patches from the main repository of an open-source project
to all the related projects (forks) is a major problem [66]. While
related projects share a common “ancestry,” their code bases typically
diverge over time, as different teams add different features and
capabilities to each branch. As a result, when a problem is found and
fixed in one branch, it is not always easy to directly apply this patch
to another one [67]. For example, Android depends on a Linux kernel
fork, and upgrading it with patches from the main kernel repository
without thoroughly testing their effects could break Android.

To avoid this problem, and still be able to keep their software
up-to-date, the maintainers of related projects need to carefully track
other branches. When they see a fix that might be relevant for their
codebase, they have to “cherry-pick” the patch: That is, they have
to understand the patch and its behavior, adapt it to their own code
base, and finally ensure that the whole system, after applying the
patch, still works as expected. Not surprisingly, this is a manual
and resource-intensive process [72], [17]. As a result, as shown in
the Appendix D of our extended version [7], changes in the main
code base of a project are usually applied to the code of dependent
software with a significant delay [68]: Android 10, for example, is
based on Linux kernel 4.19, while the latest release of the Linux
kernel is version 5.3.8 [2].

1This is a short form for Safe Patch fInDER.

This problem becomes critical when we consider security
patches: in these cases, the fixes should propagate to all the
codebases as soon as possible. Vulnerability databases such as the
Common Vulnerabilities and Exposures (CVE) database were born
to facilitate this process: project maintainers can take them as a
reference to know which security-related patches they need to apply,
without having to find them manually. Despite the existence of these
databases, security patches still take a substantial amount of time to
propagate to all the project forks [57], [53], [22], [41]. In the year
2016, the Android maintainers patched 76 publicly known vulner-
abilities (i.e., CVEs) from the year 2014, two from 2013, and two
from 2012, which means that 80 disclosed vulnerabilities remained
unpatched in the Android code base for more than one year [1]. This
revelation attracted considerable public interest [5]. Recent work [48]
shows that attackers who monitor source repositories often get a head
start of weeks (and sometimes months) on targeting vulnerabilities
prior to any public disclosure. Furthermore, as we will show in this
study (Section VII-D), it is possible that the maintainers of a project
underestimate the severity of a patched bug, and fail to request a
corresponding entry in a vulnerability database (a CVE ID) [10].
When this happens, maintainers of related projects are not aware that
a patch actually addresses a security problem. This is a growing prob-
lem, as exemplified by the recent VLC security issue [16], which
is caused because developers of libebml failed to associate the
corresponding security fix with a CVE ID [11], and the vulnerability
existed for nearly two years after the fix was available. Unfortunately,
hackers are known to scan source repository commits for fixes that
might address vulnerabilities, and then check for the presence of
these vulnerabilities in related repositories [74]. Therefore, the secu-
rity fixes lacking a CVE ID provide a potential source of unfixed vul-
nerabilities as they are most likely not ported to related repositories.

Existing approaches that ease the process of cherry-picking
relevant patches rely on commit-related information, such as
code diff or commit messages [65], [76], [21], or they look for
specific patterns [56]. These tools have the advantage of being fast,
lightweight, scalable, and suitable to be used on large codebases.
However, either they only match simple patches, or analyze commit
messages, which are often not expressive enough to convey the scope
and effect of a change [24], [69], [4]. Other techniques attempt to
go a step further and analyze the semantic differences introduced by
a patch using static analysis [44], [45], [25], [26], [64] and symbolic
execution [52], [29], [62], [37]. Unfortunately, these techniques
suffer from scalability issues. Moreover, some of these approaches
also require the exact build environment [30] of the whole code
base, restricting their practicality and applicability to complex
software, such as the Linux kernel, the VLC player, the OpenBSD
OS, etc., as these software have many possible configurations [12].

Intuitively, an ideal solution, which would help maintainers
in selecting and applying important changes, would be a system
that is capable of identifying those patches that do not affect the

1562

2020 IEEE Symposium on Security and Privacy

© 2020, Aravind Machiry. Under license to IEEE.
DOI 10.1109/SP40000.2020.00038

intended functionality of the software. If the intended functionality
of the software is not changed by a patch, this patch can be applied
without the need for testing: we call these changes safe patches. In
this paper, we argue that a significant portion of all security-related
fixes falls under the category of safe patches [60]. Thus, a tool
that can identify safe patches could be used to monitor the main
repository and automatically alert or apply this kind of patches on
a target forked repository. This observation is also confirmed by
our anonymous survey (Appendix J) of maintainers and developers
of various open-source software projects.

To be effective and usable on large codebases, a system to identify
safe patches should at least satisfy the following requirements:

• R1: Only rely on the original and patched versions of the
modified source code file, without any other additional
information (e.g., commit message, build environment, etc.)

• R2: Be fast, lightweight and scalable.

In this work, we design and implement a static analysis
approach that aims to identify safe patches and that satisfies both
the requirements above. Our approach is designed specifically to
target source code changes and to identify patches that could be
applied with minimal testing, as they do not modify the program’s
functionality. Specifically, we make the following contributions:

• We provide the first formal definition of safe patches, and
design a general technique to identify them.

• We implement SPIDER, a system based on this technique,
that takes as input only the source code of the original and
patched file.

• We evaluate SPIDER on 341,767 commits taken from 32
source code repositories (Linux kernel repositories, An-
droid kernel repositories, interpreters, firmware, utilities and
various other repositories), as well as on 809 CVE patches.

• We identify 67,408 safe patches and show that SPIDER

could help developers in the process of selecting and
testing changes, resulting in a speed-up in the propagation
of security fixes.

• We also provide the Security Patch mode of SPIDER that
can precisely identify security patches. It identified 2,278
patches that most likely fix security vulnerabilities, despite
the fact that they were not associated with any CVE entry.
229 of these issues are still unpatched in several kernel forks.
As such, they can be considered unfixed vulnerabilities.

• We are releasing SPIDER and the corre-
sponding git server-side hook configuration
at github.com/ucsb-seclab/spider.

Unlike previous work, our approach is the first that focuses on
determining those patches that can be propagated to related projects
with minimal effort, and without defining a priori specific types
of changes or semantic characteristics that should be detected (i.e.,
we do not just target patches that fix a specific type of vulnerability).
We envision our system to be part of the recently introduced Github
security alerts [8], or it could be used to build a variant of the git
rebase feature that suggests patches that are most likely safe and
should be prioritized.

II. SAFE PATCHES

Our goal is to identify patches that can be applied without
subsequent testing. We call such patches safe patches (sps).

Intuitively, for a patch to be considered an sp, it should satisfy the
following two conditions:

• Non-increasing input space (C1): The patch should not
increase the valid input space of the program. That is, the
patched version should be more restrictive in the inputs that
it accepts. The assumption is that some of inputs that the
original program accepted resulted in security violations,
and the patched version “removes” these inputs as invalid.

• Output equivalence (C2): For all the valid inputs that
the patched program accepts, the output of the patched
program must be the same as that of the original program.

The condition C1 ensures that there is no need to add new test
cases, as there are no new inputs that are accepted by the patched
program 2. Furthermore, the condition C2 ensures that there is no
need to run the existing test cases as the output will be the same as
that of the original program (for all the valid inputs). Consequently,
if a patch satisfies the above two conditions then it can be applied
without any effect on the existing test cases. Of course, the purpose
of testing is to ensure that the program behaves as expected, so it is
always a recommended step after applying a patch. In Section II-B,
we define more formally the two conditions above.

A. Running Example

Listing 1 shows our running example, a C language example
of a safe patch in the unified diff format (i.e., where + and −
indicate inserted and deleted lines, respectively). In this example,
the programmer decided that it was necessary to add an extra length
check (Lines 3-5), presumably to protect against a buffer overflow
later in the program. In addition, the patch also includes the length
of the header (HDR) as part of a size check in Line 10.

This patch is safe. The inserted modifications to the variables
len and tlen do not change the output of the function.
Moreover, the extra conditional statement in Line 3 adds a missing
length check, thereby restricting the input space. That is, all
inputs where t->len is larger than MAX_LEN now lead to the
function returning an error, while those inputs were accepted by
the original function.

Figure 1 shows the control flow graph (CFG) after the
application of this example patch: underlined text indicates the
pieces of code inserted, while the left (blue) and right (red) children
of each basic block are the true and false branches, respectively.

B. Formal Definition

We first define terminology used throughout the paper:

• Input i to a program: The input data with which the
program is executed; I indicates the set of all the possible
inputs to the program.

• Function of a program: The symbol f denotes the original
function, and any subscript to it identifies its patched
version. For example: fp indicates the function f after
applying the patch p.

• Error-handling basic blocks: The symbol BBerr denotes
the basic blocks of a function that are part of its
error-handling functionality. In Figure 1, BB2 is an

2However, for regression testing purposes, one may want to add a test case that
checks that the inputs are indeed invalid and the corresponding security flaw is
patched.

1563

1 long g e t r e a d s i z e (s t r u c t dring ∗ t) {
2 long len , t l e n ;
3 + i f (t−>l en > MAX LEN) {
4 + return −1;
5 + }
6 . . .
7 − l en = t−>l en ;
8 + len = t−>l en + 4;
9 . . .

10 i f (l en % 2) {
11 l en += DEF SIZE ;
12 }
13 . . .
14 − t l e n = len ;
15 + t l e n = len − 4;
16 . . .
17 t−>t o t a l = t l e n ;
18 . . .
19 return t l e n ;
20 }

Listing 1: Running Example of a safe patch.

Fig. 1: Control flow graph of the patched program from Listing 1

error-handling basic block. We will explain later how
error-handling basic blocks are identified.

• We use the notation i↪→f to indicate that input i success-
fully executes through function f . That is, starting from
the entry basic block of f , and given input i, none of the
error-handling basic blocks (BBerrs) of f will be reached.
In other words, i represent a valid input to the function f .

• Output of a function: The output of a function f is its
return value and all the externally visible changes to the
program’s data. Specifically, the output includes the return
value, all writes to heap and global variables, and the
arguments to all function calls. For instance, the output of
the function get_read_size in Listing 1 is its return
value (line 19), and the value written to the pointer variable
t->total (line 17). Furthermore, output(i,f) indicates
the output of the function f when run with input i.

Now, we will use the definitions we introduced to formally
define two conditions (C1 and C2) introduced at the beginning
of Section II.

1) Non-increasing input space (C1): The non-increasing input
space (C1) condition requires that the patched program does not
accept any inputs as valid that are not also accepted as valid by the
original program. This condition can be defined at the granularity
of functions; that is, for C1 to hold, we require that all patched
functions, individually, do not accept any additional valid inputs.

In other words, any valid input to a patched function must also be
a valid input to the corresponding original function. More formally:

∀i∈I |(i↪→fp)→(i↪→f). (1)

In the case of Listing 1, the patch restricts the original input space
by adding an additional constraint (i.e., t→ len>MAX LEN
in Line 3). As a result, all valid inputs to the patched function are
also valid inputs to the original function (but not vice versa). This
satisfies Equation 1.

2) Output correspondence (C2): The output correspondence
(C2) condition requires that, for all valid inputs, the output of the
patched program must be the same as the output of the original
program. This condition, again, can be defined at the function
granularity: For each patched function, for all corresponding valid
inputs, the patched function must produce the same outputs as the
original function. More formally:

∀i∈I |(i↪→fp)→(output(i,fp)=output(i,f)). (2)

In the case of Listing 1, although the patch inserts changes
that modify the values of some variables (for example, len), the
changes do not affect the externally visible data of the program,
and thus, they do not change the output of the function, thereby
satisfying Equation 2.

If all the patched functions satisfy both Equation 1 and Equation 2,
then we can say that the patch satisfies the conditions C1 and C2.
As a result, the patch can be considered as a safe patch (sp). Note
that, as a trivial case, an empty patch (fp=f) satisfies Equations 1
and 2, making it an sp. Furthermore, there exist patches that do
not satisfy the above conditions but still could be applied without
testing, making our conditions sufficient but not necessary. We
refer all the interested readers to Appendix A, where we explain
our formalism with more examples.

III. IDENTIFYING SAFE PATCHES

In this section, we introduce a general technique to determine
whether a given patch is an sp.

A. Program Dependency Graph (PDG)

Our technique leverages the concept of a program dependency
graph (PDG). A program dependency graph [36] captures both data
and control dependencies in a single graph. Formally, the PDG of a
function f , denoted as PDG(f) = (V,C,D), is a directed graph where

• V = {v0,v1, ...,vn,En} is a set of nodes, one for each
instruction (v•) of the function. The additional node, En

represents the function entry.

• C is a set of directed, labeled edges, where each edge
(vi, vj, T |F) represents the (direct) control dependency
of vj on vi. An instruction vj is control-dependent on
vi, and the edge is labeled as true (T) [or false (F)],
when vj is executed if and only if vi evaluates to true [or
false]. To complete the PDG, if an instruction v is not
control-dependent on any other instruction in the function
(in other words, it does not have any incoming control
flow edges), we connect it to the function entry node (En).
That is, we add the edge (En,v,T) to C. Note that all
source nodes of control-flow edges are either conditional
statements (if, while, etc.) or the function entry node

1564

(a) PDG of the original function in Listing 1

(b) PDG of the patched function in Listing 1

Fig. 2: Program Dependency Graph (PDG) of the original and patched function in Listing 1,
where dotted and solid edges represent data and control dependencies, respectively. The function exit points are in double-bordered boxes.

En. In addition, all conditional statements will have at
least one outgoing control-dependency edge.

• D is a set of directed edges, where each edge (vi, vj)
represents a data dependency. That is, instruction vi
defines a variable that can reach the corresponding use in
instruction vj.

For our running example in Listing 1, Figures 2a and 2b show
the program dependency graphs for the original and the patched
function, respectively. The labels on the control dependency edges
[true(T) or false(F)] indicate whether the destination node is
reachable from the source node via the true or false branch.

Control dependency versus control flow: The concept of control
dependency is different from the more commonly-used concept of
control flow. Control flow captures possible flows of execution, while
control dependency captures the necessary conditions that must hold
for the execution to reach a particular statement. We refer all the
interested readers to Appendix B, where we explain this in detail.

Control-Dependency Path: Given a PDG(f) = (V,D,C) of a
function f , we say that a control dependency path exists from
instruction x ∈ V to instruction y ∈ V , denoted as x �→c y, if
there exists a path in the PDG from x to y that only follows
control-dependency edges. Formally,

x �→cy={<x,v1,v2,...,vn,y>|v•∈V ∧(x,v1,•)∈C∧
(vn,y,•)∈C∧∀1≤i<n(vi,vi+1,•)∈C}.

In the PDG shown in Figure 2b, there exists a control-dependency
path (a path along solid edges) from the instruction at Line 3 to the
instruction at Line 11: {3,10,11}.

Path Constraint (PC): For any instruction v, the condition derived
from the sequence of nodes and edges (with their labels) along the
control-dependency path from the function entry En to v is called
its path constraint. For example, consider the instruction at Line 11
in the PDG in Figure 2b. The control-dependency path from En

to Line 11 is {En,3,10,11}. The corresponding path constraint is
PC(En �→c 11) = ((En == T)∧ ((t->len > MAX_LEN) ==
F)∧(((len % 2) �=0)==T)). That is, Line 11 is only executed
if (t->len <= MAX_LEN) and (len % 2) �= 0.

Data-Dependency Path: Given a PDG(f) = (V, D, C) of a
function f , we say that a data-dependency path exists from
instruction x ∈ V to instruction y ∈ V , denoted as x �→d y, if

there exists a path in the PDG from x to y that only follows
data-dependency edges. More formally:

x �→dy={<x,v1,v2,...,vn,y>|v•∈V ∧(x,v1)∈D∧
(vn,y)∈D∧∀1≤i<n(vi,vi+1)∈D}.

In the PDG shown in Figure 2b, there exists a data-dependency
path (a path along dotted edges) from instruction at Line 8
to the instruction at Line 19: {8, 15, 19}. We say that a given
data-dependency path x �→d y=<x,v1,v2,...,vn,y > is complete
if there is no data dependency path to x. Formally, (•,x) �∈D. The
data dependency path example from Line 8 to 19 is complete as
there is no data dependency path to Line 8.

Also, note that although a data dependency path exists from
the instruction at Line 8 to instruction at Line 19, there is no
control-dependency path between these instructions. This is because
the execution of the instruction at Line 19 is not controlled by the
instruction at Line 8.

B. The SPIDER Approach

Our system is given as input a patch p, with f and fp being
a function before and after applying the patch, respectively. The
technique to detect whether p is a safe patch works in four steps,
as outlined in the following four sections.

1) Checking modified instructions: We first need to identify
what statements are affected by a patch, and determine whether
these modifications can be soundly analyzed given our requirement
R1. Recall that R1 requires that the analysis operates directly on
the original and patched versions of the modified source code file,
without any other additional information (e.g., commit message,
build environment, etc.).

Affected Statements: A statement can be affected either directly
or indirectly by the patch. We call a statement directly affected if
it is modified, inserted, deleted, or moved by the patch. A statement
is indirectly affected if it is either control- or data- dependent on any
of the directly affected statements. Given the set of directly affected
statements Ad and the PDG of the corresponding function, all the
instructions reachable from the statements in Ad, either through
control flow or data flow edges, are indirectly affected.

Consider the patch for our running example in Listing 1. Here,
the directly affected statements are at Lines 3, 4, 8, and 15. However,
looking at the corresponding PDG in Figure 2b, we can see that all in-
structions are reachable from the node that corresponds to the instruc-
tion at Line 3. Consequently, all statements are affected by the patch.

1565

Locally analyzable statement: We call a directly affected
statement locally analyzable if all the writes made by the statement
can be captured without any interprocedural and pointer analysis.
Specifically, the modifications made by the patch should not involve
any new function calls or pointer manipulation. Consider the patch
represented by Listing 2: The inserted statement at Line 4 is locally
analyzable. However, the inserted statement at Line 5 is not locally
analyzable, because it involves a new function call.

If a patch has any directly affected statements that are not locally
analyzable, we do not consider it an sp. This is because we cannot
soundly analyze the affected statements without analyzing the
effects on the whole program. Moreover, performing whole-program
analysis requires a static analysis tool (like LLVM), which in turn,
requires access to the sources of the entire program, violating our
requirement R1.

1 i n t k t h r e a d i n i t () {
2 . . .
3 − t o t a l s i z e = f i l e −>s i z e ;
4 + t o t a l s i z e = header + f i l e −>s i z e ;
5 + i n i t c l e a n u p () ;
6 . . .
7 i f (t o t a l s i z e > MAX SIZE) {
8 . . .
9 }

10 . . .
11 }

Listing 2: Patch illustrating locally analyzable statements.

2) Error-handling basic blocks: In the next step, we need to
identify all the error-handling basic blocks (BBerrs) in f and fp, so
that all the changes to the statements within BBerrs are discarded
and not considered in the next steps. This decision is based on the
assumption that any changes to error basic blocks do not disrupt
the original functionality (i.e., they just result in better or adjusted
error-handling). The remaining statements affected by p are then
analyzed to check if Equations 1 and 2 can be proved. We leverage
previous work [42], [73] to identify error-handling basic blocks, as
discussed in more detail in Section IV-D.

3) Non-increasing input space (C1): To verify the non-
increasing input space condition (C1), we need to ensure that the
patch does not accept more inputs than the original function. In
other words, the patch must not increase the valid input space for
the modified function.

Intuitively, if a patch does not affect any control-flow statements
(such as if, while, for, etc.), then it cannot change the input
space of the function. However, if a patch affects one or more
control-flow statements, we must verify that no additional inputs
can successfully execute through the function.

This can be done by first identifying the valid exit points
(VEP) of a function. The valid exit points of a function are those
instructions that, if reached during the execution of an input, imply
that the input successfully executed through the function. For
instance, in the case of our running example in Listing 1, the
return tlen instruction at Line 19 is a valid exit point.

We consider all return statements as possible valid exit
points. However, a function might exit because of an error (for
instance, Line 4 in Listing 1), and the corresponding return statement
does not represent a valid exit point. Hence, to identify the VEP
set, we need to filter out all the return statements that are part of
error basic blocks (BBerr).

In summary, to identify the VEP set of a function f with
PDG(f)= (V,D,C), we need to find all the exit points of f , i.e.,

Ex(f), and filter out all the return instructions that belong to error
basic blocks. More formally:

VEP(f)={r |((r∈Ex(f))∧(BB(r) �∈BBerrs(f)))}.
where BB(r) indicates the basic block of instruction r.

To ensure that a patch satisfies condition C1, we need to verify
that all inputs that go through the valid exit points, i.e., VEP of the
patched function fp, also go through the valid exit points of the
original function f .

We observe that, in order for an input i to be successfully
executed by a function, the input must satisfy the path constraint (PC)
of a valid exit point. Thus, all the inputs that are accepted as valid by
a function, which we denote as vinputs(f), are the union of all the
inputs that satisfy the path constraints for at least one valid exit point.
More formally, the constraints on the inputs that are successfully
executed by the function f are captured by the following disjunction:

vinputs(f)=
∨

i∈VEP(f)

(PC(i)). (3)

If we have vinputs(fp)→ vinputs(f), which shows that all
the inputs that can be successfully executed by the patched function
fp are also successfully executed by the original function f , we
have succeeded in proving condition C1.

For our running example in Listing 1, with the PDG of the
patched function in Figure 2b, the valid exit point is at Line 19
(return tlen). By following the solid edges backwards and
computing the path constraints for the patched function, we obtain
vinputs(fp) = ((En == T)∧ (t->len > MAX_LEN== F)).
For the original function, whose PDG is in Figure 2a, we
obtain vinputs(f) = (En == T). We can easily see that
vinputs(fp)→vinputs(f), thus satisfying C1.

To perform this step, we use symbolic interpretation to convert
the C language statements into symbolic expressions (as discussed
in more detail below). Then, we prove the implications between
the two symbolic expressions using a SAT solver [34] (more details
are provided in Section IV-E).

4) Output equivalence (C2): To verify the output equivalence
condition (C2), we need to verify that all externally visible changes
(as described in Section II-B) in the patched function are the same
as that of the original one. Specifically, we want to ensure that
for any input that successfully executes through the patched and
original function, the output of the two functions will be identical.

We first look at all the affected (non-control-flow) statements.
First, we discard all the statements that modify local variables.
While local variables can have an indirect effect on a function’s
output (which we take into account, as explained below), the local
variables themselves are not externally visible. Thus, we do not
need to consider them in this step. In the next step, we need to
verify that all the updates (writes) to non-local (global and pointer)
variables, function call arguments, and return values in the patched
function are the same as that of the original function. In other words,
we aim to prove that all global and pointer variables have the same
values after the patched function has executed (compared to the
original function), the patched function returns the same value, and
it calls the same functions with the same arguments (and in the
same order). When we are able to prove this, we are sure that, for
every valid input, the patch does not change the externally visible
effect of executing this function.

1566

Given a statement t, we need to show that for all (valid) inputs
that reach t in the patched and the original function, their outputs
will be the same. More formally:

∀i∈I |(i↪→tp)→(output(tp)=output(t))

The output value of a statement depends on the values of the
inputs (input variables). Consider, for example, the statement c
= a + b. Here, the output is assigned to the variable c, and the
value depends on the inputs a and b. We can determine where
these inputs come from by looking at the data-dependency graph
for the statement. Of course, the inputs for a statement could come
from multiple data-dependency paths. Consider again the PDG
in Figure 2b. For the statement at Line 15, there are two complete
data dependency paths: <8,15> and <8,11,15>. The execution
can take two different paths to reach this line, based on whether the
function input satisfies the constraint on Line 10 or not.

For a given statement t, and for each data-dependency path to this
statement, we compute a symbolic expression for the possible output
values (along these paths). The idea is that the union of the symbolic
expressions (overall data-dependency paths) for t are the same for
the patched function as for the original one. While this intuitively
makes sense, there is one additional consideration. It is not enough to
ensure that just the symbolic expressions are the same; they need to
be the same under the same path constraints. Thus, we need to extend
the symbolic expressions with their corresponding path constraints.
We refer to these extended symbolic expressions as symbolic output-
constraint pairs, which are computed as described hereinafter:

For a given statement t in a function f and the corresponding
PDG(f)= (V,D,C), we can compute the output-constraint pairs
from all the complete data dependency paths to t. For each such
path, we compute an output-constraint pair as:

Ψs=(interpret(<x1,x2,...,xn,t>),
∧

1≤i≤n

PC(xi)).

where interpret represents the symbolic expression that is com-
puted by interpreting each of the instructions in sequence, and PC(•)
is the path constraint of the corresponding instruction in the PDG.

Let Ψp(t) and Ψ(t) be the symbolic output-constraint pairs for
the statement t in the patched and original function, respectively.
We say that the output of statement t is equivalent in the original
and the patched function, denoted as Ψp(v)≡Ψ(v), if the following
equation holds:

∀(ox,cx)∈Ψp(v)·∃(oy,cy)∈Ψ(v)
(ox==oy)∧(cx→cy). (4)

Note that o• are not concrete values but rather symbolic values.

It is possible that there is an infinite number of data dependency
paths that lead to a statement. This happens when there are loops
or cyclic dependencies in the data dependency graph (for example,
when a value is updated inside the body of a loop and later used
by an affected statement). We will show in Section IV-E how we
resolve cycles in the data dependency graph. We will further argue
that our approach is safe for a subset of instances, and we only
consider these cases as safe patches.

Consider how we verify that condition C2 holds for our running
example in Listing 1: The affected statements are at Lines 3, 8, 10,
11, 15, 17, and 19. Recall that we only consider non-control-flow
statements. Thus, we can remove Line 3 and 10 from further
consideration. Next, we can discard all statements that write to local

variables, which removes Lines 8, 11, and 15. We end up with the
statements at Lines 17 and 19, which write to a non-local variable
through a pointer and return a value, respectively.

Looking at the PDG for the patched function (in Figure 2b), we
see that there exist two complete data dependency paths for Line 17:
< 8,15,17 > and < 8,11,15,17 >. The symbolic interpretation
steps for both paths is shown in Table I. For every path, we first
initialize each of the variables with a unique symbol, and then
start interpreting each instruction according to its semantics. The
symbolic output with corresponding path constraints along the
path < 8,15,17 > is (o1p,c

1
p) = (t->total = sym2,((En ==

T)∧((sym2>sym3)==F)∧((((sym2+4)%2) �=0)==F))).
For the path < 8, 11, 15, 17 >, the result is
(o2p,c

2
p)=(t->total=sym2+sym5,((En==T)∧((sym2>

sym3)==F)∧((((sym2+4)%2) �=0)==T))).

For interpreting the original function, we start with the same
initial symbols for the same variables that were used in the patched
function. From the original function’s PDG in Figure 2a, for
Line 17, there are also two data dependency paths: <7,14,17> and
<7,11,14,17>. The symbolic output along with the corresponding
path constraints are (o1c, c

1
c) = (t->total = sym2,((En ==

T)∧ (((sym2%2) �= 0) == F))) and (o2c,c
2
c) = (t->total =

sym2+sym5,((En==T)∧(((sym2%2) �=0)==T))).

We can see that o1p == o1c∧c1p → c1c and o2p == o2c∧c2p → c2c.
Hence, Equation 4 holds.

Similarly, we can show that the output at Line 19 is equivalent
in both the patched and the original function. As a result, our system
has verified that the patch satisfies condition C2, and the patch is
safe. For a patch that affects multiple functions, the steps described
above are performed for each function.

IV. SPIDER: DESIGN AND IMPLEMENTATION

In this section we show the details of SPIDER, a tool, that
satisfies our requirements R1 and R2, uses the approach described
in Section III to analyze a given C source code patch and determine
if it is an sp. The steps that SPIDER performs are detailed in the
remaining part of this section.

A. Preprocessing

SPIDER starts by handling the C preprocessor directives. File
inclusions (i.e., #include) are ignored, since as a requirement
we do not want to collect information outside of the two input source
code files. Macro definitions are ignored as well: macro calls will be
treated as regular function calls, as explained later. The system then
uses the unifdef 1 tool to handle conditional code inclusion directives
(e.g., #ifdef, #ifndef, etc.): the output of unifdef is a valid
C source file, without any of these constructs. Note that this step
could exclude certain code segments. Section V explains this in
detail. This first step outputs two C source files ready to be parsed.

B. Parsing

The preprocessed source files are parsed using the Joern [77]
fuzzy parser, which provides an Abstract Syntax Tree (AST) for all
the functions in the file. Although Joern also provides a Control Flow
Graph (CFG), with nodes linked to the ones in the AST, we had
to modify it to suite our needs. Specifically, we had to implement
the reaching definitions analysis [58], simple type inference [63],
control dependency analysis [18], and, finally, program dependency
graph [36]. At the end of this phase, SPIDER has access to the AST,
CFG, and PDG for each of the functions affected by the patch.

1567

Current Statement Symbolic State
Input Output

For path: <8,15,17> starting with initial state

8: len = t->len + 4
len = sym1, t->len = sym2, MAX_LEN = sym3

len = sym2 + 4
tlen = sym4, DEF_SIZE = sym5, t->total = sym6

15: tlen = len - 4
len = sym2 + 4, t->len = sym2, MAX_LEN = sym3

tlen = sym2
tlen = sym5, DEF_SIZE = sym5, t->total = sym6

17: t->total = tlen
len = sym2 + 4, t->len = sym2, MAX_LEN = sym3

t->total = sym2
tlen = sym2, DEF_SIZE = sym5, t->total = sym6

For path: <8,11,15,17> starting with initial state

8: len = t->len + 4
len = sym1, t->len = sym2, MAX_LEN = sym3

len = sym2 + 4
tlen = sym4, DEF_SIZE = sym5, t->total = sym6

11: len += DEF_SIZE
len = sym2 + 4, t->len = sym2, MAX_LEN = sym3

len = sym2 + 4 + sym5
tlen = sym4, DEF_SIZE = sym5, t->total = sym6

15: tlen = len - 4
len = sym2 + 4 + sym5, t->len = sym2, MAX_LEN = sym3

tlen = sym2 + sym5
tlen = sym4, DEF_SIZE = sym5, t->total = sym6

17: t->total = tlen
len = sym2 + 4 + sym5, t->len = sym2, MAX_LEN = sym3

t->total = sym2 + sym5
tlen = sym2 + sym5, DEF_SIZE = sym5, t->total = sym6

TABLE I: Symbolic interpretation of the data-dependency path <8,15,17> and <8,11,15,17> of the PDG in Figure 2b.

C. Fine-grained diff

SPIDER uses function names to pair the functions in the original
file with the corresponding ones in the new files, assuming patches
that insert, delete, or rename one or more functions not to be sps.
SPIDER then identifies the functions affected by the patch using java-
diff-utils2, a common text diff tool. Our system then applies a state-
of-the-art AST diffing technique, Gumtree [35], between the original
and patched ASTs of the affected functions. Gumtree maps the nodes
in the old AST with the corresponding nodes in the new one and
identifies nodes that have been moved, inserted, deleted, or updated.
A moved node is a node that the patch moved in another position in
the AST, but whose content was unchanged, while an updated node
is a non-moved node whose content was changed. The differences in
the ASTs are also associated to the corresponding nodes in the CFG.

Fig. 3: Control flow
annotated listing where the greyed out blocks, i.e., BB2 and BB3,
represent the error-handling basic blocks identified by our approach.

D. Identification of error-handling basic blocks

We use a technique similar to the ones proposed in the works
by Kang et al. [42] and Tian et al. [73] in order to identify
error-handling basic blocks.

Figure 3 illustrates our approach, where the identified error-
handling basic blocks are greyed out. Specifically, we consider a
basic block BB to be an error-handling basic block if it satisfies
any of the following conditions:

• IfBB forces the function to return a constant negative
value or a C standard error code (i.e., one of the constant
symbols defined in errno.h, e.g., EINVAL) prepended
by a minus sign or NULL. For this, we do a basic reaching
definition analysis and check that all paths through the basic
block reach a function exit that returns a constant negative
value or a C standard error code. This is based on the
observation that functions use negative integers or values in
errno.h or NULL to indicate error conditions. For the
CFG of our running example in Figure 1, we detect BB2
as an error-handling basic block as it causes the function
to return a negative integer (return -1). Similarly,
in Figure 3, BB2 causes the function to return the value
of the variable ret, which is a negative integer (-1) set
in BB1. Hence, BB2 will be considered as a BBerr.

• If BB ends in a direct jump (a goto) to a label that
might indicate an error condition. We maintain a set of
15 error-related labels (e.g., panic, error, fatal,
err), and we check if the BB ends with a goto
error-related-label; statement. We derived our
labels from an existing survey [14] and our experience
in working with system code. This is based on the
observation that most of the system code, especially
operating system kernels [15], use goto to handle error
conditions [6], [14]. In Figure 3, BB3 has the goto
error; statement, and since error is one of our
labels, BB3 will be considered as a BBerr. Note that,
BB3 also satisfies the first condition, similar to BB2, as
it can also cause the function to return a negative integer.

Unlike the work by Tian et al. [73], we do not consider the
post-dominators of a BBerr to be BBerrs, thus, in Figure 3, the
post-dominators of the error-handling basic blocks BB2 and BB3
(BB5 and BB6, respectively) will not be considered as BBerrs.
This conservative approach improves precision by avoiding certain
basic blocks to be wrongly identified as BBerrs (such as BB6).
However, we may miss certain error-handling basic blocks (BB5).
Note that, our approach for improving the precision by missing
potential error-handling basic blocks is safe. We refer all the
interested readers to Appendix K where we explain this in detail.

1568

1 − max len = s t r l e n (buf) ;
2 + max len = s t r l e n (buf) + msg−>l en ;
3 total mem = max len ;
4 i f (max len < MIN) {
5 total mem = MIN;
6 }
7 i f (total mem >= MAXMEM) {
8 return −EINVAL;
9 }

10 return send msg (msg , buf) ;

Listing 3: Patch affecting the control-flow of a function.

To check that our error-block detection approach is accurate,
we randomly sampled 100 patches, and we verified that all the error
basic blocks that we identified are indeed valid BBerrs.

As explained in Section III, SPIDER discards all changes that
happen within the identifiedBBerrs. In Appendix I, we run SPIDER

in “not ignoring mode” (NoEB), in which we do not ignore changes
within BBerrs and show that the detection rate does not materially
change (a 0.79% decrease; see, (Default - NoEB) in Table IV). This
result shows that discarding the changes within error-handling basic
blocks does not significantly influence the effectiveness of SPIDER.

E. Patch Analysis

In the remaining part of this section, we explain how SPIDER

identifies sps based on the general technique described in Section III.

Fig. 4:
Program-Dependency Graph of the patched function in Listing 3.

Given thePDG, we remove all the data-dependency and control-
dependency cycles in the PDG by removing all the back edges [23].
Given a statement t, we consider an edge to be a back edge if it is
originated from a statement that is dominated by t in the PDG. We
provide more details in Appendix F, and argue that this technique
is safe, if the patch does not contain any directly affected statements
within a loop. However, if a patch directly modifies any statements
within the loop this may not be safe, as proving the condition C2
becomes undecidable [46]. To be safe, a patch that directly modifies
a statement within a loop will not be considered as an sp.

Using the diff-annotated CFG of the patched function, first we
find all the directly affected statements. As explained in Section III,
these are the statements that are directly modified by the patch.

Second, given the PDG, we follow the edges from the nodes
corresponding to the directly affected statements to identify all
the statements that are reachable, which represent the indirectly
affected statements. The union of the directly and indirectly
affected statements is our total affected statements. As mentioned
in Section III, we ignore the affected statements that belong to the
error-handling basic blocks (BBerrs).

Verifying non-increasing input space (C1): To verify condition
C1, we first check if any of the affected statements is a conditional
statement. By the definition of PDG (Section III-A), these are the
nodes that have an outgoing control dependency (solid) edge.

If there are affected conditional statements, then we find all the
valid exit points, i.e., the valid return statements (or VEP). For
each statement in the VEP, we identify the conditional statements
that are part of the path constraint by following the solid edges
backward until En.

Given a path constraint, we convert each of the conditional
in the path constraint into a symbolic expression. As explained
in Section III-B4, we start by initializing each of the variables
with unique symbolic values in the original and patched function.
Therefore, if a variable is not modified by the patch, it will have
the same symbolic value in both the original and patched functions.

Conversion to symbolic expression: For a statement to be
converted into symbolic expression, its data dependencies need to
be first converted to symbolic expressions as well.

Therefore, given a statement s, we first check if it has
any incoming data dependency edges, if this is the case, we
go to the parent and try to repeat this process backward in a
breadth-first manner until we find all the nodes with no incoming
data dependency edges, i.e., the nodes from which all the
data-dependency paths are complete (Section III-A).

We call the nodes with no incoming data dependency edges
as free nodes. We first convert each of the free nodes into symbolic
values by following the corresponding instruction semantics (as
shown in Table I).

We then forward-propagate the values from the free nodes to
the statements along the data dependency edges until we reach s.

To interpret function calls, we create a new symbolic value based
on the hash of the function name and the symbolic values of its argu-
ments. For instance, for the call strlen(buf), we create a sym-
bolic value with name equal to hash(strlen, sym(buf)),
where sym(buf) is the symbolic value of the variable buf.

When multiple definitions of a variable reach an instruction, we
use conditional symbolic variables based on the path constraint of
the stricter path. For a variable x, if two definitions d1 and d2 from
statements v1 and v2, respectively, reach a statement v3. Then the
symbolic value of x at v3 would be:

v3(x)=

{
Ite(PC(v1),d1,d2) if PC(v1)→PC(v2)
Ite(PC(v2),d2,d1) otherwise (5)

Where Ite(c,a,b) represents an if-then-else symbolic
value, which dictates to use the value a if c is satisfiable else b, PC
is the path constraint, and, from the rules of implication, PC(c1)→
PC(c2) indicates that PC(c1) is a stricter condition than PC(c2).
The Equation 5 correctly handles multiple definitions. We refer all
the interested readers to Appendix H, where we explain this in detail.

Consider the statement at line 7 in the PDG of Figure 4.
Here, multiple definitions of the variable total_mem reach
line 7. i.e., from line 3 and 5. By using the initial symbolic values,
for strlen(buf) = sym1, msg->len = sym2, MIN =
sym3, and MAXMEM = sym4. The definitions of total_mem
at line 3 and 5 are sym1 + sym2 and sym3, respectively. The
path constraint for line 3 and 5 are PC(3) = (En==T) and

1569

PC(5) = ((En==T)∧ ((sym1+sym2)< sym3)), respectively.
We can see that PC(5)→PC(3), as PC(5) is a stricter condition,
consequently the symbolic value of total_mem at line 7 will
be: Ite(PC(5),sym3,(sym1+sym2)).

The symbolic expression for the path constraint of the valid
return (line 10) in the patched function from the PDG of Figure 4
would be (En == T ∧ (Ite(PC(5),sym3,(sym1+sym2))>=
sym4)), for brevity we did not expand PC(5), but the actual sym-
bolic expression would be only in terms of initial symbolic values.

Following the steps described above, we convert the path
constraints of each of the valid returns in the patched function to
symbolic expressions. Then we obtain Equation 3 by the disjunction
of the symbolic expressions. Finally, we convert the disjuncted
symbolic expression into a Z3 [34] expression, i.e., vinputs(fp)
(see Section III-B3).

We follow the same steps in the original function to compute
vinputs(f), then, using the Z3 tool once again, we verify the
implication vinputs(fp)→vinputs(f), thus proving that the patch
satisfies condition C1.

Verifying output equivalence (C2): Given the list of affected
non-control-flow statements, as explained in Section III-B4, we
only consider the statements that update the non-local state of the
function, i.e., the function output.

Consider the patch in Listing 1, where, although all the
statements are affected by the patch, the only statements of interest
are at line 17 and 19, as they update the heap and return value.

As explained in Section III-B4 and shown in Table I, we
compute the symbolic expressions along each complete data
dependency path along with the corresponding path constraints.

Finally, we convert the symbolic expressions into Z3 expression
and verify Equation 4 using Z3. This verifies that the function
affected by the patch satisfies condition C2. Note that the patch
showed in Listing 3 changes only local variables and thus the output
of the function remains the same as that of the original function for
all valid inputs, thus satisfying condition C2.

We follow the above steps for each of the functions modified
by the patch. We consider a patch to be a safe patch, only when
C1 and C2 can be proved by following the steps described above.

Handling library functions: As explained in Section III, we
consider patches that have only locally analyzable statements,
i.e., patches that do not directly affect function calls and pointers.
However, we noticed that there are certain library functions, whose
effects can be easily summarized. Such as, memset. There are
other print and logging library functions, like printf and
printk, that do not affect the output of the patched function.

To handle this, we maintain a few categories of commonly used,
well-known library functions (see Appendix G), whose effects can
be either summarized or ignored.

V. ASSUMPTIONS

Our implementation as specified in Section IV-E tries to
guarantee that a patch is a safe patch. However, a careful reader
might have noticed that there are certain assumptions made by
our implementation. In this section, we explicitly describe the
assumptions in our implementation:

Non-alias dependencies: As explained in Section IV-E, we use
a PDG based on variables to compute all the affected statements.

However, this ignores the data dependencies that could happen
through pointers [19]. Handling this requires precise pointer analysis,
which in turn require access to the whole program violating our
requirement R1.

Pure functions: We consider all functions to be pure functions [75],
i.e., the output of a function only depends on the input arguments.
In other words, multiple calls to a function with the same arguments
results in the same output. Furthermore, reordering function
calls without any change to the arguments will also be treated as
equivalent. That is, f1(arg1); f2(arg2); is equivalent to
f2(arg2); f1(arg1);. However, there could exist impure
functions, whose output could also depend on the global state of the
program. Soundly detecting whether a function is impure requires
analyzing the function and its callees, which is not scalable and
requires resolving function pointers.

Conditional compilation: The preprocessor conditional code di-
rectives (e.g., #ifdef, #ifndef, #else, etc.) allow different
pieces of code to be be compiled depending on the values of certain
preprocessor variables. We use the unifdef tool to handle these con-
ditional compilation directives. unifdef attempts to obtain maximal
code by enabling all preprocessor variables. However, for #ifdef-
#else constructs, to be consistent, it has to select the code either
under the if or the else directive. This could result in certain
statements in the patch (which are controlled by preprocessor vari-
ables) to be invisible to SPIDER, and, in turn, this could lead to false
positives. Handling conditional code compilation precisely requires
analyzing the patch under all possible values of preprocessor vari-
ables and their combinations. This is not scalable for large codebases
like the Linux kernel. To handle this, we allow users to enable the no
preprocessor mode (NoPP). In NoPP mode, any patch that affects
statements controlled by preprocessor variables will not be consid-
ered as an sp. We show in Appendix I that in NoPP mode, the detec-
tion rate of SPIDER does not vary much (a decrease of 1.15%, see
(Default - NoPP) in Table IV). Furthermore, we also allow the user
to specify the values of preprocessor variables, which can be used to
get the correct source file instead of the conservative NoPP mode.

We consider the limitations above to be fundamental
implications of our requirements R1 and R2. Nonetheless, we
believe that our system provides a reasonable approach to identify
safe patches. Moreover, if these assumptions are considered too
strong, it is always possible to fall back to the more conservative
Security Patch (SeP) mode (see Section VI for details). Finally, it is
also possible to use our system to rank patches and prioritize those
identified as safe for manually vetting (and testing).

VI. SECURITY PATCH MODE

As explained in Section I, there could exist security patches
without a corresponding CVE entry. To verify this, we have a
configuration of SPIDER called Security Patch (SeP) mode that
identifies security patches with no false positives, i.e., all the patches
identified by this configuration are indeed security patches. SeP
is based on the intuition that most of the security patches add
additional input validation checks. Therefore, in SeP mode, we
restrict ourselves to safe patches that affect only control-flow
statements. Furthermore, when the commit message is available,
we use the technique proposed by Zhou et al. [79] to filter out
non-security related fixes. However, there can be false negatives,
that is, potential security patches not detected as such.

Note that while SeP mode is more limited in the patches that it
considers safe, it does not rely on any of the assumptions discussed

1570

in Section V. We believe that SeP mode of SPIDER is the first step
towards a practical solution of automatically identifying security
patches that could be easily integrated into any source-control
system. We plan to integrate SeP mode of SPIDER into GitHub
security alerts [8], which helps both the developers and maintainers
to handle security patches. Note that our running example (shown
in Listing 1), although being a security patch, is not detected by the
SeP mode because it also affects non-control flow instructions.

VII. EVALUATION

We evaluate the effectiveness of SPIDER in three different ways.
First, we run it on a large dataset of 341,767 changes (i.e., commits)
spanning over 32 repositories, collected from the year 2016 for
a total of 32 months, in order to understand if it actually detects
sps, according to our definition (see Section VII-A). Second, we
run SPIDER on a set of security patches (i.e., CVE patching commits)
to evaluate the usefulness of this tool in speeding the propagation of
these critical fixes. Third, in Section VII-D, we show a way to use
the SeP mode of SPIDER as a vulnerability finding tool by identi-
fying non-CVE security patches that are missing in various active
forks of the analyzed projects. Finally, we show in Section VII-E,
that there are several non-CVE security patches in the Linux kernel
and many of these are still unpatched, at the time of writing, on
some of its Android-related forks: this provides real examples where
SPIDER can be useful in fixing potential n-day vulnerabilities.

The analysis that SPIDER performs, described in Section IV, is an
intra-procedural static analysis that does not consider the interaction
between different modified functions. For this reason, to isolate the
effect of these interactions that represent a possible confounding
factor, we evaluate SPIDER only on patches that affect a single C
source file (i.e., .c format only). All the patches studied in our
evaluation are real changes extracted from repositories of widely
used open-source projects (see Section VII-A for more details).

Performance: On average SPIDER took 3.4 seconds to analyze a
patch on a machine equipped with a two-core 2.40 GHz CPU, and
8GB RAM, demonstrating its speed and scalability.

Active forks: We noticed that most of the forks of repositories
are inactive or dead, i.e., there are no new commits made to the
repository since they are forked. Considering such inactive forks
could exaggerate our results, and, therefore, we considered only
active forks. We consider a fork to be active if it has at least ten new
commits in the last six months, and using this filter, we were able
to eliminate a number of forks. For instance, in the case of Linux
kernel (ID 1), we consider only 269 active forks out of 23,854 forks.

A. Large-scale evaluation

We ran SPIDER on a large set of patches: we selected 32
open-source projects widely used by desktop, mobile, and embedded
operating systems, and we collected from each of them all the
single-C-file commits for the past 32 months from the time of
writing (considering merges as single commits). All the details of
the projects are shown in Table II.

B. Effectiveness of patch analysis

Table II also shows the number of sps identified by
SPIDER in the dataset. Over the total 341,767 commits studied,
SPIDER identified 67,408 (19.72%) safe patches (Column 6).
Furthermore, 58.72% of these patches are missing in at least one
of the active forks (MIAFs).

Checking for patch applicability: We use the following syntactic
approach to identify whether a patch of a project is applicable to (or
missing from) a fork or other projects. Given a patch, we extract the
affected file’s source code before the patch (i.e., original file) and
compare it to the latest version of the corresponding file in the fork.
If the file is present in the fork and all the functions affected by the
patch do not differ between the original file of the patch and the corre-
sponding latest file in the fork, then it means that the patch can be ap-
plied to the fork. To perform the comparison, we use the git diff tool,
and check that there are no modifications in the targeted functions.

It is interesting to note that, across all repositories, the percentage
of sps mostly stays around 20%-25%, without much variation.
There are certain projects where the percentage of detected sps
is low, such as IDs 15 and 16. This low detection rate is mainly
because of the inherently complex code and patches. We refer all the
interested readers to Appendix C, where we explain this in detail.

Listing 6 shows a patch identified as an sp, where the patch
modifies error basic blocks, which are ignored. Also, the patch
moves certain function calls Py_INCREF and Py_DECREF.
However, as the arguments to these calls (i.e., dll and ftuple)
are not modified by the patch, the symbolic expressions of the
arguments are proved to be equivalent by Z3, resulting in the patch
being considered an sp. We show a few other sps in Appendix E.

Looking at these results, we argue that SPIDER would be helpful
for project maintainers and could be directly used to port the fixes
or to prioritize the changes that must be ported.

C. Evaluation on CVEs

We wanted to determine how many security patches are indeed
sps, as claimed in Section I. To this end, we collected all the patching
commits linked as reference fixes for kernels CVEs from the An-
droid security bulletins [1], and, similar to the large-scale evaluation,
we studied only the CVEs that patch a single C file. We also collected
all the CVEs for the remaining repositories over the same amount
of time. This resulted in the analysis of 809 CVE patches.

Table III shows the results obtained after running SPIDER

on these patches, which show that 55.37% of the CVE-patching
commits are non-disruptive, while on generic patches (i.e., Table II)
the percentage was 19.72%. This finding shows that SPIDER could
be useful not only to speed-up the process of selecting and applying
a significant number of changes (as shown in Section VII-A) but
also to apply more than half of the security patches in a faster way.

Listing 5 shows an example of CVE patching commit from
Android security bulletin identified as a sp by SPIDER. Listing 5
is also one of the CVEs that we mentioned in Section I, which was
patched in Android more than a year after the appearance of the
corresponding entry in the database.

Looking at Table III, it is interesting to see that SPIDER

performed relatively well with more than 50% success rate in all
but OpenSSL and VLC CVEs. This is because the security fixes
in these software packages are complex. More details can be found
in Appendix D.

D. Security patches missing a CVE number

We used SPIDER in SeP mode on all the commits to identify
security patches. We then checked if these patches have an
associated CVE number. Listing 6 and 4 show examples of security
patches missing CVE entries, which are detected by the SeP mode
of SPIDER.

1571

ID
Pr

oj
ec

t
St

ud
ie

d
gi

tb
ra

nc
h/

ta
g

C
om

m
its

A
ct

iv
e

fo
rk

s
sp

s(
%

ov
er

co
m

m
its

)
N

on
-C

V
E

se
cu

ri
ty

pa
tc

he
s

To
ta

l(
%

)
M

IA
Fs

(%
)

To
ta

l
M

IA
Fs

(%
)

Li
nu

x
K

er
ne

ls
1

L
in

u
x

ke
rn

el
m

ai
n
li

n
e3

m
as

te
r

1
0
2
,6

0
7

2
6
9

2
0
,1

7
1

(1
9
.6

6
%

)
9
,4

2
7

(4
6
.7

4
%

)
6
3
5

2
9
7

(4
6
.7

7
%

)

2
L

in
ar

o
A

R
M

L
in

u
x

ke
rn

el
4

o
p
te

e
9
6
,9

9
0

7
1
9
,1

7
2

(1
9
.7

7
%

)
6
,8

4
6

(3
5
.7

1
%

)
5
8
7

2
1
1

(3
5
.9

5
%

)

3
R

as
b
er

ry
P

i
L

in
u
x

ke
rn

el
5

rp
i-

4
.1

4
.y

5
4
,5

8
5

1
6
8

1
1
,2

5
0

(2
0
.6

1
%

)
1
0
,5

1
1

(9
3
.4

3
%

)
3
9
4

3
6
2

(9
1
.8

8
%

)
A

nd
ro

id
K

er
ne

ls
4

Q
u
al

co
m

m
M

sm
A

n
d
ro

id
ke

rn
el

6
an

d
ro

id
-m

sm
-a

n
g
le

r-
3
.1

0
-o

re
o
-r

6
4
7
2

N
/A

1
2
8

(2
7
.1

2
%

)
N

/A
8

0
(0

.0
%

)

5
N

V
ID

IA
T

eg
ra

A
n
d
ro

id
ke

rn
el

7
an

d
ro

id
-t

eg
ra

-d
ra

g
o
n
-3

.1
8
-o

re
o
-r

6
2
9
7

N
/A

8
8

(2
9
.6

3
%

)
N

/A
9

0
(0

.0
%

)

6
X

ia
o
m

i
A

n
d
ro

id
ke

rn
el

8
sa

g
it

-o
-o

ss
9
,7

1
8

8
5

2
,3

3
2

(2
4
.0

%
)

2
,3

3
2

(1
0
0
.0

%
)

9
4

9
4

(1
0
0
.0

%
)

7
A

n
d
ro

id
x
8
6

6
4

ke
rn

el
9

an
d
ro

id
-8

.0
.0

r0
.2

3
2
1
1

N
/A

5
6

(2
6
.5

4
%

)
N

/A
4

0
(0

.0
%

)

8
X

p
er

ia
A

n
d
ro

id
ke

rn
el

1
0

ao
sp

/L
A

.U
M

.6
.4

.r
1

1
0
,9

3
2

6
9

2
,5

5
9

(2
3
.4

1
%

)
2
,5

5
4

(9
9
.8

%
)

9
9

9
9

(1
0
0
.0

%
)

9
B

as
e

A
n
d
ro

id
K

er
n
el

1
1

an
d
ro

id
-4

.9
-o

2
1
,9

2
7

3
9

4
,9

6
7

(2
2
.6

5
%

)
4
,3

3
0

(8
7
.1

8
%

)
2
0
1

1
7
3

(8
6
.0

7
%

)
Bo

ot
lo

ad
er

an
d

Fi
rm

w
ar

e
1
0

L
K

E
m

b
ed

d
ed

ke
rn

el
1
2

m
as

te
r

3
0

2
6

7
(2

3
.3

3
%

)
7

(1
0
0
.0

%
)

0
N

/A

1
1

Q
u
al

co
m

m
L

K
K

er
n
el

1
3

lk
.l
n
x
.1

.0
.r

2
1
-r

el
2
1
9

N
/A

4
2

(1
9
.1

8
%

)
N

/A
5

0
(0

.0
%

)
Tr

us
te

d
O

pe
ra

tin
g

Sy
st

em
s

1
2

O
P

-T
E

E
T

ru
st

ed
O

S
1
4

m
as

te
r

4
9
9

4
5

9
6

(1
9
.2

4
%

)
7
1

(7
3
.9

6
%

)
4

3
(7

5
.0

%
)

O
pe

nB
SD

1
3

O
p
en

B
S

D
1
5

m
as

te
r

8
,6

5
1

1
4

1
,4

2
4

(1
6
.4

6
%

)
8
4
3

(5
9
.2

%
)

4
2

3
0

(7
1
.4

3
%

)
W

in
do

w
sC

om
pa

tib
le

O
S

1
4

re
ac

to
s-

O
p
en

S
o
u
rc

e
W

in
d
ow

s
C

o
m

p
at

ib
le

O
S

1
6

m
as

te
r

2
,9

3
6

3
5

5
1
0

(1
7
.3

7
%

)
1
2
3

(2
4
.1

2
%

)
1
1

1
(9

.0
9
%

)
In

te
rp

re
te

rs
1
5

P
y
th

o
n

In
te

rp
re

te
r1

7
m

as
te

r
8
6
2

2
0
7

1
0
8

(1
2
.5

3
%

)
3
8

(3
5
.1

9
%

)
1
2

2
(1

6
.6

7
%

)

1
6

P
H

P
In

te
rp

re
te

r1
8

m
as

te
r

3
,0

9
6

2
8
9

3
4
4

(1
1
.1

1
%

)
2
7
4

(7
9
.6

5
%

)
7

3
(4

2
.8

6
%

)
G

ra
ph

ic
al

Su
bs

ys
te

m
s

1
7

n
au

ti
lu

s-
U

bu
n
tu

d
ef

au
lt

g
ra

p
h
ic

al
su

b
sy

st
em

1
9

m
as

te
r

5
9
1

N
/A

1
2
9

(2
1
.8

3
%

)
N

/A
2

0
(0

.0
%

)

1
8

w
in

fi
le

-W
in

d
ow

s
F

il
e

M
an

ag
er

2
0

m
as

te
r

2
8

2
3

2
(7

.1
4
%

)
1

(5
0
.0

%
)

0
N

/A

1
9

X
W

in
d
ow

s
S

u
b
sy

st
em

2
1

m
as

te
r

6
4
4

1
1
1
9

(1
8
.4

8
%

)
6
0

(5
0
.4

2
%

)
5

2
(4

0
.0

%
)

M
ul

tim
ed

ia
2
0

V
L

C
P

la
y
er

2
2

m
as

te
r

6
,8

1
5

9
8

1
,0

2
5

(1
5
.0

4
%

)
7
7
8

(7
5
.9

%
)

3
4

2
8

(8
2
.3

5
%

)

2
1

F
F

m
p
eg

-m
u
lt

im
ed

ia
p
ro

ce
ss

in
g

to
o
ls

2
3

m
as

te
r

6
,5

3
8

4
4
9

6
9
7

(1
0
.6

6
%

)
5
7
3

(8
2
.2

1
%

)
4
2

3
7

(8
8
.1

%
)

D
ist

ri
bu

te
d

D
at

ab
as

es
2
2

re
d
is

-I
n

m
em

o
ry

D
at

ab
as

e2
4

u
n
st

ab
le

1
,3

8
5

6
5
9

1
1
3

(8
.1

6
%

)
6
9

(6
1
.0

6
%

)
1
1

7
(6

3
.6

4
%

)
U

til
iti

es
2
3

T
m

u
x
-T

er
m

in
al

M
u
lt

ip
le

xe
r2

5
m

as
te

r
5
4
3

7
7

1
1
0

(2
0
.2

6
%

)
8
6

(7
8
.1

8
%

)
5

4
(8

0
.0

%
)

2
4

cu
rl

-t
ra

n
sf

er
a

U
R

L
2
6

m
as

te
r

9
8
4

2
3
9

1
0
0

(1
0
.1

6
%

)
7
0

(7
0
.0

%
)

1
0

(0
.0

%
)

2
5

ev
in

ce
-G

N
O

M
E

d
o
cu

m
en

t
v
ie

w
er

2
7

d
eb

ia
n
/m

as
te

r
2
0
2

N
/A

5
1

(2
5
.2

5
%

)
N

/A
4

0
(0

.0
%

)

2
6

G
it

-v
er

si
o
n

co
n
tr

o
l
sy

st
em

2
8

m
as

te
r

2
,8

3
4

5
2
6

3
6
0

(1
2
.7

%
)

2
8
6

(7
9
.4

4
%

)
1
5

1
3

(8
6
.6

7
%

)

2
7

G
D

B
-G

N
U

D
eb

u
g
g
er

2
9

m
as

te
r

5
5

2
5

1
3

(2
3
.6

4
%

)
9

(6
9
.2

3
%

)
1

1
(1

0
0
.0

%
)

2
8

O
p
en

V
P

N
-O

p
en

so
u
rc

e
V

P
N

d
ae

m
o
n

3
0

m
as

te
r

2
0
1

7
0

1
8

(8
.9

6
%

)
1
1

(6
1
.1

1
%

)
0

N
/A

2
9

S
y
st

em
d

S
y
st

em
3
1

m
as

te
r

4
,8

1
5

N
/A

1
,0

6
7

(2
2
.1

6
%

)
N

/A
2
9

0
(0

.0
%

)
Li

br
ar

ie
s

3
0

li
b
p
n
g
-P

N
G

re
fe

re
n
ce

li
b
ra

ry
3
2

li
b
p
n
g
1
6

8
2

4
2

1
(1

.2
2
%

)
1

(1
0
0
.0

%
)

0
N

/A

3
1

O
p
en

S
S

L
-O

p
en

S
o
u
rc

e
T

L
S

to
o
lk

it
3
3

m
as

te
r

1
,9

9
8

2
9
0

3
4
7

(1
7
.3

7
%

)
2
8
3

(8
1
.5

6
%

)
1
7

1
6

(9
4
.1

2
%

)

3
2

g
li

b
c-

G
N

U
li

b
c3

4
m

as
te

r
2
0

7
2

(1
0
.0

%
)

2
(1

0
0
.0

%
)

0
N

/A
To

ta
l

3
4
1
,7

6
7

3
,7

5
9

6
7
,4

0
8

(1
9
.7

2
%

)
3
9
,5

8
5

(5
8
.7

2
%

)
2
,2

7
8

1
,3

8
3

(6
0
.7

1
%

)

T
A

B
L

E
II

:
O

ve
ra

ll
re

su
lt

s
o
f

o
u
r

la
rg

e-
sc

al
e

ev
al

u
at

io
n
.A

ct
iv

e
fo

rk
s

ar
e

co
m

p
u
te

d
fo

r
o
n
ly

G
it

H
u
b

h
o
st

ed
p
ro

je
ct

s.
T

h
e

p
er

ce
n
ta

g
e

fo
r

T
o
ta

l
sp

s
is

ov
er

co
m

m
it

s
fo

r
th

e
co

rr
es

p
o
n
d
in

g
p
ro

je
ct

s.
M

IA
F

s
ar

e
p
er

ce
n
ta

g
e

ov
er

to
ta

l
sp

s
an

d
n
o
n
-C

V
E

co
m

m
it

s
th

at
ar

e
m

is
si

n
g

in
at

le
as

t
o
n
e

ac
ti
ve

fo
rk

.

1572

2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

35

40

5.8

12.1

7.4

15.5

18.1

7.5

13.3

16

3.8

15.8

6.2

11.3

16.5

6

14.1

19

Project IDs

Perc.

Missing Security (Non-CVE) Patches
Missing sps

Fig. 5: Distribution of the security (non-CVE) patches (identified
by the SeP Mode of SPIDER) and sps in Mainline Linux kernel
(Project ID 1) that are missing in other related kernel projects.

error = −EINVAL;
goto out put tmp f i l e ;

}

+ i f (f . f i l e −>f op != &x f s f i l e o p e r a t i o n s | |
+ tmp . f i l e −>f op != &x f s f i l e o p e r a t i o n s) {
+ error = −EINVAL;
+ goto out put tmp f i l e ;
+ }
+

ip = XFS I (f i l e i n o d e (f . f i l e)) ;
t i p = XFS I (f i l e i n o d e (tmp . f i l e)) ;

Listing 4: a security patch
identified by SPIDER on the main Linux kernel repository (commit
3e0a3965464505). which does not have a corresponding CVE ID.

CVE patches source sps / CVE
Linux 333 / 611 (54.5%)

Android bulletin 98 / 164 (59.75%)
OpenBSD 5 / 6 (83.33%)
OpenSSL 7 / 21 (33.33%)
Systemd 4 / 4 (100%)

VLC 1 / 3 (33.33%)
Total 448 / 809 (55.37%)

TABLE III: Results of SPIDER on CVE patches.

i n t check aboot addr range overlap
(u i n t 3 2 t s t a r t , u i n t 3 2 t s i z e)

{
/∗ Check for boundary c o n d i t i o n s . ∗ /

− i f ((s t a r t + s i z e) < s t a r t)
+ i f ((UINT MAX − s t a r t) < s i z e)

re turn −1;

Listing 5: Real integer overflow patch identified as sp by SPIDER

(CVE-2014-9795 from July 2016 Android security bulletin).

The last two columns of Table II shows the complete results:
Overall SPIDER identified 2,278 security patches across all the
repositories. After manual verification, we found these results to be
correct. This shows that CVE IDs are not always used for security
patches, and that relying on them is not an effective way to secure
related repositories. The number of patches identified by the SeP
mode is smaller compared to the total number of sps (i.e., 2,278 �
67,408). This is because the SeP mode, as explained in Section VI,
imposes strict requirements. Nonetheless, the SeP mode identified
2,278 security patches missing a CVE number.

Furthermore, 60.71% of these patches are missing in at least
one of the active forks denoted as MIAFs. This is alarming, as these
cases reveal unpatched security vulnerabilities in the forks, which
could be exploited by a motivated attacker monitoring the patches.
We observed a considerable number of patches (for example see List-
ing 10), where the commit message contains the vulnerability-
triggering input, further reducing the effort for the attacker.

−Py INCREF (d l l) ; /∗ f or KeepRef ∗ /
−Py DECREF(f t u p l e) ;
− i f (! v a l i d a t e p a r a m f l a g s (type , paramflags))
+ i f (! v a l i d a t e p a r a m f l a g s (type , paramflags)) {
+ Py DECREF(f t u p l e) ;

re turn NULL;
+}
s e l f = (PyCFuncPtrObject

∗) GenericPyCData new (type , args , kwds) ;
− i f (! s e l f)
+ i f (! s e l f) {
+ Py DECREF(f t u p l e) ;

re turn NULL;
+}
. . .
∗(void ∗∗) s e l f −>b ptr = address ;
+Py INCREF (d l l) ;
+Py DECREF(f t u p l e) ;

Listing 6: A non-CVE security patch (commit d77d97c9a1f) fixing
a reference counting vulnerability in the Python interpreter identified

by SPIDER. This patch does not have a corresponding CVE ID.

E. Missing patches in vendor kernels

To identify missing patches in vendor kernels, we check how
many of the Linux Kernel mainline commits identified as sps
still have to be applied to one or more of the eight vendor kernel
repositories that we studied (i.e., projects 2 - 9 in Table II), at the
time of writing. To do that, given a commit identified as an sp,
we extract the affected file’s source code before the change, and
we compare it to the same file, if present, in all the listed kernel
repositories (Table II show the git branch or tag that we studied)
using the git diff technique described in Section VII-B.

The stripe bars in Figure 5 shows the percentage of missing sps
in different vendor kernels. We found that 9,427 of the 20,171 Linux
kernel identified sps (i.e., 46.74%) are still not applied in at least
one of the considered vendor kernels. A significant portion of these
changes not considered useful by the maintainers (e.g., removals
of unused code, small refactoring, etc.), and therefore, not imported.
However, we found out that 297 of them are CVE patching commits
(i.e., the ones that we linked to the corresponding CVEs, as shown
in Section VII-C) that still have to be imported by the maintainers of
some repositories: this supports the findings of previous studies [57],
[53], [22], [41] that report that vulnerability databases are not
always effective in speeding the propagation of security fixes.

Unfixed vulnerabilities in vendor kernels: We also checked the
security patches (which do not have a CVE number) identified by
the SeP mode in the Linux Kernel mainline that still have to be
applied to one or more of the eight Linux Kernel repositories that
we studied (i.e., projects 2 - 9 in Table II). The plain bars in Figure 5
show the percentage of missing non-CVE security patches in
different vendor kernels. There are in total 229 security patches
that do not have a corresponding CVE number and are missing on
different kernel repositories, including the ARM Linux kernel main
repository (i.e., project 2 in Table II): these can be seen as potential
unfixed or n-day vulnerabilities. Given their potential severity, we
manually verified them to assess their impact. For a few of these
vulnerabilities, the impact is less severe because of the variation in
kernel configurations. However, we found several missing patches

1573

in critical components like netfilter, which applies to all
kernel configurations. The snippet of a non-CVE security patch
that is missing in the msm kernel (ID 4) is shown in Listing 11, this
patch, as mentioned before also contains the triggering input.

We are in the process of reporting all of these patches to the
corresponding project maintainers and vendors, and submit all the
necessary requests for CVEs.

VIII. LIMITATIONS

Along with the assumptions described in Section V, SPIDER

comes with several limitations. Specifically,

Small patches: As we can see from Figure 6, the majority
(57.1%) of the patches detected as sps are small (0-5 lines).
Furthermore, SPIDER cannot verify patches that modify statements
within a loop. These limitations are mainly because SPIDER tries to
verify a patch to be safe in a sound way. We believe it is important
to have a system with no false positives, that provides stronger
guarantees, and that can be used by the maintainers safely.

Syntactic approach for patch applicability check: We use a
syntactic approach to check for patch applicability in the related
repositories. However, a patch although syntactically applicable to
a file in a project may not be semantically applicable because the
condition fixed by the patch could be impossible to occur in the
project [40]. This limitation is induced by our requirement R1, as
checking for semantic applicability of patches require sound static
analysis techniques which require build environment and access
to all source files, thus violating our requirement R1.

Heuristic approach for error-handling basic blocks detection:
As explained in Section IV-D, we use a heuristic approach to
identify error-handling basic blocks. However, these heuristics may
not hold for other projects resulting in cases where a basic block
matching our heuristics is not a true error-handling basic block.
Consequently, we could have unsafe patches being identified as safe.
To handle this, we provide the NoEB mode of SPIDER (Appendix I)
where we do not ignore the changes in the error-handling basic
blocks. This mode provides a safer version of SPIDER, albeit with
a slight decrease in detection rate.

Susceptible to adversarial evasion: As a consequence of our
assumptions (Section V), SPIDER is susceptible to adversarial
evasion. For instance, as we treat macros as function calls, an
adversarial developer or contributor could use macro calls to
make SPIDER consider otherwise safe patches as unsafe. However,
as we explained in Section I, the main use case of SPIDER is for
developers and maintainers. Furthermore, we assume developers
to be non-malicious users who want to ensure that their applications
are as secure as possible.

Tool dependencies: The current implementation of SPIDER works
only on C source code; however, the parser that we use should
be easily extensible to other languages. The fine-grained diff step
is language agnostic, thus, to extend the tool to other languages,
we would only need to add language-specific heuristics and
preprocessing. A good solution would be to have a configurable
front end for different languages, similar to LLVM [47]. As our
implementation is based on Joern and Gumtree, we also share the
same limitations that these tools have.

IX. RELATED WORK

Source code changes and patches as research topics received
a lot of attention in the past decade. This section covers a

comprehensive portion of prior work on these topics (Section I
already covered state-of-the-art code analysis techniques that were
used in the field, thus they will not be covered here).

Vulnerability finding and exploitation: In Section VII-E we show
how SPIDER can be used to find instances of unpatched code
starting from the identified sps, including vulnerabilities. Finding
unpatched code clones is the focus of most of the prior research
on patches in the security field [50], [41], [49]. In this work, we
do not look for code clones but for instances where the function
affected by a patch is still equal to the unpatched version. Brumley
et al. [28], instead, show how to generate exploits for a vulnerability
starting from the corresponding patch.

Easing the patching process: Prior research has been very
active in designing approaches and building tools to ease and
speedup the process of patching [59], [71], [20], However, most
of these techniques target only specific bug classes [55].Other
studies concentrate on helping developers in applying systematic
changes [78], [54]. Long et al. [51], in contrast with the previously
mentioned studies, use machine learning to model correct code
and generate generic defects fixes, but do not focus on propagating
existing patches as we do in this study. Similar to what we do in
this work, Kreutzer et al. [43] use AST differencing on changes to
extract metrics to help cluster the changes by similarity.

Software evolution: Mining software repositories is a well-
known technique to gain insights into the dynamics of software
evolution [39], [38]. Perl et al. [61] built VCCFinder, a tool that
leverages code metrics and patch features (e.g., keywords in
commits) to identify vulnerability-contributing changes. However,
in this work, we do not rely on the commit messages, and, instead
perform a systematic analysis of the patches.

X. CONCLUSION AND FUTURE WORK

In this work, we designed, implemented, and evaluated SPIDER,
a fast and lightweight tool (R2) based on our sp identification
approach that can determine if a patch is safe using only the original
and the patched source code of the affected file (R1), without the
need for external information (e.g., build environment, commit
message, etc.). Our large-scale evaluation on 341,767 commits ex-
tracted from 32 different open-source repositories, and on 809 CVE
patches, demonstrates the effectiveness of SPIDER, and shows that a
significant amount of security patches could have been automatically
identified (i.e., 55.37%). Furthermore, we show how the SeP mode
of SPIDER can be used to find unpatched security issues.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers and our
shepherd Alina Oprea for their valuable comments and input to
improve our paper.

This material is based upon work supported by AFRL
under Award No. FA8750-19-C-0003, by ONR under Award
No. N00014-17-1-2011, and by NAVSEA under Award No.
N00024-12-C-6404/0451. This research was also sponsored by
DARPA under agreement number HR001118C0060. The U.S.
Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation
thereon. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied,
of DARPA, the U.S. Government, or the other sponsors.

1574

NOTES

1http://dotat.at/prog/unifdef/

2code.google.com/archive/p/java-diff-utils/

3https://github.com/torvalds/linux.git

4https://github.com/linaro-swg/linux.git

5https://github.com/raspberrypi/linux.git

6https://android.googlesource.com/kernel/msm

7https://android.googlesource.com/kernel/tegra

8https://github.com/MiCode/Xiaomi Kernel OpenSource.git

9https://android.googlesource.com/kernel/x86 64.git

10https://github.com/sonyxperiadev/kernel.git

11https://github.com/aosp-mirror/kernel common.git

12https://github.com/littlekernel/lk.git

13https://source.codeaurora.org/quic/la/kernel/lk

14https://github.com/OP-TEE/optee os.git

15https://github.com/openbsd/src.git

16https://github.com/reactos/reactos.git

17https://github.com/python/cpython.git

18https://github.com/php/php-src.git

19https://gitlab.gnome.org/GNOME/nautilus.git

20https://github.com/Microsoft/winfile.git

21https://github.com/mirror/xserver.git

22https://github.com/videolan/vlc.git

23https://github.com/FFmpeg/FFmpeg.git

24https://github.com/antirez/redis.git

25https://github.com/tmux/tmux.git

26https://github.com/curl/curl.git

27https://salsa.debian.org/gnome-team/evince.git

28https://github.com/git/git.git

29https://github.com/bminor/binutils-gdb.git

30https://github.com/OpenVPN/openvpn.git

31https://github.com/systemd/systemd.git

32https://github.com/glennrp/libpng.git

33https://github.com/openssl/openssl.git

34https://github.com/bminor/glibc.git

REFERENCES

[1] 2016 android security bulletins. source.android.com/security/bulletin/
2016.html. Accessed: 2017-02-11.

[2] Android 10 msm kernel. https://android.googlesource.com/kernel/msm/+/
refs/tags/android-10.0.0 r0.16. Accessed: 2019-10-28.

[3] Apple’s goto fail bug. https://www.imperialviolet.org/2014/02/22/
applebug.html. Accessed: 2017-02-13.

[4] The biggest and weirdest commits in linux kernel git history.
www.destroyallsoftware.com/blog/2017/the-biggest-and-weirdest-commits-
in-linux-kernel-git-history. Accessed: 2017-02-15.

[5] Community reaction to delayed patching. https://twitter.com/RatedG4E/
status/760322614912954368. Accessed: 2017-02-13.

[6] Error handling via goto in c. https://ayende.com/blog/183521-C/error-
handling-via-goto-in-c. Accessed: 2019-07-13.

[7] [extended version] spider: Enabling fast patch propagation in related
software repositories. https://drive.google.com/file/d/1ZXYv6YjXNgj7-
WbyrsrxwF9Y8aKuVth/view?usp=sharing. Accessed: 2019-07-31.

[8] Introducing security alerts on github. https://github.com/blog/2470-
introducing-security-alerts-on-github. Accessed: 2017-02-13.

[9] Irb human subject regulations exempt decision charts. https:
//www.hhs.gov/ohrp/regulations-and-policy/decision-charts/index.html.
Accessed: 2017-02-13.

[10] libebml fixed a vulnerability but no cve was assigned. https://twitter.com/
wdormann/status/1154138404910768134. Accessed: 2017-07-25.

[11] libembl security fix without a cve id. https://github.com/Matroska-Org/
libebml/commit/05beb69ba60acce09f73ed491bb76f332849c3a0. Accessed:
2017-07-25.

[12] Linux kernel configuration. http://www.tldp.org/HOWTO/SCSI-2.4-
HOWTO/kconfig.html. Accessed: 2017-02-13.

[13] Openssl bug fix for cve-2016-0703. https://git.openssl.org/?p=openssl.git;a=
commit;h=ae50d8270026edf5b3c7f8aaa0c6677462b33d97. Accessed:
2017-02-13.

[14] Use of goto in systems code. https://blog.regehr.org/archives/894. Accessed:
2019-07-13.

[15] Using goto in linux kernel code. https://koblents.com/Ches/Links/Month-
Mar-2013/20-Using-Goto-in-Linux-Kernel-Code/. Accessed: 2019-07-13.

[16] Vlc media player affected by a major vulnerability in a 3rd library,
libebml. https://hub.packtpub.com/vlc-media-player-affected-by-a-major-
vulnerability-in-a-3rd-library-libebml-updating-to-the-latest-version-may-
help/. Accessed: 2017-07-25.

[17] J. Admanski and S. Howard. Autotest-testing the untestable. In Proceedings
of the Linux Symposium. Citeseer, 2009.

[18] F. E. Allen. Control flow analysis. In ACM Sigplan Notices, vol. 5, pp. 1–19.
ACM, 1970.

[19] W. Amme and E. Zehendner. Data dependence analysis in programs with
pointers. Parallel Computing, 24(3-4):505–525, 1998.

[20] J. Andersen, A. C. Nguyen, et al. Semantic patch inference. In Proceedings
of the ACM International Conference on Automated Software Engineering
(ASE). 2012.

[21] G. Antoniol, K. Ayari, et al. Is it a bug or an enhancement?: A text-based
approach to classify change requests. In Proceedings of the Conference of the
Center for Advanced Studies on Collaborative Research (CASCON). 2008.

[22] A. Arora, R. Krishnan, et al. An empirical analysis of software vendors’ patch
release behavior: impact of vulnerability disclosure. Information Systems
Research, 21(1):115–132, 2010.

[23] M. Barnett and K. R. M. Leino. Weakest-precondition of unstructured
programs. In Proceedings of the ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering (PASTE). 2005.

[24] G. Bavota. Mining unstructured data in software repositories: Current and
future trends. In Proceedings of the IEEE International Conference on
Software Analysis, Evolution, and Reengineering (SANER). 2016.

[25] D. Binkley. Using semantic differencing to reduce the cost of regression
testing. In Proceedings of the IEEE International Conference on Software
Maintenance (ICSME). 1992.

[26] D. Binkley, R. Capellini, et al. An implementation of and experiment with
semantic differencing. In Proceedings of the IEEE International Conference
on Software Maintenance (ICSME). 2001.

[27] D. Bleichenbacher. Chosen ciphertext attacks against protocols based on the
rsa encryption standard pkcs# 1. In Proceedings of the Annual International
Cryptology Conference (CRYPTO). 1998.

[28] D. Brumley, P. Poosankam, et al. Automatic patch-based exploit generation is
possible: Techniques and implications. In Proceedings of the IEEE Symposium
on Security and Privacy (SP). 2008.

[29] R. P. Buse and W. R. Weimer. Automatically documenting program changes.
In Proceedings of the ACM International Conference on Automated Software
Engineering (ASE). 2010.

[30] C. Cadar, P. Godefroid, et al. Symbolic execution for software testing
in practice: preliminary assessment. In Proceedings of the International
Conference on Software Engineering (ICSE). 2011.

[31] J. M. Cardoso and P. C. Diniz. Modeling loop unrolling: Approaches and
open issues. In Proceedings of the International Workshop on Embedded
Computer Systems (SAMOS). 2004.

[32] F. Chow, S. Chan, et al. A new algorithm for partial redundancy elimination
based on ssa form. In ACM Sigplan Notices, vol. 32, pp. 273–286. ACM, 1997.

1575

[33] R. Clarke, D. Dorwin, et al. Is open source software more secure? Homeland
Security/Cyber Security, 2009.

[34] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In Proceedings
of the International conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS). 2008.

[35] J.-R. Falleri, F. Morandat, et al. Fine-grained and accurate source code
differencing. In Proceedings of the ACM International Conference on
Automated Software Engineering (ASE). 2014.

[36] J. Ferrante, K. J. Ottenstein, et al. The program dependence graph and its
use in optimization. ACM Transactions on Programming Languages and
Systems (TOPLAS), 1987.

[37] D. Gao, M. K. Reiter, et al. Binhunt: Automatically finding semantic
differences in binary programs. In Proceedings of the International
Conference on Information and Communications Security (ICICS). 2008.

[38] E. Giger, M. Pinzger, et al. Comparing fine-grained source code changes and
code churn for bug prediction. In Proceedings of the International Conference
on Mining Software Repositories (MSR). 2011.

[39] A. E. Hassan. The road ahead for mining software repositories. In Proceedings
of the IEEE International Conference on Software Maintenance (FOSM).
2008.

[40] Z. Huang, D. Lie, et al. Using safety properties to generate vulnerability
patches. In Proceedings of the IEEE Symposium on Security and Privacy
(SP). 2019.

[41] J. Jang, A. Agrawal, et al. Redebug: finding unpatched code clones in entire
os distributions. In Proceedings of the IEEE Symposium on Security and
Privacy (SP). 2012.

[42] Y. Kang, B. Ray, et al. Apex: Automated inference of error specifications
for c apis. In Proceedings of the Joint Meeting on Foundations of Software
Engineering (FSE). 2016.

[43] P. Kreutzer, G. Dotzler, et al. Automatic clustering of code changes. In
Proceedings of the International Conference on Mining Software Repositories
(MSR). 2016.

[44] S. K. Lahiri, C. Hawblitzel, et al. Symdiff: A language-agnostic semantic diff
tool for imperative programs. In Proceedings of the International Conference
on Computer Aided Verification (CAV). 2012.

[45] S. K. Lahiri, K. Vaswani, et al. Differential static analysis: Opportunities,
applications, and challenges. In Proceedings of the FSE/SDP Workshop on
Future of Software Engineering Research (FoSER). 2010.

[46] W. Landi. Undecidability of static analysis. ACM Letters on Programming
Languages and Systems (LOPLAS), 1(4):323–337, 1992.

[47] C. Lattner. Llvm and clang: Next generation compiler technology. In The
BSD Conference, pp. 1–2. 2008.

[48] F. Li and V. Paxson. A large-scale empirical study of security patches.
In Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security (CCS). 2017.

[49] H. Li, H. Kwon, et al. A scalable approach for vulnerability discovery based
on security patches. In Proceedings of the International Conference on
Applications and Techniques in Information Security (ATIS). 2014.

[50] Z. Li, D. Zou, et al. Vulpecker: an automated vulnerability detection system
based on code similarity analysis. In Proceedings of the Annual Conference
on Computer Security Applications (ACSAC). 2016.

[51] F. Long, P. Amidon, et al. Automatic inference of code transforms and search
spaces for automatic patch generation systems. In Proceedings of the Joint
Meeting on Foundations of Software Engineering (FSE). 2017.

[52] P. D. Marinescu and C. Cadar. Katch: high-coverage testing of software
patches. In Proceedings of the Joint Meeting on Foundations of Software
Engineering (FSE). 2013.

[53] M. A. McQueen, T. A. McQueen, et al. Empirical estimates and observations
of 0day vulnerabilities. In Proceedings of the Hawaii International Conference
on System Sciences (HICSS). 2009.

[54] N. Meng, M. Kim, et al. Systematic editing: generating program transfor-
mations from an example. ACM SIGPLAN Notices, 46(6):329–342, 2011.

[55] M. Monperrus. Automatic software repair: a bibliography. University of Lille,
Tech. Rep. hal-01206501, 2015.

[56] A. Murgia, G. Concas, et al. A machine learning approach for text
categorization of fixing-issue commits on cvs. In Proceedings of the
ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM). 2010.

[57] A. Nappa, R. Johnson, et al. The attack of the clones: A study of the impact of

shared code on vulnerability patching. In Proceedings of the IEEE Symposium
on Security and Privacy (SP). 2015.

[58] F. Nielson, H. R. Nielson, et al. Principles of program analysis. Springer, 2015.

[59] A. Nistor, P.-C. Chang, et al. Caramel: detecting and fixing performance
problems that have non-intrusive fixes. In Proceedings of the International
Conference on Software Engineering (ICSE). 2015.

[60] M. Payer and T. R. Gross. Hot-patching a web server: A case study of asap
code repair. In Proceedings of the Annual Conference on Privacy, Security
and Trust (PST). 2013.

[61] H. Perl, S. Dechand, et al. Vccfinder: Finding potential vulnerabilities in
open-source projects to assist code audits. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (CCS). 2015.

[62] S. Person, M. B. Dwyer, et al. Differential symbolic execution. In Proceedings
of the Joint Meeting on Foundations of Software Engineering (FSE). 2008.

[63] B. C. Pierce and D. N. Turner. Local type inference. ACM Transactions on
Programming Languages and Systems (TOPLAS), 2000.

[64] S. Raghavan, R. Rohana, et al. Dex: A semantic-graph differencing tool
for studying changes in large code bases. In Proceedings of the IEEE
International Conference on Software Maintenance (ICSME). 2004.

[65] S. Rastkar and G. C. Murphy. Why did this code change? In Proceedings
of the International Conference on Software Engineering (ICSE). 2013.

[66] B. Ray and M. Kim. A case study of cross-system porting in forked projects.
In Proceedings of the Joint Meeting on Foundations of Software Engineering
(FSE). 2012.

[67] E. Raymond. The cathedral and the bazaar. Knowledge, Technology & Policy,
12(3):23–49, 1999.

[68] E. Rescorla. Security holes... who cares? In Proceedings of the USENIX
Security Symposium (SEC). 2003.

[69] E. A. Santos and A. Hindle. Judging a commit by its cover: correlating
commit message entropy with build status on travis-ci. In Proceedings of the
International Conference on Mining Software Repositories (MSR). 2016.

[70] G. Schryen. Security of open source and closed source software: An empirical
comparison of published vulnerabilities. In Proceedings of the Americas
Conference on Information Systems (AMCIS). 2009.

[71] S. Son, K. S. McKinley, et al. Fix me up: Repairing access-control bugs
in web applications. In Proceedings of the ISOC Network and Distributed
System Security Symposium (NDSS). 2013.

[72] Y. Tao, Y. Dang, et al. How do software engineers understand code changes?:
An exploratory study in industry. In Proceedings of the Joint Meeting on
Foundations of Software Engineering (FSE). 2012.

[73] Y. Tian and B. Ray. Automatically diagnosing and repairing error handling
bugs in c. In Proceedings of the Joint Meeting on Foundations of Software
Engineering (FSE). 2017.

[74] D. Votipka, R. Stevens, et al. Hackers vs. testers: A comparison of software
vulnerability discovery processes. In Proceedings of the IEEE Symposium
on Security and Privacy (SP). 2018.

[75] P. Wadler. The essence of functional programming. In Proceedings of
the ACM SIGPLAN Symposium on Principles of Programming Languages
(POPL). 1992.

[76] R. Wu, H. Zhang, et al. Relink: Recovering links between bugs and changes.
In Proceedings of the Joint Meeting on Foundations of Software Engineering
(FSE). 2011.

[77] F. Yamaguchi, N. Golde, et al. Modeling and discovering vulnerabilities with
code property graphs. In Proceedings of the IEEE Symposium on Security
and Privacy (SP). 2014.

[78] T. Zhang, M. Song, et al. Interactive code review for systematic changes. In
Proceedings of the International Conference on Software Engineering (ICSE).
2015.

[79] Y. Zhou and A. Sharma. Automated identification of security issues from
commit messages and bug reports. In Proceedings of the Joint Meeting on
Foundations of Software Engineering (FSE). 2017.

1576

0-5 5-10 10-15 15-20 20+
0

20

40

60

80

100

37.4

19.5

11.1
6.5

25.4

57.1

24.3

9.1
3.6 5.6

Commit size (lines affected)

Perc.

Total commits sps

Fig. 6: The distribution
of the size of all the commits studied and sp identified by SPIDER.

APPENDIX

A. Shortcomings of the sp formalism

According to our definition in Section II-B, a patch that removes
all the functionality as shown in Listing 7 is an sp. This is because
none of the inputs execute through the program or in other words
all the inputs will end up in an error basic block. Equation 1 and
2 trivially hold as for all the inputs (i↪→fp) evaluates to false.

We ignore all the updates to local variables as they are not part of
the function output. Consider the patch as shown in Listing 9, which
removes a seemingly useless memset. This is valid and commonly
known as dead-store elimination [32]. However, on closer inspection,
one can recognize that the memset may be required as it would
potentially clean up some secret data to avoid information leaks.
Our current definition of sp does not handle these cases.

i n t main (i n t argc , char ∗∗argv) {
+ i f (argc > 0) {
+ return −1;
+ }
. . .
}

Listing 7: a patch that removes all the functionalities

1) Patch sizes: The plot in Figure 6 shows the distribution of the
size of the studied commits as well as those that SPIDER identified
as sps. One can see that 42.9% of the patches identified as sps (i.e.,
28,873 of them) affect more than five lines of code (the affected
lines are the sum of the lines added and deleted according to the git
diff tool), and 5.6% of the patches affect more than 20 lines of code.
We manually checked a few of these large patches and verified that
these are in fact sps. Most of these patches fix a simple issue across
multiple functions, resulting in large amounts of affected lines.

2) False negatives: One can imagine that SPIDER could have
false negatives i.e., it could classify certain patches as non-sps where
as they were in reality sp. This is not a major problem, as finding
all sps is not the goal of SPIDER. However, during our manual
investigation, we found certain interesting sps patches which violate
our conditions as explained in Section III.

Listing 8 shows a patch which fixes a memory leak and
ideally is an sp but does not satisfy the Equation 2. Here, among
other things, the patch changes the third argument to the function

copy_from_user to PAGE_SIZE (line 2) from sccb-
>length (line 10). Since we consider the arguments to a call to
be the output of a function, the patch in Listing 8 changes the output
of the function and thus will not be considered as a sp. However, a
careful analysis of the patched function along with an understanding
of the behavior of function copy_from_user would clarify
that this patch doesn’t affect the output (for all valid inputs) and
hence is a sp. In fact, this patch is a security fix for CVE-2016-6130.

1 + copied = PAGE SIZE −
2 + copy from user

(sccb , u64 to uptr (c t l s c c b . sccb) , PAGE SIZE) ;
3 + i f (o f f s e t o f (s t r u c t sccb header , l e n g t h) +
4 + s i z e o f

(sccb−>l e n g t h) > copied | | sccb−>l e n g t h > copied) {
5 + rc = −EFAULT;
6 + goto o u t f r e e ;
7 + }
8 − i f (sccb−>l e n g t h > PAGE SIZE | | sccb−>l e n g t h < 8)
9 − return −EINVAL;

10 − i f (copy from user
(sccb , u64 to uptr (c t l s c c b . sccb) , sccb−>l e n g t h)) {

11 − rc = −EFAULT;
12 + i f (sccb−>l e n g t h < 8) {
13 + rc = −EINVAL;

Listing 8: Snippet
from a sp patch (532c34b5fbf1687df63b3fcd5b2846312ac943c6

(fix potential information leak with /dev/sclp))
from mainline linux kernel (ID 1) that violate Equation 2.

This ratifies our intuition that, our definition of sp is sufficient
but not necessary for a patch to be an sp.

i n t decrypt (. .) {
char s e c r e t b u f f [4 0 9 6] ;

. . .

. . .
− memset (s e c r e t b u f f , 0 , s i z e o f (s e c r e t b u f f)) ;
}

Listing 9:
an optimizing patch that may induce a security vulnerability.

a v p r i v r e p o r t m i s s i n g f e a t u r e
(s−>avctx , ”Lowres for weird subsampling ”) ;

re turn AVERROR PATCHWELCOME;
}

+ i f ((
AV RB32(s−>upscale h) | | AV RB32(s−>upsca le v)) && s−>
p r o g r e s s i v e && s−>avctx−>pix fmt == AV PIX FMT GBRP) {

+ a v p r i v r e p o r t m i s s i n g f e a t u r e
(s−>avctx , ” p r o g r e s s i v e for weird subsampling ”) ;

+ return AVERROR PATCHWELCOME;
+ }

i f (s−>l s) {
memset (s−>upscale h , 0 , s i z e o f (s−>upscale h)) ;
memset (s−>upscale v , 0 , s i z e o f (s−>upsca le v)) ;

Listing 10: A non-CVE security patch (commit ee1e3ca5eb1)
in FFmpeg (ID 21) that has triggering input in the commit message.

parse ex thdrs (s t r u c t
sk buf f ∗skb , co ns t s t r u c t sadb msg ∗hdr , void ∗

. . .
u i n t 1 6 t e x t t y p e ;
i n t e x t l e n ;

+ i f (l en < s i z e o f (∗ ehdr))
+ return −EINVAL;

e x t l e n = ehdr−>sadb ext l en ;

Listing 11: A non-CVE security patch (commit 4e7REDACTED)
in Main kernel (ID 1) that is missing in Qualcomm (ID 4) kernel.

1577

Commits sps (% over commits)
NoEB NoPP NoEB ∪ NoPP Default

Total across all projects 341,767 64,682 (18.93%) 63,463 (18.57%) 60,878 (17.81%) 67,408 (19.72%)

TABLE IV: The summary of the number and percentage of sps detected by running SPIDER in various modes
across all the projects listed in Table II. Detailed break down across each of the projects can be found in Table IV of our extended version [7].

B. Control dependency versus control flow

The concept of control dependency is different from the more
commonly-used concept of control flow. Control flow captures
possible flows of execution, while control dependency captures the
necessary conditions that must hold for the execution to reach a
particular statement. Consider the PDG of the patched function
in Figure 2b. We can see a control dependency edge from the
node (that corresponds to the instruction) at Line 3 to Line 15 with
label F . This means that the condition at Line 3 must evaluate to
false for the execution to reach Line 15. This is correct because
if the condition at Line 3 evaluates to true, then the execution will
immediately return from the function (Line 4). On the other hand,
consider the control-flow graph of the patched function in Figure 1.
There is no direct edge from BB1 (that contains Line 3) to BB5
(that contains Line 15). This is because the execution does not
flow directly from BB1 to BB5 as there are other instructions in
between (in BB3 and BB4).

C. Reasons for low detection rate of sps

There are certain projects where the percentage of detected sps
is low, such as IDs 15 and 16. After manual investigation of the
subset of these patches, we found the following reasons:

Complex code: There are certain projects that mostly contains
complex functions with data-dependencies inside nested loops.
Specifically, the Python (ID 15) and PHP (ID 16) interpreters,
and cURL (ID 24). Here, although the patches themselves are
simple, the data dependencies increase the complexity of constraints,
resulting in SPIDER failing to prove implication for the condition
C1 (Section III-B3) resulting in a smaller sp detection rate.

Complex patches: In projects such as libpng (ID 30) and,
OpenVPN (ID 28), the commits tend to be complex as they deal
with media file formats and cryptographic protocols. Consequently,
SPIDER fails to prove the equivalence for the condition C2.

D. Patches fixing cryptographic issues

Most of the CVEs in OpenSSL fix security issues related to
cryptographic operations that affect the control flow in complex
ways. A few OpenSSL CVEs fix cryptographic implementations
against time side-channel attacks, which SPIDER is unable to reason
about. For instance, the commit hash ae50d8270026edf5b3c7f8aaa0
c6677462b33d97 [13] for CVE-2016-0703 of the OpenSSL
repository fixes SSLv2 implementation against the
Bleichenbacher [27] attack. We fail to identify this as an sp because
the changes does not satisfy our definition of sp (refer Section II-B).

E. Examples of sps

The Listing 12 shows a patch identified as sp, in this case,
the patch just adds an error basic block through a case statement,
satisfying conditions C1 and C2, as the valid input space (matching
the case statement) is restricted, and the function output does
not change for the valid inputs. Listing 13 shows a commit in Redis
identified as an sp, where there are no conditions affected (condition

C1 holds) and changes are made only to a local variable thus not
affecting the function output (condition C2 holds).

+ case MEM AREA SHM VASPACE:
+ /∗ Find VA from PA in dynamic SHM i s not ye t supported ∗ /
+ va = NULL;
+ break ;

d e f a u l t :
va = map pa2va (find map by type and pa (m, pa) , pa) ;

}
. . .
re turn va ;

}

Listing 12: An sp identified in OPTEE (commit
388302877d413) where the changes just add an error basic block.

i n t HelloRepl1 RedisCommand (RedisModu
. .
− RedisModuleCallReply ∗ r e p l y ;
. .
− re p ly = RedisModule Call (ctx , ” INCR” ,” c ! ” , ” foo ”) ;
+ RedisModule Call (ctx , ” INCR” ,” c ! ” , ” foo ”) ;
− re p ly = RedisModule Call (ctx , ” INCR” ,” c ! ” , ” bar ”) ;
+ RedisModule Call (ctx , ” INCR” ,” c ! ” , ” bar ”) ;

RedisModule ReplyWithLongLong (ctx , 0) ;
re turn REDISMODULE OK;
}

Listing 13: An sp
identified in Redis (commit 6798736909b7) where the changes are
only to local variables and do not affect the output of the function.

F. Removing back edges in the PDG

In this section, we argue that removing back-edges is safe when
a patch does not directly modify a statement within a loop.

In principle, removing back-edges in the PDG unrolls [31] the
corresponding loop once. The symbolic expression of the values
computed inside the loop will be as if the loop is executed once.

If the output of the function does not depend on the number of
iterations of a loop then unrolling the loop once or multiple times
does not affect our output equivalence checking, and hence it is safe.

As explained in Section III-B4, we use symbolic expressions (Ta-
ble I) to check the output equivalence of the functions. Now, consider
the case where the output of the function depends on the number of
iterations of a loop, and the symbolic expressions of the output are
same in the original and the patched function. This means that the
number of iterations of the loop will be the same in the original and
patched function, and consequently, the output should be the same.

Hence, our approach of removing the back-edges and using
symbolic expressions for output equivalence checking is safe
when a patch does not directly modify a statement within a loop.
However, if the patch directly modifies a statement within a loop,
the removal of the back-edges prevents the back-propagation of this
information resulting in computation of potentially wrong symbolic
output-constraint pairs, thus is not safe.

1578

G. Summarizing library functions

As mentioned in Section IV-E, we maintain a list of well-known
library functions which could be easily summarized. The categories
of the functions are:

• Print and logging functions (e.g., printf (without the
%n format specifier), printk), we ignore its affects as
they are used for logging.

• Memory initialization and release functions (e.g.,
kmemset, memset, kfree, free), are considered
as writes to the corresponding variables.

• Kernel synchronization function calls (e.g., spin_lock,
spin_unlock, mutex_lock, mutex_unlock).
Similar to the logging functions, these do not affect
the output. However, improperly used synchronization
functions could cause deadlocks. To avoid this, we need
to check that any *_lock or *_unlock function
should have corresponding *_unlock or *_lock
respectively. To do this, for any inserted *_lock or

*_unlock function in a basic block BB, we check
that there exists corresponding *_unlock or *_lock
function in one of the post-dominator or pre-dominator
basic blocks of BB respectively.

• C security-sensitive function calls (e.g., strcpy,
strncpy, strlcpy, memcpy, sprintf,
sscanf and their variants). We model these are
assignments. For instance, the callstrcpy(dst, src)
will be treated as the assignment dst=src.

H. Handling multiple definitions

In principle, there are two basic cases when multiple definitions
of a variable can reach a statement. We show in this section that
both of the cases are handled by our Equation 5.

The first case is shown below. In this case, the definitions at
both line 1 or 3 can reach can the statement at line 5:

1 v = d1 ;
2 i f (c) {
3 v = d2 ;
4 }
5 y = v + x ;

All the executions that reach line 3 should have executed line 1. In
other words, line 3 is guarded by a stricter condition. Furthermore, if
the constraint represented by the condition c is satisfied, then the
value defined at line 3 (i.e., d2) will reach line 5. This is captured
by the first case of the Equation 5.

Consider the second case, where the definitions at line 2 or 3
can reach line 6:

1 i f (c) {
2 v = d1 ;
3 } e l s e {
4 v = d2 ;
5 }
6 y = v + x ;

In this case, both statements are mutually exclusive, and, depending
on whether the constraint represented by the condition c is true
or false, the definitions at line 2 or line 4 reach line 6. This is
captured by the second case of the Equation 5.

I. Impact of our assumptions

Although, SPIDER tries to be sound in detecting sps, it has a few
assumptions (Section V) and uses heuristics (Section IV-D) which
may not be desirable for certain users. In this section, we evaluate
the effectiveness of our technique when each of these assumptions
or heuristics is disabled. Specifically, we run SPIDER in following
modes:

• NoEB: As explained in Section IV-D, we ignore the
affected statements that are part of a error-handling basic
block (BBerr). The BBerrs are detected using certain
heuristics that may not hold for certain projects. Incorrect
identification of BBerrs might cause certain non-safe
patches to be wrongly classified as sps. In NoEB mode,
we do not ignore any affected statements and analyze all
the statements even if they belong to an BBerr.

• NoPP: We use the tool unifdef to handle preprocessor
directives. However, as explained in Section V, this
could cause certain code to ignored if it is part of a
#if-then-else construct. In NoPP mode, if a patch
affects a function which has any code controlled by a
preprocessor directive it will not be considered as a sp.

Table IV shows the overall effectiveness of SPIDER across all the
projects with each of these modes turned on. The detection rate did
not vary much across the projects. The detailed breakdown for each
project is provided in Table IV of our extended version [7]. The
column NoEB ∪ NoPP shows the results when both the modes are
enabled. We also show the effectiveness when all of these modes
are turned off, i.e., the Default mode. The detection rate does not
vary much across all the modes, which shows that the effectiveness
of the techniques used by SPIDER does not largely depend on the
assumptions and heuristics.

J. Anonymous survey on the requirement of SPIDER

To get a feeling for the utility of a tool like SPIDER, we
performed an anonymous survey of maintainers and developers
of various open-source software projects, including Ubuntu,
OpenSUSE, Linaro, OpenBSD, and VLC. 82% of those who
completed the survey (32 out of 39 participants) agreed that such a
tool would be very useful, and they were prepared to use it for their
projects. Interestingly, only OpenBSD developers (the remaining
7 participants) expressed concerns, as such a system might also
propagate bug-inducing patches like Apple’s goto fail [3], but they
agree that it could still help expert developers to prioritize their
efforts. This anonymous survey is exempted from IRB approval [9],
as there is no collection or use of user private information.

K. Impact of not identifying all error-handling basic blocks

It is important to observe that the risky mistakes are those where
we (incorrectly) identify non-error basic blocks as error blocks. In
such cases, we could falsely identify a patch as an sp. It is much
less problematic or safer to misidentify an error-handling block as
a non-error-handling block. The reason is that such a mistake might
cause our system to analyze more statements than necessary which
could result in discarding a safe patch as unsafe, but it does not
introduce unsafe patches as safe. Thus, we consider our approach
safely conservative.

1579

