
OAT: Attesting Operation Integrity of
Embedded Devices

Zhichuang Sun
Northeastern University

Bo Feng
Northeastern University

Long Lu
Northeastern University

Somesh Jha
University of Wisconsin

Abstract—Due to the wide adoption of IoT/CPS systems,
embedded devices (IoT frontends) become increasingly connected
and mission-critical, which in turn has attracted advanced attacks
(e.g., control-flow hijacks and data-only attacks). Unfortunately,
IoT backends (e.g., remote controllers or in-cloud services) are
unable to detect if such attacks have happened while receiving
data, service requests, or operation status from IoT devices
(remotely deployed embedded devices). As a result, currently,
IoT backends are forced to blindly trust the IoT devices that
they interact with.

To fill this void, we first formulate a new security property
for embedded devices, called “Operation Execution Integrity” or
OEI. We then design and build a system, OAT, that enables
remote OEI attestation for ARM-based bare-metal embedded
devices. Our formulation of OEI captures the integrity of both
control flow and critical data involved in an operation execution.
Therefore, satisfying OEI entails that an operation execution is
free of unexpected control and data manipulations, which existing
attestation methods cannot check. Our design of OAT strikes a
balance between prover’s constraints (embedded devices’ lim-
ited computing power and storage) and verifier’s requirements
(complete verifiability and forensic assistance). OAT uses a new
control-flow measurement scheme, which enables lightweight and
space-efficient collection of measurements (97% space reduction
from the trace-based approach). OAT performs the remote
control-flow verification through abstract execution, which is
fast and deterministic. OAT also features lightweight integrity
checking for critical data (74% less instrumentation needed
than previous work). Our security analysis shows that OAT
allows remote verifiers or IoT backends to detect both control-
flow hijacks and data-only attacks that affect the execution of
operations on IoT devices. In our evaluation using real embedded
programs, OAT incurs a runtime overhead of 2.7%.

I. INTRODUCTION

Internet-of-Things (IoT) and Cyber-Physical Systems (CPS)

are being rapidly deployed in smart homes, automated fac-

tories, intelligent cities, and more. As a result, embedded

devices, playing the central roles as sensors, actuators, or

edge-computing nodes in IoT systems, are becoming attrac-

tive targets for cyber attacks. Unlike computers, attacks on

embedded devices can cause not only software failures or data

breaches but also physical damage. Moreover, a compromised

device can trick or manipulate the IoT backend (e.g., remote

controllers or in-cloud services): hijacking operations and

forging data.

This work was supported by the National Science Foundation (Grant#:
CNS-1748334), the Office of Naval Research (Grant#: N00014-17-1-2227),
and the Army Research Office (Grant#: W911NF-17-1-0039).

Unfortunately, today’s IoT backends cannot protect them-

selves from manipulations by compromised IoT devices. This

is due to the lack of a technique for remotely verifying if an

operation performed by an IoT device has been disrupted, or

any critical data has been corrupted while being processed on

the device. As a result, IoT backends are forced to blindly trust

remote devices for faithfully performing assigned operations

and providing genuine data. Our work aims to make this trust

verifiable, and therefore, prevent compromised IoT devices

from deceiving or manipulating the IoT backend.

We take the general approach of remote attestation, which

allows a device to prove its integrity (with regard to certain

security properties) to a remote verifier. Although a large body

of works on remote attestation exists [54], [60], [61], [55],

[12], [36], they have different goals from ours. Moreover, most

of them are focused on verifying basic security properties,

such as static code text integrity, and therefore cannot capture

the advanced attacks that are becoming mainstream recently.

For example, return-oriented programming (ROP) and data-

only attacks are easy to launch on embedded devices, as

demonstrated on vulnerable industrial robot controllers [51].

C-FLAT [2] took the first step towards control-flow integrity

(CFI) attestation. But a major limitation of C-FLAT is the

non-deterministic verifiability of its control-flow hashes (i.e.,

a given hash may not be verifiable due to the program path

explosion issue). Moreover, C-FLAT does not check data

integrity (i.e., data-only attacks are not covered).

In this paper, we introduce the first attestation method that

captures both control-flow and data-only attacks on embedded

devices. Using this method, IoT backends can now verify if a

remote device is trustworthy when it claims it has performed

an operation, sent in a service request, or transported back

data from the field. In addition, unlike traditional attestation

methods, which only output a binary result, our method allows

verifiers to reconstruct attack execution traces for postmortem

analysis.

Our attestation is based on a new security property that

we formulated, called Operation Execution Integrity (OEI),

which combines both the control-flow integrity and critical

data integrity of an “operation” (i.e., a self-contained task or

logic). An operation satisfies OEI if and only if the operation

was performed without its control flow altered or its critical

data corrupted during the execution. For an operation to be

attested, the IoT device (i.e., prover) sends an unforgeable

1433

2020 IEEE Symposium on Security and Privacy

© 2020, Zhichuang Sun. Under license to IEEE.
DOI 10.1109/SP40000.2020.00042



OEI measurement to the IoT backend (i.e., verifier), along

with any output from the operation. The backend then checks

the measurement to determine if OEI was satisfied during

the operation. The backend accepts the operation output from

the device only if the check passes (i.e., the received data or

request is trustworthy).
OEI takes advantage of the “operation-oriented” design of

embedded programs: code is typically organized in logically

independent operations, such as moving a robotic arm, inject-

ing a dose of medicine, sensing temperature, etc. Rather than

covering an entire program, OEI is focused on the execution

of individual operations (hence the name). This per-operation

property allows for on-demand and efficient attestation on

embedded devices without sacrificing security (§III-B).
We design and implement OAT (OEI ATtester), a system

that enables OEI attestation on ARM-based embedded devices.

It consists of a customized compiler for building attestation-

enabled binaries, a runtime measurement engine running on

IoT devices, and a verification engine for IoT backends. OAT

addresses two key challenges associated with OEI attestation,

or any remote attestation of control-flow and data integrity:

(1) Incomplete verification of control-flow integrity: Con-

ventional hash-based attestation [2] can only verify a (small)

subset of program executions (i.e., incomplete verification

of control-flow). It is because this approach checks a given

control-flow hash against a limited set of hashes pre-computed

from known-legitimate program runs. This static hash pre-

computation can never cover all possibilities due to program

path explosions, even for small programs. As a result, this

attestation cannot verify control-flow hashes, legitimate or not,

outside of the pre-computed set.
We design a hybrid control-flow attestation scheme for OAT,

which combines hashes and compact execution traces. This

scheme enables complete control-flow verification as well as

attack flow reconstruction, at the cost of a mildly increased

measurement size. Our attestation scheme is partly inspired by

the tracing-based CFI enforcement [24], [59]. But unlike previ-

ous work, which requires hardware tracing modules unavail-

able on deployed or debugging-disabled embedded devices,

our scheme uses its own software-based tracing technique.

Moreover, thanks to the combined use of hash and traces,

OAT’s space overhead is only a tiny fraction (2.24%) of

tracing-based CFI’s overhead. In addition, OAT checks both

forward- and backward-edges. We discuss the details in §IV.

(2) Heavy data integrity checking: The existing data integrity

checkers [13], [3], [11] have to instrument every memory-

write instruction and sometimes memory-read instructions

in a program. The heavy and extensive instrumentation is

needed because these checkers have to decide during runtime,

for every instrumented instruction, whether the instruction

is allowed to store/load data to/from the referenced address.

We call this address-based checking, which is too heavy for

embedded devices.
OAT uses a novel data integrity checking technique. First,

it only covers critical variables because not all program data

is relevant to an operation to be attested. Critical variables are

those that may affect the outcome of an operation. They are

automatically detected by OAT or annotated by developers.

Second, instead of address-based checking, our technique

performs value-based checking. It checks if the value of a

critical variable at an instrumented load instruction (i.e., use)

remains the same as the value recorded at the previous instru-

mented store instruction (i.e., define). It only instruments the

instructions that are supposed to access the critical variables,

rather than instrumenting all memory-accessing instructions as

address-based checkers would, even when only selected vari-

ables need checking. Our technique on average requires 74%

fewer instrumentation than address-based checking does. We

call this “Value-based Define-Use Check”, which is discussed

in §V.

Using OAT, IoT backends can now for the first time remotely

verify operations performed by IoT devices. Our security

analysis (§VIII-C) shows that OAT detects both control and

data manipulations that are undetectable by existing attestation

methods for embedded devices. Our performance evaluation

(§VIII), based on real embedded programs, shows that OAT,

on average, slows down program execution by 2.73% and

increases the binary size by 13%. In summary, our work makes

the following contributions:

• We formulate a new security property, OEI, for IoT

backends to attest the integrity of operations executed on

remote IoT/embedded devices. It covers both control-flow

and critical data integrity.

• We design a hybrid attestation scheme, which uses both

hashes and execution traces to achieve complete control-

flow verification while keeping the size of control-flow

measurements acceptable for embedded devices.

• We present a light-weight variable integrity checking

mechanism, which uses selective and value-based check-

ing to keep the overhead low without sacrificing security.

• We design and build OAT to realize OEI attestation

on both the prover- and verifier-side. OAT contains

the compile-time, run-time, and verification-time compo-

nents.

• We evaluate OAT on five real-world embedded programs

that cover broad use scenarios of IoT devices, demon-

strating the practicality of OAT in real-world cases.

II. BACKGROUND

A. Attacks on IoT Devices and Backends

Embedded devices, essential for IoT, have been increas-

ingly targeted by powerful attacks. For instance, hackers have

managed to subvert different kinds of smart home gadgets,

including connected lights [53], locks [31], etc. In industrial

systems, robot controllers [51] and PLCs (Programmable

Logic Controller) [22] were exploited to perform unintended

or harmful operations. The same goes for connected cars [42],

[34], drones [30], and medical devices [23], [52]. In addition,

large-scale IoT deployments were compromised to form bot-

1434



nets via password cracking [56], and recently, vulnerability

exploits [40].

Meanwhile, advanced attacks quickly emerged. Return-

oriented Programming (ROP) was demonstrated to be real-

istic on RISC [8], and particularly ARM [39], which is the

common architecture for today’s embedded devices. Data-only

attacks [15], [33] are not just applicable but well-suited for

embedded devices [62], due to the data-intensive or data-

driven nature of IoT.

Due to the poor security of today’s embedded devices, IoT

backends (e.g., remote IoT controllers and in-cloud services)

are recommended to operate under the assumption that IoT

devices in the field can be compromised and should not be

fully trusted [57]. However, in reality, IoT backends are

often helpless when deciding whether or to what extent it

should trust an IoT device. They may resort to the existing

remote attestation techniques, but these techniques are only

effective at detecting the basic attacks (e.g., device or code

modification) while leaving advanced attacks undetected (e.g.,

ROP, data-only attacks, etc.). As a result, IoT backends have

no choice but to trust IoT devices and assume they would

faithfully execute commands and generate genuine data or

requests. This blind and unwarranted trust can subject IoT

backends to deceptions and manipulations. For example, a

compromised robotic arm can drop a command yet still report

a success back to its controller; a compromised industrial

syringe can perform an unauthorized chemical injection, or

change an authorized injection volume, without the controller’s

knowledge.

Our work enables IoT backends to reliably verify if an

operation performed by a device has suffered from control

or data attacks. It solves an important open problem that IoT

backends currently have no means to determine if data, results,

or requests sent from (insecure) IoT devices are trustworthy.

Moreover, it allows backends to reconstruct attack control

flows, which are valuable for forensic analysis.

B. ARM TrustZone

Our system relies on ARM TrustZone to establish the

TCB (Trusted Computing Base). TrustZone is a hardware

feature available on both Cortex-A processors (for mobile and

high-end IoT devices) and Cortex-M processors (for low-cost

embedded systems). TrustZone renders a so-called “Secure

World”, an isolated environment with tagged caches, banked

registers, and private memory for securely executing a stack of

trusted software, including a tiny OS and trusted applications

(TA). In parallel runs the so-called “Normal World”, which

contains the regular/untrusted software stack. Code in the

Normal World, called client applications (CA), can invoke TAs

in the Secure World. A typical use of TrustZone involves a

CA requesting a sensitive service from a corresponding TA,

such as signing or securely storing a piece of data. In addition

to executing critical code, TrustZone can also be used for

mediating peripheral access from the Normal World.

OAT measurement engine runs as a TA in the Secure World.

Its code and data, including collected measurements, are

1 // Simplified control loop for robotic arms
2 void main_looper() {
3 // Command from remote controller
4 cmd_t cmd;
5 // Pointer to operation function
6 int (*op_func)(int, char*);
7 // Input from peripheral sensor
8 char peripheral_input[128];
9 int st = 0;

10 while(1) {
11 if (read_command(&cmd)) {
12 st = get_input(peripheral_input); //BUGGY!
13 if (status_OK(st)) {
14 // perform the operation
15 op_func = get_op_func(cmd->op);
16 (*op_func)(cmd->p_size, cmd->param);
17 }
18 }
19 usleep(LOOPER_SLEEP_TIMER);
20 }
21 return;
22 }
23 ...
24 // The operation that moves the robotic arm
25 int op_move_arm (int, char*) {...}
26 ...

Listing 1: An example of a control loop in a robotic arm

naturally protected. TrustZone allows provisions of per-device

private keys and certificates, which enable straightforward

authentication and signed/encrypted communication between

a measurement engine (i.e., prover) and a remote verifier.

During an active attestation phase, the instrumented code in the

Normal World reports raw measurements to the Secure World,

where the raw measurements are processed and signed. The

final report (aka. measurement blob) along with the signature

is handed back to the Normal World agent, which sends

the report to the remote verifier. On our target platforms

(i.e., ARM-based bare-metal embedded devices), TrustZone

is the only feasible TCB option that can support basic remote

attestation operations. Our evaluation (§VIII) shows that the

end-to-end overhead of our system is acceptable, thanks to our

efficient attestation scheme.

III. DESIGN OVERVIEW

A. Example: A Vulnerable Robotic Arm

Before we discuss OEI and the attestation, we first present

a simple example to demonstrate the problem. The vulnerabil-

ities shown in this example were drawn from real embedded

programs. This example is also referenced in a later discussion

on how OEI attestation can be easily applied to existing code.

In this example of a vulnerable robotic arm (Listing 1), the

function main_looper first retrieves an operation command

from a remote controller and stores it in cmd (Line 11).

The looper then reads a peripheral sensor (Line 12), which

indicates if the arm is ready to perform a new operation.

If ready, the looper finds the operation function specified by

cmd->op (Line 15) and calls the function with the parameters

supplied in cmd->param (Line 16). One such function (Line

25) moves the arm to a given position.

1435



We introduce an attacker whose goal is to manipulate the

operation of the robotic arm without being detected by the

remote controller who uses the existing attestation methods.

For simplicity, we assume the attacker has tampered with

the sensor and uses it to feed exploit input to the robotic

arm. This is realistic given that such external peripherals are

difficult to authenticate and protect. The target of the attacker

is Function get_input (Line 12), which contains a buffer

overrun. The vulnerability allows malformatted input to be

copied beyond the destination buffer (peripheral_input)

into the subsequent stack variables (e.g., cmd).

By crafting input via the compromised sensor, the attacker

can launch either control hijacking or data-only attacks on the

robotic arm. To hijack the control, the attacker overwrites both

cmd->param and cmd->op as a result of the buffer overrun

exploit, which leads to the execution of an arbitrary operation.

To mount a data-only attack, the attacker only needs to change

cmd->param while leaving cmd->op intact, which turns the

authorized operation harmful.

Though seemingly simple, such control and data manip-

ulations on embedded devices are realistic and can cause

severe consequences in the physical world. More importantly,

existing remote attestation methods cannot detect such attacks

because most of them are focused on static code integrity and

none addresses dynamic data integrity. Therefore, the remote

controller is unable to find that the robotic arm is compromised

and did not perform the operation as commanded. Moreover,

after receiving an (unverifiable) operation-success message

from the compromised robotic arm, the controller may com-

mand other robotic arms to perform follow-up operations,

which can cause further damage. This example illustrates the

need for a new form of attestation that allows IoT backends to

remotely check the integrity of operations performed by IoT

devices.

B. Operation Execution Integrity (OEI)

We propose “Operation Execution Integrity” (or OEI) as a

security property for embedded devices. By verifying OEI,

a remote verifier can quickly check if an execution of an
operation suffered from control-flow hijack or experienced

critical data corruption. We formulate OEI with two goals

in mind: (i) enabling remote detection of aforementioned

attacks; (ii) demonstrating the feasibility of an operation-

oriented attestation that can detect to both control and critical

data manipulations on embedded devices. Next, we formally

define OEI and provide its rationale.

To avoid ambiguity, we informally define an operation to

be a logically independent task performed by an embedded

device. To declare an operation for attestation, programmers

need to identify the entry and exit points of the operation in

their code. For simplicity of discussion, we assume that every

operation is implemented in a way that it has a single pair of

entry and exit, 〈Opentry, Opexit〉 where Opentry dominates

Opexit and Opexit post-dominates Opentry in the control flow

graph. We do not pose any restriction on what code can an

operation include or invoke, except that an operation cannot

contain another operation.

Let P = {Op1, Op2, ...Opn} be an embedded program,

composed of n operations, denoted as Opi. CFG(Opi) is the

statically constructed CFG (control flow graph) for Opi (i.e.,

the CFG’s root is Opi’s entry point). Let CV be the set of

critical variables in P (i.e., variables affecting the execution

of the operations). D(v) and U(v) are the def- and use-sites

of a critical variable v: a set of statements where v is defined
or used. Vb(v, s) and Va(v, s) are the values of variable v
immediately before and after statement s executes.

Definition 1. OEI: for an operation Opi, its execution satisfies

OEI ⇐⇒ 1© the control flow complies with CFG(Opi)
and maintains backward-edge integrity, and 2© during the

execution, ∀cv ∈ CV , the value of cv reaching each use-site

is the same as the value of cv leaving the previous def-site,

written as Vb(cv, u) = Va(cv, d), where d ∈ D(cv) is the last

define of cv prior to the use of cv at u ∈ U(cv). 	
OEI entails that the control-flows and critical data involved

in an operation must not be tampered with.

Operation-scoped CFI (§IV): OEI’s control-flow requirement

( 1© in Def. 1) is not a simple adoption of CFI to embedded

devices, which would incur impractical time and space over-

head on those constrained devices. Our operation-scoped CFI

takes advantage of the operation-oriented design of embedded

programs. It applies to executions of individual operations,

which represent a much smaller attestation scope than a whole

program and allow for on-demand attestation. It also implies

backward-edge integrity (i.e., returns not hijacked).

Critical Variable Integrity (§V): We call the second require-

ment of OEI ( 2© in Def. 1) Critical Variable Integrity, or

CVI. It dictates that the values of critical variables must obey

define-use consistency. Compared with other data integrity

checkers [13], [3], [11] CVI is different in two ways. First, CVI

only concerns critical variables, rather than all program data.

Second, CVI uses value-based checking, instead of address-

based checking, to significantly reduce code instrumentation

and runtime overhead. CVI applies to the entire program

execution and is not scoped by attested operations. We provide

a method to assist developers to automatically identify critical

variables. We define critical variables and explain our value-

based check in §V.

Secure & Optimized Combination: OEI combines CVI

and operation-scoped CFI. These two sub-properties mutually

complementary. Without CVI, CFI alone cannot detect data-

only attacks or control-flow hijacks that do not violate CFG

(e.g., [10]). Without CFI, CVI can be bypassed (e.g., by

ROP). On the other hand, this combination yields better

performance than independently performing control-flow and

data-flow checks. This optimized combination allows for the

detection of both control-flow and data-only attacks without

enforcing full CFI and DFI. It is suited for embedded devices.

1436



src.c src.c

Control Flow
Instrumentation

Critical Variable
Discovery & 

Instrumentation
... ...

CVI�Check

Trampoline
Library  

signed
blob

Measurement
Engine

Runtime

Compiler

�Compile-time

�TEE OS
Application

CFI Check

Normal World Secure World 

Verification 
Engine 

Verification

Fig. 1: The Workflow of OAT, whose components (colored in yellow)
include the compiler, the trampoline library, the measurement engine
in the Secure World (shown in green), and the remote verification
engine.

Operation Verifiability: OEI caters to IoT’s unique security

needs. One defining characteristic of IoT devices is their

frequent inter-operations with peers or cloud services. When a

device finishes an operation, the operation initiator may wish

to verify if the operation was executed as expected without

interference. For example, a remote controller needs to verify

if a robotic arm has performed a movement as instructed

without experiencing any control or data manipulations. OEI

attestation answers to such security needs of IoT, which are

currently not addressed.

C. OAT Overview

We build OAT, a system to realize OEI ATtestation on

ARM-based bare-metal embedded devices (i.e., no standalone

OS in the Normal World). OAT consists of: (i) a customized

compiler built on LLVM; (ii) a trampoline library linked

to attestation-enabled programs; (iii) a runtime measurement
engine; (iv) a remote/offline verification engine (Figure 1).

For a given embedded program, the compiler identifies the

critical variables and instruments the code for measurement

collection. At runtime, the measurement engine processes

the instrumented control-flow and data events and produces

a proof or measurement, which the remote verifier checks

and determines if the operation execution meets OEI. OAT

relies on ARM TrustZone to provide the trusted execution

environment for the measurement engine.

We design a hybrid attestation scheme that overcomes two

challenges associated with CFI and data integrity verifica-

tions. First, remotely attesting CFI is more challenging than

performing local CFI enforcement because remote verifiers

can only rely on limited after-fact measurements to make

the determination whereas local enforcers simply use the

readily available unlimited runtime information. Furthermore,

remote verifiers cannot always determine whether a hash-

based control-flow measurement is legitimate or not because

the verifiability is limited to those hashes pre-computed from

known/traversed code paths.

Second, checking the integrity of dynamic data is known

for its high overhead. Existing checkers [13], [3], [11], mostly

address-based, instrument every memory-accessing instruction

in a program, and during runtime, check if an instrumented

instruction should be allowed to access the referenced address,

based on a statically constructed access table. Even when

the integrity checking is only applied to selected variables,

address-based checkers would still need to instrument and

check all memory-accessing instructions to ensure no unin-

tended instructions can write to the addresses of the critical

variables.

Our hybrid attestation scheme achieves complete verifiabil-

ity while maintaining acceptable performance on embedded

devices. For CFI attestation, OAT’s measurements contain

compact control-flow transfer traces for forward-edges and

fixed-length hashes for backward-edges. This combination

allows remote verifiers to quickly and deterministically re-

construct control flows. It also yields size-optimized measure-

ments. For CVI, OAT performs local verification rather than

remote attestation. By doing so, OAT avoids sending a large

amount of data (e.g., critical values at def- and use-sites) to

remote verifiers. Sending such data would be costly for IoT

devices and undesirable when privacy is concerned.

To use OEI attestation, programmers declare the to-

be-attested operations in their code by using two in-

tuitive compiler directives: #oei_attest_begin and

#oei_attest_end. They may also annotate critical vari-

ables of their choice via a GCC-style attribute. For example, to

enable OEI attestation in Listing 1, a programmer only needs

to change Line 4, 8, and 25:

4 cmd_t __attribute__((annotate("critical"))) cmd;

8 int __attribute__((annotate("critical")))
peripheral_input = 0;

25 int op_move_arm (int, char*) {#oei_attest_begin
... #oei_attest_end}

For simplicity, our current design requires that a pair of

#oei_attest_begin and #oei_attest_end is used in

the same function (i.e., an operation enters and exits in the

same call stack frame) and the #oei_attest_end always

dominates the #oei_attest_begin (i.e., an operation al-

ways exits). Operations cannot be nested. These requirements

are checked by our compiler. Developers are advised to keep

the scope of an operation minimal and the logic self-contained,

which is not difficult because most embedded programs are

already written in an operation-oriented fashion.

As shown in Figure 1, during compilation, the customized

compiler instruments a set of control flow transfers inside each

to-be-attested operation. The compiler automatically annotates

control-dependent variables as critical (e.g., condition vari-

ables). It also performs a global data dependency analysis on

both automatically and manually annotated critical variables

so that their dependencies are also treated as critical and

subject to CVI checks. At runtime, the instrumented control

flow transfers and critical variable define/use events trigger the

corresponding trampolines, which pass the information needed

for CFI or CVI verification to the measurement engine in

the Secure World protected by TrustZone. Finally, the signed

1437



attestation blob (i.e., measurements) is sent to the remote

verification engine (e.g., IoT backend) along with the output

from the attested operation. We discuss OAT design details in

§IV and §V.

D. Threat Model

We trust code running inside the Secure World (e.g., the

measurement engine) and assume that attackers cannot break

the TrustZone protection. We also trust our compiler and the

trampoline code. We assume that attackers cannot inject code
in the Normal World or tamper with the instrumented code
or the trampoline library. This can be enforced using code

integrity protection methods for embedded devices [16], [37],

which are orthogonal to the focus of this paper, namely OEI

attestation. Due to the absence of a standalone OS on bare-

metal embedded devices, all code in the Normal World runs at

the same privilege level (i.e., no higher privileged code exists

or needs to be trusted).

On the other hand, we anticipate the following attacks in

the Normal World, which previous attestation methods cannot

detect. First, attackers may exploit vulnerabilities to launch

ROP (return-oriented programming) and DOP (data-oriented

programming) attacks. As a result, the control flow and the

critical data of an embedded program can be compromised.

Second, attackers may abuse unprotected interfaces of an

embedded program and force the device to perform unintended

or unauthorized operations. Our system is designed to detect

these attacks by means of attestation. We present a security

analysis on our system in §VIII-D.

IV. OPERATION-SCOPED CONTROL-FLOW ATTESTATION

Inspired by the operation-oriented nature of embedded

programs, we attest CFI at the operation level, which avoids

always-on measurement collection and whole-program instru-

mentation. It is lightweight and suitable for embedded devices.

Moreover, our attestation provides deterministic verifiabil-

ity. It avoids the problem of unverifiable control-flow hashes,

caused by code path explosions, as purely hash-based attesta-

tion faces [2]. The deterministic verifiability is achieved via a

new hybrid measurement scheme, which uses a compact trace

for recording forward edges and a hash for backward edges.

This scheme resembles the hardware tracing-based CFI [24],

[59]. But it has two major distinctions.

First, previous tracing-based CFI requires hardware com-

ponents that are not available on deployed IoT or embedded

devices1. Our control flow traces are generated purely using

the software. Second, our trace is much shorter and more

compact partly because it only records forward edges (i.e.,

backward edges or returns happen very frequently and thus

would lead to overly long traces that embedded devices cannot

store). By hashing the backward edges, rather than recording

them in the trace, our scheme reduces the trace size by

97% (§VIII-B). Furthermore, combining trace and hash makes

1Although recent MCUs support tracing, this optional feature is meant for
debugging and usually unavailable on for-release devices due to additional
hardware cost.

verification deterministic and free of path explosions. Verifiers

no longer need to pre-compute or search for all possible code

paths; they simply follow the forward-edge trace to reconstruct

the actual execution path, and in the end, check the resulting

backward-edge hash (more details later).

Instrumented Control Flow Events: OAT compiler instru-

ments the code in each attestation-enabled operation to collect

runtime measurements. We limit this instrumentation to a

minimum set of the control flow transfers that need to be

recorded/encoded in the measurement for deterministic ver-

ification. This minimum set, Smin, is constructed as follows.

Consider all three types of transfers possible on a CFG:

direct call/jump, conditional branch, and indirect transfers

(indirect call/jump and return). Only the last two types need

to be measured and are included in Smin. This is because

knowing where each branch and indirect transfer went during

a code execution is both sufficient and necessary for statically

finding the exact operation execution path on the CFG. Direct

calls and jumps are not included in Smin (i.e., no need for

instrumentation) because their destinations are unique and

statically determinate.

The instrumentation code simply calls the trampoline func-

tion corresponding to the type of the instrumented control-flow

transfer, reporting the destination of the transfer. For a branch,

its destination is one bit: taken (1) or non-taken (0). For an

indirect transfer, its destination is the memory address. The

trampoline functions are thin wrappers of the world-switching

routine. When called, they initiate the switch to the Secure

World and pass the destination information to the measurement

engine.

Measurement Scheme: The measurement engine maintains

two types of measurements for control-flow attestation: a

trace and a hash. The trace is used for recording forward-

edge control flow transfers (branches and indirect calls/jumps).

The hash is for encoding backward-edge transfers (returns).

The measurement engine updates the measurement trace or

hash respectively, as shown in the upper half of Fig. 2. For

each branch, it adds the taken/non-taken bit to the trace.

For each indirect call/jump, it adds the destination address

to the trace. Note that code addresses do not change across

different firmware runs (including verification runs) because

embedded firmware is always loaded at the pre-specified base

address in memory. When dynamic loading or ASLR becomes

available in embedded firmware, the measurement engine will

need to record the firmware base address in the attestation

blob, in order for the verifier to construct the same code

layout in memory and check the trace. For each return, the

measurement engine encodes the return address to the hash:

H = Hash(H ⊕ RetAddr). Here we use the symbol ⊕
to represent a binary operation. In our implementation, we

use concatenation2. The trace and the hash together form the

2See our formal definition and proof of the verification scheme in Appendix
§B

1438



Stream

conditional
branches
indirect
jump/calls
ret

1...
2 if (read_command(&cmd)) {
3   get_input(&peripheral_input);
4   if (status_OK(peripheral_input)) {
5     op_func = get_op_func(cmd->op);
6     (*op_func)(cmd->p_size, ...);
7   }
8 }
9 ... (part of an operation)

L2

L3 L4

L9

L5

L8

L6
1

0

1

0

icall addr1

ret2 ret3 ret4 ret5 ... Hash'

Attestation
Blob

Measurement-guided Path Reconstruction & Verification

Each transfer meets CFG?
Hash' = Hash?

Normal World Secure World

Prover-side

Verifier-side

Fig. 2: Operation-scoped control-flow attestation. By measuring the control-flow of an executing operation, the measurement engine produces
a control-flow proof that consists of a trace (proving forward edges including branches and indirect transfers) and a hash (proving backward
edges or returns). This measurement scheme allows a remote verifier to statically and deterministically reconstruct the code path of the
operation execution and perform full CFI verification.

attestation blob, which serves as the proof of the control flow

of an executed operation.

In our design, we chose the cryptographic hash function

BLAKE-2s3 as the Hash function for its high speed, security,

and simplicity. BLAKE-2s has a block size of 64 Bytes and

an output size of 32 Bytes. We present the collision analysis

as part of the security analysis in § VIII-D.

The reason why we use two forms of measurements, namely

trace and hash, is two-fold. First, a forward-edge trace allows

for reconstruction and easy verification of recorded control-

flow transfers. Second, a hash has fixed length and does not

grow whereas a trace grows as the execution proceeds. How-

ever, control-flow hashes by themselves are not always veri-

fiable due to the impossibility of pre-computing all possible

code paths for a program and their hashes. Our measurement

scheme uses the trace and hash in tandem to combine their

strengths while avoiding their individual weaknesses, in terms

of the ease of verification and space efficiency.

Recording the forward-edge trace is necessary for code path

reconstruction. These events are either very compact (1 bit

for each branch) or infrequent (indirect calls/jumps are less

common than direct calls/jumps). Therefore, they do not bloat

the trace. On the other hand, we encode return addresses

in the hash because they are not needed during the path

reconstruction phase (i.e., only needed for checking backward-

edge CFI after a path has been constructed). Plus, returns

happen fairly frequently and, if recorded in the trace, would

consume too much space.

A possible (yet to implement) optimization would be to

record the event type information in a separate sequence

and then use this information to enable early detection of

control flow divergences during verification (i.e., when a type

mismatch is detected, the verifier can conclude that the current

stream is invalid and terminate the verification early). For three

types of events (i.e., conditional branch, indirect branch and

return), two bits would be enough for identifying and recording

3https://blake2.net/

each type. This optimization can speed up the verification

process at the cost of using extra storage. However, given the

fact that RAM and flash storage on embedded devices are

fairly limited and the verification process does not affect the

runtime performance, we decided not to implement the early

termination optimization for the current prototype.

The measurements are stored in a buffer allocated in the

Secure World. Although rare, this buffer can run out if an op-

eration execution is very long and yields a measurement trace

longer than the buffer. When this happens, the measurement

engine signs the current measurements, temporarily stores it

in the flash storage, and frees up the buffer for subsequent

measurements. At the end of the operation, the measurement

engine sends all measurements to the remote verifier.

Measurement Verification: Given a control-flow proof for

an operation execution (i.e., a trace and a hash), generated

and signed by the measurement engine, the verification engine

statically reconstructs the code path on the CFG of the

operation, as shown in the lower half of Fig. 2. Starting

from the root basic block, or the entry point, the verifier

abstractly executes the operation on the CFG by following the

forward-edge trace. During the abstract execution, the verifier

maintains a simulated call stack to keep track of the return

addresses and computes/updates the hash in the same way as

the measurement engine does during runtime.

Specifically, when the abstract execution encounters a

control-flow diverging point (i.e., more than one edge on the

CFG can be followed) the verifier takes the next available

element out of the trace and consults it for direction: either a

taken/non-taken bit for a branch or an address for an indirect

call/jump. The verifier also performs a CFI check in case of

an address. A control flow violation is found when: 1© the

CFI check fails; 2© a mismatch is observed between a basic

block and the corresponding trace element (e.g., the current

basic block ends with an indirect call but the next available

element indicates a branch); or 3© after the abstract execution,

the verifier-computed hash does not match the reported hash.

1439



All indirect call/jump violating CFI trigger 1©. 2© can hap-

pen because when ROP happened during the actual execution,

the trace did not return to the call site whereas the abstract

execution always returns correctly (cued by the simulated call

stack). This mismatch leads to early detection of ROP (i.e.,

no need to wait till 3©). 3© signals that one or more return

addresses (or backward control flow transfers) were corrupted

during runtime. Note that not all ROP trigger 2© but all ROP

trigger 3©.

V. CRITICAL VARIABLE INTEGRITY

Data-only attacks, including data-oriented programming,

are capable of manipulating program behavior and internal

logic without injecting code or violating CFI [15], [33]. For

example, as shown in Listing 1, a simple buffer overflow can

make the robotic arm perform attacker-specified operations

without breaking CFI. Unfortunately, existing attestation meth-

ods cannot detect data-only attacks.

We formulate Critical Variable Integrity (CVI) as a sub-

property of OEI to detect data-only attacks on embedded

devices. CVI is selective and concerns only data that attacks

target: (i) control-dependent data, such as conditional vari-

ables, whose value directly determines the code path of a

particular program execution; (ii) semantically critical data,

whose value, though not directly affecting code execution

paths, influences the outcome of an operation, such as cmd
in Listing 1. CVI is not scoped by attested operations due to

external data dependencies.

CVI is different from previous works on data integrity

check [13], [3], [11], which require heavy instrumentation and

is unsuitable for embedded devices. For example, DFI [13]

uses a whitelist to record which instruction is allowed to

access which memory address. It instruments all memory-

accessing instructions to perform the check during runtime.

DataShield [11] reserves a special memory region for critical

variables to facilitate checks. Even though it concerns only

selected data, DataShield still needs to instrument all memory-

write instructions to prevent illegal access to the reserved

memory region. In general, previous works on program data

integrity share the same fundamental approach, which we call

address-based checking. They need to check every memory-

write instruction and determines if it should be allowed to

write to the referenced address.

In contrast, CVI takes a new approach to data integrity

checking, called Value-based Define-Use Check. It checks

if the value of a critical variable at an instrumented load

instruction (i.e., use) remains the same as the value recorded

at the previous instrumented store instruction (i.e., define).

At an instrumented store instruction, CVI makes a copy of

the value in a secure region guarded by TrustZone. At an

instrumented load instruction, CVI compares the value read

from memory with the copy recorded in TrustZone. Any

data corruption causes a value mismatch and therefore a

CVI breach. CVI only needs to instrument the instructions

that are supposed to read/write the critical variables whereas

address-based checkers have to instrument all memory-write

TABLE I: Comparison between Different Data Integrity Mechanisms
(R:Read, W:Write)

Name Instrumentation Whitelist Check

DFI [13] All memory R&W Yes Addr.
WIT [3] All memory W Yes Addr.
DataShield [11] All memory W No Addr.
CVI Critical variable R&W No Value

instructions even if only selected data needs checking. Table I

shows the comparison between CVI and the previous data

integrity checking techniques.

Critical Variable Identification & Expansion: OAT compiler

automatically identifies control-dependent variables, including

branch/loop condition variables. Note that we do not include

code pointers as critical variables. This is because all control-

flow violations, including those resulted from corrupted code

pointers, are captured by the control-flow part of OEI attes-

tation. OAT relies on programmers to annotate semantically
critical variables because labeling such variables is subjective

and specific to program semantics.

The control-dependent variables (automatically detected)

and the semantically critical variables (annotated by program-

mers) form the initial set of critical variables. Our compiler

then automatically expands this set to include the direct and

indirect pointers to these variables and their dependencies.

Pointers to a critical variable allow indirect define or use

of the variable. Therefore, we treat such data pointers as

special critical variables, referred to as critical pointers. Our

compiler iteratively identifies them from a global points-to

map produced by the standard Anderson pointer analysis.

Dependencies of a critical variable V are the variables that

may influence the value of V. Verifying the integrity of V
implies verifying the integrity of both V and its dependencies.

Given a set of critical variables, our compiler finds all their

dependencies by first constructing the program dependence

graph and then performing a backward traversal for each

variable along the data dependence edges. Newly discovered

variables during the traversal are added to the critical variable

set. The iterative search for dependencies stops when the set

reaches a fixpoint. This automatic dependency discovery also

simplifies critical variable annotation: programmers only need

to annotate one, not all, variable for each piece of critical data.

Value-based Define-Use Check: OAT compiler instruments

all define- and use-sites for each variable in the expanded

critical variable set. During runtime, the instrumentation at

each define-site captures the identity of the critical variable

(i.e., a compiler-generated label) and the value to be assigned

to the variable. It sends the information to the measurement

engine in the Secure World via the trampolines. Similarly,

the use-site instrumentation captures the variable identity and

the current value of the variable and sends them to the

measurement engine.

For an array-typed critical variable, each array element ac-

cess is instrumented by OAT compiler. OAT compiler identifies

1440



and instruments every memory access whose target address

is calculated as an offset relative to a critical variable. This

critical variable can be an array name or a pointer that points to

a buffer. This design also uniformly covers multi-dimensional

arrays and nested arrays because in both cases an array element

access is based on a memory address that is calculated from the

array’s name or base address. From the measurement engine’s

perspective, it only sees critical variables or critical array

elements identified by their addresses, rather than entire array

objects. The integrity of each element is checked indepen-

dently during runtime.

The measurement engine maintains a hashmap which stores

pairs of <VariableID, Value>. V ariableID is the ad-

dress of a variable or an array element. The measurement

engine updates the hashmap at each instrumented define-site

and checks the value at each instrumented use-site. Regardless

whether a variable is on the stack (local) or the heap (global),

its def-use sites should always have matching values. A

value mismatch indicates a corrupted critical variable. The

measurement engine finally sends the CVI checking result

along with the control-flow measurements in a signed blob

to the remote verifier.

Pointer-based Access to Critical Variables: Consider an

example: *(P+n) = x, where P is the base address of a

critical array A; n is the dynamic index. This is a legitimate

critical variable define-site. Assuming that, due to a program

bug, the dereference *(P+n) could go out of the bounds

of A and reach another critical variable B, the measurement

engine would then mistakenly update the value of B to x in

its hashmap when this out-of-bounds write happens.

We solve this issue by enforcing dynamic bounds checking

on critical pointers. When a critical pointer is dereferenced, the

measurement engine checks if the pointer dereference breaches

the bounds of the current pointee. This check relies on

the dynamic bounds information (similar to SoftBound [46])

collected by the measurement engine for each critical pointer.

If a bounds breach is found, the measurement engine performs

CVI check only on the overlapping bytes between the accessed

memory region and the initially pointed variable (i.e., it only

updates or checks the value of the expected pointee). This de-

sign ensures CVI check correctness while allowing intentional

out-of-bounds pointer dereferences in normal programs.

VI. IMPLEMENTATION

Our OAT prototype implementation includes 6,017 lines of

C++ code for the compiler (an LLVM module), 440 lines of

C and assembly code for the trampoline library, 476 lines of

C code for the measurement engine, and 782 lines of Python

code for the verification engine.

Hardware & Software Choices: We selected a widely used

IoT development board, the HiKey board (ARM Cortex-

A53), as our reference device for prototyping. We made this

choice due to the board’s unlocked/programmable TrustZone,

its full compatibility with open-source TEE OS, and its reliable

debugging tools. We do realize that the board has a relatively

powerful processor compared to some low-end embedded

devices. However, no development board currently available

comes with a low-end ARM processor and an unlocked

TrustZone at the same time. Nevertheless, OAT’s design and

implementation are neither specific to this board nor dependent

on powerful processors. The only hardware requirement OAT

has is the TrustZone extension, which is available on many

commercial embedded ARM SoCs.

We used OP-TEE [45] as our TEE OS (the OS for the

Secure World). Although OAT is designed for bare-metal em-

bedded devices (i.e., no stand-alone OS in the Normal World),

we used the vendor-customized Linux as the Normal World

OS solely for the purpose of easily booting and debugging the

board. OAT itself does not assume the presence of a Normal

World OS. Even though OAT’s performance can be negatively

affected by the unnecessary OS, our evaluation (§VIII) shows

the overhead under this disadvantaged configuration is still

acceptable.

The implementation details of the OAT system is attached

in Appendix §A.

VII. DISCUSSION

Multithreading: Our current prototype only supports single-

thread programs, which constitute the majority of today’s

embedded programs. To attest multi-thread programs, we need

to augment the OAT compiler to instrument threading-related

events and have the measurement engine collect measurements

and perform checks on a per-thread basis. We consider multi-

threading support out-of-scope for this paper because it does

not need any change to the design of OEI attestation but

requires significant engineering efforts to implement.

Interrupt Handling: Interrupt handling poses a challenge to

the control flow verification due to its asynchronous nature.

When an interrupt happens in the middle of an attested

operation, we do not know in advance where the interrupted

location is. If the measurement engine cannot recognize and

process interrupts, they may introduce out-of-context control

flow events that can fail or confuse the verification.

OAT overcomes this challenge by treating each interrupt

handler invoked during an operation as an execution of a

sub-program. It instruments the handler both at the entry and

the exit points. The instrumentation notifies the measurement

engine of the beginning and the end of such a sub-program.

Thus the control flow events of the handler are recorded in a

separate trace and hash and verified independently. OAT also

checks if an invoked interrupt handler matches the interrupt

that triggered the handler.

Annotation: OAT allows programmers to optionally annotate

semantically critical variables for CVI attestation. However,

this annotation is not required for detecting data-oriented pro-

gramming [33], control-flow bending [10], or similar data-only

attacks, whose target data (i.e., control-dependent variables)

are automatically detected by OAT compiler and included in

CVI verification. On the other hand, the annotation process

1441



TABLE II: Runtime Overhead Breakdown

Overhead Sources Time(CPU Cycles) Time(ms)

Attestation Init (Oat init) 5.1*107 42.879

Trampoline Func(Otramp) 5.5*104 0.045

Attestation Exit (Oat exit) 2.6*107 21.351

for semantically critical variables is simple and facilitated by

the compiler’s automatic dependency analysis.

VIII. EVALUATION AND ANALYSIS

We conducted: (i) micro performance tests to measure the

overhead of each step in OEI attestation; (ii) macro perfor-

mance tests on 5 real embedded programs of different kinds

to examine OAT’s overall overhead; (iii) tests against possible

attacks; (iv) analysis on how OAT defends against evasions.

A. Micro Performance Tests

The runtime overhead of OEI attestation can be broken

down into three parts, as shown in the first column in Table II:

(i) attestation initialization (Oat init), taking place at the entry

of an attestation scope (i.e., an operation); (ii) trampoline

invocation (Otramp), including a direct smc call to initiate

the world switch and a return from the Secure World (i.e.,

the roundtrip world-switch overhead); (iii) attestation exit

(Oat exit), happening at the end of an attestation scope.

We created a test program that incurs each type of overhead

exactly once. We ran this program for 1,024 times and obtained

the average overhead in terms of CPU cycles as well as

time used, as shown in Table II. Oat init and Oat exit are

orders of magnitudes larger than Otramp. This is because

they involve establishing or terminating the attestation session

and the communication between the Normal and the Secure

worlds. Since the initialization and exit happen only once for

each attestation, their overhead tends to blend in the (much

longer) operation execution time and is unnoticeable.

B. Tests on Real Embedded Programs

We selected 5 open-source embedded programs to evaluate

the end-to-end overhead of OAT. We could not test more

programs because of the non-trivial manual effort required

for porting each program to our development board. This

requirement is due to embedded programs’ device-specific

nature. It is not posed by our system. We picked these

programs because they represent a reasonable level of variety.

Some of them may seem toy-like, which is not intentional but

reflects the fact that most embedded programs are simple by

design. We note that these programs are by no means standard

benchmarks. In fact, there are no standard benchmarks for

bare-metal embedded devices available at the time of writing.

It is also rare for embedded device vendors to publicly release

their firmware in source code form. The 5 selected embedded

programs are:

• Syringe Pump (SP) is a remotely controlled liquid-

injection device, often used in healthcare and food

Fig. 3: Compile-time overhead

processing settings. We apply OEI attestation to the

“injection-upon-command” operation.

• House Alarm System (HA) [25] is an IoT device that,

when user-specified conditions are met, takes a picture

and triggers an alarm. We apply OEI attestation to its

“check-then-alarm” operation.

• Remote Movement Controller (RM) [27] is an embedded

device that allows the physical movement of its host

to be controlled remotely, similar to the example given

in §III-A. We attest the “receive-execute-command”

operation.

• Rover Controller (RC) [28] controls the motor on a rover.

We attest the “receive-execute-command” operation.

• Light Controller (LC) [26] is a smart lighting controller.

We attest the “turn-on/off-upon-command” operation.

Compile-time Overhead: We instrumented OAT compiler to

measure its own performance in terms of binary size increase

and compilation delay. Figure 3 shows the results for each

program. The absolute increase in code size ranges from 1 to

3 KB, which is acceptable even for embedded devices, despite

the seemingly large percentage (13%). We find that the size

increase is not proportional to the original code size and is

dominated by the trampoline library, which has a fixed size.

The compilation delay caused by the attestation-related code

analysis and instrumentation may seem high, averaging 62%.

But in absolute terms, the delay is less than 1 second for

the tested programs. We believe this is acceptable given that

(i) the overhead is on par with similar code analysis and

instrumentation techniques; (ii) the compilation is offline and

happens only once for each program version.

Operation Execution Time & Instrumentation Statistics:
For each test program, we measured the execution times with

and without OEI attestation enabled for the selected operation.

The results are shown in the column named “Operation Exec.

Time” in Table III. The sub-column “Overhead” shows the

relative delay caused by OAT to operation executions, averag-

ing 2.7%. We observed that the delays are unnoticeable and

blend in the much longer end-to-end execution time of the

1442



TABLE III: Runtime overhead measured on 5 real embedded programs

Prog.
Operation Exec. Time OAT Instrumentation Statistics Blob Verification

w/o OEI (s) w/ OEI (s) Overhead (%) B.Cond Def-Use Ret Icall/Ijmp Critical Var. Size (B) Time (s)
SP 10.19 10.38 1.9% 488 2 1946 1 20 69 5.6
HA 5.28 5.36 1.6% 147 91 33 2 6 44 0.61
RM 10.01 10.13 1.3% 901 100 100 100 7 913 1.74
RC 2.55 2.66 4.5% 14 33 1 1 8 10 0.13
LC 5.33 5.56 4.4% 931 2420 10 10 4 205 1.35
Avg. N/A N/A 2.7% 496 529 418 23 9 248 1.89

operations.

It is worth noting that the execution delay caused by our

attestation may vary significantly as the following two factors

change: the length/duration of the attested operation and the

frequency of critical variable def-use events. For shorter oper-

ations, the attestation overhead tends to be higher percentage-

wise. For instance, the operation in RC (the shortest among

the tested programs) takes 2.55 seconds to finish without

attestation and 2.66 seconds with attestation, resulting in the

highest relative overhead (4.5%) among all tested programs.

However, this does not mean the absolute delay, in this case,

is longer than others or unacceptable.

The more frequent the def-use events of critical variables

are, the higher the attestation delay becomes. For example,

the operations in HA and LC are similar in lengths. But the

attestation overhead on HA (1.3%) is lower than the overhead

on LC (4.4%) partly because HA has fewer def-use events of

critical variables.

In the “Instrumentation Statistics” column, we show, for

each operation execution, the numbers of the instrumented

events encountered during the attestation (including condi-

tional branches, def-use checks, returns, and indirect call-

s/jumps) as well as the number of critical variables selected.

These statistics provide some insights into the overhead re-

ported earlier. The instrumented events occur about thousands

of times during an operation, which translates roughly to an

average per-operation delay of 0.15 seconds.

Measurement Engine Memory Footprint and Runtime
Overhead: The measurement engine inside TEE consumes

memory mainly for three purposes: the BLAKE-2s HASH

calculation, the critical data define and use check, and the

forward control-flow trace recording, including taken or not-

taken bits and indirect jump/call destination. The BlAKE-

2 HASH function only requires less than 2KB for storing

the block buffer, 32 Bytes for the IV, 160 Bytes for the

sigma array, and some temporary buffers. The critical data

check requires a static HASH table of 4KB with 512 slots,

and a dynamic pool for critical variables (the size of this

pool is proportional to the number of critical variables; in

our evaluation, the pool size is less than 2KB). The forward

control-flow trace in our evaluation is no more than 2KB. The

whole memory footprint of the measurement engine is less

than 10KB for the real embedded applications used in our

evaluation.

The runtime overhead of the measurement engine comes

TABLE IV: Number of Instrumentation Sites: Value-based (R1) and
Address-based (R2)

SP HA RM RC LC Avg.
R1 56 37 57 20 41 -
R2 140 388 842 45 131 -
R1 / R2 40% 9.5% 6.8% 44.4% 31.2% 26%

from three sources (i.e., the three major tasks of the measure-

ment engine): calculating the hash upon function return events,

recording critical data define events, and verifying critical data

use event. In our evaluation, on average, processing one return

event and calculating the new hash takes 0.19μs; recording a

critical data define event takes 11.04μs; verifying a critical

data use event takes 2.03μs. Obviously, hash calculation is

relatively fast whereas critical data event processing requires

a longer time mainly because it involves hash table lookup or

memory allocation for a new entry.

Value-based Check vs. Addressed-based Check: To show

the performance difference between value-based checking

(CVI) and address-based checking (e.g., DFI), we measured

the number of instrumented instructions needed in both cases

for all of the test programs. As shown in Table IV, on average,

CVI’s instrumentation is 74% less than the instrumentation

required by address-based checking (i.e., a 74% reduction).

Specifically, CVI’s instrumentation is as little as 6.8% of what

DFI requires when the program is relatively large (e.g., RM).

The number only increases to 44.4% when we annotated most

of the variables as critical in RC.

Space-efficiency of Hybrid Attestation: Our control-flow

attestation uses the hybrid scheme consisting both forward

traces and backward hashes to achieve not only complete

verifiability but also space-efficiency. To quantify the space-

efficiency, we compared the sizes of the control-flow traces

produced by OAT (R1 in Table V) and the traces produced

by pure trace-based CFI (R2 in Table V). On average, OAT’s

traces take only 2.24% of space as needed by control-flow

traces (i.e., a 97% reduction). This result shows that our hybrid

scheme is much better suited for embedded devices than solely

trace-based CFI in terms of space efficiency.

On the other hand, compared with existing hash-based

attestation schemes, OAT’s attestation blobs are not of fixed-

length and grow as attested operations execute, which may

lead to overly large attestation blobs. However, in practice,

OAT attestation blobs are reasonably small in size. Based

1443



TABLE V: Control-flow Trace Size (Bytes): With Return Hash (R1)
and Without Return Hash (R2)

SP HA RM RC LC Avg.
R1 69 44 913 10 205 -
R2 42941 3772 13713 585 13725 -
R1 / R2 0.2% 1.1% 6.7% 1.7% 1.5% 2.24%

on our experiments, the average blob size is 0.25kb. The

individual blob size for each program is shown in the “Blob

Size” column in Table III. We attribute this optimal result to

two design choices: (i) the hybrid measurement scheme that

uses fixed length hashes for verifying returns (more frequent)

and traces for verifying indirect forward control transfers (less

frequent); (ii) the operation-scoped control-flow attestation,

which generates per-operation measurements and is enabled

only when an operation is being performed.

Verification Time: We also measured OAT verifier’s execution

time when it checks the attestation blob generated for each

program. The result is shown in the “Verification Time”

column in Table III, averaging 1.89 seconds per operation.

It shows that verification is not only deterministic but fast. On

average, the verification is one order of magnitude faster than

the original execution (Table III). This result echoes that the

verification is not a re-run of the program. It is a static abstract

execution guided by the measurement stream.

C. Attack Detection via OEI Attestation

Due to the lack of publicly available exploits for bare-

metal devices, we injected vulnerabilities to the previously

discussed test programs, launch basic control-flow hijacks and

data corruption, and examine if the measurements generated

by OAT capture these attacks.

Specifically, we injected to the programs the vulnerabilities

similar to those shown in Listing 1. We then exploited the

vulnerabilities to (i) overwrite a function pointer; (ii) corrupt

a critical variable; (iii) trigger an unintended operation. By

verifying the measurements generated by OAT, we found that,

in each test case, (i) the illegal control-flow transfer caused by

the subverted function pointer is recorded in the measurement

stream; (ii) the CVI flag is set due to the failed CVI check; (iii)
the unintended operation is detected because the reconstructed

code path does not match the requested operation.

Although these tests are simple and created by ourselves,

they do demonstrate the basic functioning of our prototype and

confirm OEI attestation as a viable way for remote verifiers

to detect those attacks that are currently undetectable on

embedded devices. Moreover, they showcase that IoT backend

can now use OAT to remotely attest the operations performed

by IoT devices and establish verifiable trust on these devices.

D. Security Analysis

Our threat model (§III-D) anticipates that attackers may find

and exploit unknown vulnerabilities in the embedded programs

running in the Normal World. However, we assume code in-

jection or modification cannot happen, which the existing code

integrity schemes for embedded devices already prevent [16],

[37].

To evade OAT, a normal-world attacker would need to
1© disable the instrumentation or the trampolines, 2© abuse

the interfaces that the measurement engine exposed to the

trampolines, or CA-TA interfaces, 3© manipulate the control

flow in a way to generate a HASH collision, thus bypassing

the verification, or 4© modify the attestation blob including

replay an old recorded blob.

1© is ruled out by the code integrity assumption. Plus,

attempts to divert the control-flows of instrumented code or

trampolines are always recorded in the control-flow trace

and detected later by the verifier. Our design prevents 2© as

follows. OAT compiler disallows world-switching instructions

(smc) used outside of the trampoline library. This restriction

ensures that only the trampoline functions can directly invoke

the CA-TA interfaces and the rest of the code in the Normal

World cannot. To further prevent code-reuse attacks (e.g.,

jumping to the interface invocation point in the library from

outside), OAT loads the library in a designated memory region.

The compiler masks the target of every indirect control transfer

in the embedded program so that the trampoline library cannot

be reached via indirect calls or jumps or returns (i.e., only

hard-coded direct calls from each instrumentation site can

reach trampolines). This masking-based technique is highly

efficient and is commonly used for software fault isolation.

As a result, 2© is prevented.

As for 3©, we assume that the attacker may exploit program

vulnerabilities and manipulate the control flow of the program

in arbitrary ways. We prove that (see Appendix B) our control-

flow verification mechanism cannot be bypassed by such

a powerful attacker. Our proof shows that bypassing our

verification is at least as hard as finding a hash collision,

which is practically infeasible considering that BLAKE-2s is

as collision-resistent as SHA3 [7].

Our verification scheme prevents 4© because the integrity

of the attestation blob is guarded by a signature generated

from TEE with a hardware-provisioned private key. A verifier

can easily check the signature and verifies the integrity of the

attestation blob. Replay attack is also prevented by checking

whether the cryptographic nonce inside the attestation blob

matches what originally was generated by the verifier.

There is no higher privileged code (e.g., a standalone OS)

that needs to be protected or trusted because OAT targets bare-

metal embedded devices. For the same reason, it is realistic to

require the firmware to be entirely built using OAT compiler.

IX. RELATED WORK

Remote Attestation: Early works on remote attestation, such

as [60][44], were focused on static code integrity, checking if

code running on remote devices has been modified. A series

of works [4], [50], [21], [38] studied the Root of Trust for

remote attestation, relying on either software-based TCB or

hardware-based TPM or PUF. Armknecht et al. [5] built a

security framework for software attestation.

1444



Other works went beyond static property attestation. Hal-

dar et al. [61] proposed the verification of some high-level

semantic properties for Java programs via an instrumented

Java virtual machine. ReDAS [36] verified the dynamic system

properties. Compared with our work, these previous systems

were not designed to verify control-flow or dynamic data

integrity. Further, their designs do not consider bare-metal em-

bedded devices or IoT devices. Some recent remote attestation

systems addressed other challenges. A tool called DARPA [35]

is resilient to physical attacks. SEDA [6] proposed a swarm

attestation scheme scalable to a large group of devices. In

contrast, we propose a new remote attestation scheme to solve

a different and open problem: IoT backend’s inability to verify

if IoT devices faithfully perform operations without being

manipulated by advanced attacks (i.e., control-flow hijacks

or data-only attacks). Our attestation centers around OEI, a

new security property we formulated for bare-metal embedded

devices. OEI is operation-oriented and entails both control-

flow and critical data integrity.

A recent work called C-FLAT [2] is closely related to our

work. It enabled control-flow attestation for embedded devices.

However, it suffers from unverifiable hashes, especially when

attested programs have nested loops and branches. This is

because verifying a control-flow hash produced by C-FLAT

requires the knowledge of all legitimate control-flow hashes,

which are impossible to completely pre-compute due to the

unbounded number of code paths in regular programs (i.e.,

the path explosion problem). In comparison, OAT uses a

new hybrid scheme for attesting control-flows, which allows

deterministic and fast verification. Moreover, OAT verifies

Critical Variable Integrity and can detect data-only attacks,

which C-FLAT and other previous works cannot.

Online CFI Enforcement: Although control-flow attestation

has not been well investigated, CFI enforcement is a topic

that has attracted a rich body of works since its debut [1]. A

common goal shared by many CFI enforcement methods such

as [58], [49], [63], [48], [17], [18] is to find a practical trade-off

between runtime overhead and the level of precision. Previous

works such as [65], [64] also introduced CFI enforcement

to COTS or legacy binaries. CPI [41] prevents control flow

hijacking by protecting code pointers in safe regions. These

work made CFI increasingly practical for adoption in the

real world and serves as an effective software exploitation

prevention mechanism.

However, enforcing fine-grained CFI and backward-edge

integrity can be still too heavy or impractical for embedded

devices, mostly because of the limited CPU and storage

on such devices. Apart from less demanding on hardware

resources, OEI attestation has another advantage over online

CFI enforcement: it allows remote verifiers to reconstruct the

exact code paths executed during an operation, which enables

full CFI checking (as opposed to a reduced or coarse-grained

version) as well as other postmortem security analysis.

Moreover, CFI enforcement is not enough when it comes to

data-only attacks, such as control-flow bending, data-oriented

programming, etc. [14], [10], [33], [32]. But these attacks do

violate OEI and can be detected by OAT.

Runtime Data Protection: A series of work addressed the

problem of program data corruption via dynamic bounds

checking [20], [46], [19] and temporal safety [47]. DFI [13]

and WIT [3] took a different approach. They use static analysis

to derive a policy table specifying which memory addresses

each instruction can write to. They instrument all memory-

access instructions to ensure the policy is not violated during

runtime. Although effective at preventing data corruption,

these techniques tend to incur high runtime overhead due to

the need to intercept and check a large number of memory

accesses. We refer to this line of work as address-based

checking. In contrast, we define Critical Variable Integrity and

use the new Value-based Define-Use Check to verify CVI. Our

check is selective (i.e., it only applies to critical variables) and

lightweight. It is value-based and does not require complex

policies or extensive instrumentation. The CVI verification and

the control-flow attestation mutually compensate each other,

forming the basis for OEI verification.

DataShield[11] applies selective protection to sensitive data.

Their definition of sensitive data is type-based and also needs

programmer annotation. It relies on a protected memory

region to isolate the sensitive data and performs address-

based checking. In comparison, our critical variable annotation

is more flexible and partly automated. Instead of creating

designated safe memory regions, which can be unaffordable

or unsupported on embedded devices, we perform lightweight

value-based checks. Unlike DataShield, OEI does not concern

data confidentiality.

X. CONCLUSION

We tackle the open problem that IoT backends are unable to

remotely detect advanced attacks targeting IoT devices. These

attacks compromise control-flow or critical data of a device,

and in turn, manipulate IoT backends. We propose OEI,

a new security property for remotely attesting the integrity

of operations performed by embedded devices. OEI entails

operation-scoped CFI and Critical Variable Integrity.

We present an end-to-end system called OAT that realizes

OEI attestation on ARM-based bare-metal embedded devices.

OAT solves two research challenges associated with attesting

dynamic control and data properties: incomplete verification of

CFI and heavy data integrity checking. First, OAT combines

forward-edge traces and backward-edge hashes as control-flow

measurements. It allows fast and complete control-flow ver-

ification and reconstruction while keeping the measurements

compact. Second, OAT enforces selective value-based variable

integrity checking. The mechanism is lightweight thanks to the

significantly reduced instrumentation. It enables the detection

of data-only attacks for the first time on embedded devices. It

allows IoT backends to establish trust on incoming data and

requests from IoT devices.

1445



REFERENCES

[1] Martı́n Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-
flow integrity. In Proceedings of the 12th ACM conference on Computer
and communications security, pages 340–353. ACM, 2005.

[2] Tigist Abera, N. Asokan, Lucas Davi, Jan-Erik Ekberg, Thomas Nyman,
Andrew Paverd, Ahmad-Reza Sadeghi, and Gene Tsudik. C-flat:
Control-flow attestation for embedded systems software. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS ’16, pages 743–754, New York, NY, USA, 2016.
ACM.

[3] Periklis Akritidis, Cristian Cadar, Costin Raiciu, Manuel Costa, and
Miguel Castro. Preventing memory error exploits with wit. In Security
and Privacy, 2008. SP 2008. IEEE Symposium on, pages 263–277. IEEE,
2008.

[4] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A secure and reliable
bootstrap architecture. In Proceedings of the 1997 IEEE Symposium on
Security and Privacy, SP ’97, pages 65–, Washington, DC, USA, 1997.
IEEE Computer Society.

[5] Frederik Armknecht, Ahmad-Reza Sadeghi, Steffen Schulz, and Chris-
tian Wachsmann. A security framework for the analysis and design
of software attestation. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer &#38; Communications Security, CCS ’13,
pages 1–12, New York, NY, USA, 2013. ACM.

[6] N. Asokan, Ferdinand Brasser, Ahmad Ibrahim, Ahmad-Reza Sadeghi,
Matthias Schunter, Gene Tsudik, and Christian Wachsmann. Seda:
Scalable embedded device attestation. In Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications Security, CCS
’15, pages 964–975, New York, NY, USA, 2015. ACM.

[7] BLAKE2. Blake2 fast secure hashing. https://blake2.net/, 2019.
[8] Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage.

When good instructions go bad: Generalizing return-oriented program-
ming to risc. In Proceedings of the 15th ACM conference on Computer
and communications security, pages 27–38. ACM, 2008.

[9] Capstone. Capstone disassembly framework. https://www.capstone-
engine.org/.

[10] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and
Thomas R Gross. Control-flow bending: On the effectiveness of control-
flow integrity. In USENIX Security Symposium, pages 161–176, 2015.

[11] Scott A Carr and Mathias Payer. Datashield: Configurable data con-
fidentiality and integrity. In Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security, pages 193–204.
ACM, 2017.

[12] Claude Castelluccia, Aurélien Francillon, Daniele Perito, and Claudio
Soriente. On the difficulty of software-based attestation of embedded
devices. In Proceedings of the 16th ACM Conference on Computer and
Communications Security, CCS ’09, pages 400–409, New York, NY,
USA, 2009. ACM.

[13] Miguel Castro, Manuel Costa, and Tim Harris. Securing software by
enforcing data-flow integrity. In Proceedings of the 7th Symposium on
Operating Systems Design and Implementation, OSDI ’06, pages 147–
160, Berkeley, CA, USA, 2006. USENIX Association.

[14] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K.
Iyer. Non-control-data attacks are realistic threats. In Proceedings
of the 14th Conference on USENIX Security Symposium - Volume 14,
SSYM’05, pages 12–12, Berkeley, CA, USA, 2005. USENIX Associa-
tion.

[15] Shuo Chen, Jun Xu, Emre Can Sezer, Prachi Gauriar, and Ravishankar K
Iyer. Non-control-data attacks are realistic threats. In USENIX Security
Symposium, volume 14, 2005.

[16] Abraham A Clements, Naif Saleh Almakhdhub, Khaled S Saab, Prashast
Srivastava, Jinkyu Koo, Saurabh Bagchi, and Mathias Payer. Protecting
bare-metal embedded systems with privilege overlays. In IEEE Symp.
on Security and Privacy. IEEE, 2017.

[17] John Criswell, Nathan Dautenhahn, and Vikram Adve. Kcofi: Complete
control-flow integrity for commodity operating system kernels. In
Security and Privacy (SP), 2014 IEEE Symposium on, pages 292–307.
IEEE, 2014.

[18] Lucas Davi, Alexandra Dmitrienko, Manuel Egele, Thomas Fischer,
Thorsten Holz, Ralf Hund, Stefan Nürnberger, and Ahmad-Reza
Sadeghi. Mocfi: A framework to mitigate control-flow attacks on
smartphones. In NDSS, volume 26, pages 27–40, 2012.

[19] Joe Devietti, Colin Blundell, Milo MK Martin, and Steve Zdancewic.
Hardbound: architectural support for spatial safety of the c programming

language. In ACM SIGARCH Computer Architecture News, volume 36,
pages 103–114. ACM, 2008.

[20] Dinakar Dhurjati and Vikram Adve. Backwards-compatible array
bounds checking for c with very low overhead. In Proceedings of the
28th international conference on Software engineering, pages 162–171.
ACM, 2006.

[21] Karim Eldefrawy, Aurélien Francillon, Daniele Perito, and Gene Tsudik.
SMART: Secure and Minimal Architecture for (Establishing a Dynamic)
Root of Trust. In NDSS 2012, 19th Annual Network and Distributed
System Security Symposium, February 5-8, San Diego, USA, San Diego,
UNITED STATES, 02 2012.

[22] Nicolas Falliere, Liam O Murchu, and Eric Chien. W32. stuxnet dossier.
White paper, Symantec Corp., Security Response, 5(6), 2011.

[23] FDA. Cybersecurity vulnerabilities identified in implantable cardiac
pacemaker, August 2017.

[24] Xinyang Ge, Weidong Cui, and Trent Jaeger. Griffin: Guarding control
flows using intel processor trace. ACM SIGOPS Operating Systems
Review, 51(2):585–598, 2017.

[25] Github. House Alarm System. https://github.com/ddrazir/alarm4pi.
[26] Github. Light Controller. https://github.com/Barro/light-controller.
[27] Github. Remote Movement Controller. https://github.com/bskari/pi-

rc/tree/pi2.
[28] Github. Rover Controller. http://github.com/Gwaltrip/RoverPi/tree/master/tcpRover.
[29] GlobalPlatform. GlobalPlatform TEE Specifications.

https://www.globalplatform.org/specificationsdevice.asp.
[30] Andy Greenberg. Hacker says he can hijack a $35 k police drone a mile

away, 2016.
[31] Grant Ho, Derek Leung, Pratyush Mishra, Ashkan Hosseini, Dawn Song,

and David Wagner. Smart locks: Lessons for securing commodity
internet of things devices. In Proceedings of the 11th ACM on Asia
Conference on Computer and Communications Security, pages 461–472.
ACM, 2016.

[32] Hong Hu, Zheng Leong Chua, Sendroiu Adrian, Prateek Saxena, and
Zhenkai Liang. Automatic generation of data-oriented exploits. In
Proceedings of the 24th USENIX Conference on Security Symposium,
SEC’15, pages 177–192, Berkeley, CA, USA, 2015. USENIX Associa-
tion.

[33] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek
Saxena, and Zhenkai Liang. Data-oriented programming: On the
expressiveness of non-control data attacks. In Security and Privacy
(SP), 2016 IEEE Symposium on, pages 969–986. IEEE, 2016.

[34] Troy Hunt. Controlling vehicle features of nissan leafs across the
globe via vulnerable apis. https://www.troyhunt.com/controlling-vehicle-
features-of-nissan/, February 2016.

[35] Ahmad Ibrahim, Ahmad-Reza Sadeghi, Gene Tsudik, and Shaza
Zeitouni. Darpa: Device attestation resilient to physical attacks. In
Proceedings of the 9th ACM Conference on Security &#38; Privacy in
Wireless and Mobile Networks, WiSec ’16, pages 171–182, New York,
NY, USA, 2016. ACM.

[36] Chongkyung Kil, Emre C. Sezer, Ahmed M. Azab, Peng Ning, and
Xiaolan Zhang. Remote attestation to dynamic system properties:
Towards providing complete system integrity evidence. Dependable
Systems & Networks, 2009., 2009.

[37] Chung Hwan Kim, Taegyu Kim, Hongjun Choi, Zhongshu Gu, By-
oungyoung Lee, Xiangyu Zhang, and Dongyan Xu. Securing real-time
microcontroller systems through customized memory view switching. In
NDSS, 2018.

[38] Joonho Kong, Farinaz Koushanfar, Praveen K. Pendyala, Ahmad-Reza
Sadeghi, and Christian Wachsmann. PUFatt: Embedded Platform Attes-
tation Based on Novel Processor-Based PUFs. In DAC, page 6. ACM,
2014.

[39] Tim Kornau. Return oriented programming for the ARM architecture.
PhD thesis, Masters thesis, Ruhr-Universität Bochum, 2010.

[40] Brian Krebs. Reaper: Calm before the iot security storm.
https://krebsonsecurity.com/2017/10/reaper-calm-before-the-iot-
security-storm/, October 2017.

[41] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea,
R. Sekar, and Dawn Song. Code-pointer integrity. In Proceedings
of the 11th USENIX Conference on Operating Systems Design and
Implementation, OSDI’14, pages 147–163, Berkeley, CA, USA, 2014.
USENIX Association.

[42] Keen Security Lab. New car hacking research: Tesla motors.
http://keenlab.tencent.com/en/2017/07/27/New-Car-Hacking-Research-
2017-Remote-Attack-Tesla-Motors-Again/, 2017.

1446



[43] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the
2004 International Symposium on Code Generation and Optimization
(CGO’04), Palo Alto, California, Mar 2004.

[44] Yanlin Li, Jonathan M. McCune, and Adrian Perrig. VIPER: verifying
the integrity of peripherals’ firmware. In Proceedings of the 18th ACM
Conference on Computer and Communications Security, CCS 2011,
Chicago, Illinois, USA, October 17-21, 2011, pages 3–16, 2011.

[45] Linaro. OP-TEE. https://www.op-tee.org.
[46] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve

Zdancewic. Softbound: Highly compatible and complete spatial memory
safety for c. ACM Sigplan Notices, 44(6):245–258, 2009.

[47] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve
Zdancewic. Cets: compiler enforced temporal safety for c. In ACM
Sigplan Notices, volume 45, pages 31–40. ACM, 2010.

[48] Ben Niu and Gang Tan. Monitor integrity protection with space
efficiency and separate compilation. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, pages
199–210. ACM, 2013.

[49] Ben Niu and Gang Tan. Per-input control-flow integrity. In Proceedings
of the 22Nd ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS ’15, pages 914–926, New York, NY, USA, 2015.
ACM.

[50] Bryan Parno, Jonathan M. McCune, and Adrian Perrig. Bootstrapping
trust in commodity computers. In Proceedings of the 2010 IEEE Sym-
posium on Security and Privacy, SP ’10, pages 414–429, Washington,
DC, USA, 2010. IEEE Computer Society.

[51] D. Quarta, M. Pogliani, M. Polino, F. Maggi, A. M. Zanchettin, and
S. Zanero. An experimental security analysis of an industrial robot
controller. In 2017 IEEE Symposium on Security and Privacy (SP),
pages 268–286, May 2017.

[52] Rapid7. Multiple vulnerabilities in animas onetouch ping in-
sulin pump. https://blog.rapid7.com/2016/10/04/r7-2016-07-multiple-
vulnerabilities-in-animas-onetouch-ping-insulin-pump/, October 2016.

[53] Eyal Ronen, Adi Shamir, Achi-Or Weingarten, and Colin OFlynn. Iot
goes nuclear: Creating a zigbee chain reaction. In Security and Privacy
(SP), 2017 IEEE Symposium on, pages 195–212. IEEE, 2017.

[54] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. Swatt: software-
based attestation for embedded devices. In IEEE Symposium on Security
and Privacy, 2004. Proceedings. 2004, pages 272–282, May 2004.

[55] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendert van
Doorn, and Pradeep Khosla. Pioneer: Verifying code integrity and
enforcing untampered code execution on legacy systems. SIGOPS Oper.
Syst. Rev., 39(5):1–16, October 2005.

[56] Tom Spring. New mirai variant carries out 54-hour ddos at-
tacks. https://threatpost.com/new-mirai-variant-carries-out-54a-hour-
ddos-attacks/124660/, March 2017.

[57] Christos Stergiou, Kostas E Psannis, Byung-Gyu Kim, and Brij Gupta.
Secure integration of iot and cloud computing. Future Generation
Computer Systems, 78:964–975, 2018.

[58] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway,
Úlfar Erlingsson, Luis Lozano, and Geoff Pike. Enforcing forward-edge
control-flow integrity in gcc &#38; llvm. In Proceedings of the 23rd
USENIX Conference on Security Symposium, SEC’14, pages 941–955,
Berkeley, CA, USA, 2014. USENIX Association.

[59] Victor van der Veen, Dennis Andriesse, Enes Göktaş, Ben Gras, Lionel
Sambuc, Asia Slowinska, Herbert Bos, and Cristiano Giuffrida. Practical
context-sensitive cfi. In Proceedings of the 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security, pages 927–940. ACM,
2015.

[60] Arvind Seshadri Adrian Perrig Leendert van Doorn Pradeep Khosla.
Using software-based attestation for verifying embedded systems in cars.
S&P, Oakland, 2004.

[61] Deepak Chandra Vivek Haldar and Michael Franz. Semantic remote
attestation – a virtual machine directed approach to trusted computing.
VM, 2004.

[62] Jacob Wurm, Khoa Hoang, Orlando Arias, Ahmad-Reza Sadeghi, and
Yier Jin. Security analysis on consumer and industrial iot devices. In
Design Automation Conference (ASP-DAC), 2016 21st Asia and South
Pacific, pages 519–524. IEEE, 2016.

[63] Bin Zeng, Gang Tan, and Greg Morrisett. Combining control-flow
integrity and static analysis for efficient and validated data sandbox-
ing. In Proceedings of the 18th ACM conference on Computer and
communications security, pages 29–40. ACM, 2011.

TABLE VI: Instrumented Instructions for Control and Data Mea-
surement

Inst Type Layer Inst Info to Record
Ind. Call Assm. blr xr xr
Ind. Jump Assm. br xr xr

Cond. Jump Assm.
b.cond,cbz

true/false
cbnz,tbz,tbnz

Data Access IR load/store addr,value
Return Assm. ret pc,lr

[64] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres,
Stephen McCamant, Dawn Song, and Wei Zou. Practical control flow
integrity and randomization for binary executables. In Security and
Privacy (SP), 2013 IEEE Symposium on, pages 559–573. IEEE, 2013.

[65] Mingwei Zhang and R Sekar. Control flow integrity for cots binaries.
In USENIX Security Symposium, pages 337–352, 2013.

APPENDIX A

IMPLEMENTATION DETAILS OF OAT SYSTEM

Compiler-based Instrumentation: OAT compiler is built on

LLVM [43]. Besides the typical compilation tasks, it performs

(i) the analysis for identifying critical variables; (ii) the code

instrumentation for collecting runtime measurements on con-

trol flow and critical variables. The analysis works on the

LLVM IR. It first constructs the initial set of critical variables

by traversing the IR and searching for control-dependent

variables and programmer-annotated semantically critical vari-

ables. It then uses a field-sensitive context-insensitive Ander-

son pointer analysis to generate the global points-to informa-

tion. The compiler uses this point-to information to recursively

identify direct and indirect pointers to the critical variables

(i.e., critical pointers). It also performs a backward slicing

for each critical variable on the program dependence graph to

find its dependencies. All critical pointers and dependencies

are iteratively added to the critical variable set.

OAT compiler instruments the code via an added backend

pass in LLVM. The instrumentation is needed at both the

assembly level (for control-related instructions) and the IR

level (for data-related instructions). This is important because

the translation from the IR to the machine code can generate

additional control-flow instructions that need to be instru-

mented. The compiler inserts calls to trampolines at instruc-

tions that can change the control flow of attested operations

or store/load critical variables (Table VI). Though seemingly

straightforward, this instrumentation, if not designed carefully,

can break the original program because a trampoline call may

corrupt the destination register used by the original control

transfer. To avoid such issues, the instrumentation saves to

the stack the registers that are to be used for passing the

parameters to the trampoline. Moreover, the trampoline is

responsible for handling the caller-saved registers (normally

handled by callers rather than callees). This design reduces the

number of inserted instructions at each instrumentation site. It

also minimizes the stack frame growth. As a result, registers

changed during a trampoline call are restored immediately

after the call returns.

1447



Measurement Engine: We built the measurement engine as

a Trusted Application (TA) running in the Secure World. It

handles events generated by the trampolines (i.e., the Client

Application, or CA) during runtime. Control-flow events

are only generated and handled during an active attesta-

tion window (when an attestation-enabled operation is ex-

ecuting). Internally, the measurement engine maintains, for

each active operation, a binary trace (Sbin) for branches,

an address trace (Saddr) for indirect calls/jumps, and a

hash (H) for returns. At the end of an attestation session,

the engine concatenates Sbin and Saddr to form a single

measurement stream, S, in a sequentially parsable format:

Size(Saddr)|Saddr|Size(Sbin)|Sbin.

Data load/store events are only triggered by critical vari-

ables. To perform CVI check, the engine maintains a hashmap

to keep track of each critical variable’s last-defined value.

At every use-site of a critical variable, the engine checks if

the observed value equals the stored value in the hashmap.

If a mismatch is encountered, the engine sets a global flag,

F , to indicate the CVI violation. If a violation is detected,

the engine also records the variable address and the previous

return address as the context information C, which allows the

remote verifier to investigate the violation. Finally, the engine

generates a signed attestation blob that consists of S, H , F ,

and C if CVI verification failed, along with a nonce N sent

from the verifier who initiated the attestation. It will be passed

back to the normal world who will finally send the signed

attestation blob to our verification engine via the network.

Although we use the normal world’s network stack, we do

not need to trust it. Any corruption of the blob is detectable

by verifying the signature. Any denial of service by the normal

world network stack also causes attestation failure.

CA-TA Interaction: We implemented three CA-TA com-

munication interfaces compliant with the GlobalPlatform’s

TEE specification [29], a de-facto standard for TEE in-

terface design. The interfaces are oei_attest_begin,

commit_event, and oei_attest_end, used by the CA

to notify the TA of the respective event. To prevent potential

abuse (e.g., calling them via ROP), the measurement engine

ensures that the interfaces can only be called by the trampo-

lines and can never be invoked via indirect calls, jumps, or

returns (details in §VIII-D ).

Verification Engine: We prototyped a simple verification

engine based on the Capstone disassembler [9]. It takes as

input an attestation blob, the binary code that performed the

operation under attestation, and a CFG extracted at compile

time for that operation code. As described in §IV, the

verification process is fairly straightforward, thanks to our

hybrid measurement scheme.

For control-flow attestation, the verifier performs a static

abstract execution of the disassembled binary code. This

abstract execution is guided by the forward-edge traces in

the attestation blob. It simply traverses through the code and

performs CFI checks at each indirect control-flow transfer.

It also simulates a call stack for keeping track of return

addresses and updating the return hash, which is checked

against the reported hash in the end. This abstract-execution-

based verification is fast because it does not actually run the

code or have to exhaustively explore all possible code paths.

Moreover, unlike traditional attestation, which only gives a

binary result, our verification allows for the reconstruction

of the execution traces, which are valuable to postmortem

analysis. For CVI verification, the verifier checks if the CVI

violation bit is set in the attestation blog. If positive, it fails

the attestation and outputs the context information.

APPENDIX B

PROOF OF CONTROL-FLOW VERIFICATION

Let h : {0, 1}� → {0, 1} be a collision resistant hash

function. Using h we can construct another hash function

H[op] which takes the sequence of values 〈z1, · · · , zm〉 as

follows: H1 = h(z1) and Hi+1 = op(Hi, zi+1) (1 ≤ i < m).

The value of H on the sequence is Hm. We rely on the

following property, which restricts the binary operation op we

can use.

If h is collision resistant, then H[op] is collision

resistant

Our implementation uses BLAKE-2s as h and supports a

variety of binary operations, such as concatenation and xor.

Recall that if op is concatenation, H[op] is very similar to the

classic Merkle-Damgrad construction. For the rest of the note,

we will fix the binary operation op (i.e., we use concatenation

as op in our implementation) and just write H instead of

H[op].
Let P be the program under consideration. Let C(P ) =

{c1, · · · , ck} and R(P ) = {r1, · · · , rk} be the call and return

sites in a program P (we will assume that the return site ri
corresponds to the call site ci). Recall that a proof σ has three

components (α, v, β), where α ∈ C(P )∗ (a sequence of call

sites), v is the hash value of the sequence of returns, and β
is a sequence of jumps (direct and indirect) and conditional

branches (essentially β has everything related to control-flow

transfers, except calls and returns). A path π through the

control-flow graph (CFG) program P is called legal if it

satisfies two conditions: (A) the call and returns in π are

balanced 4, (B) the jumps and conditional branches are legal

(this can be easily checked by looking at the source code

of P and the data values corresponding to the targets of

the indirect jumps). Π(P ) denotes the set of execution paths

through the CFG of the program P . The proof corresponding

to an execution path π ∈ Π(P ) is denoted by σ(π). Next, we

describe our verification algorithm.

Verification. Our verifier vrfy(P, σ) (let σ = (α, v, β)) and is

conjunction of two verifiers vrfyj and vrfyc described below.

• Verifier vrfyj(P, σ) checks that the jumps and branches

in β are valid (i.e. this can be easily done because

the verifier has the program P and the data values

4This means that call and returns satisfy the grammar with the following
rules: S → ci S ri (for 1 ≤ i ≤ k) and S → ε.

1448



corresponding to the targets of the indirect jumps). If

the jumps are valid, then vrfyj(P, σ) = 1; otherwise

vrfyj(P, σ) = 0
• Verifier vrfyc(P, σ) checks the validity of calls and re-

turns. This part is a bit more involved. Essentially vrfyc
“mimics” how the hash of the returns are computed and

then checks if the computed hash value matches the one

in the proof σ. Verifier vrfyc maintains an auxiliary stack

st and processes the sequence of calls α = 〈cj1 , · · · , cjn〉
as follows: The calls in α are processed in order, and the

verifier keeps running hash. Let us say we have processed

cj1 , · · · , cjr and are processing cjr+1
. Recall that from the

call site we can tell if there was a context switch in the

program execution (a context switch means that we are

executing in a different function). The call site has the

location of the program, so we can inspect whether we

are in the same function as the top of the stack (i.e., the

location of cjr+1
is different from the location of the call

site on top of the stack). If there was no context switch,

then we push cjr+1 on the stack. If there was a context

switch, then we pop the top of the stack (say cu), compute

v′ = op(v′, h(ru)), and push cjr+1
on the stack. If ru was

the first return computed, then v′ = h(ru). After all the

calls have been processed, let the hash value be v′. The

verifier vrfyc outputs a 1 if v = v′; otherwise it outputs

a 0.

The verifier vrfy(P, σ) is vrfyj(P, σ) ∧ vrfyc(P, σ).

Definition 1. A proof σ is called ambiguous iff there are two

paths π and π′ and π such that: (I) σ = σ(π) = σ(π′) (II)

π is legal and π′ is illegal.

Note that if the verifier gets an ambiguous proof σ, then it

cannot reject it because it could also correspond to a legal path

π. Therefore, an adversary is free to take an illegal path π′

corresponding to the ambiguous proof. Therefore, adversary’s

goal is to generate an ambiguous proof.

Essentially the lemma given below informally states that if
an adversary can generate an ambiguous proof, then they can
find a collision in the hash function H[op]. Hence, if H[op]
is collision resistant, then it will be hard for an adversary to

find an ambiguous proof and “fool” the verifier.

Lemma 2. If there exists an ambiguous proof σ, then there

is a collision in the hash function H[op].

Proof: Let π and π′ be two execution paths that result in the

same proof σ. Moreover, let π be legal and π′ be illegal (recall

that σ is an ambiguous proof). Let rπ and rπ′ be the sequence

of returns for the two paths π and π′. The set of direct jumps

and call sequences for the two paths are the same (since they

correspond to the same proof σ), so the sequence of returns has

to be different (otherwise the two paths will be the same, which

is a contradiction). However, the two sequences of returns hash

to the same value under H[op] because the paths correspond

to the same proof. Thus, we have found a collision in H[op].
�

1449


