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Abstract—To validate transactions, cryptocurrencies such as
Bitcoin and Ethereum require nodes to verify that a blockchain
is valid. This entails downloading and verifying all blocks,
taking hours and requiring gigabytes of bandwidth and storage.
Hence, clients with limited resources cannot verify transactions
independently without trusting full nodes. Bitcoin and Ethereum
offer light clients known as simplified payment verification (SPV)
clients, that can verify the chain by downloading only the block
headers. Unfortunately, the storage and bandwidth requirements
of SPV clients still increase linearly with the chain length. For
example, as of July 2019, an SPV client in Ethereum needs to
download and store about 4 GB of data.

Recently, Kiayias et al. proposed a solution known as non-
interactive proofs of proof-of-work (NIPoPoW) that allows a light
client to download and store only a polylogarithmic number
of block headers in expectation. Unfortunately, NIPoPoWs are
succinct only as long as no adversary influences the honest
chain, and can only be used in chains with fixed block difficulty,
contrary to most cryptocurrencies which adjust block difficulty
frequently according to the network hashrate.

We introduce FlyClient, a novel transaction verification light
client for chains of variable difficulty. FlyClient is efficient both
asymptotically and practically and requires downloading only a
logarithmic number of block headers while storing only a single
block header between executions. Using an optimal probabilistic
block sampling protocol and Merkle Mountain Range (MMR)
commitments, FlyClient overcomes the limitations of NIPoPoWs
and generates shorter proofs over all measured parameters. In
Ethereum, FlyClient achieves a synchronization proof size of less
than 500 KB which is roughly 6,600x smaller than SPV proofs.
We finally discuss how FlyClient can be deployed with minimal
changes to the existing cryptocurrencies via an uncontentious
velvet fork.

I. INTRODUCTION

Mobile digital payments are becoming increasingly popular
[1] and enable consumers to quickly transfer money to peers
and efficiently pay for goods and services. In general these
payments rely on centralized and trusted services. Decentral-
ized cryptocurrencies such as Bitcoin [2] and Ethereum [3],
seem to provide an intriguing alternative to these services.
Unfortunately, most current solutions for verifying cryptocur-
rency transactions do not suit low-capacity mobile devices
such as phones or IoT-devices. Blockchain-based cryptocur-
rencies use state machine replication that requires nodes to
verify every state transition and store the entire state. This
is entirely unsuitable for battery, computation, and storage
restricted devices. Current mobile solutions often employ a
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trusted wallet provider which negates much of the benefits of
these decentralized ledgers.

Proof-of-Work Blockchains. Most cryptocurrencies, includ-
ing Bitcoin and Ethereum, maintain an append-only ledger,
known as a blockchain, which stores a sequence of blocks
of transactions chained together via cryptographic hashes.
These blocks are created and appended to the blockchain via
a mining process, where the participating nodes, known as
miners, compete to become the next block proposer, usually
by solving a computationally-intensive puzzle, known as a
proof of work (PoW) [4], with sufficient difficulty. Through a
gossip protocol initiated by the block proposer, every miner
receives each block including a PoW solution and appends the
block to their local copies of the blockchain if the solution is
valid. Since this process is not coordinated by any central party
(nor by any traditional consensus protocol), the blockchain
may fork into multiple chains; e.g., due to multiple solutions
found for the same puzzle by different miners, or due to
malicious behavior. To agree on the same chain consistently
with other miners, each miner downloads and verifies all
blocks in every chain and picks and follows the one with the
largest total difficulty. Using this most difficult chain principle,
it is shown that, in the long run, the network will agree
on a single chain [5], [6], [7], known as the honest (valid)
chain. Each block in this chain contains a cryptographic proof
ensuring that the block creator has spent a certain amount of
resources uniquely for this block.

To verify that a blockchain is valid without participating
in the mining process, a client may choose to download
blocks from a miner or a full node who holds a copy of the
entire chain. Currently, downloading and verifying all blocks
in Bitcoin or Ethereum requires a node to download more
than 200 GB of data, taking hours to synchronize the node’s
local blockchain [8]. Such a requirement causes long delays
for regular clients and makes it nearly impossible for storage-
limited clients to quickly verify transactions.

Light Clients. The original Bitcoin design [2] describes a
faster synchronization mechanism, known as simplified pay-
ment verification that allows lightweight verification of trans-
actions on the blockchain by what is typically referred to as
an SPV client (also known as a light client [9]).

Instead of downloading all blocks from a full node, an
SPV client downloads only the header of each block that
amounts to a much smaller synchronization overhead than
the full blocks (80 bytes versus 1 MB per block in Bitcoin).
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The block headers are linked together through hashes and
include the PoW solutions. This allows an SPV client to verify
which chain has the most PoW solutions. Note that light
clients neither know whether all transactions are valid nor
all consensus rules are being followed. Light clients rather
operate under the assumption that the chain with the most
PoW solutions follows all rules of the network. This implies
that all transactions in this chain are valid and the majority of
computation power supports the same valid chain.

Assumption 1 (SPV assumption). The chain with the most
PoW solutions follows the rules of the network and will
eventually be accepted by the majority of miners.

Fortunately, prior work [5], [6], [7], [10] show that this
assumption holds as long as an adversary holds only a minority
share of the computation power.

Under the SPV assumption, light clients can verify the
inclusion of specific transactions in the ledger. This is done
by utilizing a Merkle tree commitment of the transactions of a
block stored in the block header. A full node provides the light
client with an SPV proof of the chain along with a Merkle path
to the transaction in the tree committed to in the header.

Light clients also enable various applications to a broad
class of users who need to verify a log of past events recorded
on a blockchain. For example, SPV proofs can be used for
efficient verification of cross-chain transactions that rely on
funds or states recorded on another chain. Such transactions
can happen when exchanging cryptocurrencies [11], [12],
transferring assets to sidechains [13], [14], [15], or sharding
blockchains [16], [17]. Blockchain-based notary services have
been recently developed [18], [19] that allow lightweight
verification of the correctness and integrity of documents
uploaded on a blockchain.

Although relying only on block headers reduces the verifi-
cation overhead of SPV clients, it still incurs a large overhead
on resource-limited clients, especially when considering the
fact that this overhead increases linearly with the number of
blocks. This has already become a major concern in Ethereum
due to its significantly-shorter block interval than Bitcoin
(∼15 seconds vs ∼10 minutes) and significantly-larger block
headers (508 bytes vs 80 bytes). Given that the Ethereum
blockchain contains more than 8.2 million blocks (as of
July 2019 [20]), an SPV client wishing to verify Ethereum
transactions would have to download and store more than
3.9 GB of data. The client has to either download a fresh
copy of the data every time it wants to verify a transaction
or keep a local copy in its storage and only download the
changes since the last synchronization. Either case puts a large
burden on the client. The problem is further amplified for users
that run clients for multiple blockchains or systems that use

sidechains [21].1

Sublinear Light Clients. One may wonder if it is possible for
a client to verify any event on a blockchain by downloading
and/or storing only a sublinear (in the length of the chain)
amount of information. In fact, such a performance gain comes
with an important security challenge: Since such a client
cannot verify every PoW solution in the received blockchain,
it can be tricked into accepting an invalid chain by a malicious
prover who can precompute a sufficiently-long chain using its
limited computational power.

Proposals for sublinear light clients were initially discussed
in Bitcoin forums and mailing lists as early as 2012 [23],
[24]. Most of them relied on the notion of superblocks, blocks
that solve a more difficult PoW puzzle than the current target
puzzle. Since they appear randomly at a certain rate on an
honest chain, the number of superblocks in a chain is a
good indicator of the total number of valid blocks, if miners
behave honestly. Kiayias et al. [9] introduced and formalized
an interactive proof mechanism, known as proofs of proof of
work (PoPoW) based on superblocks. PoPoWs allow a prover
to convince a verifier with high probability in logarithmic time
and communication that a chain contains a sufficient amount
of work. In a later work [14], Kiayias et al. provide an attack
against the PoPoW protocol and propose a non-interactive and
still logarithmic alternative solution known as non-interactive
PoPoW (NIPoPoW).

Current Challenges. The superblock-based PoPoW [9] and
NIPoPoW [14] suffer from several drawbacks summarized as
follows. Both solutions work only if a fixed PoW difficulty is
assumed for all blocks. This is not a realistic assumption in
practice due the variable combined hashing power of miners in
most PoW-based cryptocurrency networks. For example, the
block difficulty in Bitcoin has shown exponential growth over
the network’s lifetime in the past decade [25]. It isn’t clear
how to modify the super-block based protocols to handle the
variable difficulties.

Additionally, the variable difficulty setting allows a mali-
cious prover to arbitrarily manipulate block difficulties to per-
form what is known as a difficulty raising attack as described
by Bahack [26]. In this attack, the adversary mines fewer
but more difficult blocks such that the combined difficulty
of the mined blocks exceeds that of honest miners. As a
result, the prover can convince the verifier with a fake but
seemingly valid chain (see Section III-A for more details). To
prevent such an attack, the verifier can check that all difficulty
transitions are valid, or at least that invalid transitions give no
advantage to the prover. Adding these checks in superblock-
based NIPoPoWs (such as that of [14]) is a non-obvious
extension.

1Ethereum also has a fastsync synchronization option which allows a full
node to sync to the current chain via SPV [22]. Using this, nodes can start
verifying all incoming transactions. Unfortunately, even fastsync can take up
to 10 hours to receive all headers from the network, likely due to throttling
by individual peers.
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Moreover, the reliance on superblocks makes the protocol
susceptible to bribing [27] and selfish mining [28] attacks.
These attacks work by bribing miners to discard superblocks:
rational miners accept this if they are paid more than the
block reward as superblocks do not yield any extra block
reward. The NIPoPoW protocol of [14] defends against this
attack but only by reverting to the standard (and expensive)
SPV protocol. The proofs are therefore only succinct if no
adversarial influence exists. FlyClient, on the other hand, does
not rely on superblocks and distinguishes blocks only by their
position (or height) in the chain.

Finally, NIPoPoW’s transaction inclusion proofs are fairly
large, even in the optimistic case. This is because such proofs
consist of roughly an additional O(log(n)) block headers,
where n is the chain length. In some cryptocurrencies such as
Ethereum, block headers are quite large, thus resulting in larger
NIPoPoW transaction inclusion proofs, e.g., roughly 15 KB in
Ethereum.

Our Contribution. We propose FlyClient, a new blockchain
verification protocol for light clients in cryptocurrencies such
as Bitcoin and Ethereum. Unlike regular SPV clients that use
a linear amount of bandwidth and storage in the length of
the chain, FlyClient requires downloading only a logarithmic
number of block headers to verify the validity of the chain.
Once the chain is verified, the client needs to store only a
single block to efficiently verify the inclusion of any transac-
tion on the chain. The FlyClient protocol is a non-interactive
PoPoW but overcomes the limitations of the superblock-based
NIPoPoW protocol of Kiayias et al. [14].1 FlyClient is compat-
ible with variable difficulty chains and provides asymptotically
and practically-succinct proofs even in the presence of an
adversary that can create a c < 1 fraction of the honest chain’s
work. Further, FlyClient requires short transaction-inclusion
proofs that consist of only O(log(n)) hashes. In Ethereum,
this results in transaction-inclusion proofs that are as small as
1.5 KB which is roughly 10x smaller than NIPoPoWs.

Our protocol is parameterized by c ∈ [0, 1) and λ ∈ N such
that an adversary which can create forks (of some minimum
length) with at most a c fraction of the valid work of the
honest chain, succeeds with probability negligible in λ. This
corresponds to a slightly stronger and parameterized version
of the SPV assumption. The protocol’s efficiency depends
on both c and λ. We show in Section C that FlyClient is
efficient even for high values of c (e.g., c = 0.9). Finally, we
demonstrate FlyClient’s concrete efficiency on Ethereum (see
Table I).
FlyClient achieves these by employing the following tech-
niques:

• Probabilistic Sampling: We introduce a PoPoW pro-
tocol to randomly sample O(log n) block headers from
a remote blockchain with variable block difficulty. We

1NIPoPoW refers to both a primitive and a protocol (that implements
the primitive). Both were introduced by Kiayias et al. [14]. Unless clarified
otherwise, we generally use the term NIPoPoW to refer to the superblock-
based protocol.

Block Height 10 K 100 K 1,000 K 7,000 K
SPV 4,961 49,609 496,094 3,472,656
FlyClient 161 277 416 524
Improvement 31x 179x 1,275x 6,627x

TABLE I
PROOF SIZES (IN KB) FOR AN SPV CLIENT AND FLYCLIENT IN ETHEREUM
AT VARIOUS BLOCK HEIGHTS ASSUMING AN ADVERSARIAL HASH POWER

OF AT MOST c = 1/2 OF THE HONEST HASH POWER AND FAILURE
PROBABILITY < 2−50 .

formally prove the security of our protocol as long as
the adversary can only create a c fraction of the honest
chain’s PoW.

• Efficient Chain Commitments: We formalize and use
the notion of a Merkle mountain range (MMR) [29], an
efficiently-updatable commitment mechanism that allows
provers to commit to an entire blockchain with a small
(constant-size) commitment while offering logarithmic
block inclusion proofs with position binding guarantees.

• Variable Difficulty MMR Checks: We extend MMRs
to contain information about the difficulty and difficulty
transitions. This information allows a verifier to effi-
ciently check that the difficulty transitions follow the
rules of the chain. Without these checks an adversary
could create valid proofs with non-negligible probability
by creating few but high difficulty blocks.

• Non-Interactive and Transferable Proofs: We introduce
a non-interactive variant of FlyClient using the Fiat-
Shamir heuristic [30] that allows both the light client and
the full node to forward the proof to other light clients
without recalculating the proof.

II. OVERVIEW OF FLYCLIENT

Consider a blockchain network that is growing a valid (or
honest) chain C based on the most difficult chain principle,
and a client (or verifier) who wants to verify that a given
transaction tx is recorded on the chain. The valid chain
is characterized as the chain with the highest cumulative
computational difficulty created so far by the network. Any
other chain is considered an invalid chain. The light client
assumes that the valid chain follows all other rules of the
network, such as containing only valid state transitions. For
ease of explanation, we first assume that each block has the
same level of difficulty. In this model, the valid chain is the
one with the highest length (i.e., number of blocks). We will
later formalize the problem using the variable block difficulty
model to be consistent with most cryptocurrencies, including
Bitcoin and Ethereum.

The client is connected to a set of full nodes (or provers) at
least one of which is honest (holds a copy of the valid chain),
but the client does not know which one is honest. The provers
participate in the FlyClient protocol to convince the client that
some tx is included in some valid block B in the honest chain.
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1 As a first step all provers send the last block or the head of
their chain to the client which includes a claim of how many
blocks are included in the chain.

Two Provers and a Verifier. We consider the case where the
client is connected to only two provers one of which is honest.
Both provers claim the same length n for their chains.2 If
both provers present the same head of the chain and the same
block B, then the client is convinced and this part of the
protocol ends. Otherwise, one of the provers holds an invalid
chain. In this case, the client challenges both provers with a
probabilistic sampling protocol to find out which one holds
the honest chain. Assuming that the combined hash power
of all malicious miners is a c < 1 fraction of the honest
miners, the probability that the adversary can mine the same
number of blocks as the honest miners reduces exponentially
as the honest chain grows. Thus, the adversary has to insert
a sufficient number of invalid (aka, fake) blocks to make its
chain as long, or more accurately, as difficult as the honest
chain.

Probabilistic Sampling. Our probabilistic sampling protocol
samples a logarithmic number of block headers from both
chains using a probability density function g(x) that specifies,
for every height x in each chain, the likelihood that the block
located at position x is sampled. Some blocks near the head
of the chain are sampled with probability 1, i.e., are always
part of the proof. Using differential analysis, we find the
optimal g(x) that maximizes the probability of catching the
invalid chain given the adversary’s optimal strategy. There-
fore, we can give a minimum probability that the verifier
catches the adversary with only a single query, independent
of the adversary’s forking strategy. This allows us to reduce
the adversary’s success probability to a negligible value by
repeatedly sampling blocks according to g(x).

Chain Commitments. So far, we still allow a malicious
prover to deceive the verifier with an invalid chain. Namely,
since the verifier downloads only a small number of block
headers that are not necessarily chained together, the malicious
prover can choose to only (or mostly) return correctly-mined
blocks from arbitrary positions on the honest chain in response
to the verifier’s request. This significantly decreases the suc-
cess probability of our probabilistic sampling protocol. One
way to protect against such a strategy is to have the prover
“commit” to its entire chain before the protocol starts, hence
ensuring that it returns the blocks at the expected positions on
the chain.

To commit to the entire chain of blocks, FlyClient requires
the prover to maintain a Merkle tree variant known as a
Merkle Mountain Range (MMR) over all blocks added to the
blockchain so far. In addition to being a Merkle tree, an MMR
allows efficient appends at the prover side and efficient block
inclusion verifications at the verifier side. Further, it enables

1Which block tx is included in can be provided by the prover or some
third party as with SPV proofs.

2Kiayias et al. [14] present a generic verifier that extends the two-prover
case to multiple provers.

efficient subtree proofs, a proof that two MMRs agree on the
first k leaves. At every block height i, the prover appends the
hash of the previous block, Bi−1, to the most recent MMR
and records the new MMR root, Mi, in the header of Bi (see
Figure ??) . As a result, each MMR root stored at every block
height can be seen as a commitment to the entire blockchain
up to that height.

Putting Things Together. With MMR commitments in block
headers, each prover begins by sending the header of the
last block in its chain, the header of block Bn that includes
the MMR root Mn. Next, the verifier samples a number of
random blocks from the prover according to the probability
distribution g(x). For every sampled block, the prover provides
the corresponding block header and an MMR proof that the
block is located at the correct height of the chain committed
by Bn. Additionally, the verifier checks that the MMR root
stored in every sampled block commits to a subtree of Mn. If
the PoW solution or the MMR proofs of any of the sampled
blocks is invalid, then the verifier rejects the proof. Otherwise,
it accepts Bn as the last block of the honest chain. Finally,
to ensure that a tx is included in some block on the honest
chain, the client first receives an MMR inclusion proof that
Bn commits to the block B. The verifier checks this proof
using Mn. Then, just as for a regular SPV proof the prover
provides a Merkle proof that tx occurred in B. The verifier
verifies the Merkle proof using the transaction commitment in
B’s header.

The Variable-Difficulty Model. To adapt FlyClient to the case
where blocks have different difficulties, we use the same
sampling distribution g(x) but x now denotes the relative
aggregate difficulty. For example, x = 1/2 refers to a point on
the chain where half of the difficulty has been amassed, and
g(1/2) is the probability that the block at that point is sampled
by FlyClient. To ensure that the full node returns the correct
blocks according to the difficulty distribution, we modify the
MMR commitments such that each node in the Merkle tree
now additionally contains the aggregate difficulty of all nodes
below it. This means that each block header is now committing
to not only the sequence of all blocks up to the given block but
also to the total difficulty amassed by the network up to that
block. Therefore, a Merkle inclusion proof, which is generated
in a way similar to a standard Merkle tree proof, allows the
client to verify that the provided block is indeed located at the
x-th percentile of the total difficulty.

Additionally the new MMR proofs ensure that the difficulty
transitions are done correctly. This is done by storing more
information such as total time in each internal MMR node. The
information suffices to check that invalid difficulty transitions
do not give the adversary an advantage. Failing to do so could
lead to devastating difficulty raising attacks [26].

Non-Interactive and Transferable FlyClient. To make our
probabilistic sampling protocol non-interactive, we apply the
Fiat-Shamir heuristic [30] to the protocol described so far.
The randomness is generated from the hash of the head of the
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chain. The verifier now simply checks that the proof is correct
and that the randomness was derived correctly. The non-
interactiveness makes FlyClient more practical since (1) the
full nodes can send the same proof to many light clients
without any recalculation; and (2) the client can forward the
proof to other new light clients who can safely verify the
correctness of the proof. This reduces both the computation
and the bandwidth overheads for both the provers and the
verifier.

III. MODEL AND PROBLEM DEFINITION

We frame FlyClient in the context of the Bitcoin back-
bone model for chains of variable difficulty [10] which ex-
tends the standard backbone protocol used in the analysis of
NIPoPoW [14].

A. Bitcoin Backbone Model

Players in the backbone protocol are full nodes who main-
tain a complete copy of the blockchain and participate in the
block creation protocol. The backbone protocol proceeds in
rounds and communication between players is modeled as a
broadcast where each message is delivered in the next round
but the adversary is able to reorder the delivery of messages
arbitrarily. Block creation is captured in the random oracle
model as in [31], where in each round each player makes
q sequential queries to a random oracle function H(·). This
function takes an input x. If x has not been sampled before,
it returns a value y sampled uniformly from {0, 1}λ, where
λ is the security parameter, and stores the pair (x, y) in the
table of H(·). Otherwise, it returns the corresponding saved y
value for x in the table. Each block, B, has a difficulty target
T . For the block to be valid it must hold that H(B) < T .
This difficulty target, T , is set so that m blocks are produced
every f rounds in expectation. We abstract the information
of a block B to contain a header for the block with relevant
block information including the difficulty target.

In order to handle variable block difficulty, Garay et al. [10]
introduce the notion of active players from a universe U of all
players. At any round r, nr represents the number of honest
active players for that round and tr the number of active
adversarial players. In a round r, an adversary can thus make
trq queries to the oracle H(·). The sequences n = {nr} and
t = {tr} represent how the mining power can fluctuate in
the network and Garay et al. prove their security properties
for the backbone protocol assuming the sequence n has the
property that it is (γ, s)-respecting, meaning that in any S
rounds with |S| < s, the maximal honest power in any round
is no more than a γ factor greater than the minimal honest
mining power. We adopt this same assumption to bound how
much fluctuation is observed in the honest mining behavior.

In order to maintain a target block rate with fluctuations in
mining power in the Bitcoin protocol Garay et al. formalize a
general target recalculation function. This function operates
in epochs of m blocks where the target difficulty remains
fixed and then is recalculated for the next epoch. To give
meaning to a target rate, blocks contain information on the

round which they were mined. At the end of an epoch with
the difficulty target T0 for a chain C where the last m blocks
were mined in ∆ rounds, the difficulty adjustment function
approximates the number of players that were active in order
to produce blocks at that rate, as n(T,∆) = 2κm/(qT∆),
where T/2κ is the probability a single player produces a block
in a single query. Recall that the target rate of honest block
production is m/f so the recalculated difficulty for the next
epoch becomes T ′ = T∆f/m. This, however, is not enough
to thwart an adversarial strategy of artificially increasing the
difficulty parameter by lying about the round at which the
block was mined, and being able to produce a chain with
more difficulty than the honest chain [26]. Thus, they bound
how much the difficulty may change by a factor of τ , called
the dampening filter. The final difficulty adjustment function
is the following.

Definition 1 (Target Difficulty – Definition 2 from [10]).
For fixed constants λ, τ,m, n0, T0, where n0 is the estimated
number of active players in the previous epoch and T0 is the
target difficulty from the previous epoch1, the target difficulty
for the next epoch, i.e., the next m blocks, is

D(n0, T0) =


1
τ T, if n0

n(T,∆)T0 <
1
τ T

τT, if n0

n(T,∆)T0 > τT
n0

n(T,∆)T0, otherwise,

where n(T,∆) = 2κm
qT∆ with ∆ being the time it took to mine

the last m blocks.2

The main theorem of Garay et al. [31] states that given
sufficiently constraint parameters, a blockchain is secure, i.e.,
satisfies the persistence and liveness properties (see Theorem
26 and 27 of [31]). The proof relies on sufficiently large epochs
m and a properly selected dampening factor τ . For FlyClient,
we adopt parameters such that the blockchain satisfies liveness
and persistence. This guarantees that there exists a single chain
adopted by all honest full nodes, otherwise there would exist
contradicting proofs for separate valid chains.

Attacks Using Variable Difficulty. As first shown by Ba-
hack [26], there are attacks on PoW blockchains that take
advantage of the variable difficulty model. The main intuition
for these attacks is that an adversary can mine fewer but higher
difficulty weight blocks such that, because of the increased
variance, they can get lucky and exceed the more powerful
honest miners. Assume that an adversary who controls a third
of the honest parties mining power could mine a single block
of arbitrary high difficulty. The probability that the adversary
can mine a single high difficulty block with more weight
than the expected weight of the honest chain is roughly 28%.
This is clearly not negligible. Bitcoin prevents these attacks
by slowly adjusting the difficulty and using a dampening
filter as explained in Section III-A. Garay et al. [10] show

1The security parameter in [10] is κ. We use λ for consistency. Also we
use µ = 1− δ to denote the adversary’s mining power.

2Bitcoin currently operates with τ = 4,m = 2016 and f = 0.03.
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that Bitcoin’s difficulty recalculation rule suffices to defend
against these attacks. For a super-light client that only checks
a small subset of the blocks, it is important that all difficulty
transitions are valid, e.g., that they adhere to the dampening
filter. Otherwise, these difficulty raising attacks would allow
even a bounded adversary to succeed.

Other Difficulty Transitions. We note that the FlyClient pro-
tocol does depend on the specific difficulty transition rules.
Bitcoin’s transition rule can be expressed as a parameterization
of the variable difficulty model. However, other blockchains
such as Ethereum use a different type of transition rule, where
the next block’s difficulty is a moving average of the previous
blocks. It remains an open problem to show that Ethereum
as a whole is secure using this rule. Similarly, our security
proof only applies to the variable difficulty model described
above, and therefore, does not cover Ethereum. One can still
use an adapted version of FlyClient on Ethereum but only with
heuristic security guarantees.

B. Adversarial Model

The Bitcoin backbone analysis considers a rushing adver-
sary who can reorder the delivery of all messages in a round,
and can make tr · q queries to the oracle function H(·) in
each round where tr < µ · nr. For the NIPoPoW model with
variable difficulty, the adversary’s goal is to present the light
client with a proof for a chain with at least the same difficulty
as the honest chain. The only knowledge of the honest chain
that the verifier has is the contents of the genesis block, thus
the adversary can choose to create a proof for a chain entirely
separate from the honest chain, except for the genesis, or the
adversary can choose to incorporate a subsection of the honest
chain into their chain. Since the adversary has less computing
power than the honest chain, the adversary may put in invalid
blocks without correct PoW into their chain in order to fake the
total difficulty, with the knowledge that if the prover samples
these blocks, the proof will be rejected.

As discussed in section V-A, the adversary cannot incor-
porate any honest-chain blocks after the fork point. We also
show that any work the adversary did prior to the fork point
(blocks mined) cannot be included after the fork point in the
same chain. This is because the MMR construction enforces
that each block can only be constructed after every block that
comes before it in the chain and that this can be checked
concisely using the MMR proof of inclusion introduced in the
next section. Thus, we are able to only consider the adversarial
mining power which is at most a fraction of the honest mining
power strictly after the fork point.

In our analysis of FlyClient, we assume that, for all fork
points a, the adversary can at most create a fork of length
L or longer with a c fraction of the honest forks weight. We
formulate this below.

Assumption 2 ((c, L)-Adversary). There exists no adversary
in the variable-difficulty model that respects the target recalcu-
lation function from Definition 1 and can, with non-negligible
probability, produce a fork that contains more than L blocks

such that a c fraction of the difficulty weight in these blocks
is honest.

This assumption is a parameterization of the SPV Assump-
tion (Assumption 1). It implies that no adversary exists with
a constant fraction of the honest chain’s mining power. Note
that the prior work on the Bitcoin backbone security[31], [10],
[6] also needs to assume an explicit bound on the adversaries
power. These analyses show that the length of the stable prefix
of a chain depends on the adversaries power. In our protocol
we directly take the assumed adversary’s power into account
when designing the protocol. This enables FlyClient’s succinct
proofs as it ensures that any fork created by the adversary
will have significantly less cumulative difficulty than an honest
chain.

Relation to the Variable Difficulty Model. Ideally, the se-
curity of FlyClient would be directly parameterized by µ, the
adversary’s mining power, as well as the other parameters of
the backbone model. We conjecture that for any set of back-
bone parameters one can directly derive what (c, L)-adversary
can exist. Unfortunately, connecting these two assumptions is
not trivial and out of the scope of this paper. We leave it future
work to fully establish this connection. We can, however,
already make multiple important observations. For sufficiently
small L, i.e., short forks, there always exists an adversary that
succeeds with high probability. This is because short forks
have high variance and even an adversary that controls only
a small fraction of the mining power will with non-negligible
probability be able to create a heavier short fork.

As discussed in Section III-A, it is vital that an adver-
sary cannot arbitrarily set/change the difficulty of his forks.
Otherwise, the difficulty raising attack [26] would allow the
adversary to create heavy chains with significant probability.

Finally, in the non-variable difficulty setting, it is simple to
derive the parameters c for a given µ (the adversary’s mining
power) and L. We show that a limited adversary will not
outperform its expected number of mined blocks by too much.
That is, for sufficiently large L and an adversary who can
produce L · µ honest blocks, the probability that it produces
L · c, for some c > µ, is negligible. This can be done either
numerically or using a simple Chernoff bound.

Lemma 1. In the constant difficulty backbone setting, let X
be a random variable denoting the number of blocks mined
by any adversary while the honest chain adopts L blocks.
Further, assume that the adversary finds blocks at a rate which
is bounded by µ of the rate at which the honest chain adopts
blocks. The probability that X ≥ c · L for c > µ is bounded
by eL(c−µ) c

µ
−c·L, where e is Euler’s number.

The proof is in Appendix B-A

Corollary 1. For n = Θ(λ) and for every µ, there exists a
c < 1 such that the (c, n)-adversary assumption holds in the
constant difficulty backbone.
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C. NIPoPoWs for Variable Difficulty Chains

FlyClient works similarly to the prover-verifier model of
NIPoPoWs, where the prover wants to convince the verifier
that some predicate over the honest chain is true. For sim-
plicity, in FlyClient we consider the predicate to be that the
prover knows a blockchain at round r that ends with block
Bn and has cumulative difficulty D. In the SPV model, this
proof would consist of all block headers of the chain, i.e.,
enough information for the verifier to check all PoWs. We
refer to this as the SPV predicate.

Definition 2 (SPV Predicate). The SPV predicate for a chain
C ending with block Bn is 1 if all blocks in C contain correct
PoW which follow the difficulty adjustment function and the
hash of each block is contained in the header of the block
directly succeeding it.

From this and given the FlyClient use of MMR in the next
section, a prover can with little (i.e., logarithmic in the length
of the chain) overhead, prove further properties of the chain
including that any particular block is included in the chain
since Bn commits to all previous blocks before it. We note that
since persistence cannot be guaranteed for the last k blocks
of the chain, no predicates should be considered for the last
k blocks. Thus, the verifier treats all valid proofs for chains
differing in at most the last k blocks to be proofs for the
same chain and takes the one with the highest difficulty as the
representative proof.

Similar to the NIPoPoW model, the verifier is a light client
with less storage/computation capacity than a full node and
who can therefore not store the entire blockchain. The only
a priori information the verifier has is the genesis block and
access to the oracle function H(·) to be able to verify PoWs. A
verifier receives a set of proofs P from multiple provers, with
the assumption that at least one proof came from an honest
prover, and accepts the SPV predicate for the proof of a block
Bn with most cumulative difficulty. Our assumption that the
client is connected to at least one honest node implies that
the client is not vulnerable to eclipse attacks [32]. Defending
against such attacks is orthogonal to our work and has been
addressed by recent work [32], [33].

In the following, we adapt the NIPoPoW security definition
for our SPV predicate for chains of variable difficulty.

Definition 3 (Security). A blockchain proof protocol (P ,V)
for the SPV predicate is secure if for all environments, for
any PPT adversary and for all rounds r, if V receives a set
of proofs P at the beginning of round r, at least one of which
has been generated by an honest prover, then

1) V outputs the SPV predicate with the highest difficulty at
the end of round r for some block B, and;

2) All honest full nodes at time r hold a chain with the
common prefix of the chain committed by Bn except for
up to the last k blocks.

We use a slightly-different version of the succinctness
definition as follows.

Definition 4 (Succinctness – Definition 4 from [14]). A
blockchain proof protocol (P ,V) for a predicate Q is succinct
if for any PPT prover A, any proof π produced by A at some
round r, is of size O(polylog(N)), where N is the number of
blocks in the honest chain.

Following the above two definitions and for the adversarial
model described in the previous subsection, we present the
main theorem of our work.

Theorem 1 (FlyClient). Assuming a variable difficulty back-
bone protocol such that all adversaries are limited to be (c, L)-
adversaries as per Assumption 2 and assuming a collision-
resistant hash function H (Definition 8), the FlyClient protocol
is a secure NIPoPoW protocol in the random oracle model as
per Definition 3 with all but negligible probability. The proto-
col is succinct with proof size O(L+ λ · log1/c(n) · log2(n)).

IV. FLYCLIENT DESIGN

In PoW cryptocurrencies the valid chain is the one with
the highest cumulative proof of work, i.e., the most difficult
one to create. For simplicity, in this section we assume blocks
have the same difficulty and thus the valid chain is the longest
one. Later in Section VI, we extend our protocol to handle the
more realistic scenario where blocks have variable difficulty
throughout the chain.

A. Design Components

FlyClient consists of three main building blocks. First, we
leverage the MMR construction (see Appendix ??) to allow
for verification of any previous block header with only the
latest block header. Each MMR commits to previous blocks
efficiently using a single hash value written in every block
header. The MMR leaves are the block headers of all previous
blocks and each block’s MMR is built from the previous
MMR. This construction ensures that the i-th block header,
contains the root of the (i − 1)-th MMR. This allows an
efficient update process resulting in only a small overhead for
full nodes when adding new blocks to the chain. Once a block
is verified, we can then verify any transaction included in that
block with simple SPV Merkle proofs.

Second, to reduce the number of block headers that light
clients need to download to verify the latest block header,
FlyClient employs a probabilistic verification mechanism by
which it randomly samples only a logarithmic number of block
headers; if these block headers are valid, then we show that the
latest block belongs to the longest chain with overwhelming
probability. Which block headers to sample are chosen by the
light clients to prevent the adversary from avoiding sampling
fake blocks. If an adversarial prover is trying to convince the
verifier that they know a chain that is the same length as the
honest chain, there is a maximal number of blocks in the
adversary’s chain which are valid (have a valid PoW) since
the adversary has limited computing power. Our probabilistic
verification guarantees that after randomly sampling an enough
number of blocks, we can detect at least one invalid block
in the adversary’s chain with overwhelming probability. We
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present our sampling protocol and it’s optimization in Sec-
tion V. We outline our interactive protocol in Protocol 1.

Our third building block is the application of the Fiat-
Shamir heuristic to remove the interaction between the light
client and the full nodes. Instead of having the randomness be
provided by the verifier, the random blocks will be determined
from the hash of the latest block. This allows a full node to
figure out on its own which random blocks it should send to the
clients for the verification without any initial randomness from
the light client, yet the light client can verify the correctness of
the proof and is guaranteed that the full node is not cheating.
We discuss in detail how to make FlyClient non-interactive in
Section VI-B.

Algorithm 1 FlyClient Protocol
A client (the verifier) performs the following steps speaking with
two provers who want to convince the client that they hold a valid
chain of length n+ 1. At least one of the provers is honest. (If the
provers claim different lengths for their chains then the longer
chain is checked first. This is described in the generic verifier for
NIPoPoW [14].)

1) The provers send to the client the last block header in their
chains. Each header includes the root of an MMR created
over the first n blocks of the corresponding chain.

2) The verifier queries k random block headers from each prover
based on the probabilistic sampling algorithm described in
Section V.

3) For each queried block, Bi, the prover sends the header of Bi
along with an MMR proof ΠBi∈C that Bi is the i-th block in
C.

4) The client performs the following checks for each block Bi
according to Algorithm 2.

5) If any checks fail, the client rejects the chain.
6) Otherwise, the client accepts C as the valid chain.

B. Block Inclusion Verification

Algorithm 2 Prover/Verifier Protocol for a Single Query
The verifier queries the prover for the header and MMR proof for a
single block k in the prover’s chain of n+ 1 blocks.

Verifier
1: Holds the MMR root of n blocks stored in the header of block
n+ 1.

2: Queries prover for the header of block k and for Πk∈n.
3: Verifies the hashes of Πk∈n hash up to the root of MMRn.
4: Calculates the root of the MMR of block k − 1 from Πk∈n.
5: Compares the calculated root with the root in the header of

block k.
6: If everything checks out, accepts block proof.

Prover
1: Has chain of n+ 1 blocks and the MMR of the first n blocks.
2: Receives query for block k from verifier and calculates Πk∈n.
3: Sends header of k and Πk∈n to verifier.

Assuming the longest chain has been verified and accepted
with only some of the block headers downloaded, i.e., the
verifier knows some Bn is the last block header in the longest

chain, verification of a transaction in some previous block
requires checking if the block actually belongs to a chain
ending in Bn. Once the block is verified to belong to the
chain, the verifier needs only an SPV Merkle proof that a
transaction is in that block.

Our goal is verify that any block belongs in the chain with
only the latest block header of the chain. We leverage the
MMR construction again for this. The full node can prove
that a transaction was included in the longest chain by just
providing an MMR proof (to prove that a block belongs to
the longest chain) in addition to the current transaction proof
(which shows that the transaction is included in the block).
Algorithm 2 describes how a verifier can query a prover for
the validity of a single block.

Definition 5 (Valid Block). A valid block Bx for a chain
ending in block Bn with MMR root Mn−1 is a header with
PoW and for which a Πx∈Mn−1

exists.

Definition 6 (Honest Chain). An honest chain B0, B1, ..., Bn
of length n is an ordered list such that each Bi is valid with
respect to Bn.

Unstable Blocks. PoW blockchains guarantee that honest
nodes will eventually reach consensus. This, however, does
not prevent recent blocks to be unstable, i.e., potentially get
removed from the eventual chain. In particular the most recent
block or head of the chain will often be replaced by other
blocks. Despite this, it is still possible to use the MMR root
from this most recent block to perform the FlyClient protocol
and refer to old stable blocks and transactions. This is because
the FlyClient protocol inherently checks that all randomly
sampled blocks have MMRs that are consistent with the head’s
MMR. Even if the head is maliciously created, its MMR
cannot contain invalid blocks and it must contain all stable
blocks of the valid longest chain. It is still helpful for a client
to store a recent, stable block to aid future synchronization
proofs.

New Block Header. Our new block header now contains one
extra field namely the MMR root of the tree that commits the
headers of all previous blocks. The MMR root can replace the
previous block hash and thus not increase the block headers
size. This requires a minimal change to the current block
structure of Bitcoin and Ethereum, and can be implemented
as a soft fork. We discuss this in more detail in Section D-C.
A full node, upon receiving a new block, will conduct only
one additional check on the validity of the MMR root.

V. BLOCK SAMPLING STRATEGIES

Our goal is to have a protocol that allows an honest prover
to convince the verifier of the validity of its chain while a
malicious prover cannot convince the verifier of a dishonest
chain. In the previous section, we outlined the basic FlyClient
protocol, what is left to be determined is how the verifier
samples blocks from the prover. In this section we describe
the information theoretic component of FlyClient: A block
sampling protocol which ensures that the verifier will sample
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an invalid block from the adversary, no matter what the
adversary’s forking strategy is. We describe the strategies in
terms of the longest chain rule, i.e., assuming that all blocks
have the same difficulty. The strategies directly translate to the
variable difficulty setting as described in Section VI. The key
difference is that the sampling will be over the difficulty space
instead of the block space. We begin by describing some straw-
man approaches for our sampling protocol and build up the
properties we wish to satisfy. We start with a simple sampling
protocol which gives us the desired properties and show how
to optimize our protocol to achieve smaller proof sizes.

A. Naive Approach

One approach is for the verifier to request a uniformly-
random set of multiple blocks from each prover. Since the
malicious prover has only a limited computation power, it can
at best correctly mine a small subset of all the blocks. Thus,
the verifier needs to sample enough blocks to ensure that at
least one of them is invalid, i.e., an incorrectly-mined block.
The protocol begins with each prover giving the verifier the
header of the last block in its chain, where this header contains
the root of an MMR tree built over all blocks in the chain.
Whenever the verifier requests a block from each prover, the
prover must also provide a Merkle proof that the block is a
leaf in the MMR of the last block. From the MMR inclusion
proof, the verifier can recreate the MMR root for that block
and verify that it is the same root in the header of the block
(therefore included in the proof of work for the block).

As shown in Corollary 4, once a malicious prover forks off
from the honest chain, it cannot include any of the later honest
blocks in its chain because the MMR root in those blocks
would not match the chain. With this setup, if the verifier
makes enough queries, it will eventually ask the malicious
prover for a block it has not mined (i.e., an invalid block).

To determine how many blocks the verifier must query to
achieve a desired probability of success in catching a malicious
prover, we bound the malicious computing power using the
(c, L)-adversary assumption. After the adversary forks from
the honest chain, it can correctly mine up to only a c fraction
of the blocks in the rest of the chain. So, if we know that
the adversary forked at some block Ba, then for each random
block the verifier requests after Ba, there is a probability of
(1−c) that the sampled block is invalid (i.e., incorrectly mined)
as the adversary has to “lengthen” its fork to have a chain of
equal length to the honest chain. Thus, with k queries after
the fork point, the verifier has a success probability of 1− ck
in catching the malicious prover. Unfortunately, the verifier
neither knows the location of the fork point nor the value of
k or the success probability.

Solution Limitation. Since the verifier does not know where
in the chain the adversary started the fork, the verifier has
to sample a large number of blocks to increase its chance of
catching the malicious prover, especially if the fork point is
located near the end of the chain (i.e., the fork is short).

B. Bounding the Fork Point

Finding the exact location of the fork point by sampling a
small number of blocks in only one shot is challenging. We
instead relax this requirement and allow the verifier to only
“bound” where the fork point is located while still sampling in
one shot. Our goal is to ensure that the verifier makes sufficient
queries after the fork point. Instead of searching for the fork
point, the verifier can iterate through intervals from which it
samples blocks. If in at least one of the intervals the verifier
has a sufficiently-high probability of catching the malicious
prover, then the verifier succeeds with high probability in the
whole protocol.

The new sampling protocol first samples k random blocks
from the entire chain. Then, it successively splits the chain
(or the current interval) in half and queries another random
k blocks from the last half, i.e., the interval always ends
with the tip of the chain. More precisely, for every integer
j ∈ [0, log n), the verifier queries k blocks from the last n/2j

blocks of the chain. This is repeated until the size of the
interval is at most min(L, k), and all last min(L, k) blocks
are sampled.

We now show that the above strategy catches a cheating
adversary with overwhelming probability. To do this, we
calculate the probability that the verifier samples at least
one invalid block from the malicious prover, based on the
observation that the adversary has to insert a sufficient number
of invalid blocks into its fork to obtain an overall chain of
equal length to the honest chain.

Lemma 2. With k log n samples, the probability the verifier
fails to sample any invalid block is ≤

(
1+c

2

)k
.

The proof of the Lemma is in Appendix B-C

Solution Limitation. In our analysis, we calculate the proba-
bility of success based on the likelihood of success in at least
one of the log n intervals. However, our protocol samples other
blocks that we do not consider in our analysis, but that could
increase the verifier’s success probability. Can we achieve a
better bound by further taking these blocks into account?

C. The FlyClient Sampling Protocol

While we presented the protocol of Section V-B as an
iterative protocol, it is important to note that all of its steps are
independent. That is, the verifier’s samples do not depend on
the prover’s responses to previous queries. This implies that
the order of samples can be altered to create an isomorphic
protocol with the same security and efficiency properties. We
can further use this to examine the probability that a given
block is sampled.

The protocol of Section V-B samples later blocks with
higher probability, i.e., the sampling probability grows in-
versely with the relative distance of a block to the end of
the chain (the most recent block). We can use this property to
find a probability distribution (as depicted in Figure 1 as s(x))
that the verifier picks one of the intervals uniformly at random
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(from the protocol presented in Section V-B) and samples a
block uniformly at random from this interval.

Consider a protocol that simply repeats the sampling steps
q times. If the adversary is caught with probability at least p
given one sample, then they will be caught with probability
at least 1 − (1 − p)q after q independently and identically-
distributed samples. This distributional approach enables a
simple analysis of the protocol as we only need to bound the
success probability of a single query. Furthermore, it allows
us to optimize the protocol by finding a query distribution that
maximizes p. As shown in Figure 1, the distribution introduced
by the protocol from Section V-B is not smooth. In the
following, we show that a different and smoother distribution
performs better.

Optimizing the Sampling Distribution. We now find the op-
timal sampling distribution, that is the sampling distribution
over the blocks which maximizes the probability of catching
the adversary given that it chooses the optimal strategy. We
do this by finding the sampling distribution that maximizes
the probability of catching the adversary with only a single
query. Given this probability, we can directly bound the ad-
versary’s success probability after q queries. As a simplifying
assumption, we treat the number of blocks as a continuous
space between 0 and 1. That is, the block header is at 1 and
the genesis block is at 0. We later show that this simplified
analysis still produces a good distribution for the discrete case.
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Fig. 1. s(x) defines the probability density function (PDF) for the protocol
from Section V-B. g(x) = 1

(x−1) ln(δ)
is the optimized PDF. The integral∫ 1+ac−c

a g(x)dx for c = 1/2, δ = 2−10, a = 0 and a = 0.8 respectively
is displayed.

As a first step, we show that the probability density func-
tion (PDF) of the optimal sampling distribution must be
increasing. A PDF f defined over the continuous range [0, 1]
is increasing if, for all a, b ∈ [0, 1], b > a =⇒ f(b) ≥ f(a).
For any distribution defined by a PDF that is not increasing,
there exists a distribution that results in an equal or greater
probability of catching the adversary.

Lemma 3 (Non-Increasing Sampling Distribution). A sam-
pling distribution over the blocks defined by a non-increasing
PDF f is not uniquely optimal, i.e., there exists another
distribution with equal or higher probability of catching the

0 1𝑎 1− 1−𝑎 𝑐

Valid blocksInvalid blocksValid blocks

Malicious Chain

Honest Chain

Sample enough random blocks from here s.t. at least one invalid block is selected 

Genesis
Block

Fork point

Fig. 2. Distributional View Argument

adversary.

The proof of the lemma is in Appendix B-D.
Since all non-increasing distributions yield a non-unique

optimal sampling distribution, we can focus our search on
sampling distributions defined by increasing PDFs that sample
later blocks with higher probability than earlier blocks. For
such distributions, if the adversary forks off from the main
chain at some point 0 ≤ a < 1, the adversary’s best strategy
is to put all of its correctly-mined (i.e., valid) blocks at the end
of its chain so they are the most likely to be sampled. If the
adversary has a c fraction of the honest mining power, and 1−a
is the length of the adversary’s fork, then the adversary can
mine a (1−a)c fraction of the chain. Thus, in its best strategy,
the section of the adversary’s chain from a to 1 − (1 − a)c
does not contain valid blocks.

To catch the malicious prover, we must sample a block in
this interval. Hence, the probability that we catch an adversary
who forks at some point a with one sample is

∫ 1+ac−c
a

f(x)dx∫ 1
0
f(x)dx

,
where f(x) is proportional to the probability density function
of the sampling distribution. Considering all points where the
adversary could fork from, the probability of success with a
single sample is p = min0≤a<1

∫ 1+ac−c
a

f(x)dx∫ 1
0
f(x)dx

.

In order to find the optimal protocol, we have to find the
distribution that maximizes this quantity. Intuitively, we want
a sampling distribution which makes the adversary indifferent
about which fork point to use. Otherwise, queries would be
wasted on blocks which an optimal adversary would not make
invalid anyway. Concretely, we find an f(x) that satisfies∫ 1−c

0
f(x)dx =

∫ 1+ac−c
a

f(x)dx. In other words, if the
adversary forked from the beginning of the chain or any other
point, we have the same probability of catching it. Through
differential analysis, we find that f(x) = 1−c

c(1−x) satisfies this

condition, i.e.,
∫ 1+ac−c
a

f(x)dx = (c−1) ln(c)
c . In Figure 1,

f(x) and this property are displayed visually.
We now analyze how close our f(x) is to the optimal

sampling distribution. We first try to compute the normal-
ized probability density function by normalizing f(x) by an∫ 1

0
f(x)dx factor. Unfortunately, f(x) goes to infinity as x

approaches 1 and
∫ 1

0
f(x)dx = ∞. Luckily, we can restrict

the sampling domain from 0 to 1 − δ and have the verifier
always check the last δ fraction of the blocks directly. We
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will later find the optimal value for δ. Let

g(x) =
f(x)∫ 1−δ

0
f(x)dx

=
1

(x− 1) ln(δ)
.

The probability of catching the adversary is equal to
p = min0≤a≤ c−δc

∫ 1+ac−c
a

g(x)dx =
∫ 1−c

0
1

(x−1) ln(δ)dx =

logδ(c). This probability takes into account that all blocks
in the last δ fraction of the chain are always verified by the
verifier. Any fork after c−δ

c will contain at least a block from
this δ region, and thus will be detected with probability 1.

We will now show that g(x) defines an optimal sampling
distribution by showing that no sampling distribution can
achieve a higher p value, i.e., a higher probability of catching
the adversary with a single query. Note that the sampling
strategy is optimal for an optimal adversary. This is a strong
argument as the optimal adversary can choose the placement
of its invalid blocks after learning the sampling strategy.

Theorem 2 (Optimal Sampling Distribution). Given that the
last δ = ck, c ∈ (0, 1], k ∈ N fraction of the chain contains
only valid blocks and the adversary can at most create a c
fraction of valid blocks after the fork point a, the sampling
distribution defined by the PDF g(x) = 1

(x−1) ln(δ) maximizes
the probability of catching any adversary that optimizes the
placement of invalid blocks.

Proof. Let δ = ck, for some k ∈ N, we get that p = 1/k
and that as k increases the success probability decreases.
Hence, the smaller δ is set, the fewer the blocks that are
always checked near the tip of the chain but the worse our
probability of catching the adversary with a sample anywhere
else. Therefore, a smaller δ leads to more samples from the
rest of the chain.

Say g∗(x) is the probability density function of the
best sampling distribution. Note that given Lemma 3,
g∗(x) is increasing and therefore for an optimal ad-
versary the success probability is denoted by p∗ =
mina,0≤a≤ c−dc

∫ 1+ac−c
a

g∗(x)dx.
g∗(x), therefore, maximizes p∗. The optimality condition

implies that
∫ 1−ci+1

1−ci g∗(x)dx ≥ p∗, for all integers i ∈ [0, k],
where a = 1 − ci is a possible forking point. Further we
have that

∫ 1−ck

0
g∗(x)dx = 1 since g∗(x) is a PDF. We

have
∫ 1−ck

0
g∗(x)dx =

∑k
i=0

∫ 1−ci+1

1−ci g∗(x)dx = 1 ≥ k · p∗.
This implies that p∗ ≤ 1/k. Note that g(x) as a candidate
distribution achieves p = 1/k and is, therefore, optimal.

Optimizing the Proof Size. Given g(x) and p, we can now
define pm = (1 − 1

k )m as the probability of failure, i.e., not
catching the optimal adversary after m independent queries.
Note that without loss of generality, k ≥ 1 as otherwise δ >
c, implying that a sufficient fraction of blocks are checked
to catch any adversary. If we want pm ≤ 2−λ, then m ≥

λ

log1/2(1− 1
k )

. Now, assuming that the verifier always checks

the last L blocks of the chain, where L = δn = ckn, we get
that k = logc

(
L
n

)
and m ≥ λ

log1/2

(
1− 1

logc(
L
n

)

) .

This means that m approximates λ logc(
1
2 ) ln(n) =

O(λ log1/c(n)), thus, limn→∞
m

λ logc(
1
2 ) ln(n)

= 1.
As long as L is a constant, the number of queries is linear in

the security parameter λ and logarithmic in the chain length,
n.
Verifying Trailing Blocks. The number of blocks checked at
the end of the chain (denoted by L) affects the total number
of samples needed, m. We can, therefore, further optimize it
to get an optimal proof size. It is important to ensure that
L is bounded from below by the particular (c, L)-adversary
assumption that is used. Given this one can numerically
optimize L as we do in our implementation. However, as long
as that number is a constant we get an asymptotically optimal
proof size:

Corollary 2. Under the (c, L)-adversary assumption for any
constant L and using a collision-resistant hash function the
FlyClient proof size is Θ(λ log(n) log 1

c
(n) + L)

The corollary is a result of the proof size computations
above for a negligible failure probability of 2−λ and the size
of each Merkle path being log2(n).

Note that unlike in the superblock-based NIPoPoW [14] this
result holds for all adversaries not just in an optimistic setting.
For realistic Ethereum values of λ = 50, n = 222, c = 1

2 bytes,
the total proof size is just below 400 KB (See Section VII).

VI. FLYCLIENT UNDER VARIABLE DIFFICULTY

So far, we have only considered the simplistic case that
all blocks have the same difficulty. This is not realistic as
the number of miners as well as their hardware continuously
changes.

Information theoretically, the distributional view analysis
described in Section V-C allows us to also handle the variable-
difficulty scenario. In the new model, we simply use the same
sampling distribution g(x) = 1

(x−1) ln δ , but now x denotes
the relative aggregate difficulty weight and δ denotes the
relative difficulty weight of the blocks which are sampled with
probability 1. For example, x = 1/2 is the point in the chain
where half of the difficulty has been amassed, and g(1/2)
is the probability that the block at that point is sampled by
FlyClient. Note that x = 1/2 may refer to a very recent block
in the chain if the block difficulty grows fast.

A. Variable Difficulty MMR

To enable handling difficulty-based sampling, we need to
make two adjustments. We need a data-structure which effi-
ciently and securely enables the verifier to sample blocks based
on their relative difficulty positions, rather than their absolute
positions as in the standard MMR. Second, Assumption 2,
which states that the adversary’s forks have only a fraction of
the honest chain’s weight, requires that all difficulty transitions
are correct. In fact, as described in Section III-A, the assump-
tion is broken if the adversary can arbitrarily manipulate block
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difficulties. We show how an adapted variable-difficulty MMR
which aggregates information about the total difficulty as well
as difficulty transitions can resolve both issues at once.

Definition 7 (Difficulty MMR). A difficulty MMR is a variant
of the MMR with identical properties, but such that each
node contains additional data. Every node can be written as
h,w, t,Dstart, Dnext, n, data, where h is a λ bit output of a
hash function, w is an integer representing a total difficulty,
t is a timestamp, D is a difficulty target, n is an integer
representing the size of the subtree rooted by the node and
data is an arbitrary string. In a block, i.e., a leaf node, n = 1
and t is the time it took to mine the current block (the blocks
time stamp minus the previous block’s timestamp). w,Dstart is
the current difficulty targets and Dnext is the difficulty of the
next block computed using the difficulty adjustment function
defined Definition 1.

Each non-leaf node is defined as {H(lc, rc), lc.w +
rc.w, lc.t+rc.t, lc.Dstart, rc.Dnext, lc.n+rc.n,⊥}, where lc =
LeftChild and rc = RightChild.

Difficulty MMR Verification. We need to modify the MMR
verification algorithm in several ways. The prover algorithm
will be the same generating a proof consisting of a Merkle
path. In general the verifier will check the Merkle path and that
the targets assigned to each node are feasible. For simplicity,
we assume that the epoch length m and the total number of
leafs n are powers of 2. Given a left child (lc), a right child
(rc) and a parent node (p), the verifier performs the following
checks:

1) Compute p using lc and rc following Definition 7.
2) Verify that lc.Dnext = rc.Dstart.
3) For both lc and rc verify that they are internally con-

sistent. That is, ensure that there is a possible set of
legal difficulty transitions given the aggregate timing and
difficulty parameters of these nodes:
• If the node is within an epoch, i.e., below level

log2(m), ensure that the difficulty and weight are
consistent with the epoch’s difficulty.

• If the node captures a difficulty transition, ensure
that Dnext is computed correctly using the difficulty
transition function from Definition 1 and t.

• tstart, tend, w,Dstart, Dnext: there is a possible assign-
ment to the difficulty transitions yielding these param-
eters. See discussion below for details.

The checks require the verifier to know whether there is a pos-
sible assignment to the difficulty transition yielding a certain
set of parameters. While intricate, this can be done efficiently.
If the node is below a node that defines an epoch, i.e., the node
is at a height lower than log2(m) then its difficulty target and
weight w,Dstart are fully defined by the epoch. For nodes
higher in the MMR we can compute what the max and the
min total weight w are given the other parameters. The max
weight over a given set of difficulty transitions is achieved
by first raising the difficulty by the dampening factor τ and
then lowering it over a set of epochs by 1

τ such that the next

difficulty target is Dnext. The inverse, i.e., first lowering then
raising, achieves the minimum total weight. The timestamps
need to be far enough apart to accommodate for all the
epochs in which the difficulty decreases. A maximal difficulty
decrease requires an epoch length of at least τ ·mf

1. Conversely,
an epoch in which the difficulty increases maximally lasts at
most m

f ·τ .
Overall, the following checks are sufficient for the simplified

scenario, where τkDstart = Dnext for an integer k ≥ 0 and a
total of n epochs such that n− k is even:

1) k ≤ n

2) w ≤ Dstart(
∑k+n−k

2
i=0 τ i +

∑k+n−k
2
−1

i=k+1 τ i)

= Dstart · (τ+1)τ
k+n

2 −τ1+k−1
τ−1

3) w ≥ Dstart(
∑0

i=−n−k
2
τ i +

∑k−1

i=−n−k
2

+1
τ i)

= Dstart · τ
k+τ−(τ+1)τ

k+n
2

τ−1
4) t is at least long enough to cover the required number of

difficulty lowering transitions.
5) If n = k, i.e., all periods are maximally increasing and t ≤

m
f ·τ · n

For other scenarios such as k not an integer or k < 0, the
calculations are similar.

All of these checks ensure that the difficulty transitions of
queried blocks are valid. Furthermore, they ensure that queried
blocks were not affected by an invalid difficulty transition.
We formally prove this by saying that an adversary that
uses invalid difficulty transitions cannot increase its success
probability. Specifically, the adversary might as well have used
valid difficulty transitions and mined more invalid blocks.

Lemma 4. Let A be an adversary as defined by the variable
backbone model that produces a chain C with non-negligible
probability p such that k blocks are valid as by the definition.
Then, assuming a collision-resistant hash function, there exists
an adversary A′ that using the same number of oracle queries
as A respects the retargeting rules and produces a chain C ′

with probability at least p − negl(λ) that contains the same
valid blocks but respects the retargeting rules.

The proof of Lemma 4 is in Appendix B-E

B. Non-Interactive FlyClient

We present the probabilistic verification as an interactive
protocol between a client and a verifier. Note that the client
simply queries random blocks, according to some publicly
known probability distribution. We can therefore transform
the interactive public-coin protocol into a non-interactive ar-
gument using the Fiat-Shamir heuristic [30]. This means that
the randomness used to determine which blocks are sampled is
derived using a secure hash function (say, SHA-3) applied to
the head of the chain. The verifier not only checks the queries
itself but also that the randomness was properly derived.

The Fiat-Shamir heuristic turns the statistical soundness of
the information theoretic sampling protocol into computational
soundness as a prover can receive new samples by recomputing
the final block header. On the other hand, recomputing the

1Recall that m
f

is the target epoch length, e.g., 2 weeks in Bitcoin
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final header requires solving a new PoW puzzle, which itself
requires a high number of queries to the hash function. In fact,
our security assumption gives a concrete bound on the number
of PoW puzzles the adversary can solve, which is c · n. Let
pm be the soundness of Protocol 1 and 2−λ be the desired
failure probability (e.g., 2−50). Using the union bound, we
conclude that the non-interactive FlyClient is secure as long as
pm < 2−λ

c·n .

C. FlyClient Security

We finally prove security of the overall protocol. The
proof uses the security of the information theoretic sampling
protocol along with the security of the cryptographic MMR
that makes the queries verifiable and ensures that the proper
difficulty rules are followed. We now restate the main Theorem
and prove it.

Theorem 1 (FlyClient). Assuming a variable difficulty back-
bone protocol such that all adversaries are limited to be (c, L)-
adversaries as per Assumption 2 and assuming a collision-
resistant hash function H (Definition 8), the FlyClient protocol
is a secure NIPoPoW protocol in the random oracle model as
per Definition 3 with all but negligible probability. The proto-
col is succinct with proof size O(L+ λ · log1/c(n) · log2(n)).

Proof. The (c, L)-adversary assumption requires that all diffi-
culty transitions are honest. Lemma 4 shows that any adversary
that doesn’t follow these transitions is not more successful in
fooling the verifier. The security of the MMR also ensures that
the MMR is position and weight binding with overwhelm-
ing probability. Corollary 2 shows that with O(λ log1/c(n))
queries and a constant number of L blocks being checked at
the end, the probability of an adversary evading the sampling
protocol is negligible. We can make the one-round public
coin protocol non-interactive using the Fiat-Shamir heuristic
which is secure in the random oracle model [34]. The proof
size consists of L successive blocks being revealed plus the
sampled blocks and their MMR paths. This gives a total proof
size of O(L+ λ log1/c(n) log2(n)) hashes and blocks.

VII. EVALUATION

Experimental Setup. We implemented FlyClient and evalu-
ated it empirically in two different scenarios. Our comparisons
are focused on the proof size but both creating and verifying
proofs is fast. Even in our unoptimized implementation, it
takes less than a second over all tested parameters.

We evaluate the performance of FlyClient using data from
the Ethereum blockchain which has widely varying difficulty.
FlyClient significantly outperforms standard SPV clients es-
pecially for longer chains. The evaluation assumes a block
header of size 508 bytes and a hash output of 32 bytes.
Additionally, the MMR nodes contain 16 bytes to store the
time and difficulty parameters. Note that Ethereum technically
does not satisfy the definition of the variable difficulty model
as explained in Section III-B. We still evaluate FlyClient on
Ethereum because it has a high block production rate which
makes the evaluation results more interesting. Additionally,
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Fig. 3. The plot shows the number of manually checked blocks L and the
number of queried blocks for the Ethereum blockchain and c = 0.5, λ = 50.
Additionally on the secondary axes the plot shows the proof size both without
the MMR proof optimization and without.

it is possible to run FlyClient for Ethereum but only with
heuristic security guarantees. This seems fundamental until the
Ethereum backbone itself has been proven to be secure.

In Appendix C, we also compare FlyClient with NIPoPoW
in the unrealistic scenario that all blocks have the same
difficulty. NIPoPoW cannot handle variable difficulty chains.
Both NIPoPoW’s and FlyClient’s proofs are logarithmic in
the chain length but FlyClient outperforms NIPoPoW over all
parameters by about 50%. This is mainly due to FlyClient’s
MMR proofs consisting of hashes versus NIPoPoW’s back-
pointers which consist of full block headers.

Implementation and Optimizations. We implemented
FlyClient as a proof of concept in Python. Our implementation
only supports the production and verification of FlyClient
proofs and does not verify state transitions. We assume a
hard fork, i.e., that each block header contains the MMR root
of all previous blocks. We perform several optimizations to
minimize the proof size. First, we optimize for the smallest
proof size by trying different values of δ. The security holds
for arbitrary values of δ so a prover can choose a δ which
minimizes the proof size. Our protocol does this automatically
while ensuring that at least L = λ blocks are checked at the
end.

We also reduce the proof size by not duplicating overlapping
MMR proof elements. The overlaps are fairly common as our
sampling distribution samples late blocks with significantly
higher probability. The verifier can easily detect which nodes
in a proof are shared and therefore does not require the
duplicated information. The efficiency of this optimization is
displayed in Figure 3. We can see that it reduces the proof
size by around 30%. Moreover, the plot shows the number of
manually checked blocks vs. the number of randomly sampled
blocks. Interestingly, even at a chain length of 7 million, the
protocol only inspects around 600 blocks. We also see that L,
the number of manually inspected blocks, hardly grows with
increased chain length.
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Fig. 4. FlyClient for the Ethereum chain at varying chain lengths n and for
different adversarial powers c. Additionally we display the difficulty on the
secondary axis.

A. Ethereum Implementation with Variable Difficulty

We implement FlyClient and evaluate it using data from the
Ethereum blockchain. We measure its performance at different
chain lengths, i.e., at different historic data points. Ethereum’s
PoW difficulty is not constant but varies widely and has
historically been increasing. Note that technically Ethereum’s
difficulty transition function does not fall into the variable
difficulty model of [10]. We still use Ethereum data as it is
a popular PoW blockchain with a long (in terms of number
of blocks) chain. Additionally using FlyClient for Ethereum is
possible but only heuristically secure as explained in Section
III-A.

FlyClient is the first PoPoW design that achieves succinct
proof sizes for variable difficulty chains. We demonstrate
the efficiency of FlyClient in Figure 4. For c = 0.5, i.e., the
adversary controls less than a third of the total mining power
the proofs are less than 1 MB even for 7,000,000 Ethereum
blocks. This compares to a 3.4 GB SPV proof size for the
same chain. We additionally plot the mining difficulty in the
same figure. Interestingly, the proof size decreases from 3
to 4 million blocks as the difficulty rapidly grows. This is
because, with high difficulty growth, the manually-checked
blocks contain a larger fraction of the overall difficulty. This
reduces the number of blocks that need to be sampled from
the rest of the chain. From 3 to 4 million blocks, a so-called
difficulty bomb [35] resulted in a rapid increase of proof size.
This “bomb” was removed at around 4.3 million blocks which
led to a drastic decrease in difficulty and accordingly a slightly
higher proof size.
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APPENDIX A
PRELIMINARIES

A key component of our protocol is a type of Merkle
hash tree [36] which allows every block to commit to all
previous blocks. Similar to vector commitments [37], Merkle
trees provide position binding, so that a malicious prover
cannot open a commitment to two different values at the same
position of a committed sequence. In FlyClient, we use an
MMR construction which is a Merkle tree with an efficient
append functionality. An MMR further allows a prover to
efficiently convince a verifier that two MMRs share the same
subtree We will discuss these properties in Section IV-B.

Before defining the preliminaries, we establish our notation
and terminology used throughout the paper.

Notation and Terminology. We say an event occurs with high
probability if it occurs with probability 1 − O(1/2λ), where
λ is the security parameter. We say a probability is negligible
(or negl) if it is O(1/2λ).

Definition 8 (Collision resistant hash function). A family of
hash functions Hλ : {0, 1}∗ → {0, 1}λ is collision resistant
if for all efficient adversaries A the probability that x, y ?←
A(1λ) and H(x) = H(y) ∧ x 6= y is negligible in λ.

A. Basic Merkle Tree Definition

A Merkle tree is a balanced binary tree where the leaves
hold some value, and each non-leaf node stores a hash of both
of its children. Such a structure allows proving the inclusion
of any value in the tree with only a logarithmic number of
hashes, known as a Merkle proof. In Bitcoin, Merkle trees are
used to aggregate the hashes of transactions in a particular
block so that the root becomes a binding commitment to all
transactions in that block. The root is then stored in the header
of the block. An SPV proof of a transaction is the Merkle proof
that the hash of the transaction is a leaf in the Merkle tree.
Though it is a commonly-used data structure, we restate the
security of a Merkle proof so we can extend the definition to
MMRs later. We omit the proofs in this section and provide
them in the full version.

Definition 9 (Merkle Proof). Given a Merkle tree, MT, with
root r, a Merkle proof that x is the k-th node in MT, Πk∈MT ,
are the siblings of each node on the path from x to r. Since
MT is balanced, the proof is of size O(log n).

Theorem 3 (Soundness and Completeness of Merkle Proofs).
Given a Merkle tree, MT built using a collision resistant hash
function (Definition 8), a PPT adversary cannot produce a
valid proof Πk∈MT , for a k not in MT (soundness) or a
proof Πk∈MT that is not a true path in MT (completeness).

B. Merkle Mountain Ranges

MMRs are a special kind of Merkle tree that enable efficient
appends and proofs that two trees agree on the first k leafs.
Todd [29] proposed MMRs as part of a distributed time-
stamping service using Bitcoin. The idea had been proposed
before in the context of certificate transparency logs [38] to

show that any particular version of an append-only log is a
superset of any previous version.

L0 L1 L1L2L0 L1 L0 L3L2

Append	 L2 Append	 L3r0

r1 r2

Fig. 5. Example of updating a MMR tree when new data entries are appended
as new leaves of the tree. The grey nodes are either new nodes or nodes that
are changed due to the new data entry. MMR guarantees that for every update,
only logn nodes are either created or modified.

MMRs provide an efficient append function which main-
tains a balanced binary tree. Appending a new element to an
MMR with n leaves consists of traversing the right-most path
of the tree and creating or modifying at most O(log(n)) nodes
in the tree. We give an example of updating a MMR tree by
appending new data entries to the leaves in Figure 5. The
append function of MMRs additionally provides the ability to
prove that an MMR is the previous version of another MMR
concisely. That is, given a sequence of n MMRs, each created
by appending an element to the previous MMR, a prover
can provide a proof of size O(log(n)) that any k-th tree is
a previous version of the n-th tree while the only previous
information the verifier has is k, n, and the root of the k-th
and n-th MMRs. We formalize this property in Theorem 5.

Definition 10 (Merkle Mountain Range). A Merkle Mountain
Range, M, is defined as a tree with n leaves, root r, and the
following properties:

1) M is a binary hash tree.
2) M has depth dlog2 ne.
3) If n > 1, let n = 2i + j such that i = blog2(n− 1)c:
• r.left is an MMR with 2i leaves.
• r.right is an MMR with j leaves.

Note: M is a balanced binary hash tree, i.e., M is a Merkle
tree. Therefore, for all nodes k ∈M , ∃ Πk∈M .

A new leaf node, x, is added to a MMR M by an
AppendLeaf(M,x) protocol depicted in Figure 5. If M is a
complete binary tree, then the protocol returns a new tree with
M as the left subtree and x as the right subtree. Otherwise,
AppendLeaf will recurse on M ’s right subtree. We refer to the
full version for more details on AppendLeaf and a proof of
the following theorem.

Theorem 4. Given a MMR, M , with root r and n leaves,
AppendLeaf(r, x) will return a MMR, M ′, with n + 1 leaves
(the n leaves of M plus x added as the right-most leaf).

We now define a set of MMRs M = {M1,M2, ...,Mn}
created from some list [x1, x2, ..., xn], where M1 is a single
node with value x1 and ri is the root node of an i leaf MMR,
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Mi = AppendLeaf(ri−1, xi). A key feature of the way MMRs
are constructed is that, assuming all xi’s are unique, each Mi

has an unique root (otherwise there would be a hash collision),
and given the Merkle proof Πxk∈Mn

that some xk is in Mn

for k ≤ n, a verifier can regenerate rk and therefore verify that
Mk is an ancestor of Mn (i.e., Mn was created from n − k
appends to Mk). We state this in the following theorem.

Theorem 5. For k ≤ n, given Πxk∈Mn , i.e., the Merkle proof
that leaf xk is in Mn, a verifier can regenerate rk, the root
of Mk.

Corollary 3. If x1, ..., xn are the hashes of blocks 1 through n
of chain Cn, rn commits the first n blocks to xn, and Πk∈Mn

for any k commits x1, ..., xk as the blocks of the chain Ck,
where chain Ck is a prefix of chain Cn.

Corollary 4. If an adversary changes any block i in the chain
in any way, then it’s hash xi will also change, so any MMR
Mk for k ≥ i with root r′k that contains the new block x′i will
have that r′k 6= rk.

APPENDIX B
PROOFS

A. Proof of Lemma 1

Proof. Note that an upper bound X can be accurately modeled
by a Poisson variable Y [39] with parameter µ · n as it is
the sum of many low probability Bernoulli variables. We now
bound the probability that X ≥ c · n by finding a bound on
P (Y ≥ c ·n). We can bound this probability using a Chernoff
style bound. P (Y ≥ c · L) = P (et·Y ≥ et·c·L) ≤ E[et·Y ]

et·c·L
.

The Markov bound holds for all t > 0. Using the fact that
the moment generating function for a Poisson variable Y is
eE[Y ](et−1) we get P (Y ≥ c · L) ≤ eµ·L·(e

t−1)−c·L·t. This is
minimal for t = log( cµ ) which gives us the bound P (Y ≥
c · L) ≤ eL(c−µ−c log( cµ ))

B. Proof of Corollary 1

Proof. Set L and c such that eL(c−µ−c log( cµ )) = 2−λ. In the
constant difficulty backbone setting a chain of length L with
a c fraction of the honest blocks must contain at least c · L
blocks with valid PoW. Lemma 1 implies that the probability
of any adversary producing a fork with c ·L valid blocks while
the honest chain adopts L blocks is negligible.

C. Proof of Lemma 2

Proof. Let n denote the length of the chain (not counting block
n + 1 which the verifier has already sampled) and c denote
the fraction of the adversary’s computing power relative to the
honest computing power. At any interval j, the verifier samples
from the interval between block (2j−1)n

2j and n. Let hj denote
the number of invalid blocks the adversary has inserted in the
j-th interval. The probability the verifier fails to sample an in-

valid block in this interval is Pj =
( n

2j
−hj
n

2j

)k
=
(
n−2jhj

n

)k
.

Thus, the probability that the verifier fails is
∏logn
j=0 Pj .

Since Pj ≤ 1, if one Pj is sufficiently small, then the total
probability of failure is also sufficiently small.

Letting a denote the forking point, there is some integer
j such that (2j−1)n

2j ≤ a < (2j+1−1)n
2j+1 . In other words, there

is some sampled interval of size n′ = n/2j in the protocol
where the fork point lies between the start and the middle of
the interval. Let l denote the length from a till n, i.e., the
length of the fork, l > n′

2 . The number of invalid blocks in
the interval is hj = (1−c)l ≥ (1−c)n

′

2 . Thus, the probability
the verifier fails to catch the invalid chain is at most equal
to the probability the verifier fails at step j, or Pr[fail] ≤

Pr[fail at j] ≤
(
n′−(1−c)n′2

n′

)k
=
(

1+c
2

)k
.

Note that if l ≤ k, the verifier will sample all of the
adversary’s invalid blocks and Pr[fail] = 0.

D. Proof of Lemma 3

Proof. We prove the statement by contradiction. We show
that given f , there exists another PDF f ′ that with a single
query succeeds in catching the adversary with slightly higher
probability.

Given that f is non-increasing, there exist numbers
x1, x2, d ∈ [0, 1] and intervals I1 = [x1, x1 + d] and
I2 = [x2, x2 + d] such that x1 + d ≤ x2 ≤ 1 − d and
f(x) > f(x′), for all x ∈ I1 ∧ x′ ∈ I2. Any adversarial
strategy can be defined by a fork point a ∈ [0, 1] and by the
ranges of blocks which are invalid after a. Note that given a
fork point, the adversary can freely decide which blocks, i.e.,
which intervals, to make invalid and which ones to honestly
mine. For any strategy which produces an invalid block in I1
but valid blocks in I2 there exists a strategy which creates an
additional invalid block in I2 and one more valid block in I1
without changing any other part of the strategy. Note that the
converse is not true. If the fork point a is > x1 then it may
not be possible to move invalid blocks to the first interval.
Given that the querying probability of any point in I2 is lower
than the probability of any point in I1 the adversary is always
better off by moving all possible invalid blocks to I2. I2 must
therefore contain no less invalid blocks than I1 in any strategy
which is optimal for the adversary.

Consider the probability distribution f ′ which is equal to f
on all points but x ∈ I1 ∪ I2. There exists an ε > 0 such that
for any point x ∈ I2, f ′(x) = f(x)+ε and for any point in I1,
f ′(x) = f(x) − ε and the following condition holds: For all
adversaries, a single query drawn from the distribution defined
by f ′ has a slightly higher probability of querying an invalid
block than a single query drawn from the distribution defined
by f . This is because f ′ queries with higher probability in
I2 which must contain no less invalid blocks than I1 for any
optimal adversary.

E. Proof of Lemma 4

Proof. Let Bn be the head of the chain created by A with
MMR root Mn−1 Let Bi → Bi+1 be an invalid difficulty
adjustment. Note that this directly implies that there exists
no ΠBi∈Mn−1

as all verifiers will directly reject this proof.
Consider the (invalid) proof Π∗Bi∈Mn−1

created by the MMR
proof generation algorithm with the modifications defined in
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Definition 7. Let x′ be the highest node in Π∗Bi∈Mn−1
that

would have led a verifier to reject the proof. For example if the
dampening factor τ = 4 and the invalid difficulty adjustment
from Bi → Bi+1 raises the difficulty by a factor of 100 then
x′ will be the third node in ΠBi∈Mn−1

. Note that any proof
containing x′ will be rejected by the verifier. Let M ′ be the
subtree of Mn−1 that is spanned by x′s parent. All leafs of
M ′ are invalid as all inclusion proofs for these leafs must
contain x′ (unless A found a collision on the MMR’s hash
function which happens with at most negligible probability).
This means A′ can change the difficulty adjustment for all
of these leafs of M ′ without changing the validity of any
other node. The blocks spanned by M ′ are all invalid and
need not to contain a valid proof of work. A′ does this such
that the difficulty adjustments are all valid but also consistent
with the parent of x′, i.e., the root of M ′. Note that this is
possible since, by assumption, the parent of x′ does not cause
the verifier to reject the proof. Consistency with x′ implies
that the start and end difficulty as well as the total weight,
the total time and the total number of blocks are as defined in
x′. These parameters therefore don’t change for the subchain
spanned by M ′s leafs from the chain generated by A vs. the
chain generated by A′. A′ repeats this process until it creates
a chain with only valid difficulty transitions. All other valid
blocks A′ attempts to create using its oracle queries. Since C ′

contains at most as much proof of work as C it can be created
with at least probability p− negl(λ).

APPENDIX C
COMPARISON WITH NIPOPOW

NIPoPoW like FlyClient promises short proofs of proof of
work for light clients. We compare FlyClient with NIPoPoW
by analytically computing NIPoPoWs proof size. We match
the security level of NIPoPoW and FlyClient such that for
security parameter λ an attacker who controls a c fraction of
the main chain’s mining power succeeds with probability 2−λ.
Concretely, in NIPoPoW we set both the number of blocks
checked at the end of the chain (k) and the length of each
super-chain m to log 1

c
(2)λ. The total NIPoPoW proof size is

log 1
c
(2)λ · ((log2(n) + 1) ·B + log2(n) · dlog2(log2(n, 2), 2)e · |H|),

for B = 508 bytes being the size of each block header and
|H| = 32 bytes being the size of a hash. We compare the
two light client approaches in Figure 6. The evaluation uses a
security parameter of λ = 50 and 3 different parameterizations
of c. c is a bound on the fraction of the honest mining power
that an adversary controls. c

1+c is the fraction of the total
mining power that the adversary controls. For c = 0.9 this is
47.3%. We see that both proofs are very efficient producing
proofs under 6 MB even for the largest parameters. FlyClient
outperforms NIPoPoW over all parameters but especially for
large values of c, yielding an almost 40% improvement in
proof size. This validates the optimization approach for finding
an optimal light client design. Note that for n = 10 million,
an SPV client would have required a 4.9 GB proof over 1000

times more than the corresponding FlyClient proof for c = 0.9.
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Fig. 6. Comparison of FlyClient and NIPoPoW at varying difficulty levels and
λ = 50.

APPENDIX D
DISCUSSION

A. Transferable and Unique Proofs

A major benefit of the non-interactive proofs is that they are
transferable. A single prover can produce a proof and other
users can relay the proof without any additional computation.
The relayed proof is still convincing to a verifier. A full node,
therefore, can create a proof which many other clients can use.
Moreover, by applying the Fiat-Shamir heuristic to the head
of the chain we enforce that there only exists a single valid
non-interactive proof for a given chain. It therefore suffices
if a single party produces the proof for the valid chain and
forwards it to all FlyClient nodes.

B. Subchain Proofs

Another benefit of the non-interactive proofs is that they
allow clients to re-sync to a chain that has grown since the
last time they were given a proof for it, by only needing to
download a shorter proof for the section of the chain they have
not seen. Once a FlyClient has received a proof for a chain of n
blocks (or D cumulative difficulty), they are convinced that at
the point in time when they received the proof for that chain it
was the honest chain. Suppose that at a later point in time the
chain has grown to n′ blocks (or D′ difficulty), the FlyClient
needs only to verify that this new section is honest and thus
only require a proof logarithmic in the size of the new section.
We note that the prover must also provide a single MMR proof
that block n is in the MMR of block n′, meaning the previous
chain is a prefix of the new chain.

Theorem 6 (Subchain Proofs). A FlyClient that was given a
valid proof for a chain of length n at a time when the honest
chain had length n, and when the honest chain has length n′

is given a subproof for the subchain from n to n′ including a
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Merkle proof that block n is in the MMR of block n′, would
not accept another chain if they were instead given the full
proof for a chain of length n′.

Proof. We consider two strategies the adversary may choose:
(1) It forks from the honest chain after block n, this is as if
the genesis block were set to block n and the subproof from
block n to n′ is a whole proof for a chain of n′−n blocks. (2)
The adversary forks from the honest chain before n, by the
security of the proof for the first n blocks, the FlyClient would
not accept the adversary’s chain up to n so their subproof from
n to n′ would fail because the FlyClient’s block n is not in the
MMR of the adversary’s new chain. The FlyClient that receives
the whole proof would also not accept the adversary’s proof
based on the security of a proof for n′ blocks.

We note that a subchain proof does not have to be created
specifically for the subchain, a FlyClient can take a proof for
a chain of n′ blocks and only check the blocks after n. This
allows for FlyClient to use only the part of a transferable n′

chain proof which it has not yet verified. This is a convenient
option for FlyClient that may be running on cell phones or
other data-limited devices and do not want to use data re-
checking sections they have already verified. Subchain proofs
also introduce the option of select checkpoint proofs, meaning
that proofs can be created for select points in the chain and
a FlyClient can request the precomputed proof they need,
minimizing the computation overhead for prover full nodes
and proofs will be more easily reused.

C. Deploying FlyClient

The only modification to the block structure of Bitcoin,
Ethereum and similar blockchain protocols that is required
to implement FlyClient is to include the MMR root in every
block. Updating/checking the MMR root requires O(log n)
work, where n is the length of the chain, and minimum storage
overhead of 2n tree nodes that contain a hash and 5 integers.
The MMR root can be added to blocks in three different
ways. The first way is a hard fork in which the MMR root is
added to the header of all blocks (both old and new). In some
newer blockchain designs, such as the Mimblewimble [40]-
based Grin and Beam MW [41], this is already the case.

Alternatively, a soft fork can be used such that new blocks
contain the MMR root while old blocks do not. A soft fork
gets “activated” when a majority of nodes have enforced the
new protocol rules. Starting from the soft fork, new blocks
would store the MMR root encoded in a backwards compatible
way like in a special transaction. In FlyClient, the miner would
provide the block headers, as well as the special transaction
and a proof that the transaction is part of the block. The proof
size would grow by a factor that is proportional to log(|tx|),
where |tx| is the number of transactions.

A third deployment path is called a velvet fork and was
proposed by [42]. In velvet forks, blocks by outdated miners
are not rejected, making it a backwards compatible update
to blockchain protocols which rely on clients reinterpreting
the blockchain data. For FlyClient the velvet fork would lead

to a constant fraction α of blocks containing an MMR root.
Blocks created by outdated nodes would not contain the root.
The FlyClient protocol would simply treat multiple blocks as
one. Concretely, blocks that do not contain an MMR root are
viewed as part of the next upgraded block. The miner will
always download and check these joined blocks together. If in
expectation 1/α blocks are joined, the FlyClient proof would
be at most 1/α large than for an equivalent fully upgraded
chain. Velvet forks, therefore, lead to less efficient proofs but
provide an uncontentious deployment mechanism for FlyClient.

D. FlyClient for Proof-of-X Protocols

For simplicity, in this paper we describe FlyClient in the
context of Bitcoin and Ethereum, where the blockchain grows
based on a PoW mining process. Our protocol, however, is ap-
plicable to any proof-of-X protocol [43], where a more energy-
efficient alternative to PoW is used to build a chain based
on the longest chain rule. Examples of such alternatives are
proof-of-stake [44], proof-of-space [45], or proof-of-elapsed-
time [46]. Such a protocol must allow any node to verify the
validity of each block individually ensuring that the block
creator has spent (or burnt) a certain amount of a resource
uniquely for this block.

E. Connection to Proof of Sequential Work

Cohen and Pietrzak [47] propose a simple proof of se-
quential work (PoSW) construction based on Merkle trees
with added edges. A PoSW [48] convinces a verifier that a
significant amount of sequential work was applied to a given
input. In the construction of [47], the edges which are added
to a full Merkle tree connect the left siblings of a leaf’s path
to the root with the leaf itself. The verifier simply queries
random leafs and checks that they are part of the tree and
have the correct incoming edges. This construction is almost1

identical to an iterative MMR construction, where every leaf is
the root of the previous MMR. FlyClient follows this design,
storing the previous MMR root in every new block/leaf. It
is easy to see that constructing a FlyClient chain of length n
takes θ(n) sequential steps. The verification algorithm of [47]
can be interpreted as our FlyClient protocol with a uniform
querying distribution. A FlyClient blockchain is, therefore, a
PoSW, albeit an inefficient one. In a PoSW, a cheating prover
will cheat on a constant fraction of leafs in order to save
a significant amount of sequential work. FlyClient’s security
guarantee is stronger, ensuring that, from no point on the chain,
a constant (or more) fraction of leafs are corrupted.

1In [47], a node can have more than two incoming edges.
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