
Private resource allocators and their applications

Sebastian Angel

University of Pennsylvania
Sampath Kannan

University of Pennsylvania
Zachary Ratliff

Raytheon BBN Technologies

Abstract—This paper introduces a new cryptographic primi-
tive called a private resource allocator (PRA) that can be used
to allocate resources (e.g., network bandwidth, CPUs) to a set
of clients without revealing to the clients whether any other
clients received resources. We give several constructions of PRAs
that provide guarantees ranging from information-theoretic to
differential privacy. PRAs are useful in preventing a new class
of attacks that we call allocation-based side-channel attacks.
These attacks can be used, for example, to break the privacy
guarantees of anonymous messaging systems that were designed
specifically to defend against side-channel and traffic analysis
attacks. Our implementation of PRAs in Alpenhorn, which is a
recent anonymous messaging system, shows that PRAs increase
the network resources required to start a conversation by up
to 16× (can be made as low as 4× in some cases), but add no
overhead once the conversation has been established.

I. INTRODUCTION

Building systems that avoid unintentional information leak-

age is challenging since every action or operation—innocuous

as it may be—can reveal sensitive information. This is

especially true in the wake of numerous side-channel attacks

that exploit unexpected properties of a system’s design, im-

plementation, or hardware. These attacks can be based on

analog signals such as the machine’s power consumption [50],

sound produced [36], photonic emissions from switching

transistors [72], temperature [43], and electromagnetic radiation

emanated [4, 82], that arise as a result of the system performing

some sensitive operation. Or they may be digital and monitor

the timing of operations [51], memory access patterns [38],

the contention arising from shared resources (e.g., caches [47],

execution ports in simultaneous multithreading [19]), and the

variability of network traffic [70].

In the above cases, information is exposed as a result of a

process in the system consuming a resource (e.g., sending a

network packet, populating the cache, executing a conditional

branch instruction). We can think of these side channels as

consumption-based. In this paper, we are concerned with side

channels that exist during the allocation of the resource to

a process, and that are observable regardless of whether the

process ultimately consumes the resource. As a result, these

allocation-based side channels can sometimes be exploited

by attackers in systems that have been explicitly designed

to avoid consumption-based side channels (systems that pad

all requests, regularize network traffic and memory accesses,

have constant time implementations, clear caches after every

operation, etc.). To prevent allocation-based side channels we

propose a new primitive called a private resource allocator
(PRA) that guarantees that the mechanism by which the system

allocates resources to processes leaks no information.

At a high level, allocation-based side channels exist because

a system’s resource allocator—which includes cluster man-

agers [1], network rate limiters [58], storage controllers [76],

data center resource managers [7], flow coordinators [67], lock

managers [42], etc.—can leak information about how many

(and which) other processes are requesting service through the

allocation itself. As a simple example, a process that receives

only a fraction of the resources available from an allocator that

is work conserving (i.e., that allocates as many resources as

possible) can infer that other processes must have requested

the same resources concurrently. These observations can be

made even if the other processes do not use their allocated

resources at all.

While the information disclosed by allocations might seem

harmless at first glance, these allocation-based side channels can

be used as building blocks for more serious attacks. As a mo-

tivating example, we show that allocation-based side channels

can be combined with traffic analysis attacks [5, 26, 27, 48, 49,

59, 66, 70, 77] to violate the guarantees of existing bidirectional

anonymous messaging systems (often called metadata-private

messengers or MPMs) [6, 10, 52, 53, 55, 56, 78, 81]. This

is significant because MPMs are designed precisely to avoid

side-channel attacks. In particular, Angel et al. [9] show that

these systems are secure only if none of the contacts with

whom a user communicates are compromised by an adversary;

otherwise, compromised contacts can learn information about

the user’s other conversations. We expand on Angel et al.’s

observation in Section II, and show that it is an instance of an

allocation-based side-channel attack.

To prevent allocation-based side channels, we introduce

private variants of resource allocators (PRAs) that can assign

resources to processes without leaking to any processes

which or how many other processes received any units of

the resource. We formalize the properties of PRAs (§III),

and propose several constructions that guarantee information-

theoretic, computational, and differential privacy under different

settings (§IV-A–IV-C). We also discuss how privacy interacts

with classic properties of resource allocation. For example,

we show that privacy implies population monotonicity (§V).

Finally, we prove an impossibility result (§III-B): there does

not exist a PRA when the number of concurrent requesting

processes is not bounded ahead of time. As a result, PRAs

must assume a polynomial bound on the number of requesting

processes (and this bound might leak).

To showcase the benefits and costs of using PRAs, we

integrate our constructions into Alpenhorn [57], which is a

system that manages conversations in MPMs. The result is the

first MPM system that is secure in the presence of compromised

372

2020 IEEE Symposium on Security and Privacy

© 2020, Sebastian Angel. Under license to IEEE.
DOI 10.1109/SP40000.2020.00065

friends. Interestingly, our implementation efforts reveal that

naively introducing PRAs into MPMs would cripple these

systems’ functionality. For example, it would force clients to

abruptly end ongoing conversations, and would prevent honest

clients from ever starting conversations. To mitigate these issues,

we propose several techniques tailored to MPMs (§VI).

Our evaluation of Alpenhorn shows that PRAs lead to

conversations taking 16× longer to get started (or alternatively

consuming 16× more network resources), though this number

can be reduced to 4× by prioritizing certain users. However,

once conversations have started, PRAs incur no additional

overhead. While we admit that such delayed start (or bandwidth

increase) further hinders the usability of MPMs, compromised

friends are enough of a real threat to justify our proposal.

In summary, the contributions of this work are:

• The notion of Private Resource Allocators (PRA) that

assign resources to processes without leaking how many or

to which processes resources are allocated.

• An impossibility theorem that precisely captures under

what circumstances privacy cannot be achieved.

• Several PRA constructions under varying assumptions.

• A study of how privacy impacts other allocation properties.

• The integration of PRAs into an MPM to avoid leaking

information to compromised friends, and the corresponding

experimental evaluation.

Finally, we believe that PRAs have applications beyond

MPMs, and open up exciting theoretical and practical ques-

tions (§IX). We hope that the framework we present in the

following sections serves as a good basis.

II. CASE STUDY: METADATA-PRIVATE MESSENGERS

In the past few years, there has been a flurry of work on

messaging systems that hide not just the content of messages

but also the metadata that is associated with those messages [6,

8, 10, 24, 53, 55, 56, 78, 81, 83]. These systems guarantee some

variant of relationship (or third-party) unobservability [68], in

which all information (including the sender, recipient, time of

day, frequency of communication, etc.) is kept hidden from

anyone not directly involved in the communication. A key

driver for these systems is the observation that metadata is itself

sensitive and can be used—and in fact has been used [22, 71]—

to infer the content or at least the context of conversations for

a variety of purposes [73]. For example, a service provider

could infer that a user has some health condition if the user

often communicates with health professionals. Other inferable

information typically considered sensitive includes religion,

race, sexual orientation, and employment status [61].

In these metadata-private messengers (MPMs), a pair of

users are considered friends only if they have a shared secret.

Users can determine which of their acquaintances are part of the

system using a contact discovery protocol [16, 20, 60], and can

then exchange the secret needed to become friends with these

acquaintances through an out-of-band channel (e.g., in person

at a conference or coffee shop), or with an in-band add-friend
protocol [57]. A pair of friends can then initiate a session. This

Add friend to contact list

Dial a friend in contact list

Converse with friend

Establish a shared secret

Send message starting on round r

Agree on session key and round r

Protocol Objective

Discover friends Learn identifier or public key

FIG. 1—MPM systems consist of four protocols: friend discovery,
add-friend, dialing, and conversation. Users can only converse once
they are in an active session (agree on a session key and round).

is done with a dialing protocol [6, 52, 57] whereby one user

“cold calls” another user and notifies them of their intention to

start a conversation. The analogous situation in the non-private

setting is a dialing call on a VoIP or video chat service like

Skype. Creating a session boils down to agreeing on a time or

round to start the conversation, and generating a key that will

be used to encrypt all messages in the session (derived from

the shared secret and the chosen round).

Once a session between two friends has been established,

the participants can exchange messages using a conversation
protocol (this is the protocol that actually differentiates most

MPM systems). In all proposed conversation protocols, com-

munication occurs in discrete rounds—which is why part of

creating a session involves identifying the round on which to

start the conversation—during which a user sends and receives

up to k messages. One can think of each of these k messages as

being placed in a different channel. To guarantee no metadata

leaks, users are forced to send and receive a message on

each channel in every round, even when the user is idle and

has nothing to send or receive (otherwise observers could

determine when a user is not communicating). We summarize

these protocols in Figure 1.

The above highlights a tension between performance and

network costs experienced by all MPM systems. Longer rounds

increase the delay between two consecutive messages but

reduce the network overhead when a user is idle (due to fewer

dummy messages). Having more channels improves throughput

(more concurrent conversations per round or more messages

per conversation) but at the cost of higher network overhead

when the user is idle. Given that users are idle a large fraction

of the time, most MPMs choose long round duration (tens of

seconds) and a small number of channels (typically k = 1).

While these tradeoffs have long been understood, the impact

of the number of communication channels on privacy has

received less attention. We discuss this next.

A. Channel allocation can leak information

Prior works on MPMs have shown that the proposed contact

discovery, add-friend, dialing, and conversation protocols are

secure and leak little information (negligible or bounded) on

their own, but surprisingly, none had carefully looked at their

composition. Indeed, recent work by Angel et al. [9] shows that

existing dialing and communication protocols do not actually

373

compose in the presence of compromised friends. The reason

is that the number of communication channels (k) is usually

smaller than the number of friends that could dial the user at

any one time. As a result, when a user is dialed by n friends

asking to start a conversation at the same time, the user must

determine an allocation of the n friends to the k channels.

As one would expect, when n > k, not all of the n dialing

requests can be allocated onto the k available channels since

each channel can only support one conversation (for example, a

user in Skype can only accept one incoming call at a time since

k = 1). If this allocation is not done carefully—defining what

“carefully” means formally is the subject of Section III—a user’s

friends can learn information through dialing. In particular, a

caller who dials and receives a busy signal or no response at

all for a round r can infer that the callee has agreed to chat

with other users during round r.1 For the more general case of

k > 1, an attacker controlling k callers can dial the user and

observe whether all calls are answered or not; an attacker may

even conduct a binary search over multiple rounds to learn the

exact number of ongoing conversations.

The saving grace is that information that leaks is observed

only by a user’s dialing friends, as opposed to all users in

the system or third-party observers (since friendship is a

precondition for dialing). However, friends’ accounts can be

compromised by an adversary, and users could be tricked

into befriending malicious parties. In fact, not only is this

possible, it is actually a common occurrence: prior surveys

of user behavior on online social networks show that users

are very willing to accept friend requests from strangers [69].

Furthermore, given recent massive leaks of personal data—3

billion accounts by Yahoo in 2013 [54]; 43 million accounts

by Equifax in 2017 [34]; 87 million users by Facebook in

2018 [74] and an additional 549 million records in 2019 [80]—

there is significant material for attackers to conduct social

engineering and other attacks. Worse yet, many of these attacks

can easily be automated [15].

B. Traffic analysis makes things worse

The previous section describes how an attacker, via com-

promised friends, can learn whether a user is busy or not in

some round r (or get some confidence on this) by conducting

an allocation-based side channel attack. While such leakage

is minor on its own, it can be composed with traffic analysis

techniques such as intersection [70] and disclosure [5] attacks

(and their statistical variants [25]).

As a very simple example, imagine an adversary that can

compromise the friends of multiple users and can use those

compromised friends to determine which users are (likely)

active in a given round r. The adversary can then reduce

the set of possible sender-recipient pairs by ignoring all the

idle users (more sophisticated observations can also be made

by targeting particular users). The adversary can then repeat

1A lack of response does not always mean that a user is busy with others; the
user could be asleep. However, existing MPMs accept requests automatically.
Even if the user were involved, information would still leak and predicating
correctness on behavior that is hard to characterize is undesirable.

the attack for other rounds r′, r′′, etc. With each additional

round, the adversary can construct intersections of active users

and shrink the set of possible sender-recipient pairs under the

assumption that conversations span multiple rounds.

In short, the described allocation-based side-channel attack

makes existing MPM systems vulnerable to traffic analysis. In

the next section we formally model the leakage of information

that results from allocating dialing friends to a limited number

of channels. In Sections IV-A–IV-C we then give several

constructions of allocators that can be used by MPM systems

to establish sessions without leaking information.

III. PRIVATE RESOURCE ALLOCATORS (PRAS)

The allocation-based side-channel attack described in the

prior section essentially follows a pigeonhole-type argument

whereby there are more friends than there are channels. This

same idea applies to other situations. For example, whenever

there is a limited number of CPU cores and many threads,

the way in which threads are scheduled onto cores leaks

information to the threads. Specifically, a thread that was

not scheduled could infer that other threads were, even if

the scheduled threads perform no operations and consume

no resources. In this section we formalize this problem more

generally and describe desirable security definitions.

We begin with the notion of a private resource allocator,

which is an algorithm that assigns a limited number of resources

to a set of processes that wish to use those resources. Privacy

means that the outcome of the allocator does not reveal to any

processes whether there were other processes concurrently

requesting the same resource. Note that private allocators

are concerned only with the information that leaks from the

allocation itself; information that leaks from the use of the

resource is an orthogonal concern.

In more detail, a resource allocator RA is an algorithm that

takes as input a resource of capacity k, and a set of processes

P from a universe of processes M (P ⊆ M). RA outputs the set

of processes U ⊆ P that should be given a unit of the resource,

such that |U| ≤ k. There are two desirable properties for an

RA, informally given below.

• Privacy: it is hard for an adversary controlling a set of

processes Pmal ⊆ P to determine whether there are other

processes (i.e., Pmal = P or Pmal ⊂ P) from observing the

allocations of processes in Pmal.

• Liveness: for all sets of processes P, occasionally at least

one process in P receives a unit of the resource.

The liveness property is the weakest definition of progress

needed for RAs to be useful, and helps to rule out an RA that

achieves privacy by never allocating resources.

A. Formal definition

Notation. We use poly(λ) and negl(λ) to mean a polynomial

and negligible function2 of λ’s unary representation (1λ). We

2A function f : N → R is negligible if for all positive polynomials poly, there
exists an integer c such that for all integers x greater than c, |f (x)| < 1/poly(x).

374

symbol description
C and A Challenger and adversary in the security game resp.

b and b′ Challenger’s coin flip and adversary’s guess resp.

k Amount of available resource

M Universe of processes

P Processes requesting service concurrently (⊆ M)

Phon Honest processes in P (not controlled by A)

Pmal Malicious processes in P (controlled by A)

U Allocation (⊆ P) of size at most k

λ Security parameter

βx poly(λ) bound on variable x

FIG. 2—Summary of terms used in the security game, lemmas, and
proofs, and their corresponding meaning.

use βx to mean a poly(λ) bound on variable x. Upper case

letters denote sets of processes. Figure 2 summarizes all terms.

Security game. We define privacy with a game played between

an adversary A and a challenger C. The game is parameterized

by a resource allocator RA and a security parameter λ. RA
takes as input a set of processes P from the universe of all

processes M, a resource capacity k that is poly(λ), and λ. RA
outputs a set of processes U ⊆ P, such that |U| ≤ k.

1) A is given oracle access to RA, and can issue an arbitrary

number of queries to RA with arbitrary inputs P and k. For

each query, A can observe the result U ← RA(P, k,λ).
2) A picks a positive integer k and two disjoint sets of

processes Phon, Pmal ⊆ M and sends them to C. Here Phon

represents the set of processes requesting a resource that

are honest and are not compromised by the adversary. Pmal

represents the set of processes requesting a resource that

are compromised by the adversary.

3) C samples a random bit b uniformly in {0, 1}.

4) C sets P ← Pmal if b = 0 and P ← Pmal ∪ Phon if b = 1.

5) C calls RA(P, k,λ) to obtain U ⊆ P where |U| ≤ k.

6) C returns Umal = U ∩ Pmal to A.

7) A outputs its guess b′, and wins the game if b = b′.
In summary, the adversary’s goal is to determine if the

challenger requested resources for the honest processes or not.

Definition 1 (Information-theoretic privacy). An allocator RA
is IT-private if in the security game, for all algorithms A,

Pr[b = b′] = 1/2, where the probability is over the random

coins of C and RA.

Definition 2 (Computational privacy). An allocator RA is C-

private if in the security game given parameter λ, for all

probabilistic polynomial-time algorithms A, the advantage of

A is negligible: | Pr[b = b′] − 1/2| ≤ negl(λ), where the

probability is over the random coins of C and RA.

Definition 3 (Liveness). An allocator RA guarantees liveness

if given parameter λ, any non-empty set of processes P, and

positive resource capacity k, Pr[RA(P, k,λ) �= ∅] ≥ 1/poly(λ).

The proposed liveness definition (Def. 3) is very weak. It

simply states that the allocator must occasionally output at least

one process. Notably, it says nothing about processes being

allocated resources with equal likelihood, or that every process

is eventually serviced (it allows starvation). Nevertheless, this

weak definition is sufficient to separate trivial from non-trivial

allocators; we discuss several other properties such as fairness

and resource monotonicity in Section V. To compare the

efficiency of non-trivial allocators, however, we need a stronger

notion that we call the allocator’s utilization.

Definition 4 (Utilization). The utilization of a resource alloca-

tor RA is the fraction of requests serviced by RA compared to

the number of requests that would have been serviced by a non-

private allocator. Formally, given a set of processes P, capacity

k, and parameter λ, RA’s utilization is E(U)/min(|P|, k), where

E(U) is the expected number of output processes of RA(P, k,λ).

B. Prior allocators fail

Before describing our constructions we discuss why straight-

forward resource allocators fail to achieve privacy.

FIFO allocator. A FIFO allocator simply allocates resources to

the first k processes. This is the type of allocator currently used

by MPM systems to assign dialing friends to channels (§II-A),

and is also commonly found in cluster job schedulers (e.g.,

Spark [84]). This allocator provides no privacy. To see why,

suppose that both Phon and Pmal are ordered sets, where the

order stems from the identity of the process. The adversary

can interleave the identity of processes in Phon and Pmal so

that the FIFO allocator’s output is k processes in Pmal when

b = 0, and k/2 processes in Pmal when b = 1.

Uniform allocator. Another common allocator is one that

picks k of the processes at random. At first glance this might

appear to provide privacy since processes are being chosen

uniformly. Nevertheless, this allocator leaks a lot of information.

In particular, when b = 0 the adversary expects k of its

processes to be allocated (since P = Pmal), whereas when b = 1,

fewer than k of the malicious processes are likely to be allocated.

More formally, let X be the random variable describing the

cardinality of the set returned to A, namely |U∩Pmal|. Suppose

|Pmal| = |Phon| = k. Then Pr[X < k | b = 0] = 0 and

Pr[X < k | b = 1] = 1 − (k! · k!)/(2k)! ≥ 1/2. As a result, A
can distinguish between b = 0 and b = 1 with non-negligible

advantage by simply counting the elements in U ∩ Pmal.

Uniform allocator with variable-sized output. One of the

issues with the prior allocator is that the size of the output

reveals too much. We could consider a simple fix that selects

an output size s uniformly from the range [0, k], and allocates

s processes at random. But this is also not secure.

Let |Pmal| = |Phon| = k, and let X be the random variable

representing the cardinality of the set returned to A. We show

that the probability that X = k is lower when b = 1. Observe

that Pr[X = k | b = 0] = 1
k+1

, whereas Pr[X = k | b = 1] =

(k! · k!)/((k + 1)(2k)!) < 1
k+1

for all k ≥ 1. Furthermore,

when k ≥ 1, (k! · k!)/((k + 1)(2k)!) ≤ 1/2. Therefore, 1
k+1

−

375

allocator leakage utilization assumptions
• setup phase

SRA (§IV-A) None
|P|
βM

• |M| ≤ βM

• p ∈ M identifiable

RRA (§IV-B) None
|P|
βP

• |P| ≤ βP

DPRA (§IV-C) 1/g(λ) |P|
|P|+h(λ)βhon

• |Phon| ≤ βhon

FIG. 3—Comparison of privacy guarantees, utilization, and assump-
tions of different PRAs. DPRA makes the weakest assumptions since
Phon ⊆ P ⊆ M and is the only one that tolerates an arbitrary number
of malicious processes. g and h are polynomial functions that control
the tradeoff between utilization and privacy (§IV-C).

(k! · k!)/((k + 1)(2k)!) ≥ 1
k+1

· [1 − 1/2] = 1
2(k+1) , which is

non-negligible. As a result, A can distinguish b = 0 and b = 1

with non-negligible advantage.

Allocator from a secret distribution. The drawback of

the prior allocator is that the adversary knows the expected

distribution under b = 0 and b = 1 for its choice of Phon, Pmal,

and k. Suppose instead that the allocator has access to a secret

distribution not known to the adversary. The allocator then

uses the approach above (allocator with variable-sized output)

with the secret distribution instead of a uniform distribution.

This is also not secure; the proof is in Appendix A.

The intuition for the above result is that the perturbation

introduced by steps 4 and 6 of the security game cannot be

masked without additional assumptions. To formalize this, we

present the following impossibility result that states that without

a bound on the number of processes, an allocator cannot

simultaneously achieve privacy and our weak definition of

liveness. We focus on IT-privacy since C-privacy considers a

PPT adversary; by definition, the size of the sets of processes

that such an adversary can create is bounded by a polynomial.

Theorem 1 (Impossibility result). There does not exist a

resource allocator RA that achieves IT-privacy (Def. 1) and

Liveness (Def. 3) when k is poly(λ) and |P| is not poly(λ).

The proof is given in Appendix B.

IV. ALLOCATOR CONSTRUCTIONS

Given the impossibility result in the prior section, we propose

several allocators that guarantee liveness and some variant of

privacy under different assumptions. As a bare minimum, all

constructions assume a poly(λ) bound, βhon, on |Phon|. In the

context of MPM systems, this basically means that a user never

receives more than a polynomial number of dial requests by

honest users asking to start a conversation in the same round—

which is an assumption that is easy to satisfy in practice. We

note that none of our allocators can hide βhon from an adversary,

so it is best thought of as a public parameter. We summarize

the properties of our constructions in Figure 3.

A. Slot-based resource allocator

We now discuss a simple slot-based resource allocator. It

guarantees information-theoretic privacy and liveness under

the assumption that the size of the universe of processes (|M|)
has a bound βM that is poly(λ). The key idea is to map each

process p ∈ M to a unique “allocation slot” (so there are at

most βM total slots), and grant resources to processes only if

they request them during their allocated slots. The chosen slots

are determined by a random λ-bit integer r.

Slot-based resource allocator SRA:
• Pre-condition (setup): ∀p ∈ M, slot(p) ∈ [0, |M|)
• Inputs: P, k,λ

• r ←R [0, 2λ)

• U ← ∅

• ∀p ∈ P, i ∈ [0, k), if slot(p) ≡ r + i mod |M|, add p to U
• Output: U

Lemma 1. SRA guarantees IT-privacy (Def. 1).

Proof. Observe that a process p ∈ P is added to U when

r ≤ slot(p) < (r + k) mod |M|, which occurs independently

of b. In particular, if we let Ep be the event that a process p ∈ P
is added to U, then Pr[Ep|b = 0] = Pr[Ep|b = 1] = k/|M|.
Since an adversary cannot observe differences in Pr[Ep] when

P = Pmal versus P = Pmal ∪ Phon, privacy is preserved.

Lemma 2. SRA guarantees Liveness (Def. 3) if |M| ≤ βM .

Proof. SRA outputs at least one process when there is a p ∈ P
such that r ≤ slot(p) < (r + k) mod |M|. For a given r, this

occurs with probability ≥ k/|M|.
SRA achieves our desired goals. It guarantees privacy and

liveness, and achieves a utilization (Def. 4) of
|P|
|M| whenever

k ≤ |P|. But it also has several limitations. First, it assumes

that the cardinality of the universe of processes (|M|) is known

in advance, and that it can be bounded by βM . Second, it

assumes a preprocessing phase in which each process in M is

assigned a slot. Finally, it assumes that each individual process

is identifiable since SRA must be able to compute slot(p) for

every process p ∈ P.

Unfortunately, these limitations are problematic for many

applications. For instance, consider an MPM system (§II). M
represents the set of friends for a user (not just the ones dialing),

so it could be large. Furthermore, users cannot add new friends

without leaking information since this would change M (and

therefore the periodicity of allocations), which the adversary

can detect. As a result, users must bound the maximum set

of friends that they will ever have (βM), use this bound in the

allocator (instead of |M|), and achieve a utilization of
|P|
βM

.

B. Randomized resource allocator

In this section we show how to relax most of the assumptions

that SRA makes while achieving better utilization. In particular,

we construct a randomized resource allocator RRA that guaran-

tees privacy and liveness under the assumption that there is a

poly(λ) bound, βP, for the number of simultaneous processes

376

requesting a resource (|P|). RRA does not need a setup phase,

and does not require uniquely identifying processes in M. More

importantly, RRA achieves both requirements even when the

universe of processes (M) is unbounded. These relaxations are

crucial since they make RRA applicable to situations in which

processes are created dynamically.

At a high level, RRA works by padding the set of processes

(P) with enough dummy processes to reach the upper bound

(βP). RRA then randomly permutes the padded set and outputs

the first k entries (removing any dummies from the allocation).

If the permutation is truly random, this allocator guarantees

information-theoretic privacy since P is always padded to βP

elements regardless of the challenger’s coin flip (b). However,

it requires a source of more than βP random bits, which might

be too much in some scenarios. One way to address this is

to generate the random permutations on the fly [18], which

requires only O(k log(βP)) random bits. Alternatively, we can

simply assume that the adversary is computationally bounded

and allow a negligible leakage of information by making the

permutation pseudorandom instead.

Randomized resource allocator RRA:
• Inputs: P, k,λ

• Q ← set of dummy processes of size βP − |P|
• π ← random or pseudorandom permutation of P ∪ Q
• U ← first k entries in π

• Output: U ∩ P

Lemma 3. RRA guarantees IT-privacy (Def. 1) if |P| ≤ βp

and the permutation is truly random.

Proof. Let Ep be the event that a process p is added to U. Then,

for all p ∈ P, Pr[Ep] = k/βP. Since Pr[Ep] remains constant

for all sets of processes P, an adversary has no advantage to

distinguish between P = Pmal and P = Pmal ∪ Phon.

Lemma 4. RRA guarantees C-privacy (Def. 2) against all

probabilistic polynomial-time (PPT) adversaries if |P| ≤ βP.

Proof. We use a simple hybrid argument. Consider the variant

of RRA that uses a random permutation instead of a PRP.

Lemma 3 shows the adversary has no advantage to distinguish

between b = 0 and b = 1. A PPT adversary distinguishes

between the above RRA variant and one that uses a PRP (with

security parameter λ) with negl(λ) advantage.

Lemma 5. RRA guarantees Liveness (Def. 3) if |P| ≤ βP.

Proof. RRA outputs at least one process if there exists a p ∈ P
in the first k elements of π. This follows a hypergeometric

distribution since we sample k out of βP processes without

replacement, and processes in P are considered a “success”.

The probability of at least one success is therefore:

k∑
i=1

(|P|
i

)(|Q|
k−i

)
(
βP
k

) ≥ 1/βP

which is non-negligible.

RRA achieves privacy, liveness, and a utilization (Def. 4) of

|P|/βP when k ≤ |P|, which is a factor of βM/βP improvement

over SRA. However, it still requires a bound on the number of

concurrent processes (P). In the context of an MPM system, this

requirement essentially asks the user to pick a bound (e.g., βP =
20), and assume that the adversary will not compromise more

than, say, 18 of their friends, while simultaneously receiving

fewer than 3 calls from honest friends. Otherwise, the adversary

could simply flood the user with malicious calls and infer, via

an allocation-based side channel, that the user is talking to at

least one honest friend (§II). Although one could come up with

values of βP that are large enough to hold in practice (e.g.,

users in social media have on average hundreds of friends [79],

so βP = 100 might suffice), this only works in applications

where the adversary cannot commandeer an arbitrary number

of processes via a sybil attack [30]. In such cases, there might

not be a useful bound (e.g., βP = 280 certainly holds in practice,

but results in essentially 0 utilization).
The above limitation is fundamental and follows from our

impossibility result. In the next section, however, we show

that if one can tolerate a weaker privacy guarantee, there exist

allocators that require only a poly(λ) bound, βhon, on |Phon|.
The number of malicious processes (|Pmal|), and therefore the

number of total concurrent processes (|P|), can be unbounded.

C. Differentially private resource allocator
In this section we relax the privacy guarantees of PRAs and

require only that the leakage be at most inverse polynomial in

λ, rather than negligible. We define this guarantee in terms of

(ε, δ)-differential privacy [31].

Definition 5 (Differential privacy). An allocator RA is (ε, δ)-
differentially private [31] if in the security game of Section III,

given parameter λ, for all algorithms A and for all Umal:

Pr[C(b) returns Umal] ≤ eε · Pr[C(b̄) returns Umal] + δ

where Umal is the set of processes returned from C to A in

Step 6 of the security game, and C(b) means an instance of C
where the random bit is b; similarly for C(b̄) where b̄ = 1− b.

The probability is over the random coins of C and RA.

We show that if there is a poly(λ) bound, βhon, for the

number of honest processes (|Phon|), then there is an RA
that achieves (ε, δ)-differential privacy and Liveness (Def. 3).

Before introducing our construction, we discuss a subtle

property of allocators that we have ignored thus far: symmetry.

Definition 6 (Symmetry). An allocator is symmetric if it does

not take into account the features, identities, or ordering of

processes when allocating resources. This is an adaptation of

symmetry in games [21, 35], in which the payoff of a player

depends only on the strategy it uses, and not on the player’s

identity. Concretely, given an ordered set of processes P where

the only difference between processes is their position in P, RA
is symmetric if Pr[RA(P, k,λ) = p] = Pr[RA(π(P), k,λ) = p],
for all p and all permutations π. This argument extends to

other identifying features (process id, permissions, time that a

process is created, how many times a process has retried, etc.).

377

For example, the (non-private) uniform allocator of Sec-

tion III-B and the private RRA (§IV-B) are symmetric: they

allocate resources without inspecting processes. On the other

hand, the (non-private) FIFO allocator of Section III-B and

the private SRA (§IV-A) are not symmetric; FIFO takes into

account the ordering of processes, and SRA requires computing

the function slot on each process. While symmetry places some

limits on what an allocator can do, in Section V-A we show

that many features (e.g., heterogeneous demands, priorities)

can still be implemented.

Construction. Recall from Section III that RA receives one of

two requests from C depending on the bit b that C samples. The

request is either Pmal or Pmal ∪Phon. We can think of these sets

as two neighboring databases. Our concern is that the processes

in Pmal that are allocated the resource might convey too much

information about which of these two databases was given to

RA, and in turn reveal b. To characterize this leakage, we derive

the sensitivity of an RA that allocates resources uniformly.

Our key observation is that if RA is symmetric, then the only

useful information that the adversary gets is the number of

processes in Pmal that are allocated (i.e., |Umal|); the allocation

is independent of the particular processes in Pmal. If RA adds

no dummy processes and allocates resources uniformly, then

|Umal| = min(|Pmal|, k|Pmal|
|Pmal|) when b = 0 and, in expectation,

min(|Pmal|, k|Pmal|
|Pmal|+|Phon|) when b = 1. By observing |Umal|,

the adversary learns the denominator in these fractions; the

sensitivity of this denominator—and of RA—is |Phon| ≤ βhon.

To limit the leakage, we design an allocator that samples

noise from an appropriate distribution and adds dummies based

on the sampled noise. We discuss the Laplace distribution here,

but other distributions (e.g., Poisson) would also work. The

Laplace distribution (Lap) with location parameter μ and scale

parameter s has the probability density function:

Lap(x|μ, s) =
1

2s
exp

(−|x − μ|
s

)

Let g(λ) and h(λ) be polynomial functions of the allocator’s

security parameter λ. These functions will control the tradeoff

between privacy and utilization: ε = 1/g(λ) bounds how much

information leaks (a larger value of g(λ) leads to better privacy

but worse utilization), and the ratio h(λ)/g(λ) (which impacts

δ) determines how often the bound holds (a larger ratio provides

a stronger guarantee, but leads to worse utilization). Given these

two functions, the allocator works as follows.

(ε, δ)-differentially private resource allocator DPRA:
• Inputs: P, k,λ

• μ ← βhon · h(λ)
• s ← βhon · g(λ)
• n ← �max(0, Lap(μ, s))�
• t ← |P|+ n
• Q ← set of dummy processes of size n
• π ← random permutation of P ∪ Q
• U ← first min(t, k) processes in π

• Output: U ∩ P

In short, the allocator receives a number of requests that is

either |Pmal| or |Pmal∪Phon|. It samples noise n from the Laplace

distribution, computes the noisy total number of processes

t = |P|+ n, and allocates min(t, k) uniformly at random.

Lemma 6. DPRA is (ε, δ)-differentially private (Def. 5) for

ε = 1
g(λ) and δ = 1

2
exp(1−h(λ)

g(λ)) if |Phon| ≤ βhon.

Proof strategy. The proof that DPRA is differentially private

uses some of the ideas from the proof for the Laplace

mechanism by Dwork et al. [31]. A learns the total number

of processes in Pmal that are allocated, call it tmal. We show

that when the noise (n) is sufficiently large, for all � ∈ [0, k],
Pr[tmal = �|b = 0] is within a factor eε of Pr[tmal = �|b = 1].
We then show that the noise fails to be sufficiently large with

probability ≤ δ. We give the full proof in Appendix C.

Corollary 7. If |Phon| ≤ βhon, the leakage or privacy loss that

results from observing the output of DPRA is bounded by

1/g(λ) with probability at least 1 − δ [32, Lemma 3.17].

In some cases, an adversary might interact with an allocator

multiple times, adapting Pmal in an attempt to learn more

information. We can reason about the leakage after i interactions

through differential privacy’s adaptive composition [33].

Lemma 8. DPRA is (ε′, iδ + δ′)-differentially private over i
interactions for δ′ > 0 and ε′ = ε

√
2i ln(1/δ′) + iε(eε − 1).

Proof. The proof follows from [33, Theorem III.3]. An optimal,

albeit more complex, bound also exists [44, Theorem 3.3].

Lemma 9. DPRA provides liveness (Def. 3) if |Phon| ≤ βhon.

Proof. The expected value of Lap is βhon · h(λ) ≤ poly2(λ).
As a result, the number of dummy processes added by DPRA
is polynomial on average; at least one process in P is allocated

a resource with inverse polynomial probability.

DPRA is efficient in expectation since with high probability,

n does not exceed a small multiple of βhon ·h(λ) (Lemma 9). To

bound DPRA’s worst-case time and space complexity, we can

truncate the Laplace distribution and bound n by exp(λ) without

much additional leakage. However, even if |P| ∈ poly(λ), the

noise (n), and thus the total number of processes (t) can all

be exp(λ). This would require DPRA to have access to exp(λ)
random bits to sample the dummy processes and to perform

the permutation; the running time and space complexity would

also be exponential. Fortunately, the generation of dummy

processes, the set union, and the permutation can all be avoided

(we introduced them only for simplicity). DPRA can compute

U directly from P, k, and t as follows.

1: function RANDOMALLOCATION(P, k, t)
2: U ← ∅
3: for i = 0 to min(t, k)− 1 do
4: r ←R [0, 1]
5: if r < |P|/(t − i) then
6: p← Sample uniformly from P without replacement
7: U = U ∪ {p}
8: return U

378

Finally, sampling m elements from P without replace-

ment is equivalent to generating the first m elements of a

random permutation of P on the fly, which can be done

with O(m log |P|) random bits in O(m log |P|) time and O(m)
space [18]. The same optimization (avoiding dummy processes

and permutations) applies to RRA (§IV-B) as well.

V. EXTENSIONS AND OTHER ALLOCATOR PROPERTIES

In addition to privacy and liveness, we ask whether PRAs

satisfy other properties that are often considered in resource

allocation settings. We study a few of them, listed below:

• Resource monotonicity If the capacity of the allocator

increases, the probability of any of the requesting processes

to receive service should not decrease.

• Population monotonicity When a process stops requesting

service, the probability of any of the remaining processes

to receive service should not decrease.

• Envy-freeness. A process should not prefer the allocation

probability of another process. This is our working definition

of fairness, though the notion of preference is quite subtle,

as we explain later.

• Strategy-proofness. A process should not benefit by lying

about how many units of a resource it needs.

Before stating which allocators meet which properties, we

first describe a few generalizations to PRAs.

A. Weighted allocators

Our resource allocators are egalitarian and select which

processes to allocate uniformly from all requesting processes.

However, they can be extended to prioritize some processes

over others with the use of weights. Briefly, each process is

associated with a weight, and allocation is done in proportion

that weight: a request from a process with half of the weight

of a different process is picked up half as often. To implement

weighted allocators, the poly(λ) bound on the number of

process (e.g., βP in RRA) now represents the bound on the sum

of weights across all concurrent processes (normalized by the

lowest weight of any of the processes), rather than the number

of processes; padding is done by adding dummy processes

until the normalized sum of their weights adds to the bound.

All of our privacy and liveness arguments carry over

straightforwardly to this setting. The only caveat is that

processes can infer their own assigned weight over time; just

like the bounds, none of our allocators can keep this information

private. However, processes cannot infer the weight of other
processes beyond the trivial upper bound (i.e., the sum of the

weights of any potential set of concurrent processes is βP).

B. Non-binary demands

Thus far we have considered only allocators for processes

that demand a single unit of a resource. A natural extension

is to consider non-binary demands. For example, a client of a

cloud service might request 5 machines to run a task. These

demands could be indivisible (i.e., the process derives positive

utility only if it receives all of its demand), or divisible (i.e., the

process derives positive utility even if it receives a fraction of

its demand). We describe two potential modifications to PRAs

that handle the divisible demands case and achieve different

notions of fairness; we leave a construction of PRAs for the

indivisible demands case to future work.

Probability in proportion to demands. In the non-binary

setting, the input to the allocator is no longer just the set

of processes P, but also their corresponding demands D. A

desirable notion of fairness might be to allocate resources in

proportion to processes’ demands. For example, if process p1

demands 100 units, and p2 demands 2 units, an allocation of 50

units to p1 and 1 unit to p2 may be fair. Our PRAs can achieve

this type of fairness for integral units by treating each process

as a set of processes of binary demand (the cardinality of each

set is given by the corresponding non-binary demand). The

bounds are therefore based on the sum of processes’ demands

rather than the number of processes.

Probability independent of demands. Another possibility is

to allocate each unit of a resource to processes independently

of how many units they demand. For example, if p1 demands

100 units and p2 demands 1 unit, both processes are equally

likely to receive the first unit of the resource. If p2 does not

receive the first unit, both processes have an equal chance to

get the second unit, etc.

To achieve this definition with PRAs, we propose to change

the way that RRA and DPRA sample processes (i.e., Line 6 of

the RANDOMALLOCATION function given in Section IV-C).

Instead of sampling processes uniformly without replacement

and giving the chosen processes all of their demanded resources,

the allocator samples processes from P uniformly with infinite
replacement, and gives each sampled process one unit of the

resource on every iteration. The allocator then assigns to each

process pi the number of units sampled for pi at the end of the

algorithm or pi’s demand, whichever is lower. This mechanism

preserves the privacy of the allocation since it is equivalent to

hypothetically running a PRA with a resource of capacity 1

and the same set of binary-demand processes k times in a row.

A property of this definition is that the bounds on the number

of processes—βP in RRA (§IV-B) and βhon in DPRA (§IV-C)—

remain the same as in the binary-demand case (i.e., independent

of processes’ demands) since the allocator does not expose

the results of the intermediate k hypothetical runs. However,

the allocator assumes that processes have infinite demand

(and discards excess allocations at the end), which ensures

privacy but leads to worse utilization (based on the imbalance

of demands). A potentially less wasteful alternative is to do

the sampling with a bounded number of replacements (i.e., a

sampled process is not replaced if its demand has been met),

but we have not yet analyzed this case since it requires stateful

reasoning (it is a Markov process); to our knowledge sampling
with bounded replacement has not been previously studied.

379

C. Additional properties met by PRAs

All of our PRAs meet the first three properties listed earlier,

and SRA and RRA also meet strategy-proofness; our proofs are

in Appendix D, but we highlight the most interesting results.

We observe that privacy is intimately related to population

monotonicity. This is most evident in DPRA, since its dif-

ferential privacy definition states that changes in the set of

processes have a bounded effect on the allocation. Indeed, we

prove in Appendix D that our strongest definition of privacy,

IT-privacy (Def. 1), implies population monotonicity.

SRA and RRA are trivially strategy-proof for binary demands

since processes have only two choices—to request or not

request the resource—and they derive positive utility only

if: (a) they receive the resource; or (b) they deny some other

process the resource (in some applications). Condition (b) is

nullified by IT-Privacy: the existence of other processes has no

impact on whether a process receives a resource (if it did, an

adversary could exploit it to win the security game with non-

zero advantage). Furthermore, if the resource cannot be traded

(i.e., a process cannot give its resource to another process)

and demands are binary, IT-privacy implies group strategy-
proofness [12], which captures the notion of collusion between

processes (as otherwise a set of processes controlled by the

adversary could impact the allocation and violate privacy).

For non-binary demands, PRAs that meet our definition of

allocation probabilities being in proportion to demands are not

strategy-proof: processes have an incentive to request as many

units of a resource as possible regardless of how many units

they actually need. On the other hand, allocators that meet

the definition of allocation probability being independent of

demands are strategy-proof since the allocator assumes that all

processes have infinite demand anyway.

VI. BUILDING PRIVATE DIALING PROTOCOLS

In Section II we show that the composition of existing dialing

protocols with conversation protocols in MPM systems leaks

information. In this section we show how to incorporate the

PRAs from Section III into dialing protocols [6, 52, 57]. As an

example, we pick Alpenhorn [57] since it has a simple dialing

scheme, and describe the modifications that we make.

A. Alpenhorn’s dialing protocol

As we mention in Section II, a precondition for dialing is

that both parties, caller and callee, have a shared secret. We

do not discuss the specifics of how the secret is exchanged

since they are orthogonal (for simplicity, assume the secret is

exchanged out of band). Alpenhorn’s dialing protocol achieves

three goals. First, it synchronizes the state of users with the

current state of the system so that clients can dial their friends.

Second, it establishes an ephemeral key for a session so that

all data and metadata corresponding to that session enjoys

forward secrecy: if the key is compromised, the adversary

does not learn the content or metadata of prior sessions. Last,

it sets a round on which to start communication. The actual

communication happens via an MPM’s conversation protocol.

Dialing service

1 Synchronize

Send dial tokens2

Get dial tokens3

Round of a dial protocol

S1 S2 S3 S4

Keywheel for friend i

apply hash each round

FIG. 4—Overview of Alpenhorn’s dialing protocol [57]. Clients
deposit dial tokens for their friends into an untrusted dialing service
in rounds, and download all dial tokens sent at the end of a round.
Clients then locally determine which tokens were meant for them.
To derive dial tokens for a particular friend and round, clients use a
per-friend data structure called a keywheel (see text for details).

We discuss how Alpenhorn achieves these goals, and

summarize the steps in Figure 4.

Synchronizing state. Similarly to how conversation protocols

operate in rounds (as we briefly discuss in Section II),

dialing protocols also operate in rounds. However, the two

types of rounds are quantitatively and qualitatively different.

Quantitatively, dialing happens less frequently (e.g., once per

minute) whereas conversations happen often (e.g., every ten

seconds). Qualitatively, a round of dialing precedes several

rounds of conversation, and compromised friends can only

make observations at the granularity of dialing rounds.

To be able to dial other users, clients need to know the

current dialing round. Clients can do this by asking the dialing

service (which is typically an untrusted server or a network of

mix servers) for the current round. While the dialing service

could lie, it would only result in denial of service which none

of these systems aims to prevent anyway.

In addition to the current dialing round, clients in Alpenhorn

maintain a keywheel for each of their friends. A keywheel is

a hash chain where the first node in the chain corresponds to

the initial secret shared between a pair of users (we depict this

as “S1” in Figure 4) anchored to some round. Once a dialing

round advances, the client hashes the current node to obtain

the next node, which gives the shared secret to be used in the

new round. The client discards prior nodes to ensure forward

secrecy in case of a device compromise.

Generating a dial request. To dial a friend, a client synchro-

nizes their keywheel to obtain the shared secret for the current

dialing round, and then applies a second hash function to the

shared secret. This yields a dialing token, which the client

sends to the dialing service. This token leaks no information

about who is being dialed except to a recipient who knows

the corresponding shared secret. To prevent traffic analysis

attacks, the client sends a dialing token every dialing round,

even when it has no intention to dial anyone (in such case the

client creates a dummy dial token by hashing random data).

Receiving calls. A client fetches from the dialing service all

of the tokens sent in a given dialing round by all users (this

leads to quadratic communication costs for the server which

380

is why dialing rounds happen infrequently)3. For each friend

f in a client’s list, the client synchronizes the keywheel for f ,

uses the second hash function to compute the expected dial

token, and looks to see if the corresponding value is one of the

tokens downloaded from the dialing service. If there is a match,

this signifies that f is interested in starting a conversation in

the next conversation round. To derive the session key for a

conversation with f , the client computes a third hash function

(different from the prior two) on the round secret.

Responding to a call. Observe that it is possible for a client

to receive many dial requests in the same dialing round. In

fact, a client can receive a dial request from every one of

their friends. The client is then responsible for picking which

of the calls to answer. A typical choice is to pick the first

k friends whose tokens matched, where k is the number of

channels of the conversation protocol (typically 1, though some

systems [8, 10] use larger values). Once the client chooses

which calls to answer, the client derives the appropriate session

keys and exchanges messages using the conversation protocol.

B. Incorporating private resource allocators

The allocation mechanism used by Alpenhorn to select which

calls to answer leaks information (it is the FIFO strawman of

Section III-B). We can instead replace it with a PRA like RRA
(§IV-B) to select which of the matching tokens (processes)

to allocate to the k channels of the conversation protocol

(resource). There is, however, one key issue with this proposal.

We are using the resource allocator only for the incoming calls.

But what about outgoing calls? Observe that each outgoing

call also consumes a communication channel. Specifically,

when a user dials another user, the caller commits to use the

conversation protocol for the next few conversation rounds

(until a new dial round). In contrast, the callee may choose

not accept the caller’s call. In other words, the caller uses up

a communication channel even if the recipient rejects the call.

Given the above, we study how outgoing calls impact the
allocation of channels for incoming calls.

Process outgoing calls first. We first consider an implemen-

tation in which the client subtracts each outgoing call from

the available channels (k) and then runs the PRA with the

remaining channels to select which incoming calls to answer.

This approach leaks information. The security game (§III)

chooses between two cases, one in which the adversary is

the only one dialing a user (P = Pmal), and one in which

honest users are also dialing the user (P = Pmal ∪ Phon). All

of our definitions of privacy require that the adversary cannot

distinguish between these two cases. However, with outgoing

calls there is another parameter that varies, namely the capacity

k; this variation is not captured by the security game.

To account for this additional variable, we ask whether an

adversary can distinguish the output of a resource allocator on

inputs P, k,λ (representing a universe in which the user is not

making any outgoing calls) and the output of the allocator on

3Alpenhorn reduces the constant terms using bloom filters [57].

inputs P, k′,λ, where k′ < k (representing a universe in which

the user is making at least one outgoing call). The answer is

yes. As a simple example, consider RRA (§IV-B). The output

from RRA(P, k = 1,λ) is very different from RRA(P, k = 0,λ)
when |Pmal| = βP and Phon = ∅. The former always outputs

one malicious process (since no padding is added and there are

no honest processes), whereas the latter never outputs anything.

Process incoming calls first. Another approach is to reverse

the order in which channels are allocated. To do so, one can

first run the resource allocator on the incoming calls, and then

use any remaining capacity for the outgoing calls. Since none

of our allocators achieve perfect utilization (Def. 4) anyway,

there is left over capacity for outgoing calls. This keeps k
constant, preventing the above attack.

While this approach preserves privacy and might be applica-

ble in other contexts, it cannot be applied to Alpenhorn. Recall

that users in Alpenhorn must send all of their dial tokens before
they receive a single incoming call (see Figure 4). Consequently,

the allocator cannot possibly execute before the user decides

which or how many outgoing dial requests to send.

Process calls independently. The above suggests that to

securely compose Alpenhorn with a conversation protocol

that operates in rounds (which is the case for existing MPM

systems), users should have dedicated channels. An implication

of this is that the conversation protocol must, at a bare

minimum, support two concurrent communication channels.

We give a concrete proposal below.

We assume that each user has k = in+out available channels

for the conversation protocol, for some in, out ≥ 1. The in
channels are dedicated for incoming calls; the out channels

are for outgoing calls. When a user receives a set of incoming

dial requests, it uses a PRA and passes in as the capacity.

Independently, the user can send up to out outgoing dial

requests each round (of course the user always sends out dialing

tokens to preserve privacy, using dummies if necessary). This

simple scheme preserves privacy since the capacity used in the

PRA is independent of outgoing calls.

C. Improving the fit

The previous section discusses how to incorporate a PRA into

an existing dialing protocol. However, it introduces usability

issues (beyond the ones that commonly plague this space).

Conversations breaking up. Conversations often exhibit

inertia: when two users are actively exchanging messages, they

are more likely to continue to exchange messages in the near

future. Meanwhile, our modifications to Alpenhorn (§VI-B)

force clients to break up their existing conversations at the

start of every dialing round, which is abrupt.

The rationale for ending existing conversations for each new

dialing round is that our PRAs expect the capacity to remain

constant across rounds (so users need to free those channels).

Below we discuss ways to partially address this issue.

First, clients could use an allocator that has inertia built in.

For example, our slot-based resource allocator SRA (§IV-A)

does not need the integer r to be random or secret to guarantee

381

privacy. Consequently, if one sets r to be the current round,

SRA would assign k consecutive dialing rounds to the same

caller. This allows conversations to continue smoothly across

rounds. The drawback is that if a conversation ends quickly

(prior to the k rounds), the user is unable to allocate someone

else’s call to that channel for the remaining rounds.

Second, clients could transition a conversation that is

consuming an incoming channel during one dial round to

a conversation that consumes an outgoing channel the next

dial round. Intuitively, this is the moral equivalent of both

clients calling each other during the new round. Mechanistically,

clients simply send dummy dial requests (they do not dial each

other) which forces an outgoing channel to be committed to a

dummy conversation. Clients then synchronize their keywheels

to the new dialing round, derive the session key, and hijack

the channel allocated to the dummy conversation.

Note that this transition can leak information. A compro-

mised friend who is engaged in a long-term conversation with

a target user could learn if the target has transitioned other

conversations from incoming to outgoing channels (or is dialing

other users) by observing whether a conversation ended abruptly

across dialing rounds. Ultimately, outgoing channels are a finite

resource and transitioning calls makes this resource observable

to an attacker. Nevertheless, this is not quite rearranging the

deck chairs on the Titanic; the requirements to conduct this

attack are high: the attacker needs to be in a conversation with

the target that spans multiple dialing rounds, and convince the

target to transition the conversation into an outgoing channel.

Lack of priorities. In many cases, users may want to prioritize

the calls of certain friends (e.g., close acquaintances over

someone the user met briefly during their travel abroad). This

is possible with the use of our weighted allocators (§V-A).

Users can give their close friends higher weights, and these

friends’ calls will be more likely to be accepted. A drawback

of this proposal is that callers can infer their assigned weight

based on how often their calls get through, which could lead

to awkward situations (e.g., a user’s parents may be sad to

learn that their child has assigned them a low priority!).

Lack of classes. Taking the idea of priorities a step further,

mobile carriers used to offer free text messaging within certain

groups (“family members” or “top friends”). We can generalize

the idea of incoming and outgoing channels to dedicate

channels to particular sets of users. For example, there could

be a family-incoming channel with its corresponding PRA.

This channel is used to chat with only family members, and

hence one can make strong assumptions about the bound on the

number of concurrent callers—allowing for better utilization.

VII. IMPLEMENTATION AND EVALUATION

We have implemented our allocators (including the weighted

variants of Section V-A) on top of Alpenhorn’s codebase [2] in

about 600 lines of Go, and also in a standalone library written

in Rust. In Alpenhorn, we modify the scanBloomFilter
function, which downloads a bloom filter representing the

dialing tokens from the dialing service. This function then

0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

ut
ili

za
tio

n

βhon

RRA
DPRA

SRA

FIG. 5—Mean utilization of PRAs over 1M rounds as we vary βhon.
The error bars represent the standard deviation. We fix βM = 2, 000
and make βp = 10βhon (the assumption modeled here is that 10%
of the potential concurrent processes are honest). The number of
concurrent processes that request service in a given round follows a
Poisson distribution with a rate of 50 requests/round (but we bound
this by βP). SRA and RRA guarantee IT-Privacy, and DPRA ensures
(ε, δ)-differential privacy for ε = ln(2) and δ = 10−4.

tests, for each of a user’s friends, whether the friend sent a

dialing token. If so, it executes the client’s ReceivedCall
handler (a client-specific callback function that acts on the

call) with the appropriate session key. Our modification instead

collects all of the matching tokens, runs the PRA to select

at most k of these tokens, and then calls the ReceivedCall
handler with the corresponding session keys.

A. Evaluation questions

None of our allocators are expensive in terms of memory or

computation. Even when allocating resources to 1M processes,

their 95-percentile runtimes are 4.2μs, 10.8μs, and 6.9μs

for SRA, RRA, DPRA respectively. The real impact of these

allocators is the reduction in utilization (compared to a non-

private variant). We therefore focus on three main questions:

1) How does the utilization of different allocators compare

as their corresponding bounds vary?

2) What is the concrete tradeoff between utilization and

leakage for the differentially private allocator?

3) How much latency do allocators introduce before friends

can start a conversation in Alpenhorn?

We answer these questions in the context of the following

experimental setup. We perform all of our measurements on

Azure D3v2 instances (2.4 GHz Intel Xeon E5-2673 v3, 14

GB RAM) running Ubuntu Linux 18.04-LTS. We use Rust

version 1.41 with the criterion benchmarking library [3], and

Go version 1.12.5 for compiling and running Alpenhorn.

B. Utilization of different allocators

We start by asking how different allocators compare in

terms of utilization. Since the parameter space here is vast

and utilization depends on the particular choice of parameters,

we mostly highlight the general trends. We set the maximum

number of processes to βM = 2, 000, and assume that 10% of

processes requesting service at any given time are honest (i.e.,

βP = 10βhon). This setting is not unreasonable if we assume

that sybil attacks [30] are not possible. If, however, sybil

attacks are possible in the target application, then comparing

the utilization of our allocators is a moot point: only DPRA

382

0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

ut
ili

za
tio

n

λ

βhon = 5
βhon = 10
βhon = 15
βhon = 20

FIG. 6—Mean utilization of DPRA with 1M rounds as we vary the
bounds (βhon) and the security parameter (λ) for a resource of capacity
k = 10. Here, g(λ) = λ and h(λ) = 3λ. The number of processes
requesting service (|P|) is fixed to 100.

can guarantee privacy in the presence of an unbounded number

of malicious processes.

To measure utilization (Definition 4), we have processes

request resources following a Poisson distribution with a rate

of 50 requests/round; this determines the value of |P|, which

we truncate at βP. We then depict the mean utilization over

1M rounds as we vary βhon (which impacts the value of βP as

explained above) in Figure 5.

Results. SRA achieves low utilization across the board since

it is inversely proportional to βM and does not depend on βhon

(the utilization is much lower at βhon = 1 only because of the

truncation of |P| to ≤ 10). RRA, on the other hand, achieves

perfect utilization when βhon is small. This is simply because

|P| = βP with high probability (again, due to the way we are

setting and truncating |P|); in such case RRA adds no dummy

processes. For larger values of βhon, the difference between βP

and |P| increases, leading to a reduction in utilization.

As we expect, DPRA’s utilization is inversely proportional

to βhon. What is somewhat surprising about this experiment is

that DPRA achieves worse utilization than RRA, even though

it provides weaker guarantees. However, this is explained by

DPRA making a weaker assumption. One could view this

difference as the cost of working in a “permissionless” setting.

C. Utilization versus privacy for DPRA

In the previous section we compare the utilization of DPRA
to other allocators for a particular value of ε, δ, and βhon.

Here we examine how λ can impact utilization for a variety of

bounds by conducting the same experiment but varying λ and

βhon. We arbitrarily set g(λ) = λ and h(λ) = 3λ, which yields

ε = 1/λ and δ = 1
2

exp(1−3λ
λ). The results are in Figure 6.

We find that for high values of λ, the utilization is well below

10% regardless of βhon, which is too high a price to stomach—

especially since RRA leaks no information and achieves better

utilization. As a result, DPRA appears useful only in cases

where moderate leakage is acceptable (high values of ε and

δ), or when there is no other choice (when there are sybils, or

when the application is new and a bound cannot be predicted).

To answer whether a given ε and δ are a good choice in terms

of privacy and utilization, we can reason about it analytically

using the expressions in the last row of Figure 3. However, it

is also useful to visualize how DPRA works. To do this, we

0

 10000

 20000

 30000

 0 2 4 6 8 10

fr
eq

ue
nc

y

malicious processes allocated (tmal)

b = 0
b = 1

(a) DPRA with ε = 0.20 and δ = 0.030

0

 10000

 20000

 30000

 0 2 4 6 8 10

fr
eq

ue
nc

y

malicious processes allocated (tmal)

b = 0
b = 1

(b) DPRA with ε = 0.10 and δ = 0.027

0

 10000

 20000

 30000

 0 2 4 6 8 10

fr
eq

ue
nc

y

malicious processes allocated (tmal)

b = 0
b = 1

(c) DPRA with ε = ln(2) and δ = 10−4

0

 20000

 40000

 60000

 80000

 0 2 4 6 8 10

fr
eq

ue
nc

y

malicious processes allocated (tmal)

b = 0
b = 1

(d) RRA

FIG. 7—Histogram of malicious processes allocated by DPRA for
different values of ε and δ (Figures a–c) and RRA (Figure d) after
100K iterations. In b = 0, the allocators are called with Pmal; in
b = 1, the allocators are given Pmal ∪ Phon. Differences between
the two lines represents the leakage. Here βhon = 10, βP = 100,
k = 10, |Phon| ∈R [0, 10], and |Pmal| = 100− |Phon|. The parameters
in Figure (c) are those used by Vuvuzela [81] and Alpenhorn [57].
To achieve ε = ln(2) and δ = 10−4, we set g(λ) = λ/10 ln(2) and
h(λ) = 1.328λ for λ = 10.

run 100K iterations of the security game (§III) and measure

how the resulting allocations differ based on the challenger’s

choice of b and the value of ε and δ. We also conduct this

experiment with RRA (with βP = 100) for comparison. The

results are depicted in Figure 7.

If an allocator has negligible leakage, the two lines (b = 0

and b = 1) should be roughly equivalent (this is indeed the

383

0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

se
ss

io
n

st
ar

t d
el

ay
 (

ro
un

ds
)

incoming channels (in)

RRA
DPRA

Baseline

FIG. 8—Average number of rounds required to establish a session in
Alpenhorn when the recipient is using a PRA with a varying number
of incoming channels (“in” in the terminology of Section VI-B).
βP = 100, βhon = 10, ε = ln(2), δ = 10−4.

case with RRA). Since DPRA is leaky, there are observable

differences, even to the naked eye (e.g., Figure a and c). We

also observe a few trends. If we fix g(λ) = λ and h(λ) = 3λ
in DPRA (Figure 7a and b), as λ doubles (from Figure a to b),

the frequency of values concentrates more around the mean,

and the mean shifts closer to 0. Indeed, for λ = 1000 (not

depicted), the majority of the mass is clustered around 0 and

1. RRA is heavily concentrated around tmal = 10 because our

setting of |P| = βP guarantees perfect utilization (cf. §VII-B),

and roughly 90% of the chosen processes are malicious (so

they count towards tmal). For other values of βP, the lines would

concentrate around
k|Pmal|
βP

.

D. Conversation start latency in Alpenhorn

To evaluate our modified version of Alpenhorn, we choose

privacy parameters that are at least as good as those in the

original Alpenhorn evaluation [57] (ε = ln(2) and δ = 10−4,

see Figure 7 for details on the polynomial functions that

we use), and pick bounds based on a previous study of

Facebook’s social graph [79]4. We set the maximum number

of friends (βM) to 5,000, the maximum number of concurrent

dialing friends (βP) to 100, and the maximum number of

concurrent honest dialing friends (βhon) to 20. We think these

numbers are reasonable for MPMs: if dialing rounds are on

the order of a minute, the likelihood of a user receiving a call

from 21 different uncompromised friends while the adversary

simultaneously compromises at least 80 of the users’ friends is

relatively low. Of course, the adversary could exploit software

or hardware vulnerabilities in clients’ end devices to invalidate

this assumption, but crucially, MPM systems are at least not

vulnerable to sybils (dialing requires a pre-shared secret).

We quantify the disruption of PRAs in Alpenhorn by

measuring how many dialing rounds it takes a particular

caller to establish a session with a friend as a function of

the allocator’s capacity (in). The baseline for comparison is

the original Alpenhorn system which uses the FIFO allocator

described in Section III-B. Our experiment first samples a

number of concurrent callers following a Poisson distribution

with an average rate of in processes/round. We set the average

4While Facebook is different from a messaging app, Facebook Messenger
relies on users’ Facebook contacts and has over 1.3 billion monthly users [23].

0

 5

 10

 15

 20

 0 5 10 15 20 25

se
ss

io
n

st
ar

t d
el

ay
 (

ro
un

ds
)

incoming channels (in)

RRA (weighted)
DPRA (weighted)

Baseline

FIG. 9—Average number of rounds required to establish a session in
Alpenhorn when the recipient is using a weighted PRA (§VI-C) and
the caller has a priority 5× higher than all other users. βP = 100,
βhon = 10, ε = ln(2), and δ = 10−4.

rate to in because we expect that as the system becomes

more popular and users start demanding more concurrent

conversations, the default per-round capacity of the system

will be increased. We emphasize that this choice only helps

the baseline: the number of callers (|P|) has no impact on the

probability of a particular process being chosen in SRA or RRA,

and has only a bounded impact in DPRA. In contrast, the value

of |P| has a significant impact on when a process (e.g., the

last process) is chosen in the FIFO allocator (lower is better).

We then label one caller c ∈ P at random as a distinguished

caller, and have all callers dial the callee; whenever a caller’s

call is picked up, we remove that caller from P. Finally, we

measure how many rounds it takes for c’s call to be answered

and repeat this experiment 100 times. The results for the

baseline, RRA, and DPRA are given in Figure 8. We do not

depict SRA since it requires over 10× more rounds.

When there is a single incoming channel available (in = 1),

it takes c on average 102 rounds to establish a connection with

RRA and 271 rounds for DPRA; it takes the baseline roughly

1.5 rounds since the number of processes is very small. For

in = 5, which is reasonable in a setting in which rounds are

infrequent, c must wait for about 20 and 52 rounds, for RRA
and DPRA respectively.

Given this high delay, we ask whether prioritization (§VI-C)

can provide some relief. We perform the same experiment

but assume that the caller c is classified as a high priority

friend (5× higher weight). Indeed, prioritization cuts down the

average session start proportional to the caller’s weight. For

in = 5, the average session start is 4.4 rounds in RRA versus

1.2 rounds in the baseline (a 3.6× latency hit).

Alternate tradeoffs. It takes callers in our modified Alpenhorn

16× longer than the baseline to establish a connection with

their friends (when in = 5 and there is no prioritization). If

rounds are long (minutes or tens of minutes), this dramatically

hinders usability. An alternative is to trade other resources for

latency: clients can increase the number of conversations they

can handle by 16× (paying a corresponding network cost due

to dummy messages) to regain the lower latency. Equivalently,

the system can decrease the dialing round duration (again, at a

CPU and network cost increase for all clients and the service).

384

VIII. RELATED WORK

Several prior works study privacy in resource allocation

mechanisms, including matchings and auctions [11, 13, 17, 40,

63, 65, 75, 85], but the definition of privacy, the setting, and

the guarantees are different from those studied in this work;

the proposed solutions would not prevent allocation-based side

channels. Beaude et al. [13] allow clients to jointly compute

an allocation without revealing their demands to each other

via secure multiparty computation. Zhang and Li [85] design

a type of searchable encryption that allows an IoT gateway to

forward tasks coming from IoT devices (e.g., smart fridges) to

the appropriate fog or cloud computing node without learning

anything about the tasks. Similarly, other works [17, 40, 63,

65, 75] study how to compute auctions while hiding clients’

bids. Unlike PRAs, the goal of all of these works is to hide

the inputs from the allocator or some auditor (or to replace

the allocator with a multi-party protocol), and not to hide the

existence of clients.

The work of Hsu et al. [41] is related to DPRA (§IV-C). They

show how to compute matchings and allocations that guarantee

joint-differential privacy [46] and hide the preferences of an

agent from other agents. However, their setting, techniques,

and assumptions are different. We highlight a few of these

differences: (1) their mechanism has a notion of price, and

converges when agents stop bidding for additional resources

because the price is too high for them to derive utility. In

our setting, processes do not have a budget and there is no

notion of prices. (2) Their scheme assumes that the allocator’s

capacity is at least logarithmic in the number of agents. (3)

Their setting does not distinguish between honest or malicious

agents, so the sensitivity is based on all agents’ demands. In

the presence of sybils (which as we show in Section VII is

the only setting that makes sense for DPRA), assumption (2)

cannot be met, and (3) leads to unbounded sensitivity.

IX. DISCUSSION AND FUTURE WORK

We introduce private resource allocators (PRA) to deal with

allocation-based side-channel attacks, and evaluate them on

an existing metadata-private messenger. While PRAs might be

useful in other contexts, we emphasize that their guarantees

are limited to hiding which processes received resources from

the allocation itself. Processes could learn this information

through other means (this is not an issue in MPM systems

since by design they hide all other metadata). For example,

even if one uses a PRA to allocate threads to a fixed set of

CPUs, the allocated threads could learn whether other CPUs

were allocated by observing cache contention, changes to the

filesystem state, etc.

Other applications in which allocation-based side channels

could play a role are those in which processes ask for

permission to consume a resource before doing so. One example

is FastPass [67], which is a low-latency data center architecture

in which VMs first ask a centralized arbiter for permission and

instructions on how to send a packet to ensure that their packets

will not contribute to queue build up in the network. Similarly,

Pulsar [7] works in two phases: cloud hypervisors ask for

resources (network, storage, middleboxes) for their VMs to a

centralized controller via a small dedicated channel before the

VMs can use the shared data center resources. While the use

of the shared resources is vulnerable to consumption-based

side channels, the request for resources and the corresponding

allocation might be vulnerable to allocation-based side channels.

Indeed, we believe that systems that make a distinction between

the data plane and control plane are good targets to study for

potential allocation-based side channels.

Enhancements to PRAs. Note that PRAs naturally use re-

sources to compute allocations: they execute CPU instructions,

sample randomness, access memory, etc. As a result, even

though the allocation itself might reveal no information, the

way in which PRAs compute that allocation is subject to

standard consumption-based side-channel attacks (e.g., timing

attacks). For example, a process might infer how many other

processes there are based on how long it took the PRA to

compute the allocation. It is therefore desirable to ensure that

PRA implementations are constant time and take into account

the details of the hardware on which they run. To illustrate

how critical this is, observe that DPRA (§IV-C) samples

noise from the Laplace distribution assuming infinite precision.

However, real hardware has finite precision and rounding effects

for floating point numbers that violates differential privacy

unless additional safeguards are used [28, 62]. Beyond these

enhancements, we consider two other future directions.

Private multi-resource allocators. In some settings there is

a need to allocate multiple types of resources to clients with

heterogeneous demands. For example, suppose there are three

resources R1, R2, R3 (each with its own capacity). Client c1

wants two units of R1 and one unit of R2, and client c2 wants

one unit of R1 and three units of R3. How can we allocate

resources to clients without leaking information and ensuring

different definitions of fairness [14, 29, 37, 39, 45, 64]? A naive

approach of using a PRA for each resource independently is

neither fair (for any of the proposed fairness definitions) nor

optimal in terms of utilization.

Private distributed resource allocators. Many allocators

operate in a distributed setting. For example, the transmission

control protocol (TCP) allocates network capacity fairly on a

per-flow basis without a central allocator. Can we distribute

the logic of our PRAs while still guaranteeing privacy and

liveness with minimal or no coordination?

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their thoughtful

feedback, which significantly improved this paper. We also

thank Aaron Roth for pointing us to related work, and Andrew

Beams for his comments on an earlier draft of this paper.

DISCLAIMER

This document does not contain technology or technical data

controlled under either the U.S. International Traffic in Arms

Regulations or the U.S. Export Administration Regulations.

385

REFERENCES

[1] Apache Hadoop. https://hadoop.apache.org.

[2] Alpenhorn: Bootstrapping secure communication without

leaking metadata. https://github.com/vuvuzela/alpenhorn,

Nov. 2018. commit 3284950.

[3] Criterion: Statistics-driven microbenchmarking in Rust.

https://github.com/japaric/criterion.rs, Apr. 2019.

[4] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi.

The EM side-channel(s). In Proceedings of the
Workshop on Cryptographic Hardware and Embedded
Systems (CHES), Aug. 2002.

[5] D. Agrawal and D. Kesdogan. Measuring anonymity:

The disclosure attack. IEEE Security & Privacy, 1(6),

Nov. 2003.

[6] N. Alexopoulos, A. Kiayias, R. Talviste, and

T. Zacharias. MCMix: Anonymous messaging via secure

multiparty computation. In Proceedings of the USENIX
Security Symposium, Aug. 2017.

[7] S. Angel, H. Ballani, T. Karagiannis, G. O’Shea, and

E. Thereska. End-to-end performance isolation through

virtual datacenters. In Proceedings of the USENIX
Symposium on Operating Systems Design and
Implementation (OSDI), Oct. 2014.

[8] S. Angel, H. Chen, K. Laine, and S. Setty. PIR with

compressed queries and amortized query processing. In

Proceedings of the IEEE Symposium on Security and
Privacy (S&P), May 2018.

[9] S. Angel, D. Lazar, and I. Tzialla. What’s a little leakage

between friends? In Proceedings of the ACM Workshop
on Privacy in the Electronic Society (WPES), Oct. 2018.

[10] S. Angel and S. Setty. Unobservable communication

over fully untrusted infrastructure. In Proceedings of the
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), Nov. 2016.

[11] S. Angel and M. Walfish. Verifiable auctions for online

ad exchanges. In Proceedings of the ACM SIGCOMM
Conference, Aug. 2013.

[12] S. Barbera. A note on group strategy-proof decision

schemes. Econometrica, 47(3), May 1979.

[13] O. Beaude, P. Benchimol, S. Gauberts, P. Jacquot, and

A. Oudjane. A privacy-preserving method to optimize

distributed resource allocation. arXiv:1908/03080, Aug.

2019. http://arxiv.org/abs/1908.03080.

[14] A. A. Bhattacharya, D. Culler, E. Friedman, A. Ghodsi,

S. Shenker, and I. Stoica. Hierarchical scheduling for

diverse datacenter workloads. In Proceedings of the
ACM Symposium on Cloud Computing (SOCC), Oct.

2013.

[15] L. Bilge, T. Strufe, D. Balzarotti, and E. Kirda. All your

contacts are belong to us: Automated identity theft

attacks on social networks. In International World Wide
Web Conference (WWW), Apr. 2009.

[16] N. Borisov, G. Danezis, and I. Goldberg. DP5: A private

presence service. In Proceedings of the Privacy
Enhancing Technologies Symposium (PETS), June 2015.

[17] F. Brandt. How to obtain full privacy in auctions.

International Journal of Information Security, 5(4), Oct.

2006.

[18] G. Brassard and S. Kannan. The generation of random

permutations on the fly. Information Processing Letters,

28(4), July 1988.

[19] A. Cabrera Aldaya, B. B. Brumley, S. ul Hassan,

C. Pereida García, and N. Tuveri. Port contention for

fun and profit. In Proceedings of the IEEE Symposium
on Security and Privacy (S&P), May 2019.

[20] H. Chen, Z. Huang, K. Laine, and P. Rindal. Labeled

PSI from fully homomorphic encryption with malicious

security. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS), Oct.

2018.

[21] S.-F. Cheng, D. M. Reeves, Y. Vorobeychik, and M. P.

Wellman. Notes on equilibria in symmetric games. In

Proceedings of the International Workshop on Game
Theoretic and Decision Theoretic Agents (GTDT), 2004.

[22] D. Cole. We kill people based on metadata.

http://goo.gl/LWKQLx, May 2014. The New York

Review of Books.

[23] J. Constine. Facebook messenger will get desktop apps,

co-watching, emoji status. https://techcrunch.com/2019/

04/30/facebook-messenger-desktop-app/.

[24] H. Corrigan-Gibbs and B. Ford. Dissent: Accountable

anonymous group messaging. In Proceedings of the
ACM Conference on Computer and Communications
Security (CCS), Oct. 2010.

[25] G. Danezis. Statistical disclosure attacks. In Proceedings
of the IFIP Information Security Conference, May 2003.

[26] G. Danezis, C. Diaz, and C. Troncoso. Two-sided

statistical disclosure attack. In Proceedings of the
Workshop on Privacy Enhancing Technologies (PET),
June 2007.

[27] G. Danezis and A. Serjantov. Statistical disclosure or

intersection attacks on anonymity systems. In

Proceedings of the International Workshop on
Information Hiding, May 2004.

[28] Y. Dodis, A. López-Alt, I. Mironov, and S. Vadhan.

Differential privacy with imperfect randomness. In

Proceedings of the International Cryptology Conference
(CRYPTO), Aug. 2012.

[29] D. Dolev, D. G. Feitelson, J. Y. Halpern, R. Kupferman,

and N. Linial. No justied complaints: On fair sharing of

multiple resources. In Proceedings of the Innovations in
Theoretical Computer Science (ITCS) Conference, Aug.

2012.

[30] J. R. Douceur. The sybil attack. In Proceedings of the
International Workshop on Peer-to-Peer Systems, Mar.

2002.

[31] C. Dwork, F. McSherry, K. Nissim, and A. Smith.

Calibrating noise to sensitivity in private data analysis.

In Proceedings of the Theory of Cryptography
Conference (TCC), Mar. 2006.

[32] C. Dwork and A. Roth. The Algorithmic Foundations of

386

Differential Privacy. Foundations and Trends in

Theoretical Computer Science. Now Publishers Inc,

2014.

[33] C. Dwork, G. N. Rothblum, and S. Vadhan. Boosting

and differential privacy. In Proceedings of the IEEE
Symposium on Foundations of Computer Science
(FOCS), Oct. 2010.

[34] Equifax. 2017 cybersecurity incident & important

consumer information.

https://www.equifaxsecurity2017.com, Sept. 2017.

[35] D. Gale, H. W. Kuhn, and A. W. Tucker. On symmetric

games. In Contributions to the Theory of Games, Annals

of Mathematics Studies. Princeton University Press,

1952.

[36] D. Genkin, A. Shamir, and E. Tromer. RSA key

extraction via low-bandwidth acoustic cryptanalysis. In

Proceedings of the International Cryptology Conference
(CRYPTO), Aug. 2014.

[37] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,

S. Shenker, and I. Stoica. Dominant resource fairness:

Fair allocation of multiple resource types. In

Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI), Mar. 2011.

[38] O. Goldreich and R. Ostrovsky. Software protection and

simulation on oblivious RAMs. Journal of the ACM,

43(3), May 1996.

[39] A. Gutman and N. Nisan. Fair allocation without trade.

In Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems (AAMAS),
June 2012.

[40] M. Harkavy, J. D. Tygar, and H. Kikuchi. Electronic

auctions with private bids. In Proceedings of the
USENIX Workshop on Electronic Commerce, Aug. 1998.

[41] J. Hsu, Z. Huang, A. Roth, T. Roughgarden, and Z. S.

Wu. Private matchings and allocations. In Proceedings
of the ACM Symposium on Theory of Computing
(STOC), May 2014.

[42] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.

ZooKeeper: Wait-free coordination for internet-scale

systems. June 2010.

[43] M. Hutter and J.-M. Schmidt. The temperature side

channel and heating fault attacks. In Proceedings of the
International Conference on Smart Card Research and
Advanced Applications (CARDIS), Nov. 2013.

[44] P. Kairouz, S. Oh, and P. Viswanath. The composition

theorem for differential privacy. In Proceedings of the
International Conference on Machine Learning (ICML),
June 2014.

[45] I. Kash, A. D. Procaccia, and N. Shah. No agent left

behind: Dynamic fair division of multiple resources. In

Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems (AAMAS),
May 2013.

[46] M. Kearns, M. Pai, A. Roth, and J. Ullman. Mechanism

design in large games: Incentives and privacy. In

Proceedings of the Innovations in Theoretical Computer

Science (ITCS) Conference, 2014.

[47] J. Kelsey, B. Schneier, D. Wagner, and C. Hall. Side

channel cryptanalysis of product ciphers. In Proceedings
of the European Symposium on Research in Computer
Security (ESORICS), Sept. 1998.

[48] D. Kesdogan, D. Mölle, S. Ritchter, and P. Rossmanith.

Breaking anonymity by learning a unique minimum

hitting set. In Proceedings of the International Computer
Science Symposium in Russia (CSR), Aug. 2009.

[49] D. Kesdogan and L. Pimenidis. The hitting set attack on

anonymity protocols. In Proceedings of the International
Workshop on Information Hiding, May 2004.

[50] P. Kocher, J. Jaffe, and B. Jun. Differential power

analysis. In Proceedings of the International Cryptology
Conference (CRYPTO), Aug. 1999.

[51] P. C. Kocher. Timing attacks on implementations of

Diffie-Hellman, RSA, DSS, and other systems. In

Proceedings of the International Cryptology Conference
(CRYPTO), Aug. 1996.

[52] A. Kwon, H. Corrigan-Gibbs, S. Devadas, and B. Ford.

Atom: Horizontally scaling strong anonymity. In

Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), Oct. 2017.

[53] A. Kwon, D. Lu, and S. Devadas. XRD: Scalable

messaging system with cryptographic privacy.

arXiv:1901/04368, Jan. 2019.

http://arxiv.org/abs/1901.04368.

[54] S. Larson. Every single yahoo account was hacked—3

billion in all.

https://money.cnn.com/2017/10/03/technology/business/

yahoo-breach-3-billion-accounts/index.html, Oct. 2017.

[55] D. Lazar, Y. Gilad, and N. Zeldovich. Karaoke:

Distributed private messaging immune to passive traffic

analysis. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
Oct. 2018.

[56] D. Lazar, Y. Gilad, and N. Zeldovich. Yodel: Strong

metadata security for voice calls. In Proceedings of the
ACM Symposium on Operating Systems Principles
(SOSP), 2019.

[57] D. Lazar and N. Zeldovich. Alpenhorn: Bootstrapping

secure communication without leaking metadata. In

Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Nov. 2016.

[58] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis,

V. Paxson, and S. Shenker. Controlling high bandwidth

aggregates in the network. In ACM SIGCOMM CCR,

2002.

[59] N. Mallesh and M. Wright. The reverse statistical

disclosure attack. In Proceedings of the International
Workshop on Information Hiding, June 2010.

[60] M. Marlinspike. Technology preview: Private contact

discovery for Signal.

https://signal.org/blog/private-contact-discovery/, Sept.

2017.

[61] J. Mayer, P. Mutchler, and J. C. Mitchell. Evaluating the

387

privacy properties of telephone metadata. Proceedings of
the National Academy of Sciences of the United States
of America (PNAS), 113(20), May 2016.

[62] I. Mironov. On significance of the least significant bits

for differential privacy. In Proceedings of the ACM
Conference on Computer and Communications Security
(CCS), Oct. 2012.

[63] M. Naor, B. Pinkas, and R. Summer. Privacy preserving

auctions and mechanism design. In Proceedings of the
ACM Conference on Electronic Commerce (EC), Nov.

1999.

[64] D. C. Parkes, A. D. Procaccia, and N. Shah. Beyond

dominant resource fairness: Extensions, limitations, and

indivisibilities. In Proceedings of the ACM Conference
on Electronic Commerce (EC), June 2012.

[65] D. C. Parkes, M. O. Rabin, S. M. Shieber, and C. A.

Thorpe. Practical secrecy-preserving, verifiably correct

and trustworthy auctions. In Proceedings of the ACM
Conference on Electronic Commerce (EC), Aug. 2006.

[66] F. Pérez-González and C. Troncoso. Understanding

statistical disclosure: A least squares approach. In

Proceedings of the Privacy Enhancing Technologies
Symposium (PETS), July 2012.

[67] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and

H. Fugal. Fastpass: A centralized “zero-queue”

datacenter network. In Proceedings of the ACM
SIGCOMM Conference, 2014.

[68] A. Pfitzmann and M. Hansen. A terminology for talking

about privacy by data minimization: Anonymity,

unlinkability, undetectability, unobservability,

pseudonymity, and identity management. http://dud.inf.

tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf,

Aug. 2010.

[69] H. Rashtian, Y. Boshmaf, P. Jaferian, and K. Beznosov.

To befriend or not? A model of friend request acceptance

on Facebook. In Proceedings of the USENIX Symposium
on Usable Privacy and Security (SOUPS), July 2014.

[70] J.-F. Raymond. Traffic analaysis: Protocols, attacks,

design issues, and open problems. In Proceedings of the
International Workshop on Design Issues in Anonymity
and Unobservability, July 2000.

[71] A. Rusbridger. The Snowden leaks and the public.

http://goo.gl/VOQL86, Nov. 2013. The New York

Review of Books.

[72] A. Schlösser, D. Nedospasov, J. Krämer, S. Orlic, and

J.-P. Seifert. Simple photonic emission analysis of AES.

In Proceedings of the Workshop on Cryptographic
Hardware and Embedded Systems (CHES), Aug. 2012.

[73] B. Schneier. Data and Goliath: The Hidden Battles to
Collect Your Data and Control Your World. W.W.

Norton & Company, Mar. 2015.

[74] M. Schroepfer. An update on our plans to restrict data

access on Facebook. https://newsroom.fb.com/news/

2018/04/restricting-data-access/, Apr. 2018.

[75] Y.-E. Sun, H. Huang, X.-Y. Li, Y. Du, M. Tian, H. Xu,

and M. Xiao. Privacy-preserving strategyproof auction

mechanisms for resource allocation in wireless

communications. In International Conference on Big
Data Computing and Communications (BIGCOM), 2016.

[76] E. Thereska, H. Ballani, G. O’Shea, T. Karagiannis,

A. Rowstron, T. Talpey, R. Black, and T. Zhu. Ioflow: A

software-defined storage architecture. In Proceedings of
the ACM Symposium on Operating Systems Principles
(SOSP), Nov. 2013.

[77] C. Troncoso, B. Gierlichs, B. Preneel, and

I. Verbauwhede. Perfect matching disclosure attack. In

Proceedings of the Privacy Enhancing Technologies
Symposium (PETS), July 2008.

[78] N. Tyagi, Y. Gilad, D. Leung, M. Zaharia, and

N. Zeldovich. Stadium: A distributed metadata-private

messaging system. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP),
Nov. 2017.

[79] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow.

The anatomy of the Facebook social graph.

arXiv:1111/4503, Nov. 2011.

http://arxiv.org/abs/1111.4503.

[80] UpGuard. Losing face: Two more cases of third-party

Facebook app data exposure. https:

//www.upguard.com/breaches/facebook-user-data-leak,

Apr. 2019.

[81] J. van den Hooff, D. Lazar, M. Zaharia, and

N. Zeldovich. Vuvuzela: Scalable private messaging

resistant to traffic analysis. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP),
Oct. 2015.

[82] W. van Eck. Electromagnetic radiation from video

display units: An eavesdropping risk? Computers &
Security, 4, 1985.

[83] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and

A. Johnson. Dissent in numbers: Making strong

anonymity scale. In Proceedings of the USENIX
Symposium on Operating Systems Design and
Implementation (OSDI), Oct. 2012.

[84] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,

M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica.

Resilient distributed datasets: A fault-tolerant abstraction

for in-memory cluster computing. In Proceedings of the
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), Apr. 2012.

[85] L. Zhang and J. Li. Enabling robust and

privacy-preserving resource allocation in fog computing.

IEEE Access, 6(2018), Sept. 2018.

388

APPENDIX

A. Secret distribution allocator is insecure

Section III-B describes an allocator that chooses which

processes to service based on a secret distribution that is not

known to the adversary. We prove that this allocator does not

guarantee C-privacy (Definition 2) and Liveness (Definition 3).

Proof. Suppose that A sets Pmal = {pi} and |Phon| ≥ k. The

allocator then picks s ∈ [0, k] and U ← RA(P, k,λ) from a

secret distribution not known to A. Assume for purposes of

contradiction that RA satisfies C-Privacy and Liveness.

A key observation is that Pr[pi ∈ U|b = 0 ∧ s > 0] = 1,

since s processes in Pmal will be allocated a resource when

b = 0. However, Pr[pi ∈ U|b = 1 ∧ s > 0] = xi. Since RA
guarantees C-Privacy, Pr[s > 0] · (1 − xi) is negligible for any

choice of Pmal = {pi}.

Claim 10. Pr[s > 0] = 1/poly(λ).
This follows from the fact that RA guarantees Liveness (Def-

inition 3), and so it must allocate resources to s > 0 processes

with non-negligible probability.

By Claim 10 and C-Privacy, (1− xi) must then be negligible

since Pr[s > 0] · (1 − xi) = (1 − xi)/poly(λ) = negl(λ).
Observe that since (1 − xi) is negligible for every choice

of Pmal = {pi}, this implies that every process is allocated

a resource with probability close to 1 when b = 1, which

contradicts the capacity of RA since |P| > k. Therefore, the

difference in conditional probabilities Pr[s > 0] · (1 − xi) must

be non-negligible for some choice of Pmal = {pi}, which

contradicts that RA satisfies C-Privacy. Furthermore, finding one

such pi is efficient as there are only |P| = poly(λ) elements.

B. Proof of impossibility result

Theorem 1 (Impossibility result). There does not exist a

resource allocator RA that achieves both IT-privacy (Def. 1) and

Liveness (Def. 3) when k is poly(λ) and |P| is superpoly(λ)
(i.e., |P| ∈ ω(λc) for all constants c).

Proof. We start with two simple claims.

Claim 11. If |P| = superpoly(λ), then an overwhelming

fraction of the p ∈ P have Pr[p ∈ RA(P, k,λ)] ≤ negl(λ).
This follows from a simple pigeonhole argument: there are a

super-polynomial number of processes requesting service, and

at most a polynomial number of them can have a non-negligible

probability mass.

Claim 12. If RA guarantees liveness, then in the security

game, the conditional probability Pr[p ∈ U|b = 0 ∧ Pmal =
{p}] must be non-negligible. This follows since for all RA, if

P = {p}, RA(P, k,λ) must output U = {p} with non-negligible

probability (recall liveness holds for any set P, including the

set with only one process). Therefore, in the security game

when b = 0, the call to RA(Pmal, k,λ) must return {p} with

non-negligible probability.

We now prove Theorem 1 by contradiction. Suppose that an

allocator RA achieves both liveness and privacy when |P| =

superpoly(λ). Let X be a set with a super-polynomial number of

processes. By Claim 11, RA allocates an overwhelming fraction

of the p ∈ X with negligible probability, so the adversary

can identify one such process. The adversary can then set

Pmal = {p} and Phon = X − {p}. This satisfies the condition

of Claim 12, so we have that Pr[p ∈ U|b = 0] ≥ 1/poly(λ).
Finally, when b = 1, the challenger passes P = Pmal ∪ Phon

as input to RA. Notice that P = X, so by Claim 11, Pr[p ∈
U|b = 1] ≤ negl(λ). As a result, the advantage of the adversary

is inversely polynomial, which contradicts the claim that RA
guarantees IT-privacy.

C. DPRA guarantees differential privacy

We prove that DPRA (§IV-C) is (ε, δ)-differentially private

(Def. 5) for ε = 1
g(λ) and δ = 1

2
exp(1−h(λ)

g(λ)) if |Phon| ≤ βhon.

To simplify the notation, let β = βhon. Let f (S) = |S| be a

function that computes the cardinality of a set. Let P be the

set of processes as a function of the challenger’s bit b:

P(b) =

{
Pmal if b = 0

Pmal ∪ Phon if b = 1

It is helpful to think of P(0) as a database with one row and

entry Pmal, and P(1) as a database with two rows and entries

Pmal and Phon. Accordingly, f (P(b)) is a function that sums

the entries in all rows of the databases. Since we are given

that |Phon| ≤ β, the �1-sensitivity of f (·) is bounded by β.

To begin, let us analyze the first half of DPRA. Assume the

algorithm finishes after sampling the noise n, and the output is

t (i.e., we are ignoring choosing the processes for now). Also,

we will ignore the ceiling operator when computing n, since

post-processing a differentially private function by rounding

it up keeps it differentially private [32, Proposition 2.1]. So

in what follows, n and therefore t are both real numbers. Call

this algorithm M:

Algorithm M:
• Inputs: P(b), k

• n ← max(0, Lap(μ, s))

• Output: t ← |P(b)|+ n

where μ and s are the location and scale parameters of the

Laplace distribution (in DPRA they are functions of λ and β,

but we will keep them abstract for now).

Theorem 2. M is (ε, δ)-differentially private for ε = β/s
and δ =

∫ β

−∞ Lap(w|μ,β/ε)dw. Specifically, for any subset of

values L in the range, [f (P(0)),∞) of M:

Pr[M(P(0), k) ∈ L] ≤ eε · Pr[M(P(1), k) ∈ L] + δ

and

Pr[M(P(1), k) ∈ L] ≤ eε · Pr[M(P(0), k) ∈ L]

Proof. Let x = f (P(0)), y = f (P(1)).
We partition L into two sets: L1 = L ∩ [y,∞) and L2 =

L − L1 = L ∩ [x, y).

389

Let dP(b),k(·) be the probability density function for M’s

output when the sampled bit is b. For ease of notation, we will

denote this function by db(·).
For any particular value � ∈ L1, we show that d0(�) ≤

eε · d1(�) and d1(�) ≤ eε · d0(�). Integrating each of these

inequalities over the values in L1, we get

Pr[M(P(0), k) ∈ L1] ≤ eε · Pr[M(P(1), k) ∈ L1]

and

Pr[M(P(1), k) ∈ L1] ≤ eε · Pr[M(P(0), k) ∈ L1]

Values in L1 are easy to handle because M can produce these

values regardless of whether the bit b is 0 or 1 and we are

able to bound pointwise the ratio of the probability densities

of producing each of these values because we choose a large

enough scale parameter.

Values in L2 can only be output by M if b = 0, and if such

values are output, information about bit b would be leaked.

Because we choose a large enough location parameter, we can

show that Pr[M(P(0), k) ∈ [x, y)] ≤ δ.

The theorem follows by combining these two cases. We first

deal with L1.

Lemma 13. For any set L1 ⊆ [y,∞): Pr[M(P(b), k) ∈ L1] ≤
eε · Pr[M(P(b̄), k) ∈ L1]

Proof. Recall the Laplace distribution with s = β/ε:

Lap(�|μ,β/ε) =
ε

2β
· exp(

−ε|�− μ|
β

)

For all � ∈ L1 we have that:

d0(�) = Lap(�|μ+ x,
β

ε
)

=
ε

2β
· exp(−ε|�− (μ+ x)|

β
)

d1(�) = Lap(�|μ+ y,
β

ε
)

=
ε

2β
· exp(−ε|�− (μ+ y)|

β
)

It follows that for all � ∈ L1:

d0(�)

d1(�)
=

exp(− ε|�−(μ+x)|
β)

exp(− ε|�−(μ+y)|
β)

= exp(
−ε|�− (μ+ x)|+ ε|�− (μ+ y)|

β
)

= exp(
ε(|�− (μ+ y)| − |�− (μ+ x)|)

β
)

≤ exp(
ε|x − y|

β
) by triangle ineq.

≤ exp(ε) by def. of �1 sensitivity

A similar calculation bounds the ratio
d1(�)
d0(�)

.

We now prove that Pr[M(P(0), k) ∈ [x, y)] ≤ δ.

Lemma 14. Pr[M(P(0), k) ≤ y] ≤ δ.

Proof.

Pr[M(P(0), k) ≤ y] = Pr[x + n ≤ y]

≤ Pr[x + n ≤ x + β] since y − x ≤ β

= Pr[n ≤ β]

= Pr[Lap(μ, s) ≤ β]

=

∫ β

−∞
Lap(w|μ, s)dw

=

∫ β

−∞
Lap(w|μ,β/ε)dw

= δ

Finally, we can prove the theorem. For any set L:

Pr[M(P(b), k) ∈ L] = Pr[M(P(b), k) ∈ L2]

+ Pr[M(P(b), k) ∈ L1]

≤ δ + Pr[M(P(b), k) ∈ L1]

≤ δ + eε Pr[M(P(b̄), k) ∈ L1]

≤ δ + eε Pr[M(P(b̄), k) ∈ L]

The above shows M is (ε, δ)-differentially private. Note that:

δ =

∫ β

−∞
Lap(w|μ,β/ε)dw =

{
1
2

exp(ε(β−μ)
β) if β < μ

1 − 1
2

exp(ε(μ−β)
β) if β ≥ μ

If we set μ = β ·h(λ) for h(λ) > 1, and s = β ·g(λ), this gives

us the desired values of ε = 1
g(λ) and δ = 1

2
· exp(1−h(λ)

g(λ)).
We now show that the rest of DPRA (the uniform selection

of processes), remains (ε, δ)-differentially private.

Let X be a random variable denoting the number of processes

in Pmal that get the allocation. Since the adversary only learns

which processes in Pmal were allocated the resource, from his

point of view dummy processes and processes in Phon are

indistinguishable. Thus for each value � ∈ [0, k],
Pr[X = � |M(P(b), k) = t ∧ b = 0] = Pr[X =

� |M(P(b), k) = t ∧ b = 1]. Combined with the inequalities

governing the probabilities that M outputs each value of t for

b = 0 and b = 1 respectively, we have that Pr[X = � | b =
0] ≤ eε Pr[X = � | b = 1] + δ and similarly with the values of

b exchanged. Thus the distribution of the number of malicious

processes allocated are very close for b = 0 and b = 1.

Finally, since our allocator is symmetric (§IV-C), the actual

identity of the malicious processes allocated does not reveal

any more information about b than this number.

D. Proofs of other allocation properties

Lemma 15. Any resource allocator that achieves IT-Privacy

satisfies population monotonicity.

Proof. We prove the contrapositive. If RA fails to achieve

population monotonicity, then there exists two processes pi and

390

pj such that when pj stops requesting allocation, the probability

that RA allocates pi a resource decreases. An adversary A
can thus construct P in the security game such that pi ∈ Pmal

and Phon = {pj}. As a result, Pr[pi ∈ Umal|b = 0] < Pr[pi ∈
Umal|b = 1] and RA fails to satisfy IT-Privacy.

Lemma 16. SRA and RRA satisfy population monotonicity.

This follows from the fact that SRA and RRA are IT-Private.

Lemma 17. DPRA satisfies population monotonicity.

Proof. Observe that the probability a given process pi is

allocated a resource is Pr[pi ∈ U] = min(t, k)/t where t is

drawn from |P|+n and n is the noise sampled from the Laplace

distribution. As a process pj stops requesting service, we have

t = (|P|−1)+n. Since min(t, k)/t ≤ min(t−1, k)/(t−1), this

implies Pr[pi ∈ U] is strictly increasing as |P| decreases.

Lemma 18. SRA satisfies resource monotonicity.

Proof. When SRA’s capacity increases from k to k + c (with

c positive), the allocator can accommodate c more processes.

With |M| fixed, this implies the probability of a process getting

allocated a resource is increased by c / |M|.
Lemma 19. RRA satisfies resource monotonicity.

Proof. When RRA’s capacity increases from k to k + c (with

c positive), the allocator can accommodate at most c more

processes. With βp fixed, this implies the probability of a

process getting allocated a resource is increased by c / βp.

Lemma 20. DPRA satisfies resource monotonicity.

Proof. When DPRA’s capacity increases from k to k+c (with c
positive), the allocator is able to accommodate at most c more

processes. Although the capacity of the allocator is increasing,

the distribution Lap(βhon/ε) remains constant. Recall that the

probability a given process pi is allocated a resource is Pr[pi ∈
U] = min(t, k) / t where t is drawn from |P|+ n and n is the

noise sampled from the Laplace distribution. Since min(t, k)
≤ min(t, k + c) for all t, k, we have that Pr[pi ∈ U] is strictly

increasing as k increases.

Lemma 21. SRA satisfies envy-freeness.

Proof. SRA assigns every process pi ∈ M a unique allocation

slot in [0, |M|), giving each process a constant k/|M| probability

of being allocated a resource for a uniformly random r ∈ N≥0.

Since Pr[pi ∈ U] = Pr[pj ∈ U] for all pi, pj ∈ M, it follows

that SRA satisfies envy-freeness.

Lemma 22. RRA satisfies envy-freeness.

Proof. RRA pads up to βP each round with dummy processes,

so that each process pi ∈ P has probability 1/βP of being

allocated a resource. Since Pr[pi ∈ U] = Pr[pj ∈ U] for all

pi, pj ∈ M, it follows that RRA satisfies envy-freeness.

Lemma 23. DPRA satisfies envy-freeness.

Proof. DPRA samples k random processes from P∪U where U
consists of dummy processes added by sampling the distribution

Lap(βhon, ε). Assuming |P| > k, for all p ∈ P it follows that

Pr[p ∈ U] = k/(|P|+ |U|). Since Pr[pi ∈ U] = Pr[pj ∈ U] for

all pi, pj ∈ M, it follows that DPRA satisfies envy-freeness.

391

