
Meddling Middlemen: Empirical Analysis of the
Risks of Data-Saving Mobile Browsers

Brian Kondracki†, Assel Aliyeva‡, Manuel Egele‡, Jason Polakis�, Nick Nikiforakis†
†Stony Brook University

‡Boston University
�University of Illinois at Chicago

Abstract—Mobile browsers have become one of the main
mediators of our online activities. However, as web pages continue
to increase in size and streaming media on-the-go has become
commonplace, mobile data plan constraints remain a significant
concern for users. As a result, data-saving features can be a
differentiating factor when selecting a mobile browser. In this
paper, we present a comprehensive exploration of the security
and privacy threat that data-saving functionality presents to
users. We conduct the first analysis of Android’s data-saving
browser (DSB) ecosystem across multiple dimensions, including
the characteristics of the various browsers’ infrastructure, their
application and protocol-level behavior, and their effect on users’
browsing experience. Our research unequivocally demonstrates
that enabling data-saving functionality in major browsers results
in significant degradation of the user’s security posture by
introducing severe vulnerabilities that are not otherwise present
in the browser during normal operation. In summary, our
experiments show that enabling data savings exposes users to (i)
proxy servers running outdated software, (ii) man-in-the-middle
attacks due to problematic validation of TLS certificates, (iii)
weakened TLS cipher suite selection, (iv) lack of support of
security headers like HSTS, and (v) a higher likelihood of being
labelled as bots. While the discovered issues can be addressed,
we argue that data-saving functionality presents inherent risks
in an increasingly-encrypted Web, and users should be alerted
of the critical savings-vs-security trade-off that they implicitly
accept every time they enable such functionality.

I. INTRODUCTION

As smartphones have reached a near-ubiquitous presence,

with widespread adoption even in developing countries [15],

mobile devices account for almost half of the global Internet

traffic [19]. Furthermore, there is a considerable trend towards

the increased consumption of multimedia resources [67],

which directly conflicts with mobile data plans that limit the

amount of traffic allowed. Prior work has reported that users

address such limitations by altering their usage behavior and

planning for saving data for the future [47] (albeit not always

effectively [67]). This indicates that data-plan limits remain an

issue; as such, it comes as no surprise that mobile browsers

that purport to “save data” are extremely popular among users.

Even Chrome, the browser with the largest market share [58],

has recognized the benefits of data savings for offering users

a smoother and faster browsing experience [4].

These browsers, hereby referred to as data-saving browsers

(DSBs), divert users’ traffic through proxy servers that mediate

web requests, handle application-level logic, and return com-

pressed static pages and resources. This results in reducing the

volume of users’ network traffic as well as the computational

overhead for the client device. Free DSBs in Android are ex-

tremely popular, with installations ranging between 1 million

(Ninesky) and 5 billion (Chrome). Yet, no study exists on the

risks that data-saving practices pose to all these users.

In this paper, we aim to address this gap by conducting a

comprehensive empirical analysis of the DSB ecosystem. To

that end we first manually analyze 121 browsers from Google’s

Playstore, and study their behavior to identify browsers that

offer data savings, resulting in a dataset of nine data-saving

browsers (8 free and 1 paid). These browsers form the basis of

our analysis, which aims to quantify the possible degradation

in security that occurs when users enable data-saving modes

in mobile browsers. We analyze DSBs across five complemen-

tary dimensions: infrastructure, encryption, protocol headers,

application behavior, and user experience. Across all five di-

mensions, we search for both malicious and benign behaviors

which adversely affect user security and privacy.

We first conduct an exploratory investigation to map out the

network infrastructure supporting each DSB, and find multiple

cases of gateway proxy servers running severely outdated soft-

ware. To deliver on the promise of data savings, the network

infrastructure of DSBs must transform (e.g., compress) the

data that is sent to clients. However, this content modification

is diametrically opposed to the design goals of transport-layer-

security (TLS) which aims to guarantee the confidentiality and

integrity of data in transit. To modify response data, these

DSB proxy servers terminate a client’s TLS connection and

establish a separate TLS session with the end web server. This

TLS interception can void many of the security guarantees that

an end-to-end deployment of TLS would provide [32].

Intuitively, if the TLS stack of the proxy has a “weaker”

security posture than that of the client, a DSB’s infrastruc-

ture can compromise the user’s security and privacy. Our

experiments reveal considerable divergence in capabilities and

behavior when enabling data saving, which introduces severe

vulnerabilities. Four of the DSBs offer more weak cipher suites

while significantly reducing the number of strong cipher suites

offered; in Opera, the High and Extreme data-saving modes

exhibit a 55.5% and 60% reduction in the number of strong

cipher suites. To make matters worse, we find that Opera with

data-saving enabled fails to detect SSL certificates issued for

an incorrect subdomain, which can be exploited for various

attacks. Even more alarmingly, we find that Opera in data-

810

2020 IEEE Symposium on Security and Privacy

© 2020, Brian Kondracki. Under license to IEEE.
DOI 10.1109/SP40000.2020.00077

saving mode fails to warn users of web servers providing SSL

certificates signed by the infamous SuperFish CA [20]. We

demonstrate a practical man-in-the-middle (MITM) attack that

exploits this to intercept all traffic bound for a target domain

when requested by Opera’s data-saving proxy servers, while

visual security clues are still shown to the user (e.g., lock).

To assess the impact of TLS interception beyond insecure

TLS stacks, we establish a testing pipeline that compares the

content served by a web server with the data that arrives at

the end user’s device after the proxy optimizes it. We discover

that Opera injects CSS into HTML responses for blocking

advertisements. We also find that, contrary to Google Play

Store guidelines, Opera Mini transmits a persistent identifier

(OperaID) in conjunction with the device’s advertisingID
and IMEI, which nullifies the privacy a user can gain by

resetting the advertisingID. Additionally, we check for

data-leaking to third parties (accidentally or on purpose) due

to TLS interception, but find no evidence that the studied

browsers leaked any data for the duration of our experiments.

Furthermore, we highlight how data-saving functionality

undermines the security guarantees of web applications by

ignoring common security headers. We find that Opera Mini in

High data-saving mode, among other DSBs, ignores headers

such as X-Frame Options, Content Type Options, and CSRF

Tokens. Finally, we leverage Google’s reCAPTCHA service

to infer how web services perceive traffic originating from

DSBs. We find that, in general, the reputation of DSB user

traffic is affected by the proxy server they happen to connect

to, a decision made without the user’s discretion.

Our experiments reveal that enabling the data-saving mode

in browsers is equivalent to browsing the web through a

broken looking glass, as users’ experience is adversely affected

across multiple dimensions. The severe vulnerabilities that our

research has uncovered in major browsers with hundreds of

millions of users demonstrate that data-saving functionality

weakens established security practices, in return for minimal

traffic savings, according to our measurements of Alexa Top

100 sites and a sample of streamed video content.

In summary, our research contributions include:

• We present the first empirical analysis on the security

risks introduced by data-saving functionality in popular

mobile browsers. We build an automated testing frame-

work comprised of actual mobile devices.

• We conduct a comprehensive security investigation of the

DSBs available for Android and shed light on their inner

workings. Our experiments reveal a series of flaws, mis-

configurations, and problematic actions that significantly

impact the security and privacy of users’ communications.

• Due to the severity of our findings, we have started

the responsible disclosure process with browser vendors.

While HTTPS interception is inherently fraught with

risks, we outline guidelines to assist future DSB designs.

II. BACKGROUND

Data-saving browsers. To conserve precious data volume

(e.g., on limited mobile data plans) many popular mobile

Fig. 1: HTTPS request interception components of DSBs.

browsers offer a data-saving mode. Savings are accomplished

by routing user traffic through dedicated proxy servers which

make requests on behalf of the user and modify/compress the

responses before returning them to the user’s device.

The core intuition behind DSBs is that fast and powerful

proxy servers located in data centers (often physically closer

to the web servers) can download the full-sized resources,

potentially execute all required logic such as scripts, and

eventually return smaller, static pages to users. Through this

mode of operation, data-saving browser vendors promise users

data savings of up to 90% [6]. In contrast to typical HTTP

proxies, or so-called anonymizing browsers, whose purpose is

to mask the identity or location of a user, DSBs proxy user

traffic to effectively reduce the size of requested payloads in-

transit. All the browsers included in our study, make the user’s

IP address readily available to the end web servers through

the X-Forwarded-For HTTP header, and hence do not

advance user privacy.

HTTPS interception. Porter Felt et al. [35] reported that

adoption of HTTPS across the Web is constantly growing.

Consequently, data-saving browsers need to be able to process

HTTPS traffic so as to provide sufficient data savings to users.

As such, resources requested over secure HTTPS channels

need to be compressed, which requires the capability to

intercept and inspect users’ encrypted HTTPS traffic. Unlike

regular proxy servers, which simply route HTTPS traffic

between the source and destination without any knowledge

of the encrypted data being transmitted, data-saving browsers

split the encrypted end-to-end connection in two parts. The

browser on the user’s device initiates a TLS handshake with

a chosen proxy server upon enabling the data-saving mode.

All subsequent HTTPS requests are sent to the proxy server

where they are decrypted, read, and re-issued by the proxy

server on behalf of the user. Visual cues such as the URL

lock icon remain unchanged during this process, which can

lead users to assume that the secure communication channel

between the device and end web server is never broken. We

present an overview of this process in Figure 1.

Like traditional web browsers, data-saving browsers are

responsible for establishing an HTTPS connection with sites

that support it by completing a TLS handshake with the web

server and verifying the integrity of the presented certifi-

cate – in cases of errors, users should be explicitly alerted

as would be the case during a normal browsing session.

However, unlike traditional web browsers, the data-saving

pipeline introduces additional entities (i.e., the intermediate

811

proxy servers) that handle and modify both application and

protocol-level information. The combination of pivotal server

positioning, additional functionality, and content modifications

renders this ecosystem a minefield where flaws could have

severe security and privacy implications for millions of users.

This necessitates a holistic analysis of data-saving browsers

that explores all layers of their operation; from their network

infrastructure up to application-level behaviors. We seek to

determine the extent of both malicious as well as buggy

behaviors present in the ecosystems of each identified data-

saving browser. Note that we limit our study to the introduction

of such behaviors due to data savings. The security of mobile

browsers in general has been explored in past research [22],

[44], [45] and is thus outside the scope of this paper.

The ability of users to consent/opt-in to data saving differs

across the studied browsers. Most browsers we studied enable

data-saving by default, leaving users to manually opt out. Of

this group, Yandex, Opera, and Opera Mini, set their data-

savings mode to “automatic” by default, leaving the decision

of which traffic to proxy, up to the browser. Puffin Free and

Puffin Premium allow users to select if data savings should be

applied to all traffic, limited to mobile or WiFi, or disabled.

However, we discovered that whether data saving is enabled

or not, these browsers always proxy user traffic.

III. EXPERIMENTAL SETUP AND METHODOLOGY

In this section we first present our DSB selection process.

We then describe the infrastructure we set up for exploring

the DSB ecosystem, and then detail the methodology and

motivation behind each experiment.

A. Proxy Server Identification and Collection

Prior to studying the DSB ecosystem, it is important to

formulate a definition of what a data-saving browser is. For the

scope of this paper, we are interested in browsers which use

proxy servers to compress, transcode, or filter traffic in-transit

for the purpose of saving users’ mobile data. This definition

removes all browsers which simply proxy traffic (e.g., for

anonymization or bypassing geo-blocking).

Using this definition, we conducted a comprehensive search

of all data-saving browsers on the Google Play Store. To this

end, we downloaded the complete set of 121 apps returned for

the search terms: “Proxy Browser”, “Data Saving Browser”,

“Cloud Browser”, and “Internet Browser”. To limit the set

to browsers that proxy network traffic, we manually installed

each APK file onto an Android device, and enabled any setting

that resembles that of “Data Saving Mode”. Subsequently,

we visited a web server under our control and considered a

browser as a Proxy Browser if the IP address connecting to

our server was different from the Android device’s address.

While proxy browsers all route user data through proxy

servers, we are only interested in browsers that do this for the

purpose of saving data. To further filter our dataset down to

only include browsers that provide data saving functionalities,

we manually inspected the Google Play Store descriptions of

each proxy browser for any mention of data savings. This left

Proxy Data saving
Browser Name Downloads HTTPS by default

Chrome 5,000,000,000+ Yes* No
UC 500,000,000+ No Yes
UC Mini 100,000,000+ No Yes
Opera 100,000,000+ Yes Yes
Opera Mini 100,000,000+ Yes Yes
Yandex 100,000,000+ No Yes
Puffin 50,000,000+ Yes Yes
Ninesky 1,000,000+ No No
Puffin Premium 100,000+ Yes Yes

TABLE I: Data-saving browsers available on the Google Play Store.

us with our final dataset of 9 Data-Saving Browser apps listed

in Table I. While certain browsers (e.g., Opera Browser and

Opera Mini or UC Browser and UC Mini) are from the same

vendor, our experiments reveal differences in their behavior as

well as their infrastructure, as detailed in Section IV. As such,

we present all DSB apps independently. Furthermore, note that

data savings in Opera Mini can be configured in “High” or

“Extreme” mode. As this choice has severe implications on

how data savings are achieved, we treat these two settings

separately. The most pronounced difference between the two

modes is that in “High” mode the client and the gateway

proxy communicate via regular HTTP, where the proxy pro-

vides volume optimized HTML content in its responses. In

“Extreme” mode however, the proxy performs all rendering

activities, including script execution, and merely sends the

resulting rendering tree to the client. We mark Google Chrome

with a ”*” because although it does proxy HTTPS traffic, it is

distinct in that it does not proxy any origin-scoped data (e.g.

cookies and local storage). With major browser manufacturers

adding data-saving features to their browsers, DSBs serve a

significant portion of the overall Android user base.

B. Measurement Infrastructure

To accurately measure the effect of data-saving modes on

the browsing experience and security posture of users, we

perform all experiments on real devices: Motorola X4, Nexus

6P, and Nokia 6 all running Android 8.1 (Oreo). All devices

were updated and running the latest version of each browser

before testing. We limit the scope of this work to DSBs present

on Android mobile devices and leave exploration of similar

browsers on other platforms to future work.

Our devices are orchestrated by an automation framework

that uses the Android Debug Bridge (ADB) to handle all user

input (touch, swipe, text, etc.). Unless stated otherwise, our

system starts each test case with a clean slate, by clearing

the application data of the DSB under test. The framework

sends touch inputs to the device to launch each browser

and enable the data-saving mode if required. Lastly, the

framework navigates the browser to a list of webpages, each

specially designed to explore a specific dimension of the DSB

ecosystem and to shed light on the inner workings of each

browser (see Section III-H). Figure 2 depicts a high-level view

of our framework and experimental pipeline.

812

Fig. 2: Architecture of our framework and infrastructure for auditing
data saving browsers.

Since we follow a black-box testing approach to study

the proxy server infrastructure of each DSB, we conduct our

data collection from the two vantage points of a web client

and end web server. For example, we record the network

traffic seen at the user’s device using either a decrypting

TLS man-in-the-middle proxy or dynamic instrumentation of

the browser. At the same time, our end web server records

the IP address, geolocation, and Autonomous System of the

requesting endpoint proxy server.

C. Quantifying Data Savings

A data-saving feature can be the differentiating factor that

tips the scale in favor of a DSB over a traditional web

browser. Due to the substantial costs of mobile data plans

(e.g., Google’s Fi service charges $10 per gigabyte [37]),

and the abundance of high-volume media for consumption

(e.g., streaming video [34]), users can be enticed by claims

from DSBs of reducing users’ data consumption by up to

90% [6]. To quantify their effect, we measure the amount

of data used by each browser when the data-savings mode

is enabled and disabled, while visiting the Top 100 websites

according to Alexa (average consumption over five rounds).

For browsers with built-in, enabled-by-default ad blockers,

we disable the blocker to better understand the data savings

potentially gained from other types of resources (e.g., images

and videos). Besides measuring data savings during regular

web browsing activity, we also quantify the data savings that

DSBs provide when streaming video. To this end, we navigate

each DSB to a series of ten 3-minute long videos hosted on

YouTube and measure the effect on the consumed data volume

with data savings enabled and disabled. While we cannot

entirely simulate a typical user’s browsing patterns, our use

of Alexa Top 100 sites and video streaming is a best-effort

approach to understand how DSBs handle content typically

consumed by the average user.

D. Proxy Server Ecosystem Enumeration

As the quality-of-service that a DSB user can expect de-

pends on the proxy server infrastructure, it is important to

quantify the number and location of the involved servers.

This allows us to reason both about the magnitude of the

DSB ecosystem and its underlying infrastructure, as well as its

resilience to Denial of Service attacks and other geography-

specific issues (e.g., link-flooding attacks [43]).

To construct a map of the proxy infrastructure, we use

each DSB to request a web page from a server under our

control, and record information about each request. Our ex-

perimental framework combines multiple vantage points to

record information from both the client-side device and at

the server. Through this two-pronged approach we obtain a

view that cross-cuts multiple layers of activity on both ends

of the proxy server infrastructure, allowing us to learn what

happens to user traffic between the client device and web

server. Specifically, we record the following for each request:

(i) the IP address of the proxy server making requests to our

web server (we refer to this as the endpoint server address),

(ii) the IP address of the proxy server the browser directly

connects to (referred to as the gateway server address) – we

only record a gateway server if its IP address is different than

that of the endpoint server, and (iii) WHOIS and IP location

information of the identified servers. Finally, we also leverage

NMAP to fingerprint endpoint servers and gateways. This

information gives us a better understanding of the architecture

illustrated in Figure 1.

To obtain an accurate picture of the DSB ecosystem, and

explore proxy-server coverage across different geographic

markets, we use a VPN service to change our device’s location

when connecting to the data-saving browsers. We select 4

countries (United States, Germany, Japan, and Brazil) to obtain

diverse and accurate representations of the infrastructure of

DSBs in the largest markets that these browsers serve.

Proxy Server Fingerprinting. In conjunction with deter-

mining the number and distribution of the proxy servers that

support each browser, we also need to understand what types

of services are enabled on each proxy server. This allows

us to compare the proxy-server configurations of different

DSBs, the homogeneity of their supporting infrastructure, and

whether these servers are exposing known vulnerable software

to the public web. The presence of outdated or vulnerable

software on these servers presents a significant threat to the

DSB ecosystem, as these servers constitute single points of
failure for millions of users. Moreover, as many of these proxy

servers terminate TLS connections, they have access to plain-

text data, such as usernames, passwords, and session cookies.

Hence, an attacker who successfully compromises one or more

of these proxy servers can effectively MITM all user traffic

that flows through them to and from arbitrary end web servers.

Our system fingerprints proxy servers by performing two

NMAP [9] scans on the proxy servers it encounters. We refer

to them as basic and verbose scans. The basic scan uses

NMAP’s TCP SYN scan to infer open ports on a given proxy

server and the name of the software listening on that port (if

available). We repeat this scan every time we observe an IP

address in our proxy connections. To gain an understanding

of a proxy’s configuration beyond the list of open ports,

we further use NMAP’s banner-grabbing capabilities as the

verbose scan. Since this scan involves more interactions with a

813

target server than just sending a SYN packet, we only verbose-

scan each proxy’s IP address the first time it is encountered.

We perform these scans from the web server under our control

each time the server receives a request for our test web page.

Ethical considerations. From an ethical perspective, both

types of scans merely gather information and do not attempt

to exploit any service in any way; this is in line with widely

used prior work, e.g., the ZMap and Censys Internet-wide

scans [31], [33]. We opt to collect our own data (instead

of relying on third-party services like Censys) as we need

to ensure that the host being scanned is the host involved in

proxying the DSB’s connections. The practices of IP churn and

reuse (e.g., in public clouds) suggest that we cannot rely on

historical data as published by prior works. We are confident

that our fingerprinting approach did not adversely affect the

proxy’s performance or their users.

E. ReCAPTCHA

Captchas are often the first line of defense against automated

malicious activities. Captchas are challenges that are trivial

for humans to solve, but difficult for computers [62] (e.g.,

distorted character recognition), and Google’s reCAPTCHA is

the most prevalent captcha service [54]. As recent research has

demonstrated effective attacks against all traditional forms of

captchas (text [66], image [56], audio [25]), Google progressed

to a scheme that does not require users to complete a specific

task. The release of reCAPTCHA v3 removed all need for

explicit user actions, replacing it with a completely transpar-

ent, JavaScript “challenge”. This new approach compiles user

browsing patterns on a given page and returns a score that the

site administrator can use to decide how to respond. This score

ranges from 0 (very likely a bot) to 1 (very likely a human).

One potential signal employed by reCAPTCHA v3 is the

reputation of a user’s IP address. This lends the question: if

users browse the web from a DSB, will they receive a lower

reCAPTCHA v3 score if other users, sharing the same data-

saving proxy servers, misbehaved or were deemed to be bots?

If the question has an affirmative answer, then users of DSBs

will, on average, experience a degraded web compared to using

a traditional browser. According to reCAPTCHA’s official

guidelines, low scores should trigger actions like forcing a

two-factor authentication challenge, email verification, throt-

tling user actions, or flagging potentially risky transactions [7].

To understand how the use of a DSB affects reCAPTCHA

scores we perform the following experiment, which aims

to capture the experience of an average user that starts a

browser session using a DSB and accumulates some cookies

and browsing history before visiting a reCAPTCHA-protected

page. During regular browsing hours, which we define as

between 8am-6pm, our system periodically (once every 30

minutes) picks a random browser, clears all previously gener-

ated application data and begins a test. The device visits 5-10

random URLs from the Alexa Top 1K and navigates them

using a randomly selected set of swipe gestures. The browser

is then directed to a page under our control, where we record

the public IP address of the endpoint proxy which requests

the page, as well as the score returned by reCAPTCHA v3. In

order to limit the effect IP reputation has on our base case (data

savings mode disabled), we connect the test device directly to

our lab network without the use of a VPN service.

F. Proxy Server Security Auditing

The inclusion of data-saving proxy servers between users

and web servers presents a new level of complexity. Proxy

servers and browsers must both agree on what level of security

to provide to end users. A weak proxy server can introduce

vulnerabilities that would not exist had the browser directly

requested the web pages rather than fetch content through

the proxy. While mobile browser security has already been

studied extensively [22], [44], [45], we focus on the duality of

data-saving enabled vs. data-saving disabled. If data saving

is enabled, this means that a number of critical security

operations (such as the verification of a TLS certificate) now

happen at the proxy servers instead of the user’s local device.

To determine the implications of these two “competing” TLS

stacks, we performed the following experiments:

TLS cipher suite support. TLS is the backbone of con-

fidentiality and integrity for data in transit. During each

connection, the client and server negotiate the cipher suite that

will be used to facilitate encrypted communication over the

course of the session. It is vital that a user’s device advertises

secure cipher suites as, per the protocol, the end server can

only chose from suites offered by the client. When browsing

with a DSB that terminates the SSL connection at the proxy

server, users’ security is limited by the strength of the cipher

suites provided by the proxy server to the end web server,

instead of the ones present on their device. For this experiment,

we determine the number and strength of cipher suites offered

by each browser with data savings enabled and disabled.

TLS certificate error handling. The splitting of encrypted

HTTPS connections between the mobile browser and the

web server forces the user to, usually unknowingly, trust the

proxy server to not only properly verify TLS certificates, but

also convey accurate information on the state of a domain’s

certificate back to the device. If the proxy server mistakenly
reports a certificate as valid, the user would then be vulnerable

to many attacks which would not be possible if the data-

saving mode was disabled. To test these browsers, we first

present them with certificates that have known errors [23], such

as, self-signed certificates, expired certificates, and revoked

certificates. Next we conduct experiments using certificates

issued by authorities which are widely considered untrusted

(such as, RapidSSL and GeoTrust [64]).

G. Content Leakage

For DSBs to work as advertised, proxy servers must have

the ability to read and modify web pages and resources

passing through them. This extends to HTTPS traffic, where

sensitive information is more likely to be transmitted. To

understand whether private user information is accidentally

or intentionally leaked to third parties by these browsers,

we perform a series of experiments focusing on three types

814

of sensitive data: visited URLs, information embedded in

web pages, and credentials supplied to login forms. Clearly,

evidence of using such sensitive data would be disastrous for

a company’s reputation on security and, as such, is unlikely to

occur. Nonetheless, the incident with Microsoft’s Skype ser-

vice visiting all URLs mentioned in users’ encrypted chats [57]

prompted us to include such experiments.

URL leakage. The first dimension of leakage we measure

is that of URLs being visited after being accessed through a

DSB. It is important to note that in addition to the tunneling

of HTTP requests, DSBs also tunnel DNS requests to their

own resolvers. One issue that this introduces is the potential

for a third party (either the proxy server or their chosen DNS

resolver) to log the URLs and domains requested by users and

visit them at a later time. These third-party actors could be

malicious (e.g., intercepting DNS requests on a compromised

resolver), or curious (e.g., server administrators of a particular

browser). To test for this type of leakage, we visit unique

URLs on a web server under our control. Each URL starts

with a unique sub domain that encodes the browser name as

well as the current date, and includes the current timestamp

in place of a filename. Given that all URLs were unique and

complicated enough so as to not be guessable by a bot, any

later revisits to them can be confidently attributed to leakage.

Page content leakage. The second dimension of leakage we

measure focuses on the content of HTTP responses, as user

traffic includes highly sensitive information and transactions.

We create a number of pages which appear to contain sensitive

information from both the perspective of an automated pro-

gram which may be scanning web pages, or a curious human

that manually visits pages. These pages leak information such

as credentials for our site, credentials for accounts on third

party sites, and randomly-generated financial account numbers

hidden behind obfuscated links that log all visits. We employ

the same URL structure as in the previous experiment to avoid

attribution of visits to unrelated bot activity.

Credential leakage. The last dimension of data leakage we

examine is that of user credentials supplied to log in forms.

As a number of DSBs tunnel all HTTPS content, they have

access to the content of any such form. Thus, the existence

of a malicious or curious actor located on a proxy server can

compromise the accounts of users logging into their accounts

through a DSB. To test this, we create a set of unique accounts

for each DSB on Yahoo, Dropbox, and Proton Mail. We

choose these services as they provide descriptive information

on the locations and IP addresses of the devices that log

into an account. We then use each browser to log into the

accounts assigned to it. To differentiate our testing devices’

login attempts from any unauthorized third parties, we record

the IP address of the proxy server before logging in. Twice a

day, we use Selenium to extract up-to-date login information

for each account to detect potential accesses from third parties.

H. Content Manipulation

As DSBs compress and filter traffic flowing through their

proxy servers, users are at the mercy of any changes the

proxy server makes to the mediated server responses. These

changes can be done in malice, such as injecting or modifying

advertising IDs for redirecting revenue or tracking [38], or they

can occur by mistake, such as a proxy server dropping HTTP

headers it does not recognize. Regardless of the underlying

reason, these modifications render the user vulnerable to a

number of attacks. To determine the extent of such content

manipulation, we visit a series of web pages under our control

through a DSB while simultaneously directly visiting the same

web page using the Python Requests library [52]. We then

compare the two responses to detect any content changes.

On the end web server, which is under our control, we

create a set of 57 web pages that return different combinations

of security-sensitive HTTP headers. The pages also contain

multimedia content and fake Google Ads and Amazon Affiliate

advertisements. This setup allows us to record any HTTP

headers that are added, modified, or deleted by the proxy, as

well as any modifications made to the HTML content of each

page. To ensure that we observe the response directly from the

proxy server rather than what the DSB displays after client-

side processing, we capture responses either on the network

between the client device and proxy server or directly from

the network APIs on the device. When neither is possible, we

instrument the DSBs as described below.

Intercepting HTTP traffic. As shown in Table I, UC

Browser and UC Mini only proxy HTTP traffic. Hence, we

can obtain the proxied content via on-device, packet cap-

turing. However, while the data itself is in plain-text, these

browsers implement a custom protocol on top of HTTP to

conserve bandwidth. As the protocol merely combines multi-

ple HTTP responses into a single gzip compressed payload, it

is straightforward to extract the underlying data. For Yandex

and Chrome, the Polar Proxy [16] transparent SSL/TLS proxy

is sufficient for capturing responses directly from the network.

Note that Yandex does not intercept HTTPS traffic but does
use an HTTPS connection between the device and the DSB

proxies, for transferring modified HTTP traffic. The remain-

ing browsers employ certificate pinning, which prevents this

approach. To access their plain-text data, we instrument these

browsers and capture the information before it is passed to the

TLS library for encryption (when transmitting data), and after

the TLS library decrypts cipher-text (when receiving data).

Android relies on the BoringSSL [3] library to provide a

system-wide implementation and API for SSL/TLS. To capture

the data that the browser receives, we focus on the SSL_read
function which the browser uses to consume plain-text data

from the library after it has been decrypted. Analogously,

to transmit information, the browser passes plain-text data

to the SSL_write function. Thus, by hooking into these

functions, we can record sent and received data in plain-text.

We insert these hooks into the browser’s address space using

the AndHook [1] dynamic instrumentation tool. To identify

the location of the SSL_read and SSL_write functions in

the system-wide library we examine its symbol table.

Even though the system-wide implementation of BoringSSL

is available to all applications on an Android system via the

815

Web Browsing [MB] Video Streaming [MB]
Browser Off On % Saved Off On % Saved
Ninesky 206 32 84.21% 100 120 -20.14%
Puffin Free 110 25 77.31% 288 336 -16.71%
Opera Mini (Extreme) 174 45 73.81% 108 116 -7.34%
Puffin Premium 91 31 65.4% 298 334 -12.14%
Opera Mini (High) 182 93 48.84% 108 75 30.85%
Opera Browser 200 107 46.53% 111 111 0.08%
Chrome 176 116 33.8% 108 112 -3.95%
Yandex 87 79 8.58% 108 108 -0.05%
UC Mini 154 159 -3.36% 107 107 0.04%
UC Browser 138 154 -12.15% 102 111 -9.17%

TABLE II: Amount of data used and saved when browsing the top
100 Alexa sites and streaming ten 3-minute long Youtube videos with
data savings disabled (Off) and enabled (On).

libssl.so library, we observe that most browsers ship their

own, statically-linked copy. Moreover, some browsers contain

and use multiple distinct copies of this library. Complicating

the matter further is the fact that the statically-linked versions

of the libraries do not export symbols which makes identifying

the addresses that need to be hooked challenging. To identify

the necessary functions, we relied on a two-pronged approach.

First, we use dynamic analysis to obtain the user-mode call

stack when the read system call obtains cipher-text from

the underlying socket. Since BoringSSL is implemented as an

abstraction layer between the browser and a network socket,

SSL_read is part of that call stack. Second, when we cannot

reliably retrieve a correct call stack (e.g., because libunwind is

unreliable on ARM64), we rely on static analysis and manually

reverse engineer the libraries used by the browser.

Intercepting Non-HTTP(s) data. One of our interesting

discoveries is that Puffin (Free and Premium) and Opera

Mini (Extreme), render a web site on the proxy server and

merely transmit the rendering tree to the client. A rendering

tree cannot be meaningfully compared with the HTTP traf-

fic that generated it. To assess whether the Puffin proxies

modify content, we leverage the fact that Puffin and the

stock Chrome browser use the same rendering technology.

Thus, we manually perform a visual comparison between the

same site rendered by Chrome in normal operation mode and

Puffin. Furthermore, although there is no HTTP communica-

tion between the Opera Mini browser in the Extreme data-

saving mode and its supporting proxy server, the proxy server

provides an API to query the DOM that was rendered for the

client. Hence, we use this information to identify potential

modifications that Opera’s proxy servers may introduce.

IV. EXPERIMENTAL EVALUATION AND RESULTS

In this section we present our measurement results and

empirical analysis of the data-saving browser ecosystem.

A. Data Savings Mode Quantification

The left part of Table II shows the amount of data used in

downloads for each DSB when visiting the Alexa Top 100 web

sites. Comparing the data consumption with data savings on

vs. off, we observe that DSBs that proxy HTTPS traffic save

users a substantial amount of mobile data (up to 84%). Given

the recent push to an HTTPS-by-default web, we observe that

browsers which do not intercept HTTPS traffic (i.e., Yandex,

UC, and Ninesky), perform poorly in terms of data savings.

An unexpected finding is that UC Browser and UC Mini

consume more data when data savings is enabled. Neither

of these browsers tunnel HTTPS traffic so, like Yandex, they

cannot offer any data savings for the majority of modern web

traffic. We also observed that substantial traffic was sent from

our devices and the gateway proxy servers of these browsers

when data savings was enabled. This suggests that, due to their

inability/unwillingness to handle HTTPS traffic, these two

DSBs exchange more metadata for their data-saving operations

than the data they actually save on regular user traffic.

Conversely, we recorded the Ninesky browser as saving

users the greatest amount of data while also not proxying

HTTPS traffic. Over the course of our testing, we noticed 7

of the Alexa Top 100 web sites would fail to load when data-

saving mode was enabled using this browser. To prevent bias

in our results, we removed these sites from our testing set for

this browser, leaving a set of 93 pages to assess Ninesky’s

data savings capabilities, where Ninesky still saves its users

84.21% of their mobile data on average. These savings appear

to be due to client-side blocking of certain resources such

as advertisements, images, and videos. As such, we cannot

confidently state that the users of this browser would benefit

from this aggressive blocking of content or would eventually

switch to another mobile browser. Unlike the other browsers

in our study, Ninesky does not provide users the option to

disable the blocking of advertisements. Thus, we were unable

to isolate the source of data savings to its proxy servers.

Even though there clearly exist DSBs that are capable of

saving data for users who browse the web, web browsing is

not the main culprit of large data consumption. According to

recent statistics, YouTube is responsible for 38% of worldwide

mobile traffic [28]. Therefore, to assess whether these browsers

can save data in a more realistic scenario, we visited ten 3-

minute-long YouTube videos with data savings on and off,

and measured the data consumption. The results (shown in the

right part of Table II) indicate that only Opera Mini in High

mode, due to more aggressive video compression, provides

substantial data savings when streaming video, while all other

browsers either provide negligible data savings or consume

more data with data-saving mode enabled than disabled.

B. Proxy Server Ecosystem Enumeration

Proxy endpoint server enumeration. Figure 3 shows the

CDF of the total number of proxy endpoint servers encoun-

tered by each browser across all VPN endpoint locations,

visiting our web server with both HTTP and HTTPS over the

course of a 30 day recording period. Opera Mini in extreme

data savings mode used a total of 1,481 unique IP addresses

to connect to our server, exhibiting one-to-two orders of

magnitude more servers than the rest of the browsers. In

general we see that most DSBs are banding together in the

hundreds range, with Puffin premium being a negative outlier.

An interesting trend in this data involves the number of

proxy endpoint servers encountered by browsers of the same

816

United States Germany Brazil Japan Total w/o Duplicates
Browser HTTP HTTPS HTTP HTTPS HTTP HTTPS HTTP HTTPS HTTP HTTPS
Opera Mini (Extreme) 312 392 325 366 284 363 334 411 983 1106
UC Mini 251 N/A 239 N/A 229 N/A 253 N/A 414 N/A
UC Browser 236 N/A 252 N/A 220 N/A 246 N/A 403 N/A
Opera Mini (High) 75 75 126 121 78 77 179 206 348 359
Opera Browser 74 76 120 120 71 75 172 201 341 357
Yandex 175 N/A 175 N/A 166 N/A 175 N/A 200 N/A
Puffin Free 100 117 95 103 93 90 90 86 173 178
Chrome 24 48 21 51 24 48 17 52 67 116
Ninesky 32 N/A 7 N/A 23 N/A 39 N/A 63 N/A
Puffin Premium 18 17 17 17 18 17 17 17 19 17

TABLE III: Number of unique proxy endpoint server IP addresses per request protocol in each region.

 10

 100

 1000

 0 5 10 15 20 25 30

IP
 A

dd
re

ss
es

 (
un

iq
ue

)
-

lo
g

Day

UC Browser
Chrome

Puffin
Puffin Free

Ninesky

Opera
Opera Mini (Extreme)

Opera Mini (High)
UC Mini
Yandex

Fig. 3: Unique proxy endpoint servers encountered with each DSB.

vendor. We can see that Opera Mini in high data savings

mode uses the same number of unique endpoint servers as

Opera Browser. This relationship also exists with the browser

pair of UC Browser and UC Mini. Further, we calculate the

Jaccard-Similarity index between the sets of proxy endpoint

IP addresses of each browser pair. We find Opera Mini in high

data savings mode and Opera Browser have a 93.7% similarity,

with UC Browser and UC Mini having an 86.3% similarity.

We can use this pattern to deduce a sharing of infrastructure

between these pairs of browsers as well as a similar logic

incorporated to determine the proper endpoint server to use.

However, this relationship disappears when looking at Opera

Mini in extreme mode as well as both Puffin Browsers. The

extra proxy endpoint servers seen by Opera Mini in extreme

mode can be attributed to a greater need for computing power

due to the aggressive rewriting of web pages that occurs in

extreme mode that is not present in High mode. However,

the divide in available proxies available to Puffin Premium

compared to Puffin Free requires an alternative explanation.

We opine that Puffin Premium users are sent to one of 19

servers that are different than the 256 servers used in Puffin

Free to potentially deliver different quality of experience to

paying users. The low number of premium servers is likely

because there are not enough paying users to justify a greater

investment in server-side resources.

To gain geographical insights into the DSB ecosystem, we

analyze our dataset with respect to each VPN location we used

as well as contrast HTTP and HTTPS requests, in Table III.

The sharing of proxy servers between families of browsers

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30

IP
 A

dd
re

ss
es

 (
un

iq
ue

)
Day

UC Browser
Puffin

Puffin Free
Opera

Opera Mini (Extreme)
Opera Mini (High)

UC Mini
Yandex

Fig. 4: Unique proxy gateway servers encountered with each DSB.

becomes more evident, as such browsers encountered the same

amount of proxy endpoint servers with each of the request

types. The divergence in infrastructure support between the

top browsers is also clear. The Opera and UC browser families

have strong support in all regions we tested. Conversely,

browsers such as Yandex and Puffin have a single pool of

proxies that are shared by users across regions. Lastly, for most

browsers, we observe more servers handling HTTPS requests,

to account for the ever-increasing adoption of HTTPS [35].

Proxy gateway server enumeration. Figure 4 displays the

unique proxy gateway servers encountered by each browser.

As described in Section III-D, these IP addresses were

recorded during requests in which the IP address that the DSB

directly connected to was different than the one that made

the request to the end web server. Chrome and Ninesky are

absent from this figure as their infrastructure uses the same IPs

for gateway and endpoint servers. Our results show that the

gateway servers are fewer than the endpoint servers suggesting

that the former are used to route user traffic to endpoint servers

possibly for load balancing or routing efficiency. Moreover,

of the 165 distinct gateway servers, 79 are not present in

our proxy endpoint dataset, indicating that operators put more

resources on endpoint servers than gateways.

Proxy Server Fingerprinting Table IV shows the number

of distinct basic configurations observed for all data-saving

browsers that reply to port scans on their proxy endpoint

servers. We consider the set of open port, listening software

tuples as a proxy’s configuration. Our findings suggest that

Opera Mini in high data savings mode and Opera Browser

817

Browser Configurations Avg. Services
Opera Browser 23 18.7
Opera Mini (High) 28 18.9
Opera Mini (Extreme) 3 8.7
Puffin Free 3 1.3
Puffin Premium 1 2

TABLE IV: Number of distinct proxy server configurations and
average number of listening services for each data saving browser.

are based on the same underlying technology due to the large

overlap in their proxy-endpoint servers’ configurations.

The discovered heterogeneity among the proxy-server con-

figurations of Opera Browser and Opera Mini in high data-

saving mode was unexpected. One would assume that com-

mercial proxy servers would be created once and cloned to

any endpoint machine required. However, our results suggest

otherwise. Many of our scans report different Opera proxy

endpoint servers hosting the same service on slightly different

port numbers. For example, on one recorded proxy server, a

specific service was listening on port 9001 while on another

proxy server, the same service was listening on 9002. Our

results show these differences are not due to setup error.

Rather, many of these configurations exist across each of the

regions where Opera datacenters are located. There appears to

be a deliberate heterogeneity within a particular region, while

also a homogeneity is exhibited across all global regions. What

remains unclear is what purpose each of these configurations

serve and what causes a user’s traffic to be routed to a proxy

server of a particular configuration.

We found proxy endpoint servers hosting many listening

services, instead of limiting the number to the bare minimum

to reduce the attack surface. Table IV also presents the average

number of open ports on each DSB’s endpoint proxy servers.

While Puffin’s proxy servers listen on the expected ports,

Opera’s listen on many ports and often have duplicated ser-

vices listening on 10-15 different port numbers. Even though

running multiple instances of the same service on varying ports

does not expose servers to new attacks (compared to running

different services at different ports), it still complicates the

process of securing these servers via network-level defenses,

such as, firewalls and intrusion-detection systems. Table V

shows the outdated software we discovered listening on the

gateway proxy servers of many DSBs. We found that a

large percentage of DSB gateway proxy servers have listening

services which are almost 6 years old. These outdated services

are vulnerable to a wide range of attacks, such as, denial of

service, privilege escalation, and directory traversal.

C. ReCAPTCHA

Figure 5 shows the distribution of reCAPTCHA v3 scores

for all browsers on each day of our experiment period. We

limit our reporting period to 7 days as beyond that time frame

we record a convergence of returned scores with data savings

enabled and disabled. This convergence informs us that re-

CAPTCHA has identified our test devices behind DSB proxy

servers using methods such as browser fingerprinting. We

Fig. 5: Daily reCAPTCHA v3 scores across browsers with data
savings enabled and disabled (whiskers extended to 5% and 95%
of dataset).

leave further analysis of the effect DSBs have on reCAPTCHA

scores over long time periods to future work.

We find a clear dichotomy in the reCAPTCHA scores

returned for browsers with data savings mode enabled and

disabled. Our results demonstrate that a user’s browsing ex-

perience can vary drastically each time they use a DSB.

According to Google’s reCAPTCHA v3 guidelines [18], web

site administrators should use scores below 0.5 as a baseline

for bot activity. Assuming most web sites follow this baseline,

users of DSBs will experience more captchas, rate-limiting,

and even IP bans when data-saving mode is enabled.

As multiple users share the same DSB proxy, the reputation

for a proxy depends on the aggregated behavior of all its users.

Hence, it is possible that malicious users could negatively

impact the web browsing experience of the benign majority.

To evaluate this scenario, we conducted a proof-of-concept

attack against Puffin. Using one device which we designated as

the “attacker”, we performed minor bot-like activity on a web

site protected by a popular anti-bot service: after requesting

the site’s home page multiple times in a short time window,

the attacker was shown a captcha. When visiting the same

site through Puffin on the “victim” device (same smartphone

model), it would immediately receive a captcha lasting for a

short time frame (approximately 5 minutes). We empirically

determined that this effect is only present if the victim and

attacker (i) share the same proxy IP address, (ii) have the

same device model, and (iii) visit the same web site in close

temporal proximity. We determined the probability of a user

meeting these criteria during our testing period is small enough

to ensure no users were effected by our experiment. However,

in the unlikely event that these criteria were met, the resulting

effect would be a limited inconvenience to any users of the

web site, who would only need to solve a captcha to continue

browsing. While in practice attackers could trivially increase

the volume of requests and significantly magnify the impact

of the attack (e.g., using multiple popular devices), we did not

attempt/explore this for ethical reasons.

D. Data Saving Mode Security Degradation

We found that proxy servers supporting DSBs typically do

not provide the same level of security as traditional mobile

818

Months Maximum
Browser Outdated Software Servers Outdated CVEs CVE Score Example CVEs
Yandex nginx v1.8.1, v1.12.2, v1.14.2 14 28.3 3 7.8 CVE-2018-16843, CVE-2018-16844
UC Browser nginx v1.10.1, v1.12.2, TwistedWeb v10.2.0 5 57.7 2.7 7.8 CVE-2018-16843, CVE-2018-16844
UC Mini nginx v1.10.1, v1.12.2, TwistedWeb v10.2.0 4 57.7 2.7 7.8 CVE-2018-16843, CVE-2018-16844
Puffin Free lighttp v1.4.35 4 68 1 5 CVE-2015-3200
Puffin Premium lighttp v1.4.35 4 68 1 5 CVE-2015-3200
Opera Browser nginx v1.10.2, v1.12.2 2 32.5 3.5 7.8 CVE-2018-16843, CVE-2018-16844

TABLE V: Information about outdated software running on DSB gateway proxy servers. Numbers averaged across servers of each DSB.

Savings On Savings Off Δ
Browser Strong Weak Strong Weak Strong Weak
Chrome 9 9 9 7 0 +2
Opera Browser 4 9 9 7 -5 +2
Opera Mini (High) 4 9 9 7 -5 +2
Opera Mini (Extreme) 3 10 9 7 -6 +3
Puffin Free 6 7 N/A N/A N/A N/A
Puffin Premium 6 7 N/A N/A N/A N/A

TABLE VI: Strong and weak cipher suites offered by DSBs.

browsers. Thus, when users enable the data-saving mode of

a browser, they are immediately putting themselves at greater

risk for the benefit of mobile data savings. In this section

we discuss how the proxies that support DSBs affect two

foundational aspects of TLS. First, we observe that proxies

support a different and typically less secure set of cipher suites.

Second, we highlight grave differences in handling certificate

errors with data-saving enabled vs. disabled.

Supported Cipher Suites. Next we determine the extent of

security degradation in each browser when data-saving modes

are enabled. An interesting finding relates to the number of

cipher suites offered by each DSB and its corresponding proxy

infrastructure. Table VI lists the number of strong and weak

cipher suites (as categorized by SSL Labs) offered by each

browser with data-savings enabled and disabled. All browsers

that support proxying HTTPS content introduce additional

weak cipher suites while the majority also reduce the number

of strong cipher suites. This choice of cipher suites puts the

user at unnecessary risk as a variety of known attacks (e.g.,

POODLE [49]) can be launched against the known weak

suites. Furthermore, while the Opera and Opera Mini browsers

with disabled data savings support the more modern TLS

version 1.3, their supporting proxy infrastructure does not.

SSL certificate error handling. The results of our ex-

periments with respect to handling SSL certificate errors are

summarized in Table VII. Recall that in this experiment we

visited a number of sites where each site features a specific

defect in the provided SSL certificate (e.g., expired, self-

signed, etc.). We visited each site twice, once with data

savings enabled, and once with data savings disabled. If a

DSB correctly prevents the user from visiting a site with an

erroneous certificate or displays a warning page, we mark the

corresponding cell with a � symbol. Further, we represent

browsers which allow users to visit web sites with certificate

errors but present them with a warning pop-up with a “!”
symbol. Any browser that does not alert users of certificate

errors on a page they are attempting to visit is labeled with

a � symbol. Lastly, any behavior that does not fall into the

above three categories is labeled with an ”N/A”. For example,

Opera Mini with data savings mode disabled prevents users

from visiting sites providing a certificate signed by GeoTrust,

but does not alert users of any errors. Although this behavior

prevents immediate access to potentially harmful web sites, it

leads to user confusion. We mark Puffin browsers with a “*”

because they do not allow users to disable proxying.

First, we find that for the majority of errors, Opera and

Puffin allow access and only show a warning, as opposed

to Chrome that prevents access. As prior work has reported

significant click-through rates when users are presented with

SSL-related browser warnings [21], this approach is problem-

atic. Opera Browser and Opera Mini in both data savings

modes (High and Extreme) allow users to visit pages with

certificates signed using the SHA1 hashing algorithm. Addi-

tionally, Opera Browser and Opera Mini in High data savings

mode allow users to visit sites where the certificate supplied

does not match the correct subdomain. We demonstrate this

vulnerability in both browsers in demo videos [11], [13]. This

could potentially allow related-domain attackers [26] to bypass

the cookie-integrity checks recently adopted by browsers that

rely on cookie prefixes [24]. In both cases, the user sees a

lock icon in the URL bar indicating their connection to the

web server is secure, when in reality it is not.

One of the most severe revelations resulting from this

experiment is that Opera browsers in data-saving mode accept

certificates from distrusted certificate authorities (CAs). A

CA is considered distrusted if it has its private signing keys

disclosed (e.g., SuperFish [20] which was never officially a

CA yet signed certificates for all websites for adware-related

reasons), or it has a known history of misissuing certificates

(e.g., GeoTrust and RapidSSL [64]). Opera Browser and Opera

Mini in High data savings mode accept the former, while

all variants of Opera accept the latter. We demonstrate this

attack against Opera Browser in a demo video [10]. Disabling

data savings mode in Opera Browser removes the vulnerability

and properly alerts users to the error. However, Opera Mini

simply fails to load the potentially dangerous web page and

does not alert the user as to the reason why. Accepting these

untrusted certificates leaves users vulnerable to severe man-

in-the-middle attacks against arbitrary websites.

We successfully executed this attack using a certificate

generated for a domain under our control and signed with the

SuperFish private key. Although creating the fake certificate is

straightforward, to execute this attack, the adversary must also

MITM connections in front of the Opera endpoint servers, e.g.,

by poisoning their DNS cache or performing selective BGP

819

expired wrong.host self-signed untrusted-root sha1-intermediate SuperFish GeoTrust
Data Savings On Off On Off On Off On Off On Off On Off On Off
Chrome � � � � � � � � � � � � � �
Opera Browser ! ! � ! ! ! ! ! � ! � ! � !
Opera Mini (High) ! ! � ! ! ! ! ! � ! � ! � N/A
Opera Mini (Extreme) ! ! ! ! ! ! ! ! � ! N/A ! � N/A
Puffin Web Browser* ! ! ! ! ! ! ! ! ! ! ! ! � �
Puffin Premium* ! ! ! ! ! ! ! ! ! ! ! ! � �

Prevent access: �, Allow access: �, Warn but allow access: !
TABLE VII: Differences between how DSBs handle certificate errors depending on whether the data saving mode is enabled or not.

Fig. 6: Opera behavior when visiting a site with a SuperFish signed
certificate with data savings disabled (left) and enabled (right).

hijacking. Prior work has demonstrated the effectiveness of

DNS cache poisoning attacks [40], while security companies

have recently issued reports about major DNS hijacking cam-

paigns [2], [5]. We simulate DNS cache poisoning by modify-

ing the authoritative DNS server for our domain to direct traffic

to our “attacker” machine. This machine runs MITMProxy

[8] and presents the SuperFish signed certificate to Opera’s

proxy servers. Using Opera Browser and Opera Mini in High

data savings mode, we visit our domain and receive the

page contents with a lock icon in the URL bar. Figure 6

shows how the same browser detects the bad Superfish-signed

certificate when the data-saving mode is disabled yet accepts

the certificate when it is enabled. We theorize that, in order to

bootstrap the root CA store of their proxies, Opera extracted

trusted CAs from real devices including the Lenovo laptops

that were infected with Superfish [20]. Even though these root

certificates are no longer trusted, this removal decision appears

to not be reflected in Opera’s root CA store.

E. Content Manipulation and Leakage

Proxy servers are at liberty to modify the actual HTML

content of a web site, as well as any meta information in the

HTTP responses used to transmit that content.

Modifications to the HTTP transport. Alarmingly, our

experiments reveal that DSB proxy servers drop a number

of headers in HTTP responses, which renders any security

measures that rely on these headers moot. For example, the

proxies for both Opera Mini in high data savings as well

as Opera Browser do not forward the X-Frame-Options
HTTP header. As this header is the predominant defense

against clickjacking, dropping the header exposes web sites

and their users to these attacks. We demonstrate this vul-

nerability in both browsers with demo videos [12] [14].

Similarly, Opera’s proxy servers drop the X-CSRF-Token
HTTP header, with the same effect of nullifying a class of

CSRF defense mechanisms. Opera’s proxies furthermore drop

the X-Content-Type-Options, X-WebKit-CSP, and

X-Permitted-Cross-Domain-Policies headers and

custom headers unique to a particular website.

Unfortunately, our experiments also identified a series of

modifications in HTTP requests. Particularly, UC Browser, UC

Mini, Opera, and Opera Mini in high data savings mode collect

a slew of potentially sensitive information (i.e., IMEI, phone

number, device serial number, and the Android advertising

ID) and transmit that information in HTTP headers to their

proxy servers. We note that the Android advertising ID is not

considered privacy sensitive per se and users are at liberty to

reset this ID at any time. However, Opera additionally includes

a so-called OperaID header that includes a persistent identifier

in all its requests. This behavior neglects the Google Play Store

guidelines, as it allows Opera to re-identify users even after

they reset their advertising IDs.

Modifications to HTML content. Manipulating the HTML

content would invariably erode users’ trust. Hence, as ex-

pected, we did not observe any clearly malicious modifications

to HTML content. Specifically, we observed modifications to

a web site’s content for Opera Mini in high data savings

mode and Opera Browser, where the proxy server injects CSS

content to block advertisements. To this end, the injected CSS

styles hide DOM elements originating from well-known ad-

vertising exchanges. As hiding advertisements improves users’

experience, we ascribe benign intent to these modifications.

Leakage. We performed the URL leakage experiment for 17

weeks, the page content leakage experiment for 8 weeks, and

the credential leakage experiment for 5 weeks. During these

experiments we did not record any instance of a third party

attempting to revisit any page we visited through the browsers

or use any of the information we leaked. While this result is

unsurprising, we felt it important to include so as to provide

a full picture of the DSB ecosystem.

V. DISCUSSION AND FUTURE WORK

In this section we discuss our main findings, their impli-

cations, as well as potential future research directions in the

space of data-saving browsers.

Savings vs Security. With DSBs occupying a considerable

portion of the market share of mobile browsers, it is critical

to bring attention to the security implications of enabling data

savings. Our study showed that the majority of data savings

only occur if the user is browsing (Section IV-A); when

consuming streaming content, most browsers cannot offer any

savings and, in fact, seven out of the ten evaluated actually

consume more data when streaming videos, rather than less.

820

At the same time, even though we found no evidence

that data-savings browsers act maliciously (Section IV-E),

these browsers expose their users to substantial security risks.

We observed the usage of outdated software on proxying

servers which could potentially lead to attackers achieving

full MITM capabilities for these browsers (Section IV-B), as

well as the use of weak cryptographic ciphers and issues with

the verification process of TLS certificates (Section IV-D).

Among others, we discovered that all users of the Opera

Browser and Opera Mini in High-data-savings mode were

vulnerable (prior to our disclosure) to SuperFish attacks where

attackers could straightforwardly generate certificates with the

leaked SuperFish private key, and successfully MITM all TLS-

protected connections of these users. Orthogonally to these

issues, we discovered that the “co-location” of traffic from

benign and malicious users (i.e., the fact that everyone’s traffic

flows through the same DSB servers) means that benign users

will be shown more CAPTCHAs when using data-savings

browsers, compared to browsing the web through traditional

means (Section IV-C).

Data-savings design. As HTTPS adoption is steadily in-

creasing across the Web, with recent statistics reporting ∼69%

in the top 150K websites [17], this complicates the offering

of secure data savings. During our analysis we observed three

unique ways of offering data savings. Some browsers (such

as Yandex and UC Mini) completely “excuse” themselves

from HTTPS connections thereby protecting their end-to-end

nature but effectively offering near-zero savings in an HTTPS-

by-default web. Other browsers (such as Chrome and Opera

Browser) perform TLS termination in order to be able to offer

data-savings over TLS-protected connections. This creates the

potential for all the issues we discovered in this paper. Offering

a data-savings mode through TLS interception means that the

browser is, in effect, running dual TLS stacks. One at the

device itself (when data-savings is turned off) and one at the

proxy servers of the browser vendors. Keeping these stacks

in sync is clearly complicated and can give rise to subtle

bugs (such as forgetting to remove the SuperFish certificate

from the proxy-side, root CA store) which can remain hidden

for long periods of time, exposing users to MITM attacks.

Finally, we observed a class of DSBs (such as Puffin) where

the real browser is situated on remote servers and the browser

running on the user’s device is merely a “terminal” which

renders the received server-side content and relays user actions

(e.g., clicking a link) to the real server-side browser. This

architecture bypasses the issues associated with dual TLS

stacks. However, similarly to other TLS-intercepting browsers,

user privacy is diminished as these browser vendors get access

to users’ full browsing history, cookies, and credentials.

We argue that there is a fourth design option available

that can result in data savings with reduced privacy concerns.

Namely, since multimedia content (such as images and videos)

are major culprits of increased data usage, we argue that

a mobile browser can selectively use TLS termination and

content rewriting just for these types of content. Specifically,

the mobile browser can fetch the main HTML content of

a webpage without any TLS termination and, at the client

side, decide which subsequent resources must be fetched over

content-rewriting proxies. This effectively reduces the impact

of a misconfigured/compromised content-rewriting server to

multimedia content, instead of the entirety of content that is

currently exposed. We leave the design and evaluation of such

a data-saving browser to future work.

Understanding user perceptions. While the allure of

saving data likely plays an important role in the decision-

making process of users when choosing a browser, a study that

explores how users perceive DSBs could provide important

insights. The transparent process of data-saving and the tech-

nical complexities of TLS interception, obfuscate the privacy

and security implications of sensitive communications being

in a readable form on not-explicitly-trusted or potentially-

vulnerable proxy servers. It is likely that if end users would

understand the methods through which data-savings are of-

fered, that they would stop utilizing these types of browsers.

Similarly, because of the arbitrary geographical location

of the content-rewriting servers, plaintext/encrypted data may

suddenly flow through unexpected and unfavorable regions

with different privacy laws and stances towards user data.

In February 2019, US Senators asked the DHS to investigate

mobile browsers and VPNs that relay the traffic of government

employees to countries of “national security concern” [53].

We, again, expect that if government employees are made

aware of the exact methods through which data-savings are

achieved, they may very well switch to different browsers.

Responsible disclosure. We have reached out to the af-

fected browsers and responsibly disclosed to them our find-

ings. To date, we have received responses from Opera regard-

ing the SuperFish certificate validation errors and the dropping

of security sensitive HTTP headers by proxy servers. Opera

has responded to our report and immediately patched the

vulnerabilities. We are currently in the process of following

up with the remaining vendors to ensure they are aware of our

findings and to understand how they intend to address them.

VI. RELATED WORK

To the best of our knowledge, this paper presents the

first security analysis of data-saving browsers, highlighting

their differences compared to traditional browsers and how

these differences can lead to weakened security and degraded

user experience. Here, we briefly discuss prior work on TLS

interception, mobile browsers, and rogue network relays.

TLS Interception. In 2017, Durumeric et al. proposed a

technique for identifying the presence of HTTPS interception

by inspecting the TLS handshake of browsers and identifying

discrepancies between these handshakes and the declared user

agent [32]. Using multiple vantage points (i.e., Cloudflare

servers and e-commerce sites) the authors measured the phe-

nomenon of HTTPS interception and traced it back to specific

middleboxes and antivirus software. De Carnavalet and Man-

nan investigated the client-side TLS interception of antivirus

and parental-control applications, finding vulnerabilities that

included the acceptance of self-signed and revoked certificates,

821

enabling MITM attackers to hijack connections to this TLS-

intercepting software that they could not have hijacked if

that software was absent [30]. Waked et al. analyzed the

TLS interception of six network appliances finding similar

certificate-validation and poor key-storage issues [63].

Given all the issues with TLS interception, the US-Cert has

published an alert (TA17-075A) titled “HTTPS Interception

Weakens TLS Security” where they encourage organizations

to verify that they need HTTPS-interception capabilities and

“ensure their HTTPS inspection products are performing cor-

rect transport layer security (TLS) certificate validation” [61].

Inspired by the issues introduced by TLS-intercepting soft-

ware, Lee et al. recently proposed an alternative, middlebox-

aware TLS protocol which allows clients to authenticate

middleboxes and servers to be aware of the presence of a

middlebox between them and clients [41]. Note that, unlike

middleboxes, antivirus software, and parental-control applica-

tions, data-savings browsers control both the client-side (i.e.,

the browser) as well as the content-rewriting servers (concep-

tually similar to a middlebox). Our work therefore confirms

the difficulty of securely intercepting TLS connections even

with the increased control afforded by data-saving browsers.

Mobile Browser Security. When handheld electronic de-

vices started including browsers in their software, researchers

realized that these browsers had to make certain design de-

cisions that made them uniquely vulnerable to specific types

of attacks. Niu et al. [50] and Amrutkar et al. [22] showed

how the limited screen real-estate of handheld devices could

be abused for highly-effective phishing attacks [36]. Luo et al.

performed a longitudinal analysis of Android mobile browsers

finding that, in terms of UI vulnerabilities, mobile browsers

are becoming less secure over time [45] and are slower in

supporting standard security mechanisms (such as CSP and

HSTS) compared to desktop browsers [44]. Tendulkar et al.

investigated how “cloud browsers” (such as Puffin) can be

abused for free computation but did not investigate the security

and privacy impact of using these browsers [59].

Orthogonal to the ability of mobile browsers to enforce

security mechanisms, Mendoza et al. quantified the consistent

use of security mechanism across desktop and mobile sites,

finding cases where the mobile versions of websites did not

employ the same mechanisms as the desktop versions and

could therefore be abused to attack users [48]. Previously,

Papadopoulos et al. [51] and Leung et al. [42] had com-

pared the privacy loss when accessing a web service over

a mobile browser or the corresponding mobile app. Kim

et al. demonstrated the privacy risks that users face due to

incorrect implementations of the Geolocation API in mobile

browsers [39]. Recent studies also measured the extent to

which web sites leverage APIs supported by modern browsers

for accessing smartphone sensor data, which can be used for

a plethora of different attacks [29], [46].

In this paper, we investigate a specific class of mobile

browsers that attempt to offer data-savings to their users and

present a comprehensive exploration of the security issues that

are introduced when users activate this data-savings mode.

Rogue Network Relays. Even though the average user

connects to web servers directly, there exist a number of

scenarios where users willingly proxy their traffic through

various servers, as way of evading censorship, preserving

anonymity, and accessing geo-fenced services. Prior work has

discovered that a fraction of these proxying systems modify

the content that flows through them with security and privacy

consequences. In 2014, Winter et al. proposed a system that

used honeytokens to discover malicious Tor exit nodes which

capitalized on unencrypted connections to collect credentials

of Tor users [65]. Sivakorn et al. showed how malicious

operators of Tor exit nodes could collect HTTP cookies from

unencrypted communications and then later abuse them for

session hijacking attacks [55]. Tsirantonakis et al. investigated

the content-modification performed by open proxies discov-

ering that 5.15% of them perform some type of malicious

modification [60]. Chung et al. utilize an HTTP(S)-proxying

service that uses real user devices to measure the level of

content-integrity violations across the web finding that up to

4.8% of the proxying nodes in their experiment were subject

to some form of content-integrity violation [27].

In contrast to past work, even though we utilized a large

number of honeytoken-based experiments, we did not discover

any signs of malicious content modification or data leakage.

This is an intuitive finding since the browser vendors behind

data-saving browsers are legitimate entities which are highly

unlikely to voluntarily engage in this type of behavior.

VII. CONCLUSION

In a world where a large portion of web browsing is

conducted on smartphones on-the-go, and data plans present

a substantial cost for most users, data-saving browsers pose

an alluring option. In our study we set forth to explore, and

ultimately demonstrate, that enabling the data-saving mode

significantly impacts a user’s security posture. Our experi-

mental analysis revealed a series of vulnerabilities that are

introduced by data-saving modes in major browsers, and which

constitute a significant privacy and security threat to hundreds

of millions of users. Our findings highlight the immensity of

the trade-off that users are faced with, as the obvious financial

benefits of using DSBs are overshadowed by weakened TLS

encryption, faulty certificate inspection, lack of support for

security mechanisms, traffic flowing through proxy servers

running outdated software, and users being labeled as potential

bots. Our study sheds light on an important security threat that

hundreds of millions of users are currently facing, and we hope

that our findings help users make more informed decisions

during their mobile browser selection process.

Acknowledgements: We thank our shepherd Emily Stark and

the anonymous reviewers for their helpful feedback. This work

was supported by the Office of Naval Research (ONR) under

grants N00014-17-1-2541 and N00014-19-1-2364, as well as

by the National Science Foundation (NSF) under grants CNS-

1617593, CNS-1813974, and CNS-1934597.

822

REFERENCES

[1] Andhook. https://github.com/asLody/AndHook.
[2] Ars technica - dhs: Multiple us gov domains hit in serious

dns hijacking wave. https://arstechnica.com/information-
technology/2019/01/multiple-us-gov-domains-hit-in-serious-dns-
hijacking-wave-dhs-warns/.

[3] Boringssl. https://github.com/google/boringssl.
[4] Chromium blog: Chrome lite pages - for a faster, leaner loading

experience. https://blog.chromium.org/2019/03/chrome-lite-pages-for-
faster-leaner.html.

[5] Cisco talos - dns hijacking abuses trust in core internet service. https:
//blog.talosintelligence.com/2019/04/seaturtle.html.

[6] Data savings and turbo mode. https://www.opera.com/turbo.
[7] Google recaptcha v3 - interpreting the score. https://developers.google.

com/recaptcha/docs/v3.
[8] Mitmproxy. https://mitmproxy.org/.
[9] Nmap. https://nmap.org.

[10] Opera browser superfish attack demo. https://vimeo.com/376471169/
3ce7f26104.

[11] Opera browser wrong host demo. https://vimeo.com/376667209/
c38449bb65.

[12] Opera browser x-frame-options demo. https://vimeo.com/376524398/
0d36db25cb.

[13] Opera mini wrong host certificate demo. https://vimeo.com/376667274/
8dae75351a.

[14] Opera mini x-frame-options demo. https://vimeo.com/376524711/
a0c9f78a93.

[15] Pew research center - use of smartphones and social media is common
across most emerging economies. https://www.pewresearch.org/internet/
2019/03/07/use-of-smartphones-and-social-media-is-common-across-
most-emerging-economies/.

[16] Polar proxy. https://www.netresec.com/?page=PolarProxy.
[17] Qualys SSL Labs - SSL Pulse. https://www.ssllabs.com/ssl-pulse/.
[18] recaptcha guidelines. https://developers.google.com/recaptcha/docs/v3.
[19] Statista -share of global mobile website traffic 2015-2019.

https://www.statista.com/statistics/277125/share-of-website-traffic-
coming-from-mobile-devices/.

[20] The Guardian - Lenovo accused of compromising user security
by installing adware on new PCs. https://www.theguardian.com/
technology/2015/feb/19/lenovo-accused-compromising-user-security-
installing-adware-pcs-superfish, 2015.

[21] Devdatta Akhawe and Adrienne Porter Felt. Alice in warningland:
A large-scale field study of browser security warning effectiveness.
In Proceedings of the 22nd USENIX Security Symposium (USENIX
Security), 2013.

[22] Chaitrali Amrutkar, Kapil Singh, Arunabh Verma, and Patrick Traynor.
VulnerableMe: Measuring systemic weaknesses in mobile browser se-
curity. In Proceedings of the International Conference on Information
Systems Security (ICISSP), 2012.

[23] Badssl - a memorable site for HTTPS misconfiguration. https://badssl.
com.

[24] Adam Barth and Mike West. Cookies: HTTP State Management
Mechanism. Internet-draft, Internet Engineering Task Force, 2019. Work
in Progress.

[25] Kevin Bock, Daven Patel, George Hughey, and Dave Levin. uncaptcha:
a low-resource defeat of recaptcha’s audio challenge. In Proceedings of
the 11th USENIX Workshop on Offensive Technologies (WOOT), 2017.

[26] Stefano Calzavara, Riccardo Focardi, Matus Nemec, Alvise Rabitti, and
Marco Squarcina. Postcards from the post-http world: Amplification of
https vulnerabilities in the web ecosystem. In Proceedings of the 40th
IEEE Symposium on Security and Privacy (IEEE S&P), 2019.

[27] Taejoong Chung, David Choffnes, and Alan Mislove. Tunneling for
transparency: A large-scale analysis of end-to-end violations in the
internet. In Proceedings of the 2016 Internet Measurement Conference
(ICM), 2016.

[28] Cam Cullen. Sandvine 2019 Mobile Internet Phenomena Re-
port. https://www.sandvine.com/press-releases/sandvine-releases-2019-
mobile-internet-phenomena-report, 2019.

[29] Anupam Das, Gunes Acar, Nikita Borisov, and Amogh Pradeep. The
web’s sixth sense: A study of scripts accessing smartphone sensors.
In Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security, 2018.

[30] Xavier de Carné de Carnavalet and Mohammad Mannan. Killed by
proxy: Analyzing client-end tls interception software. In Proceedings of
the 23rd Network and Distributed System Security Symposium (NDSS),
2016.

[31] Zakir Durumeric, David Adrian, Ariana Mirian, Michael Bailey, and
J Alex Halderman. A search engine backed by internet-wide scanning.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, 2015.

[32] Zakir Durumeric, Zane Ma, Drew Springall, Richard Barnes, Nick
Sullivan, Elie Bursztein, Michael Bailey, J Alex Halderman, and Vern
Paxson. The security impact of https interception. In Proceedings of
the 24th Network and Distributed System Security Symposium (NDSS),
2017.

[33] Zakir Durumeric, Eric Wustrow, and J Alex Halderman. Zmap: Fast
internet-wide scanning and its security applications. In Proceedings of
the 22nd USENIX Security Symposium (USENIX Security), 2013.

[34] Qilin Fan, Hao Yin, Geyong Min, Po Yang, Yan Luo, Yongqiang Lyu,
Haojun Huang, and Libo Jiao. Video delivery networks: Challenges,
solutions and future directions. Computers & Electrical Engineering,
66:332–341, 2018.

[35] Adrienne Porter Felt, Richard Barnes, April King, Chris Palmer, Chris
Bentzel, and Parisa Tabriz. Measuring HTTPS adoption on the web.
In Proceedings of the 26th USENIX Security Symposium (USENIX
Security), 2017.

[36] Adrienne Porter Felt and David Wagner. Phishing on mobile devices.
In Proceedings of the Web 2.0 Security and Privacy Workshop (W2SP),
2011.

[37] Google fi - plans benefits & details. https://fi.google.com/about/plans/.
[38] Muhammad Ikram, Narseo Vallina-Rodriguez, Suranga Seneviratne,

Mohamed Ali Kaafar, and Vern Paxson. An analysis of the privacy and
security risks of android vpn permission-enabled apps. In Proceedings
of the Internet Measurement Conference (IMC), 2016.

[39] Hyungsub Kim, Sangho Lee, and Jong Kim. Exploring and mitigating
privacy threats of html5 geolocation api. In Proceedings of the 30th
Annual Computer Security Applications Conference (ACSAC), 2014.

[40] Klein, Amit and Shulman, Haya and Waidner, Michael. Internet-wide
study of dns cache injections. In Proceedings of the IEEE INFOCOM
Conference on Computer Communications, 2017.

[41] Hyunwoo Lee, Zach Smith, Junghwan Lim, Gyeongjae Choi, Selin
Chun, Taejoong Chung, and Ted Taekyoung Kwon. matls: How to
make tls middlebox-aware? In Proceedings of the 26th Network and
Distributed System Security Symposium (NDSS), 2019.

[42] Christophe Leung, Jingjing Ren, David Choffnes, and Christo Wilson.
Should you use the app for that?: Comparing the privacy implications
of app-and web-based online services. In Proceedings of the Internet
Measurement Conference (IMC), 2016.

[43] Christos Liaskos, Vasileios Kotronis, and Xenofontas Dimitropoulos. A
novel framework for modeling and mitigating distributed link flooding
attacks. In Proceedings of the 35th Annual IEEE International Confer-
ence on Computer Communications (INFOCOM), 2016.

[44] Meng Luo, Pierre Laperdrix, Nima Honarmand, and Nick Nikiforakis.
Time does not heal all wounds:a longitudinal analysis of security-
mechanism support in mobile browsers. In Proceedings of the 26th
Network and Distributed System Security Symposium (NDSS), 2019.

[45] Meng Luo, Oleksii Starov, Nima Honarmand, and Nick Nikiforakis.
Hindsight: Understanding the Evolution of UI Vulnerabilities in Mobile
Browsers. In Proceedings of the 24th ACM Conference on Computer
and Communications Security (CCS), 2017.

[46] Francesco Marcantoni, Michalis Diamantaris, Sotiris Ioannidis, and
Jason Polakis. A large-scale study on the risks of the html5 webapi
for mobile sensor-based attacks. In Proceedings of the Web Conference
(WWW), 2019.

[47] Arunesh Mathur, Brent Schlotfeldt, and Marshini Chetty. A mixed-
methods study of mobile users’ data usage practices in south africa.
In Proceedings of the 2015 ACM International Joint Conference on
Pervasive and Ubiquitous Computing, 2015.

[48] Abner Mendoza, Phakpoom Chinprutthiwong, and Guofei Gu. Uncov-
ering HTTP Header Inconsistencies and the Impact on Desktop/Mobile
Websites. In Proceedings of the Web Conference (WWW), 2018.

[49] Bodo Möller, Thai Duong, and Krzysztof Kotowicz. This poodle bites:
exploiting the ssl 3.0 fallback. Security Advisory, 2014.

[50] Yuan Niu, Francis Hsu, and Hao Chen. iPhish: Phishing Vulnerabilities
on Consumer Electronics. In Usability, Psychology, and Security
(UPSEC), 2008.

823

[51] Elias P Papadopoulos, Michalis Diamantaris, Panagiotis Papadopoulos,
Thanasis Petsas, Sotiris Ioannidis, and Evangelos P Markatos. The long-
standing privacy debate: Mobile websites vs mobile apps. In Proceedings
of the Web Conference (WWW), 2017.

[52] Requests: HTTP for humans. https://2.python-requests.org/en/master/.
[53] Marco Rubio and Ron Wyden. Rubio, Wyden Ask Homeland

Security To Investigate National Security Risks Of Foreign VPN
Apps. https://www.rubio.senate.gov/public/index.cfm/2019/2/rubio-
wyden-ask-homeland-security-to-investigate-national-security-risks-
of-foreign-vpn-apps, 2019.

[54] SimilarTech. Captcha Technologies Market Share and Web Usage
Statistics. https://www.similartech.com/categories/captcha.

[55] Suphannee Sivakorn, Iasonas Polakis, and Angelos D Keromytis. The
cracked cookie jar: Http cookie hijacking and the exposure of private
information. In Proceedings of the 37th IEEE Symposium on Security
and Privacy (IEEE S&P), 2016.

[56] Suphannee Sivakorn, Iasonas Polakis, and Angelos D Keromytis. I am
robot:(deep) learning to break semantic image captchas. In Proceedings
of the 1st IEEE European Symposium on Security and Privacy (IEEE
EuroS&P), 2016.

[57] Microsoft reads your skype chat messages. https://yro.slashdot.org/story/
13/05/14/1516247/microsoft-reads-your-skype-chat-messages.

[58] StatCounter. Browser market share worldwide. http://gs.statcounter.com/
browser-market-share, 2019.

[59] Vasant Tendulkar, Ryan Snyder, Joe Pletcher, Kevin Butler, Ashwin
Shashidharan, and William Enck. Abusing cloud-based browsers for
fun and profit. In Proceedings of the 28th Annual Computer Security
Applications Conference (ACSAC), 2012.

[60] Giorgos Tsirantonakis, Panagiotis Ilia, Sotiris Ioannidis, Elias Athana-
sopoulos, and Michalis Polychronakis. A large-scale analysis of content

modification by open http proxies. In Proceedings of the 25th Network
and Distributed System Security Symposium (NDSS), 2018.

[61] US CERT. Alert (TA17-075A): HTTPS Interception Weakens TLS
Security. https://www.us-cert.gov/ncas/alerts/TA17-075A.

[62] Luis Von Ahn, Manuel Blum, Nicholas J Hopper, and John Langford.
Captcha: Using hard ai problems for security. In International Con-
ference on the Theory and Applications of Cryptographic Techniques,
2003.

[63] Louis Waked, Mohammad Mannan, and Amr Youssef. To intercept
or not to intercept: Analyzing tls interception in network appliances.
In Proceedings of the 2018 on Asia Conference on Computer and
Communications Security (ASIACCS), 2018.

[64] Kathleen Wilson. Distrust of symantec tls certificates.
https://blog.mozilla.org/security/2018/03/12/distrust-symantec-tls-
certificates/, March 2018.

[65] Philipp Winter, Richard Köwer, Martin Mulazzani, Markus Huber,
Sebastian Schrittwieser, Stefan Lindskog, and Edgar Weippl. Spoiled
onions: Exposing malicious tor exit relays. In International Symposium
on Privacy Enhancing Technologies Symposium (PETS), 2014.

[66] Guixin Ye, Zhanyong Tang, Dingyi Fang, Zhanxing Zhu, Yansong
Feng, Pengfei Xu, Xiaojiang Chen, and Zheng Wang. Yet another text
captcha solver: A generative adversarial network based approach. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, 2018.

[67] Huan Zhou, Hui Wang, Xiuhua Li, and Victor CM Leung. A survey on
mobile data offloading technologies. IEEE Access, 6:5101–5111, 2018.

824

