
Throwing Darts in the Dark? Detecting Bots with
Limited Data using Neural Data Augmentation

Steve T.K. Jan1,2, Qingying Hao1, Tianrui Hu2, Jiameng Pu2,
Sonal Oswal3, Gang Wang1, Bimal Viswanath2

1University of Illinois at Urbana-Champaign 2Virginia Tech 3Radware
tekang@vt.edu, qhao2@illinois.edu, {tianruihu, jmpu}@vt.edu, SonalO@radware.com, gangw@illinois.edu, vbimal@vt.edu

Abstract—Machine learning has been widely applied to build-
ing security applications. However, many machine learning mod-
els require the continuous supply of representative labeled data
for training, which limits the models’ usefulness in practice. In
this paper, we use bot detection as an example to explore the
use of data synthesis to address this problem. We collected the
network traffic from 3 online services in three different months
within a year (23 million network requests). We develop a stream-
based feature encoding scheme to support machine learning
models for detecting advanced bots. The key novelty is that
our model detects bots with extremely limited labeled data. We
propose a data synthesis method to synthesize unseen (or future)
bot behavior distributions. The synthesis method is distribution-
aware, using two different generators in a Generative Adversarial
Network to synthesize data for the clustered regions and the
outlier regions in the feature space. We evaluate this idea and
show our method can train a model that outperforms existing
methods with only 1% of the labeled data. We show that data
synthesis also improves the model’s sustainability over time and
speeds up the retraining. Finally, we compare data synthesis and
adversarial retraining and show they can work complementary
with each other to improve the model generalizability.

I. INTRODUCTION

In recent years, machine learning (ML) has shown great
success in building security defenses to protect computer
and networked systems [1], [2], [3]. Driven by empirical
data, machine learning algorithms can identify hidden patterns
that cannot be easily expressed by rules or signatures. This
capability leads to various ML-based applications such as
malicious website detection [4], [5], malicious phone call
classification [6], network traffic analysis [3], malware clas-
sification [7], [8], [9], [10], and intrusion detection [11], [2].

A common challenge faced by ML-driven systems is that
they often require “labeled data” to train a good detection
model [7], [5]. While it is already highly expensive to obtain
labels (e.g., via manual efforts), the challenge is further
amplified by the dynamic behavior changes of attackers —
to keep the detection models up-to-date, there is a constant
need for labeling new data samples over time [12].

To solve this problem, a promising and yet under-explored
direction is to perform data synthesis. The idea is to generate
synthesized data to augment model training, with limited data
labels. For many of the security applications, however, the
challenge is the lack of complete knowledge of the problem

space, especially the attackers’ (future) data distribution, mak-
ing it difficult to properly guide the data synthesis process. The
benefits and limitations of this approach remain unclear.

In this paper, we use bot detection as an example to
explore the use of data synthesis to enable bot detection with
limited training data. We worked with a security company
and obtained a real-world network traffic dataset that contains
23,000,000 network requests to three different online services
(e.g., e-commerce) over 3 different months in August 2018,
January 2019, and September 2019. The “ground-truth” labels
are provided by the security company’s internal system — via
a CAPTCHA system, and manual verification. This dataset
allows us to explore the design of a generic stream-based
machine learning model for real-time bot detection.

We argue that the true value of the machine learning
model is to handle attacker behaviors that cannot be precisely
expressed by “rules”. As such, we excluded bots that were
already precisely flagged by existing rules and focused on
the remaining “advanced bots” that bypassed the rules. We
proposed a novel feature encoding method to encode new
traffic data as they arrive for stream-based bot detection. We
empirically validated that (i) well-trained machine learning
models can help to detect advanced bots which significantly
boosts the overall “recall” (by 15% to 30%) with a minor
impact on the precision; (ii) limited training data can indeed
cripple the supervised learning model, especially when facing
more complex bot behaviors.

To address the problem of limited data, we explore the
design of a new data synthesis method. We propose ODDS,
which is short for “Outlier Distribution aware Data Synthesis”.
The key idea is to perform a distribution-aware synthesis
based on known benign user data and limited bot samples.
The assumption is that the benign samples are relatively more
stable and representative than the limited bot data. We thus
synthesize new bot samples for the unoccupied regions in
the feature space by differentiating “clustered regions” and
“outlier regions”. At the clustered regions (which represent
common user/bot behavior), our data synthesis is designed to
be conservative by gradually reducing the synthesis aggres-
siveness as we approach the benign region. In the outlier areas
(which represent rare user behavior or new bot variants), our
data synthesis is more aggressive to fill in the space. Based

1190

2020 IEEE Symposium on Security and Privacy

© 2020, Steve T.K. Jan. Under license to IEEE.
DOI 10.1109/SP40000.2020.00079



on these intuitions, we designed a customized Generative Ad-
versarial Network (GAN) with two complementary generators
to synthesize clustered and outlier data simultaneously.

We evaluate the ODDS using real-world datasets, and show
that it outperforms many existing methods. Using 1% of
the labeled data, our data synthesis method can improve the
detection performance close to that of existing methods trained
with 100% of the data. In addition, we show that ODDS not
only outperforms other supervised methods but improves the
life-cycle of a classifier (i.e., staying effective over a longer
period of time). It is fairly easy to retrain an ODDS (with
1% of the data) to keep the models up-to-date. Furthermore,
we compare data synthesis with adversarial retraining. We
show that, as a side effect, data synthesis helps to improve
the model resilience to blackbox adversarial examples, and it
can work jointly with adversarial retraining to improve the
generalizability of the trained model. Finally, we analyze the
errors of ODDS to understand the limits of data synthesis.

We have three main contributions:
• First: we build a stream-based bot detection system to

complement existing rules to catch advanced bots. The
key novelty is the stream-based feature encoding scheme
which encodes new data as they arrive. This allows us
to perform real-time analysis and run bot detection on
anonymized network data.

• Second: we describe a novel data synthesis method to
enable effective model training with limited labeled data.
The method is customized to synthesize the clustered data
and the outlier data differently.

• Third: we validate our systems using real-world datasets
collected from three different online services. We demon-
strate the promising benefits of data synthesis and discuss
the limits of the proposed method.

II. BACKGROUND AND GOALS

A. Bot Detection
Bots are computer-controlled software that pretends to be

real users to interact with online services and other users in
online communities. While there are bots designed for good
causes (search engine crawlers, research bots) [13], [14], [15],
most bots are operated to engage malicious actions such as
spam, scam, click fraud and data scrapping [16], [17], [1],
[18], [19], [20], [21], [22]. While many existing efforts are
devoted to bot detection, the problem is still challenging due
to the dynamic-changing nature of bots.
Online Turing Tests. CAPTCHA is short for "Completely
Automated Public Turning Test to tell Computers and Hu-
mans Apart" [23]. CAPTCHA is useful to detect bots but is
limited in coverage. The reason is that aggressively delivering
CAPTCHA to legitimate users would significantly hurt user
experience. In practice, services want to deliver a minimum
number of CAPTCHAs to benign users while maximizing
the number of detected bots. As such, it is often used as a
validation method, to verify if a suspicious user is truly a bot.
Rule-based Approaches. Rule-based detection approaches
detect bots following predefined rules [24]. Rules are often

hand-crafted based on defenders’ domain knowledge. In prac-
tice, rules are usually designed to be highly conservative to
avoid false detection on benign users.
Machine Learning based Approaches. Machine learn-
ing techniques have been proposed to improve the detection
performance [25], [26], [27]. A common way is supervised
training with labeled bot data and benign user data [28],
[29], [21], [22]. There are also unsupervised methods [30],
[31], [32], but they are often limited in accuracy compared to
supervised methods.

B. Challenges in Practice

There are various challenges to deploy existing bot detection
methods in practice. In this work, we collaborate with a
security company Radware to explore new solutions.
Challenge-1: Bots are Evolving. Bot behaviors are dy-
namically changing, which creates a challenge for the static
rule-based system. Once a rule is set, bots might make small
changes to bypass the pre-defined threshold.
Challenge-2: Limited Labeled Data. Data labeling is a
common challenge for supervised machine learning methods,
especially when labeling requires manual efforts and when
there is a constant need for new labels over time. For bot
detection, CAPTCHA is a useful way to obtain “labels”.
However, CAPTCHA cannot be delivered to all requests to
avoid degrading user experience. As such, it is reasonable to
assume the training data is limited or biased.
Challenge-3: Generalizability. Most bot detection methods
are heavily engineered for their specific applications (e.g. on-
line social networks, gaming, e-commerce websites) [21], [19],
[29], [22]. Due to the use of application-specific features (e.g.,
social graphs, user profile data, item reviews and ratings), the
proposed model is hardly generalizable, and it is difficult for
industry practitioners to deploy an academic system directly.
Application-dependent nature also makes it difficult to share
pre-trained models among services.
Our Goals. With these challenges in mind, we build a
machine learning model that works complementary to the
existing rule-based system and the CAPTCHA system. The
model is designed to be generic, which only relies on basic
network-level information without taking any application-level
information. We design an encoding scheme that allows the
system to work on anonymized datasets, further improving
its portability across web services. In addition, the system is
stream-based, which processes incoming network traffic and
make decisions in near real-time. More importantly, we use
this opportunity to explore the impact of “limited training
data” on model performance. We explore the benefits and
limitations of data synthesis methods in enhancing the model
against attackers’ dynamic changes.

III. DATASET AND PROBLEM DEFINITION

Through our collaboration with Radware, we obtained
the network traffic data from three online services over three
different months within a year. Each dataset contains the
“ground-truth” labels on the traffic of bots and benign users.
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TABLE I: Dataset summary.

Site August 2018 January 2019 September 2019
#Request Uniq.IP #Request Uniq.IP #Request Uniq.IP

A 2,812,355 225,331 1,981,913 157,687 1,676,842 151,304
B 4,022,195 273,383 2,559,923 238,678 5,579,243 1,301,310
C 4,388,929 180,555 - - - -

All 11,223,479 667,537 4,541,836 393,504 7,256,085 1,447,247

The dataset is suitable for our research for two main reasons.
First, each online service has its own service-specific func-
tionality and website structures. This offers a rare opportunity
to study the “generalizability” of a methodology. Second, the
datasets span a long period of time, which allows us to analyze
the impact of bot behavior changes.

A. Data Collection

We collected data by collaborating with Radware, a secu-
rity company that performs bot detection and prevention for
different online services. Radware gathers and analyzes the
network logs from their customers. We obtained permission to
access the anonymized network logs from three websites.

Table I shows the summary of the datasets. For anonymity
purposes, we use A, B, C to represent the 3 websites. For all
three websites, we obtained their logs in August 2018 (08/01
to 08/31). Then we collected data in January 2019 (01/08 to
01/31) and September 2019 (09/01 to 09/30) for two websites
(A, and B). We were unable to obtain data from website C
for the January and September of 2019 due to its service
termination with Radware.

The dataset contains a series of timestamped network re-
quests to the respective website. Each request contains a URL,
a source IP address, a referer, a cookie, a request timestamp (in
milliseconds) and the browser version (extracted from User-
Agent). To protect the privacy of each website and its users,
only timestamp is shared with us in the raw format. All
other fields including URL, IP, cookie, and browser version
are shared as hashed values. This is a common practice for
researchers to obtain data from industry partners. On one hand,
this type of anonymization increases the challenges for bot
detection. On the other hand, this encourages us to make more
careful design choices to make sure the system works well on
anonymized data. Without the need to access the raw data, the
system has a better chance to be generalizable. In total, the
dataset contains 23,021,400 network requests from 2,421,184
unique IP addresses.

B. Reprocessing: IP-Sequence

Our goal is to design a system that is applicable to a
variety of websites. For this purpose, we cannot rely on
the application-level user identifier to attribute the network
requests to a “user account”. This is because not all websites
require user registration (hence the notion of “user account”
does not exist). We also did not use “cookie” as a user
identifier because we observe that bots often frequently clear
their cookies in their requests. Using cookies makes it difficult
to link the activities of the same bot. Instead, we group
network requests based on the source IP address.

TABLE II: Estimated false positives of rules on IP-sequences.

Website Matched Rules Matched Solved
by Rules & Received CAPTCHA CAPTCHA

A 42,487 38,294 4 (0.01%)

B 23,346 12,554 0 (0%)

C 50,394 19,718 0 (0%)

Given an IP, a straightforward way might be labeling the
IP as “bot” or “benign”. However, such binary labels are not
fine-grained enough for websites to take further actions (e.g.,
delivering a CAPTCHA or issuing rate throttling). The reason
is that it’s common for an IP address to have both legitimate
and bot traffic at different time periods, e.g., due to the use
of web proxy and NAT (Network Address Translation). As
such, it is more desirable to make fine-grained decisions on
the “sub-sequences” of requests from an IP address.

To generate IP-sequences, for each IP, we sort its requests
based on timestamps and process the requests as a stream.
Whenever we have accumulated T requests from this IP, we
produce an IP-sequence. In this paper, we empirically set T =
30. We perform bot detection on each IP-sequence.

C. Ground-truth Labels

We obtain the ground-truth labels from the CAPTCHA
system and the internal rule-based systems used in Radware.
Their security team also sampled both labels for manual
examination to ensure the reliability.
CAPTCHA Labels. Radware runs an advanced
CAPTCHA system for all its customers. The system delivers
CAPTCHAs to a subset of network requests. If the “user” fails
to solve the CAPTCHA, that specific request will be marked
with a flag. For security reasons, Radware’s selection process
to deliver CAPTCHAs will not be made public. At a high level,
requests are selected based on proprietary methods that aim to
balance exploring the entire space of requests versus focusing
on requests that are more likely to be suspicious (hence
limiting impact on benign users). Given an IP-sequence, if one
of the requests is flagged, we mark the IP-sequence as “bot”.
The security team has sampled the flagged data to manually
verify the labels are reliable.

We are aware that certain CAPTCHA systems are vulner-
able to automated attacks by deep learning algorithms [33],
[34], [35], [36]. However, even the most advanced attack [34]
is not effective on all CAPTCHAs (e.g., Google’s CAPTCHA).
In addition, recent works show that adversarial CAPTCHAs
are effective against automated CAPTCHA-solving [37]. To
the best of our knowledge, the CAPTCHA system used by
Radware is not among the known vulnerable ones. Indeed,
the CAPTCHA system could still be bypassed by human-
efforts-based CAPTCHA farms [38]. On one hand, we argue
that human-based CAPTCHA solving already significantly
increased the cost of bots (and reduced the attack scale). On
the other hand, we acknowledge that CAPTCHA does not
provide a complete “ground-truth”.
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Rule-Based Labels. Another source of labels is Radware’s
internal rules. The rules are set to be conservative to achieve
near perfect precision while sacrificing the recall (e.g., looking
for humanly-impossible click rate, and bot-like User-Agent
and referer). To avoid giving attackers the advantage, we
do not disclose the specific rules. Radware’s security team
has sampled the rule-labels for manual verification to ensure
reliability. We also tried to validate the reliability on our side,
by examining whether rule-labels are indeed highly precise
(low or no false positives). We extract all the IP-sequences that
contain a rule-label, and examined how many of them have
received and solved a CAPTCHA. A user who can solve the
CAPTCHA is likely a false positive. The results are shown in
Table II. For example, for website A, the rules matched 42,487
IP-sequences. Among them, 38,294 sequences have received a
CAPTCHA, and only in 4 out of 38,294 (0.01%) users solved
the CAPTCHA. This confirms the extremely high precision of
rules. As a trade-off, the rules missed many real bots, which
are further discussed in Section IV-A.

D. Problem Definition

In summary, we label an IP-sequence as “bot” if it failed
the CAPTCHA-solving or it triggered a rule (for those that
did not receive a CAPTCHA). Otherwise, the IP-sequence is
labeled as “benign”. Our goal is to classify bots from benign
traffic accurately at the IP-sequence level with highly limited
labeled data. We are particularly interested in detecting bots
that bypassed the existing rule-based systems, i.e., advanced
bots. Note that our system is not redundant to the CAPTCHA
system, given that CAPTCHA can be only applied to a small
set of user requests to avoid hurting the user experience. Our
model can potentially improve the efficiency of CAPTCHA
delivery by pinpointing suspicious users for verification.
Scope and Limitations. Certain types of attackers are
out of scope. Attackers that hire human users to solve
CAPTCHAs [38] are not covered in our ground-truth. We
argue that pushing all attackers to human-based CAPTCHA-
solving would be one of the desired goals since it would
significantly increase the cost of attacks and reduce the attack
speed (e.g., for spam, fraud, or data scraping).

IV. BASIC BOT DETECTION SYSTEM

In this section, we present the basic designs of the bot de-
tection system. More specifically, we want to build a machine
learning model to detect the advanced bots that bypassed the
existing rules. In the following, we first filter out the simple
bots that can be captured by rules, and then describe our
stream-based bot detection model. In this section, we use all
the available training data to examine model performance. In
the next section, we introduce a novel data synthesis method
to detect bots with limited data (Section V).

As an overview, the data processing pipeline has two steps.
• Phase I: Applying existing rules to filter out the easy-to-

detect bots (pre-processing).
• Phase II: Using a machine learning model to detect the

“advanced bots” from the remaining data.

A. Phase I: Filtering Simple Bots

As discussed in Section III-C, Radware’s internal rules are
tuned to be highly precise (with a near 0 false positive rate).
As such, using a machine learning method to detect those
simple bots is redundant. The rule-based system, however, has
a low recall (e.g. 0.835 for website B and 0.729 for website
C, as shown in Table VI). This requires Phase II to detect the
advanced bots that bypassed the rules.

Table III shows the filtering results. We do not consider IPs
that have fewer than T = 30 requests. The intuition is that, if
a bot made less than 30 requests in a given month, it is not a
threat to the service1. After filtering out the simple bots, the
remaining advanced bots are those captured by CAPTCHAs.
For all three websites, we have more simple bots than ad-
vanced bots. The remaining data are treated as “benign”. The
benign sets are typically larger than the advanced bot sets, but
not orders of magnitude larger. This is because a large number
of benign IP-sequences have been filtered out for having fewer
than 30 requests. Keeping those short benign sequences in our
dataset will only make the precision and recall look better, but
it does not reflect the performance in practice (i.e., detecting
these benign sequences is trivial).

B. Phase II: Machine Learning Model

With a focus on the advanced bots, we present the basic
design of our detector. The key novelty is not necessarily the
choice of deep neural network. Instead, it is the new feature
encoding scheme that can work on anonymized data across
services. In addition, we design the system to be stream-based,
which can process network requests as they come, and make
a decision whenever an IP-sequence is formed.

The goal of feature encoding is to convert the raw data
of an IP-sequence into a vector. Given an IP-sequence (of
30 requests), each request has a URL hash, timestamp, re-
ferrer hash, cookie flag, and browser version hash. We tested
and found the existing encoding methods did not meet our
needs. For instance, one-hot encoding is a common way to
encode categorical features (e.g., URL, cookie). In our case,
because there are hundreds of thousands of distinct values
for specific features (e.g., hashed URLs), the encoding can
easily produce high-dimensional and sparse feature vectors.
Another popular choice is the embedding method such as
Word2Vec, which generates a low-dimensional representation
to capture semantic relationships among words for natural
language processing [43]. Word2Vec can be applied to process
network traffic [44]: URLs that commonly appear at the same
position of a sequence will be embedded to vendors with a
smaller distance. Embedding methods are useful for offline
data processing, and is not suitable for a real-time system.
Word2Vec requires using a large and relatively stable dataset

1 We set T = 30 because the sequence length T needs to be reasonably
large to obtain meaningful patterns [39]. As a potential evasion strategy, an
attacker can send no more than 30 requests per IP, and uses a large number
of IPs (i.e., botnets). We argue that this will significantly increase the cost of
the attacker. In addition, there are existing systems for detecting coordinated
botnet campaigns [40], [41], [42] which are complementary to our goals.
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TABLE III: Ground-truth data of IP-sequences.

August 2018 January 2019 September 2019

Website Rule Matched CAPTCHA Benign Rule Matched CAPTCHA Benign Rule Matched CAPTCHA Benign
(Simple bot) (Advanced bot) (Simple bot) (Advanced bot) (Simple bot) (Advanced bot)

A 42,487 6,117 15,390 30,178 4,245 10,393 8,974 15,820 12,664
B 23,346 2,677 48,578 10,434 2,794 26,922 18,298 9,979 37,446
C 50,394 19,113 32,613 - - - - - -
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to generate a high quality embedding [45], but is not effective
for embedding new or rare entities. In our case, we do not
want to wait for months to collect the full training and testing
datasets for offline embedding and detection.
Sliding Window based Frequency Encoding. We propose
an encoding method that does not require the raw entity (e.g.,
URL) but uses the frequency of occurrence of the entity. The
encoding is performed in a sliding window to meet the need
for handling new/rare entities for real-time detection. We take
“visited URL” as an example to explain how it works.

As shown in Figure 1, given a request, we encode the
URL hash based on its occurrence frequency in the past. This
example URL appears very frequently in the past at a 95-
percentile. As such, we map the URL to an index value “0.95”.
In this way, URLs that share a similar occurrence frequency
will be encoded to a similar index number. This scheme
can easily handle new/rare instances: any previously-unseen
entities would be assigned to a low distribution percentile. We
also don’t need to manually divide the buckets but can rely
on the data distribution to generate the encoding automatically.
The feature value is already normalized between 0 and 1.

A key step of the encoding is to estimate the occurrence
frequency distribution of an entity. For stream-based bot
detection, we use a sliding window to estimate the distribution.
An example is shown in Figure 2. Suppose IP-sequence s1
is formed on day t (i.e., the last request arrived at day t).
To encode the URLs in s1, we use the historical data in

TABLE IV: Summaries of features and their encoding scheme.

Feature Encoding Method

URL Frequency Distribution encoding
Referer Frequency Distribution encoding
Browser version Frequency Distribution encoding
Time gap Distribution encoding
Cookie flag Boolean

the past w days to estimate the URL occurrence distribution.
Another IP-sequence s2 is formed on day t too, and thus we
use the same time window to estimate the distribution. s3 is
formed one day later on t+1, and thus the time-window slides
forward by one day (keeping the same window size). In this
way, whenever an IP-sequence is formed, we can compute the
feature encoding immediately (using the most recent data).
In practice, we do not need to compute the distribution for
each new request. Instead, we only need to pre-compute the
distribution for each day, since IP-sequences on the same day
share the same window.

Table IV shows how different features are encoded. URL,
referer, and browser version are all categorical features and
thus can be encoded based on their occurrence frequency.
The “time gap” feature is the time gap between the current
request and the previous request in the same IP-sequence.
It is a numerical feature, and thus we can directly generate
the distribution to perform the encoding. The “cookie flag”
boolean feature means whether the request has enabled a
cookie. Each request has 5 features, and each IP-sequence can
be represented by a matrix of 30 × 5 (dimension = 150).
Building the Classifier. Using the above features, we build a
supervised Long-Short-Term-Memory (LSTM) classifier [44].
LSTM is a specialized Recurrent Neural Network (RNN)
designed to capture the relationships of events in a sequence
and is suitable to model sequential data [46], [47]. Our model
contains 2 hidden LSTM layers followed by a binary classifier.
The output dimension of every LSTM units in two layers
is 8. Intuitively, a wider neural network is more likely to
be overfitting [48], and a deeper network may have a better
generalizability but requires extensive resources for training.
A 2-8 LSTM model can achieve a decent balance between
overfitting and training costs. We have tested other models
such as Convolutional Neural Network (CNN), but LSTM
performs better when training data is limited (Appendix A).

C. Evaluating The Performance

We evaluate our model using data from August 2018 (ad-
vanced bots). We followed the recent guideline for evaluating
security-related ML models [49] to ensure result validity.
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TABLE V: The detection results of LSTM model on “advanced bots”.

Website A Website B Website C
Precision Recall F1 Precision Recall F1 Precision Recall F1

0.880 0.952 0.915 0.888 0.877 0.883 0.789 0.730 0.759

TABLE VI: The overall detection performance The “precision” and
“recall” are calculated based on all bots in August 2018 (simple bots
and advanced bots).

Setting Website A Website B Website C
Precision Recall Precision Recall Precision Recall

Rules Alone 1 0.880 1 0.835 1 0.729
Rules+LSTM 0.984 0.994 0.982 0.980 0.946 0.927

Training-Testing Temporal Split. We first ensure the
temporary training constraint [49], which means training data
should be strictly temporally precedent to the testing data. We
split the August data by using the first two weeks of data
for training and the later two weeks for testing. Given our
feature encoding is sliding-window based, we never use the
“future” data to predict the “past” events (for both bots and
benign data). We did not artificially balance the ratio of bot
and benign data, but kept the ratio observed from the data.
Bootstrapping the Slide Window. The sliding-window has
a bootstrapping phase. For the first few days in August 2018,
there is no historical data. Suppose the sliding-window size
w = 7 days, we bootstrap the system by using the first 7 days
of data to encode the IP-sequences formed in the first 7 days.
On day 8, the bootstrapping is finished (sliding window is
day 1 – day 7). On day 9, the window starts to slide (day 2 –
day 8). The bootstrapping does not violate temporary training
constraints since the bootstrapping phase is finished within the
training period (the first two weeks in August).

Testing starts on day 15 (sliding window is day 7 - day
14). The window keeps sliding as we test on later days. For
our experiment, we have tested different window sizes w. We
pick window size w =7 to balance the computation complexity
and performance (additional experiments on window size are
in Appendix B). The results for w =7 are shown in Table V.
Note that feature encoding does not require any labels. As

such, we used all the data (bots and benign) to estimate the
entity frequency distribution in the time window.
Model Performance. We compute the precision (the frac-
tion of true bots among the detected bots) and recall (the
fraction of all true bots that are detected). F1 score com-
bines precision and recall to reflect the overall performance:
F1 = 2× Precision×Recall/(Precision+Recall).

As shown in Table V, the precision and recall of the LSTM
model are reasonable, but not extremely high. For example,
for website B, the precision is 0.888 and the recall is 0.877.
The worst performance appears on C where the precision is
0.789 and the recall is 0.730. Since our model is focused on
advanced bots that already bypassed the rules, it makes sense
that they are difficult to detect.

Table VI illustrates the value of the machine learning models
to complement existing rules. Now we consider both simple
bots and advanced bots, and examine the percentage of bots

TABLE VII: F1-score when training with limited 1% of the labeled
data of the August 2018 dataset.

Website 1% Data (Avg + STD) 100% Data

A 0.904 ± 0.013 0.915

B 0.446 ± 0.305 0.883

C 0.697 ± 0.025 0.759

that rules and LSTM model detected. If we use rules alone
(given the rules are highly conservative), we would miss a
large portion of all the bots. If we apply LSTM on the
remaining data (after the rules), we could recover most of these
bots. The overall recall of bots can be improved significantly.
For website B, the overall recall is booted from 0.835 to
0.980 (15% improvement). For website C, the recall is boosted
from 0.729 to 0.927 (30% improvement). For website A, the
improvement is smaller since the rules already detected most
of the bots (with a recall of 0.880 using rules alone). We
also show the precision is only slightly decreased. We argue
that this trade-off is reasonable for web services since the
CAPTCHA system can further verify the suspicious candidates
and reduce false positives.
Training with Limited Data. The above performance looks
promising, but it requires a large labeled training dataset. This
requires aggressive CAPTCHA delivery which could hurt the
benign users’ experience. As such, it is highly desirable to
reduce the amount of training data needed for model training.

We run a quick experiment with limited training data
(Table VII). We randomly sample 1% of the training set in
the first two weeks for model training, and then test the model
on the same testing dataset in the last two weeks of August.
Note that we sample 1% from both bots and benign classes.
We repeat the experiments for 10 times and report the average
F1 score. We show that limiting the training data indeed hurts
the performance. For example, using 1% of the training data,
B’s F1 score has a huge drop from 0.883 to 0.446 (with a very
high standard deviation). C has a milder drop of 5%-6%. Only
A maintains a high F1 score. This indicates that the advanced
bots in A exhibit a homogeneous distribution that is highly
different from benign data (later we show that such patterns
do not hold over time).

On one hand, for certain websites (like A), our LSTM model
is already effective in capturing bot patterns using a small
portion of the training data. On the other hand, however, the
result shows the LSTM model is easily crippled by limited
training data when the bot behavior is more complex (like B).

V. DATA SYNTHESIS USING ODDS

In this section, we explore the usage of synthesized data to
augment the model training. More specifically, we only synthe-
size bot data because we expect bots are dynamically changing
and bot labels are more expensive to obtain. Note that our
goal is very different from the line of works on adversarial
retraining (which aims to handle adversarial examples) [50],
[51]. In our case, the main problem is the training data is
too sparse to train an accurate model in the first place. We
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Fig. 3: Illustrating data synthesis in the clustered data region (left)
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design a data synthesis method called ODDS. The key novelty
is that our data synthesis is distribution-aware — we use
different generalization functions based on the characteristics
of “outliers” and ”clustered data“ in the labeled data samples.

A. Motivation of ODDS

Training with limited data tends to succumb to overfitting,
leading to a poor generalizability of the trained model. Regu-
larization techniques such as dropout and batch normalization
can help, but they cannot capture the data invariance in
unobserved (future) data distributions. A promising approach
is to synthesize new data for training augmentation. Generative
adversarial network (GAN) [52] is a popular method to
synthesize data to mimic a target distribution. For our problem,
however, we cannot apply a standard GAN to generate new
samples that resemble the training data [53], because the input
bot distribution is expected to be non-representative. As such,
we look into ways to expand the input data distribution (with
controls) to the unknown regions in the feature space.

A more critical question is, how do we know our “guesses”
on the unknown distribution is correct. One can argue that it is
impossible to know the right guesses without post-validations
(CAPTCHA or manual verification). However, we can still
leverage domain-specific heuristics to improve the chance of
correct guesses. We have two assumptions. First, we assume
the benign data is relatively more representative and stable
than bots. As such, we can rely on benign data to generate
“complementary data”, i.e., any data that is outside the benign
region is more likely to be bots. Second, the assumption
is the labeled bot data is biased: certain bot behaviors are
well captured but other bot behaviors are under-represented or
even missing. We need to synthesize data differently based on
different internal structures of the labeled data. In “clustered
regions” in the feature space, we carefully expand the region
of the already labeled bots and the expansion becomes less
aggressive closer to the benign region. In the “outlier” region,
we can expand the bot region more aggressively and uniformly
outside of the benign clusters.

Figure 3 illustrates the high level idea of the data synthesis
in clustered regions and outlier regions. In the following, we
design a specialized GAN for such synthesis. We name the
model “Outlier Distribution aware Data Synthesis” or ODDS.

B. Overview of the Design of ODDS

At a high level, ODDS contains three main steps. Step
1 is a prepossessing step to learn a latent representation of
the input data. We use an LSTM-autoencoder to convert the
input feature vectors into a more compressed feature space.
Step 2: we apply DBSCAN [54] on the new feature space
to divide data into clusters and outliers. Step 3: we train the
ODDS model where one generator aims to fit the outlier data,
and the other generator fits the clustered data. A discriminator
is trained to (a) classify the synthetic data from real data, and
(b) classify bot data from benign data. The discriminator can
be directly used for bot detection.

Step 1 and Step 2 are using well-established models, and
we describe the design of Step 3 in the next section. Formally,
M = {X1, . . . ,XN} is a labeled training dataset where Xi

is an IP-sequence. Xi = (x1,x2, . . . ,xT ) where xt ∈ Rd
denotes the original feature vector of the tth request in the
IP-sequence.

LSTM-Autoencoder Preprocessing. This step learns a
compressed representation of the input data for more efficient
data clustering. LSTM-Autoencoder is a sequence-to-sequence
model that contains an encoder and a decoder. The encoder
computes a low-dimensional latent vector for a given input,
and the decoder reconstructs the input based on the latent
vector. Intuitively, if the input can be accurately reconstructed,
it means the latent vector is an effective representation of the
original input. We train the LSTM-Autoencoder using all the
benign data and the benign data only. In this way, the au-
toencoder will treat bot data as out-of-distribution anomalies,
which helps to map the bot data even further away from the be-
nign data. Formally, we convert M to V = {v1,v2, . . . ,vN},
where v is a latent representation of the input data. We use
Bv to represent the distribution of the latent space.

Data Clustering. In the second step, we use DBSCAN [54]
to divide the data into two parts: high-density clusters and
low-density outliers. DBSCAN is a density-based clustering
algorithm which not only captures clusters in the data, but also
produces “outliers” that could not form a cluster. DBSCAN
has two parameters: sm is the minimal number of data points
to form a dense region; dt is a distance threshold. Outliers
are produced when their distance to any dense region is larger
than dt. We use the standard L2 distance for DBSCAN. We
follow a common “elbow method” (label-free) to determine
the number of clusters in the data [55]. At the high-level, the
idea is to look for a good silhouette score (when the intra-
cluster distance is the smallest with respect to the inter-cluster
distance to the nearest cluster). Once the number of clusters
is determined, we can automatically set the threshold dt to
identify the outliers. DBSCAN is applied to the latent vector
space V. It is well known that the “distance function” that
clustering algorithms depend on often loses its usefulness on
high-dimensional data, and thus clustering in the latent space
is more effective. Formally, we use DBSCAN to divide Bv
into the clustered part Bc and the outlier part Bo.
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C. Formulation of ODDS

As shown in Figure 4, ODDS contains a generator G1 for
approximating the outlier distribution of Bo, another generator
G2 for approximating the clustered data distribution Bc, and
one discriminator D.
Generator 1 for Outliers. To approximate the real out-
liers distribution pG1

, the generator G1 learns a generative
distribution O that is complementary from the benign user
representations. In other words, if the probability of the
generated samples ṽ falling in the high-density regions of
benign users is bigger than a threshold pb(ṽ) > ε, it will
be generated with a lower probability. Otherwise, it follows a
uniform distribution to fill in the space, as shown in Figure 3
(right). We define this outlier distribution O as:

O(ṽ) =
{ 1

τ1
1

pb(ṽ)
if pb(ṽ) > ε and ṽ ∈ Bv

C if pb(ṽ) ≤ ε and ṽ ∈ Bv
where ε is a threshold to indicate whether the generated sam-
ples are in high-density benign regions; τ1 is a normalization
term; C is a small constant; Bv represents the whole latent
feature space (covering both outlier and clustered regions).

To learn this outlier distribution, we minimize the KL
divergence between pG1

and O. Since τ1 and C are constants,
we can omit them in the objective function as follows:

LKL(pG1
||O) = −H(pG1) + E

ṽ∼PG1

[log pb(ṽ)]1[pb(ṽ) > ε]

where H is the entropy and 1 is the indicator function.
We define a feature matching loss to ensure the generated

samples and the real outlier samples are not too different.
In other words, the generated samples are more likely to be
located in the outlier region.

Lfm1
= || E

ṽ∼PG1

f(ṽ)− E
v∼Bo

f(v)||2

where f is the hidden layer of the discriminator.
Finally, the complete objective function for the first gener-

ator is defined as:

min
G1

LKL(PG1
||O) + Lfm1

Generator 2 for Clustered Data. In order to approximate
the real cluster distribution pG2

, the generator G2 learns a
generative distribution C where generated examples ṽ are in

high-density regions. More specifically, the clustered data is a
mixture of benign and bot samples. α is the term to control
whether the synthesized bot data is closer to real malicious
data pm or closer to the benign data pb. We define this
clustered bot distribution C as:

C(ṽ) =
{ 1

τ2
1

pb(ṽ)
if pb(ṽ) > ε and ṽ ∈ Bv

αpb(ṽ) + (1− α)pm(ṽ) if pb(ṽ) ≤ ε and ṽ ∈ Bv
where τ2 is the normalization term.

To learn this distribution, we minimize the KL divergence
between pG2

and C. The objective function as follows:

LKL(pG2
||C) = −H(pG2) + E

ṽ∼PG2

[log pb(ṽ)]1[pb(ṽ) > ε]

− E
ṽ∼PG2

[(αpb(ṽ) + (1− α)pm(ṽ))]1[pb(ṽ) ≤ ε]

The feature matching loss Lfm2
in generator 2 is to ensure

the generated samples and the real clustered samples are not
too different. In other words, the generated samples are more
likely to be located in the clustered region.

Lfm2
= || E

ṽ∼PG2

f(ṽ)− E
v∼Bc

f(v)||2

where f is the hidden layer of the discriminator.
The complete objective function for the second generator is

defined as:

min
G2

LKL(PG2
||C) + Lfm2

Discriminator. The discriminator aims to classify synthe-
sized data from real data (a common design for GAN), and
also classify benign users from bots (added for our detection
purpose). The formulation of the discriminator is:

min
D

E
v∼pb

[logD(v)] + E
ṽ∼pG1

[log(1−D(ṽ))]

+ E
ṽ∼pG2

[log(1−D(ṽ))] + E
v∼pb

[D(v) logD(v)]

+ E
v∼pm

[log(1−D(v))]

The first three terms are similar to those in a regular GAN
which are used to distinguish real data from synthesized
data. However, a key difference is that we do not need the
discriminator to distinguish real bot data from synthesized
bot data. Instead, the first three terms seek to distinguish real
benign data from synthesized bot data, for bot detection. The
fourth conditional entropy term encourages the discriminator
to recognize real benign data with high confidence (assuming
benign data is representative). The last term encourages the
discriminator to correctly classify real bots from real benign
data. Combining all the terms, the discriminator is trained to
classify benign users from both real and synthesized bots.

Note that we use the discriminator directly as the bot
detector. We have tried to feed the synthetic data to a separate
classifier (e.g., LSTM, Random Forest), and the results are not
as accurate as the discriminator (see Appendix C). In addition,
using the discriminator for bot detection also eliminates the
extra overhead of training a separate classifier.
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TABLE VIII: Training with 100% or 1% of the training data (the first two weeks of August-18); Testing on the last two weeks of August-18.

Method Website A Website B Website C
Precision Recall F1 FP Rate Precision Recall F1 FP Rate Precision Recall F1 FP Rate

RF 100% 0.896 0.933 0.914 0.045 0.831 0.594 0.695 0.008 0.795 0.669 0.727 0.068
OCAN 100% 0.891 0.935 0.912 0.047 0.659 0.882 0.732 0.028 0.878 0.543 0.671 0.030

LSTM (ours) 100% 0.880 0.952 0.915 0.055 0.888 0.877 0.883 0.008 0.789 0.730 0.759 0.082
ODDS (ours) 100% 0.897 0.940 0.918 0.047 0.900 0.914 0.902 0.007 0.832 0.808 0.815 0.070

RF 1% 0.877 0.836 0.856 0.048 0.883 0.202 0.343 0.009 0.667 0.636 0.651 0.132
OCAN 1% 0.855 0.951 0.901 0.066 0.680 0.736 0.707 0.022 0.650 0.344 0.450 0.074

LSTM (ours) 1% 0.866 0.946 0.904 0.062 0.601 0.355 0.446 0.009 0.694 0.701 0.697 0.135
ODDS (ours) 1% 0.859 0.943 0.900 0.063 0.729 0.845 0.783 0.021 0.721 0.748 0.734 0.121

Implementation. To optimize the objective function of
generators, we adapt several approximations. To minimize
H(pG), we adopt the pull-away term [56], [57]. To estimate
pm and pb, we adopt the approach proposed by [58] which
uses a neural network classifier to approximate.

VI. PERFORMANCE EVALUATION

We now evaluate the performance of ODDS. We ask the
following questions: (1) how much does ODDS help when
training with all the labeled data? (2) How much does
ODDS help when training with limited labeled data (e.g.,
1%)? (3) Would ODDS help the classifier to stay effective
over time? (4) Does ODDS help with classifier re-training? (5)
How much contribution does each generator have to the overall
performance? (6) Why does ODDS work? At what condition
would ODDS offer little or no help? (7) Can ODDS further
benefit from adversarial re-training?

A. Experiment Setup

We again focus on advanced bots that have bypassed the
rules. To compare with previous results, we use August 2018
data as the primary dataset for extensive comparative analysis
with other baseline methods. We will use the January 2019
and September 2019 data to evaluate the model performance
over time and the impact on model-retraining.
Hyperparameters. Our basic LSTM model (see Section IV)
has two LSTM hidden layers (both are of dimension of 8).
The batch size is 512, the training epoch is 100, and activation
function is sigmoid. Adam is used for optimization. The loss is
binary crossentropy. L2-regularization is used for both hidden
layers. We use cost sensitive learning (1:2 for malicious:
benign) to address the data imbalance problems.

For ODDS, the discriminator and the generators are feed-
forward neural networks. All of the networks contain 2 hidden
layers (100 and 50 dimensions). For generators, the dimension
of noise is 50. The output of generators is of the same
dimension as the output of the LSTM-autoencoder, which
is 130. The threshold ε is set as 95th percentile of the
probability of real benign users predicted by a pre-trained
probability estimator. We set α to a small value 0.1. We use
this setting to present our main results. More experiments on
hyperparameters are in Appendix D.
Comparison Baselines. We evaluate our ODDS model
with a series of baselines, including our basic LSTM model
described in Section IV, and a non-deep learning model

Random Forest [59]. We also include an anomaly detection
method as a baseline. We select a GAN-based method called
OCAN [60] which is recently published. The main idea of
OCAN is to generate complementary malicious samples that
are different from the benign data to augment the training.
The key difference between OCAN and our method is that
OCAN does not differentiate outliers from clustered data. In
addition, as an anomaly detection method, OCAN only uses
the benign data but not the malicious samples to perform the
data synthesis. We have additional validation experiments in
Appendix E, which shows OCAN indeed performs better than
other traditional methods such as One-class SVM.

B. Training with 100% Training Data

Q1: Does ODDS help to improve the training even when
training with the full labeled data?

We first run an experiment with the full-training data in
August 2018 (i.e., the first two weeks), and test the model
on the testing data (i.e., the last two weeks). Figure 5 shows
F1 score of ODDS and other baselines. The results show
that ODDS outperforms baselines in almost all cases. This
indicates that, even though the full training data is relatively
representative, data synthesis still improves the generalizability
of the trained model on the testing data. Table VIII (the upper
half), presents a more detailed break up of performance into
precision, recall, and false positive rate (i.e., the fraction of
benign users that are falsely classified as bots). We did not
present the false negative rate since it is simply 1 − Recall.
The absolute numbers of false positives and false negatives are
in Appendix F. The most obvious improvement is on website B
where ODDS improves the F1 score by 2%-20% compared to
the other supervised models. The F1 score of C is improved
by 5%-14%. For website A, the improvement is minor. Our
LSTM model is the second-best performing model. OCAN,
as a unsupervised method, performs reasonably well compared
with other supervised methods. Overall, there is a benefit for
data synthesis even when there is sufficient training data.

C. Training with Limited Data

Q2: How much does ODDS help when training with limited
training data?

As briefly shown in Section IV-C, the performance of the
LSTM model degrades a lot when training with 1% of the data,
especially for website B. Here, we repeat the same experiment
and compare the performance of ODDS and LSTM.
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Fig. 7: Training with x% of training data in August-18 (A and C).

Figure 6 shows the average F1 score on website B, given
different sampling rates of the August training data. We
can observe a clear benefit of data synthesis. The red line
represents ODDS, which maintains a high level of detection
performance despite the limited training samples. ODDS has
an F1 score of 0.784 even when training with 1% data. This
is significantly better than LSTM whose F1 score is 0.446
on 1% of training data. In addition to the average F1 score,
the standard deviation of the F1 score is also significantly
reduced (from 0.305 to 0.09). In addition, we show ODDS also
outperforms OCAN where ODDS has a higher F1 score over
all the different sampling rates. As shown in the bottom half
of Table VIII, the performance gain is mostly coming from
“recall”, indicating the synthesized data is helpful to detect
bots in the unknown distribution.

Figure 7 shows the results from other two websites where
the gain of ODDS is smaller compared to that of website
B. Website C still has more than 5% gain over LSTM and
other baselines, but the gain is diminished in A. We suspect
that such differences are rooted in the different bot behavior
patterns in respective websites. To validate this hypothesis,
we run statistical analysis on the August data for the three
websites. The results are shown in Table IX. First, we compute
the average Euclidean distance between the bot and benign
data points in the August training set (averaged across all bot-
benign pairs). A larger average distance indicates that bots and
benign users are further apart in the feature space. The result
shows that A clearly has a larger distance than that of B and
C. This confirms that bots in A are already highly different
from benign users, and thus it is easier to capture behavioral
differences using just a small sample of the data. We also
calculate the average distance between the bots in the training
set and the bots in the testing set. A higher distance means
that the bots in testing data have behaved more differently

TABLE IX: Characterizing different website datasets (August 2018).

WebSite Avg. Distance Between Avg. Distance Between
Benign and Bot (training) Train and Test (bots)

A 0.690 0.237

B 0.343 0.358

C 0.349 0.313
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Fig. 8: The model is trained once using 1% August-18 training
dataset. It is tested on August-18 testing dataset (last two weeks),
and January-19 and September-19 datasets.

from those in the training data (and thus are harder to detect).
We find A has the lowest distance, suggesting bot behaviors
remain relatively consistent. B has the highest distance, which
requires the detection model to generalize well in order to
capture the new bot behaviors.

D. Generalizability in the Long Term

Q3: Would ODDS help the classifier stay effective for a long
period of time?

Next, we examine the generalizability of our model in the
longer term. More specifically, we train our model using only
1% of the training dataset of August 2018 (the first two
weeks), and then test the model directly on the last two weeks
of August 2018, and the full months of January 2019 and
September 2019. The F1 score of each testing experiment is
shown in Figure 8. Recall that Website C does not have the
data from January 2019 or September 2019, and thus we could
only analyze A and B. As expected, the model performance
decays, but in a different way between A and B. For A, both
ODDS and LSTM are still effective in January 2019 (F1 scores
are above 0.89), but become highly inaccurate in September
2019. This suggests that the bots in A have a drastic change
of behaviors in September 2019. For website B, the model
performance is gradually degrading over time. This level of
model decay is expected given that training time and the last
testing time are more than one year apart. Still, we show
that ODDS remains more accurate than LSTM, confirming
the benefit of data synthesis.
Q4: Does ODDS help with classifier re-training?

A common method to deal with model decay is re-training.
Here, we assume the defender can retrain the model with the
first 1% of the data in the respective month. We use the first 1%
(instead of random 1%) to preserve the temporal consistency
between training and testing (i.e., never using future data to
predict the past event). More specifically, the model is initially
trained with only 1% of August-2018 training dataset (first
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Fig. 9: The model is initially trained with 1% of August-18 training
data, and is then re-trained each month by adding the first 1% of the
training data of each month.

TABLE X: F1 score when using only one generator; training with
100% of the training dataset of August 2018.

Website G1 (outlier) G2 (clusters) Both generators

A 0.915 0.915 0.918

B 0.852 0.860 0.902

C 0.721 0.739 0.815

two weeks) and tested in the last two weeks of August 2018.
Once it comes to January 2019, we add the first 1% of the
January 2019 data to the original 1% of August 2018 training
data to re-train the model. This forms a January model, which
is then tested on the rest of the data in January. Similarly, in
September 2019, we add the first 1% of the data in September
to the training dataset to retrain the model. In practice, one
can choose to gradually remove/expire older training data for
each retraining. We did not simulate data expiration in our
experiments since we only have three months of data.

As shown in Figure 9 the performances bounce back after
model retraining with only 1% of the data each month. In
general, ODDS is better than LSTM after retraining. For
example, for September 2019 of website A, ODDS’s F1 score
increases from 0.546 to 0.880 after retraining. In comparison,
LSTM’s F1 score is only 0.377 after the retraining. This
suggests that data synthesis is also helpful to retrain the model
with limited data.

E. Contribution of Generators

Q5: How much contribution does each generator have to
the overall performance boost?

A key novelty of ODDS is to include two generators to han-
dle outlier data and clustered data differently. To understand
where the performance gain is coming from, we set ODDS to
use only one of the generators and repeat the experiments
using the August 2018 dataset (trained with 100% of the
training dataset). As shown in Table X, using both generators is
always better than using either G1 (synthesizing outlier data)
or G2 (synthesizing clustered data) alone. The difference is
more obvious on website B since its bot data is much more
difficult to separate from the benign data.

F. Insights into ODDS: Why it Works and When it Fails?

Q6: At what condition does ODDS offer little or no help?

TABLE XI: Case study for website B; number of false positives and
false negatives from the cluster and outlier regions; Models are trained
with 1% of the training dataset of August 2018.

Cluster Test Dataset LSTM ODDS
Malicious Benign FN FP FN FP

Outliers 1,492 1,384 703 599 196 611

Clusters 494 26,920 287 0 102 0

TABLE XII: Statistics about false positives (FP) and false negatives
(FN) of ODDS. We calculate their average distance to the malicious
and benign regions in the entire dataset, and the % of benign data
points among their 100 nearest neighbors.

Avg distance Avg distance % benign points among
to benign to malicious 100 Nearest Neighbors

FN 0.251 0.329 100%

FP 0.644 0.402 82.0%

Data synthesis has its limitations. To answer this question,
we analyze the errors produced by ODDS, including false
positives (FP) and false negatives (FN). In Table XI, we focus
on the 1%-training setting for August 2018. We examine the
errors located in the outlier and the clustered regions. More
specifically, we run DBSCAN on the entire August 2018
dataset to identify the clustered and outlier regions. Then we
retrospectively examine the number of FPs and FNs made
by LSTM and ODDS (training with 1% data). We observe
that ODDS’s performance gain is made mainly by reducing
the FNs, i.e., capturing bots that LSTM fails to catch in both
clustered and outlier regions. For example, FNs are reduced
from 703 to 196 in outliers. The corresponding sacrifice on
false positives is small (FP rate is only increased from 2.0%
to 2.2%). Note that all the FPs are located in the outlier region.

To understand the characteristics of these FPs and FNs, we
present a statistical analysis in Table XII. For all the FNs
produced by ODDS, we calculate their average distance to
all the benign points and malicious points in the August-18
dataset. We find that FNs are closer to the benign region (dis-
tance 0.251) than to the malicious region (distance 0.329). This
indicates that bots missed by ODDS behave more similarly
to benign users. We further identify 100 nearest neighbors for
each FN. Interestingly, for all FNs, 100 out of their 100 nearest
neighbors are benign points. This suggests that these FN-bots
are completely surrounded by benign data points in the feature
space, which makes them very difficult to detect.

In Table XII, we also analyzed the FPs of ODDS. We
find that FPs are closer to the malicious region (0.402) than
to the benign region (0.644), which explains why they are
misclassified as “bots”. Note that both 0.644 and 0.402 are
high distance values, confirming that FPs are outliers far away
from other data points. When we check their 100 nearest
neighbors, we surprisingly find that 82% of their nearest
neighbors are benign. However, a closer examination shows
that most of these benign neighbors turn out to be other
FPs. If we exclude other FPs, only 9% of their 100 nearest
neighbors are benign. This confirms that FPs misclassified by
ODDS behave differently from the rest of the benign users.
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TABLE XIII: Applying adversarial training on LSTM and ODDS.
We use August-18 dataset from website B; Models are trained with
1% of the training dataset.

Adversarial F1 score on Testing accuracy on
Retraining? original test set adversarial examples

LSTM No 0.446 0.148
ODDS No 0.783 0.970

LSTM Yes 0.720 1.000
ODDS Yes 0.827 1.000

In summary, we demonstrate the limitation of ODDS in
capturing (1) bots that are deeply embedded in the benign
region, and (2) outlier benign users who behave very differ-
ently from the majority of the benign users. We argue that
bots that perfectly mimic benign users are beyond the capacity
of any machine learning method. It is possible that attackers
could identify such “behavior regions”, but there is a cost
for attackers to implement such behaviors (e.g., bots have to
send requests slowly to mimic benign users). Regarding the
“abnormal” benign users that are misclassified, we can han-
dle them via CAPTCHAs. After several successfully-solved
CAPTCHAs, we can add them back to the training data to
expand ODDS’s knowledge about benign users.

G. Adversarial Examples and Adversarial Retraining

Q7: Can ODDS benefit from adversarial re-training?
While our goal is different from adversarial re-training,

we want to explore if ODDS can be further improved by
adversarial re-training. More specifically, we use a popular
method proposed by Carlini and Wagner [50] to generate
adversarial examples, and then use them to retrain LSTM and
ODDS. We examine if the re-trained model performs better
on the original testing sets and the adversarial examples.

We use the August-18 dataset from B, and sample 1%
of the training data to train LSTM and ODDS. To generate
adversarial examples, we simulate a blackbox attack: we use
the same 1% training data to train a CNN model which
acts as a surrogate model to generate adversarial examples
(Carlini and Wagner’s attack is designed for CNN). Given
the transferability of adversarial examples [61], we expect
the attack should work on other deep neural networks trained
on this dataset. We use the L2 attack to generate adversarial
examples only for the bot data to simulate evasion. The
adversarial perturbations are applied to the input feature space,
i.e., after feature engineering. We generate 600 adversarial
examples based on the same 1% bot training samples with
different noise levels (number of iterations is 500–1000, learn-
ing rate is 0.005, confidence is set to 0–0.2). We use half of
the adversarial samples (300) for adversarial retraining, i.e.,
adding adversarial examples back to the training data to retrain
LSTM and ODDS. We use the remaining adversarial examples
for testing (300).

Table XIII shows the results. Without adversarial re-training,
LSTM is vulnerable to the adversarial attack. The testing
accuracy on adversarial examples is only 0.148, which means
85.2% of the adversarial examples are misclassified as benign.

Interestingly, we find that ODDS is already quite resilient
to the blackbox adversarial examples with a testing accuracy
of 0.970. After applying adversarial-retraining, both LSTM
and ODDS perform better on the adversarial examples, which
is expected. In addition, adversarial-retraining also leads to
better performance on the original testing set (the last two
weeks of August-18) for both LSTM and ODDS. Even so,
LSTM with adversarial-retraining (0.720) is still not as good
as ODDS without adversarial retraining (0.783). The result
suggests that adversarial retraining and ODDS both help to
improve the model’s generalizability on unseen bot distribu-
tions, but in different ways. There is a benefit to apply both
to improve the model training.

Note that the above results do not necessarily mean
ODDS is completely immune to all adversarial attacks. As
a quick test, we run a whitebox attack assuming the attackers
know both the training data and the model parameters. By
adapting the Carlini and Wagner attack [50] for LSTM and
ODDS’s discriminator, we directly generate 600 adversarial
examples to attack the respective model. For our discriminator,
adversarial perturbations are applied in the latent space, i.e., on
the output of the autoencoder. Not too surprisingly, whitebox
attack is more effective. For LSTM, the testing accuracy of
adversarial examples drops from 0.148 to 0. For ODDS’s
discriminator, the testing accuracy of adversarial examples
drops from 0.970 to 0.398.

To realize the attack in practice, however, there are other
challenges. For example, the attacker will need to determine
the perturbations on the real-world network traces, and not just
in the feature space. This is a challenging task because the data
is sequential (discrete inputs) where each data point is multi-
dimensional (e.g., covering various metadata associated with
a HTTP request). In addition, bot detection solution providers
usually keep their model details confidential, and deploy their
models in the cloud without exposing a public API for direct
queries. These are non-trivial problems and we leave further
explorations to future work.

VII. DISCUSSION

Rules vs. Machine Learning Model. We argue that rule-
based system should be the first choice over machine learning
for bot detection. Compared with machine learning models,
rules do not need training, and can provide a precise reason
for the detection decision (i.e., interpretable). Machine learning
model is useful to capture more complex behaviors that cannot
be accurately expressed by rules. In this work, we apply
machine learning (ODDS) to detect bots that have bypassed
the rules. In this way, the rules can afford to be extremely
conservative (i.e., highly precise but has a low recall).
Implications for the CAPTCHA System. ODDS could also
allow the CAPTCHA system to be less aggressive, especially
on benign users. We still recommend delivering CAPTCHAs
to bots flagged by rules or ODDS since there is no cost (on
users’ expense) for delivering CAPTCHAs to true bots. The
only cost is the small number of false positives produced by
ODDS, i.e., benign users who need to solve a CAPTCHA. As
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shown in Table VIII, the false positive is small (e.g., 1-2% of
benign users’ requests). By guiding the CAPTCHA delivery
to the likely-malicious users, ODDS allows the defender to
avoid massively delivering CAPTCHAs to real users.
Adversarial Evasion and Poisoning. ODDS improves
model training with limited data. However, it does not mean
attackers cannot evade ODDS by changing their behaviors. In
fact, in Section VI-F, we already show that ODDS could not
detect bots that are deeply embedded in the benign region (e.g.,
whose nearest neighbors are 100% benign). In Section VI-G,
we show that attackers in theory could identify adversarial
examples in the whitebox setting. That said, we argue that bot
detection is not a typical adversarial machine learning problem
because the “small changes” defined by the distance function
in the feature space do not necessarily reflect the real-world
costs to attackers [62]. For example, a simple way of evasion
might be editing the “time-gap” feature, but it requires the
attacker to dramatically slow down their request sending rate.
We leave “cost-aware” adversarial evasion to future work.

Another potential attack against ODDS is poisoning attack.
In theory, adversaries may also inject mislabeled data to the
training set to influence the model training. The practical
challenge, however, is to get the injected data to be considered
as part of the training data, which has a cost. For example, to
inject bot data point with a “benign” label, attackers will need
to pay human labors to actually solve CAPTCHAs. We leave
the further study of this attack to future work.
Limitations. Our study has a few limitations. First, while
ODDS is designed to be generic, we haven’t tested it beyond
bot detection applications. Our method relies on the assump-
tion that benign data is relatively stable and representative. As
future work, we plan to test the system on other applications,
and explore new designs when the benign set is also highly dy-
namic (e.g. website updates may cause benign users changing
behaviors). Second, while our “ground-truth” already repre-
sents a best-effort, it is still possible to have a small number
of wrong labels. For example, in the benign set, there could be
true bots that use crowdsourcing services to solve CAPTCHAs
or bots that never received CAPTCHAs before. Third, due
to limited data (three disconnected months), we could not
fully evaluate the impact of the sliding window and model
retraining over a continuous time space. Fourth, we make
detection decisions on IP-sequences. In practice, it is possible
that multiple users may use the same IP behind NAT/proxy.
If a user chooses to use a proxy that is heavily used by
attackers, we argue that it’s reasonable for the user to receive
some CAPTCHAs as a consequence. Finally, ODDS needs
to be retrained from scratch when new bot examples become
available. A future direction of improvement is to perform
incremental online learning [63] for model updation.

VIII. RELATED WORK

Bot Detection. Bot detection is a well-studied area, and key
related works have been summarized in Section II. Compared
to most existing works on application-specific bots (e.g., social
network bots, game bots) [64], [21], [20], [29], [19], [65],

[66], [67], we explicitly prioritize the model generalizability
by avoiding any application or account specific features. Our
main novelty is to explore the use of data synthesis for bot
detection with limited data. We also show data synthesis helps
to slow down the model decaying over time. One recent
work [12] studied “concept drift” to determine when to re-
train a classifier (for malware detection). Our work looks into
a complementary direction by exploring ways to effectively
retrain the classifier with limited data.
Anomaly Detection. Anomaly detection aims to detect
anomalous data samples compared to known data distribu-
tion [68], [69], [70], [71], [72]. Researchers have applied
anomaly detection methods to detect bots and other fraudulent
activities [73], [60]. These works share a similar assumption
with ODDS, that is, the normal/benign data should be (rela-
tively) representative and stable. In our work, we use anomaly
detection methods as our baselines, and show the benefit of
synthesizing new data based on both the normal samples and
the limited abnormal samples.
Data Augmentation using GANs. To generate more data
for training, various transformations can be applied to existing
training data. In the domain of computer vision and natural
language processing, researchers have proposed various data
augmentation methods including GAN to improve the perfor-
mance of one-shot learning [74], image segmentation [75],
image rendering [76], and emotion classification [77]. The
most related work to ours is OCAN [60], which uses GAN
to synthesize malicious samples for fraud detection. We have
compared our system with OCAN in our evaluation, and
demonstrated the benefits of using two generators to handle
outliers and clustered data differently.

Recent works have explored introducing multiple generators
to GAN [78], [79], [80], [81]. But their goals are to make
the synthesized data (e.g., synthesized images) closer to the
target distribution. On the contrary, we are not interested in
generating data that resemble the known bots, but to synthesize
data for unknown bots. This calls for entirely different designs
(e.g., using different generators for outliers and clustered data).

IX. CONCLUSION

In this paper, we propose a stream-based bot detection
model and augment it with a novel data synthesis method
called ODDS. We evaluate our system on three different real-
world online services. We show that ODDS makes it possible
to train a good model with only 1% of the labeled data, and
helps the model to sustain over a long period of time with
low-cost retraining. We also explore the relationship between
data synthesis and adversarial re-training, and demonstrate the
different benefits from both approaches.
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APPENDIX A: LSTM VS. CNN

To justify our choice of Long-Short-Term-Memory (LSTM)
model [44], we show the comparison results with Convolu-
tional Neural Network (CNN) using the same feature encoding
methods on the same dataset. The architecture of the CNN
model is a stack of two convolutional layers (with 64 filters
and 32 filters), followed by one fully connected layer with a
sigmoid activation function. We experiment with 1% as well as
100% of the data from Website B in August 2018 for training.
As shown in Table XIV, the performance of CNN is not as
high as LSTM under 1% training data. The performance is
comparable under 100% of the training data. As we mentioned,
our main contribution is the feature encoding method rather
than the choice of deep neural networks. Our result shows that
LSTM has a small advantage over CNN.

TABLE XIV: We use August-18 dataset from Website B; Models are
trained with 1% of the training dataset.

% of Data Precision Recall F1

LSTM 1% 0.60 0.36 0.45
100% 0.89 0.88 0.88

CNN 1% 0.62 0.29 0.37
100% 0.85 0.93 0.89

APPENDIX B: IMPACT OF SLIDING WINDOW SIZES

The size of the sliding window (w) could affect the detection
results. Our dataset (a month worth of data) does not allow
us to test big window sizes. As such, we test the window
size of 3 days, 5 days, and 7 days and present the results in
Table XV. The results show that the window size of 7 gives
better results than 3 and 5 when using 1% of the training data.
A smaller window size means the model uses less historical
data to estimate the entity frequency (which could hurt the
performance, especially when labeled data is sparse). However,
a smaller window size also means the model uses more recent
historical data to estimate entity frequency (which may help
to improve the performance). This trend was observed when
using 100% of the training data, as shown in Table XV.

TABLE XV: Results of using different sliding window sizes (in days).
We use August-18 dataset from Website B; Models are trained with
1% or 100% of the training dataset.

Window Size Precision Recall F1

1% of Data
3 0.585 0.331 0.422
5 0.600 0.314 0.412
7 0.601 0.355 0.446

100% of Data
3 0.912 0.915 0.913
5 0.937 0.889 0.910
7 0.888 0.877 0.883
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APPENDIX C: FEEDING SYNTHETIC DATA TO OTHER
CLASSIFIERS

The discriminator of ODDS can be directly used for bot
detection. A natural follow-up question is, what if we feed
the synthetic data generated by ODDS to other classifiers? Can
we improve the performance of the original classifiers? How
is the performance compared with using the discriminator?
To answer these questions, we feed the synthetic data to our
LSTM model, and a traditional method, Random Forest (RF).
We generate 600 synthetic data points based on the 1% of bot
training samples in the August 2018 dataset.

TABLE XVI: Feeding synthetic data to LSTM and RF. We use
August-18 dataset from Website B; Models are trained with 1% of
the training dataset.

Synthetic data? Precision Recall F1

RF No 0.883 0.202 0.343
Yes 0.826 0.570 0.596

LSTM No 0.601 0.355 0.446
Yes 0.698 0.757 0.719

ODDS Yes 0.729 0.845 0.783

As shown in Table XVI, by feeding synthetic data to the
classifier training, both models’ performance is improved. The
F1 score of LSTM is improved from 0.446 to 0.719, and the
F1 score of RF is improved from 0.343 to 0.596. Despite
the performance improvements, the LSTM model and the RF
model are still not as accurate as the discriminator of ODDS.
One possible explanation is that the synthetic data is generated
in the latent space. To feed the data to other classifiers, we
need to use the decoder to convert the latent vectors back to the
original feature space, which may introduce some distortions
during the reconstruction. In our paper, the discriminator is a
better choice for bot detection also because it eliminates the
need/overhead for training a separate classifier.

APPENDIX D: HYPERPARAMETERS OF ODDS

We have examined the model performance with respect to
different hyperparameter settings for ODDS. The methodology
is to split the training dataset into a training set and a validation
set, and use the validation set to tune the parameters. For
example, we train the model using 80% of first two weeks
of August 2018, and use 20% of the data as the validation
set to justify our parameters setting. We fix all the parameters
to the default setting, and then examine the validation result
by changing one parameter at a time. Figures 10a shows the
validation results for different ε values. ε is the threshold for
ODDS’s generators (both G1 and G2) to determine if the
generated bot samples are in the high-density regions of benign
users). We set ε to the Kth percentile of real benign users’
distribution. Figure 10b shows different α. α is the term for G2
to control how close the synthesized bot samples are to real bot
samples and to real benign samples. For website A and website
B, their validation performance is not too sensitive to α and
ε. For website C, α = 0.1 can achieve the highest validation
performance. Note that τ1, τ2 and C in our equations can be

omitted because both terms are constant, and the gradients
with respect to these terms are mostly zero.
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Fig. 10: F1 score on the validation set for different ε and α for
website A, B, C.
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Fig. 11: F1 scores on the validation set using different dimensions
for layers in the generators and the discriminator for website A, B,
C.

Figure 11 shows the validation performance for different
dimensions of the first and second hidden layers of the
discriminator and generator. These results suggest setting 100
and 50 dimensions for the first and the second layers lead to
a good validation performance.

TABLE XVII: Characterizing different datasets (August 2018).

Website Avg. Distance Between Avg. Distance Between
Train and Test (benign) Train and Test (bots)

A 0.291 0.237

B 0.233 0.358

C 0.303 0.313

We notice that website C has the best validation F1 score
in the different settings above. This is different from the main
results on the testing set where C has the lowest F1 score (see
Figure 5). We suspect that C’s testing data is very different
from the training data, which could explain why C has the best
validation result but has the worst testing result. Table XVII
shows some statistics to support this hypothesis. We compute
the average distance between the training and testing samples,
for the bots and benign users separately. We notice that C has
a high distance between training and testing set, especially for
the benign users. It is possible that concept drift happened
even during a short time span such as within a month. Such
discrepancies between the training and the testing data could
hurt the testing performance.
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TABLE XVIII: Training with 100% or 1% of the training data (the first two weeks of August-18); Testing on the last two weeks of August-18.

Method Website A Website B Website C
FN rate FN FP FN rate FN FP FN rate FN FP

RF 100% 0.069 221 342 0.386 767 244 0.345 2898 1370
OCAN 100% 0.065 209 363 0.192 383 820 0.454 3814 666

LSTM (ours) 100% 0.048 152 416 0.123 245 219 0.270 2264 1632
ODDS (ours) 100% 0.059 190 360 0.086 171 200 0.199 1670 1401

RF 1% 0.185 593 364 0.703 1396 254 0.365 3067 2625
OCAN 1% 0.049 157 503 0.283 564 632 0.670 5622 1486

LSTM (ours) 1% 0.054 173 471 0.611 1214 261 0.294 2467 2685
ODDS (ours) 1% 0.056 181 481 0.158 314 615 0.253 2128 2411

APPENDIX E: ONE-CLASS SVM.

Our method and other anomaly detection methods share
a similar assumption that the benign data is relatively more
stable. In our paper, we selected OCAN, a recently published
anomaly detection method, as the comparison baseline. Here
we show the results of another popular anomaly detection
method called One-class SVM [82]. One-class SVM aims
to separate one class of samples from all the others by
constructing a hyper-plane around the data samples. In this
experiment, we use “benign” data as the known class. As
shown in Table XIX, this anomaly detection method does not
perform well on our dataset. One-class SVM tends to a high
recall but a very low precision. The performance is not as high
as OCAN (and our method ODDS) in both settings (1% and
100% training data).

TABLE XIX: Evaluation of One-class SVM using August-18 dataset.

Website % of Data Precision Recall F1

A 1% 0.407 0.991 0.577
100% 0.441 0.990 0.611

B 1% 0.110 0.988 0.193
100% 0.09 0.990 0.197

C 1% 0.336 0.745 0.463
100% 0.336 0.747 0.464

APPENDIX F: FALSE POSITIVES AND FALSE NEGATIVES

To complement the main results in Table VIII, we add
a new Table XVIII to show the absolute numbers of false
positives and false negatives as well as the false negative rate.
False negative rate is the fraction of the true bots that are
misclassified as benign. Combining the results in Table VIII,
and Table XVIII, we show that our system ODDS can dras-
tically increase the number of detected true bots (reducing
false negative rate) while producing comparable number of
false positives. In practice, these false positives can be further
reduced by the CAPTCHA system (it affects user experience
but at a reasonably small scale).
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