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Abstract—Differential privacy offers a formal framework for
reasoning about privacy and accuracy of computations on private
data. It also offers a rich set of building blocks for constructing
private data analyses. When carefully calibrated, these anal-
yses simultaneously guarantee the privacy of the individuals
contributing their data, and the accuracy of the data analyses
results, inferring useful properties about the population. The
compositional nature of differential privacy has motivated the
design and implementation of several programming languages
aimed at helping a data analyst in programming differentially
private analyses. However, most of the programming languages
for differential privacy proposed so far provide support for
reasoning about privacy but not for reasoning about the accuracy
of data analyses. To overcome this limitation, in this work
we present DPella, a programming framework providing data
analysts with support for reasoning about privacy, accuracy and
their trade-offs. The distinguishing feature of DPella is a novel
component which statically tracks the accuracy of different data
analyses. In order to make tighter accuracy estimations, this
component leverages taint analysis for automatically inferring
statistical independence of the different noise quantities added for
guaranteeing privacy. We evaluate our approach by implementing
several classical queries from the literature and showing how data
analysts can figure out the best manner to calibrate privacy to
meet the accuracy requirements.

Keywords-accuracy; concentration bounds; differential pri-
vacy; functional programming; databases; haskell

I. INTRODUCTION

Differential privacy (DP) [1] is emerging as a viable solution

to release statistical information about the population without

compromising data subjects’ privacy. A standard way to achieve

DP is adding some statistical noise to the result of a data

analysis. If the noise is carefully calibrated, it provides a privacy
protection for the individuals contributing their data, and at

the same time it enables the inference of accurate information

about the population from which the data are drawn. Thanks

to its quantitative formulation quantifying privacy by means of

the parameters ε and δ, DP provides a mathematical framework

for rigorously reasoning about the privacy-accuracy trade-offs.

The accuracy requirement is not baked in the definition of DP,

rather it is a constraint that is made explicit for a specific task

at hand when a differentially private data analysis is designed.
An important property of DP is composeability: multiple

differentially private data analyses can be composed with a

graceful degradation of the privacy parameters ε and δ. This

property allows to reason about privacy as a budget: a data

analyst can decide how much privacy budget (the ε parameter)

to assign to each of her analyses. The compositionality

aspects of DP motivated the design of several programming

frameworks [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] and

tools [14, 15, 16, 17] with built-in basic data analyses to help

analysts to design their own differentially private consults. At a

high level, most of these programming frameworks and tools are

based on a similar idea for reasoning about privacy: use some

primitives for basic tasks in DP as building blocks, and use com-

position properties to combine these building blocks making

sure that the privacy cost of each data analysis sum up and that

the total cost does not exceed the privacy budget. Programming

frameworks such as [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]

also provide general support to further combine, through

programming techniques, the different building blocks and

the results of the different data analyses. Differently, tools such

as [14, 15, 16, 17] are optimized for specific tasks at the price

of restricting the kinds of data analyses they can support.

Unfortunately, this simple approach for privacy cannot be

directly applied to accuracy. Reasoning about accuracy is less
compositional than reasoning about privacy, and it depends

both on the specific task at hand and on the specific accuracy

measure that one is interested in offering to data analysts.

Despite this, when restricted to specific mechanisms and

specific forms of data analyses, one can measure accuracy

through estimates given as confidence intervals, or error bounds.

As an example, most of the standard mechanisms from the

differential privacy literature come with theoretical confidence

intervals or error bounds that can be exposed to data analysts

in order to allow them to take informed decisions about the

consults they want to run. This approach has been integrated

in tools such as GUPT [15], PSI [17], and Apex [18]. Users

of these tools, can specify the target confidence interval they

want to achieve, and the tools adjust accordingly the privacy

parameters, when sufficient budget is available1.

In contrast, all the programming frameworks proposed so

far [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] do not offer any support

to programmers or data analysts for tracking, and reasoning

about, the accuracy of their data analyses. This phenomenon is

in large part due to the complex nature of accuracy reasoning,

with respect to privacy analyses, when designing arbitrary data

analyses that users of these frameworks may want to program

1Apex actually goes beyond this by also helping user by selecting the right
differentially private mechanism to achieve the required accuracy.
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and run. In this paper, we address this limitation by building

a programming framework for designing differentially private

analysis which also supports a compositional form of reasoning

about accuracy.

Our Contribution

Our main contribution is showing how programming frame-

works can internalize the use of probabilistic bounds [19]

for composing different confidence intervals or error bounds,

in an automated way. Probabilistic bounds are part of the

classical toolbox for the analysis of randomized algorithms,

and are the tools that differential privacy algorithms designers

usually employ for the accuracy analysis of classical mech-

anisms [20, 21]. Two important probabilistic bounds are the

union bound, that can be used to compose errors with no

assumption on the way the random noise is generated, and

Chernoff bound, which applies to the sum of random noise when

the different random variables characterizing noise generation

are statistically independent (see Section IV). When applicable,

and when the number of random variables grows, Chernoff

bound usually gives a much “tighter” error estimation than the

union bound.

Barthe et. al [22] have shown how the union bound can

be internalized in a Hoare-style logic for reasoning about

probabilistic imperative programs, and how this logic can

be used to reason in a mechanized way about the accuracy

of probabilistic programs, and in particular of programs

implementing differentially private primitives.

Building on this idea, we propose a programming framework

where this kind of reasoning is automated, and can be combined

with reasoning about privacy. The aim of our framework is to

offer programmers the tools that they need for implementing

differentially private data analyses and explore their privacy-

accuracy trade-offs, in a compositional way. Our framework

supports not only the use of union bound as a reasoning

principle, but also the use of the Chernoff bound. Our insight is

that probabilistic bounds relying on probabilistic independence

of random variables can be smoothly integrated in a program-

ming framework by using techniques from information-flow

control [23] (in the form of taint analysis [24]). While these

probabilistic bounds are not enough to express every accuracy

guarantee one wants to express for arbitrary data analyses, they

allow the analysis of a large class of user-designed programs.

Our approach allow programmers to exploit the compositional

nature of both privacy and utility, complementing in this way

the support provided by tools such as GUPT [15], PSI [17],

which provide confidence intervals estimate only at the level of

individual queries, and by Apex [18], which provide confidence

intervals estimate only at the level of a query workload for

queries of the same type.

We implement our ideas into a programming framework

called DPella—an acronym for Differential Privacy in Haskell

with accuracy—where data analysts can explore the privacy-

accuracy trade-off while writing their differentially private data

analyses. DPella provides several basic differentially private

building blocks and composition techniques, which can be used

by a programmer to design complex differentially private data

analyses. The analyses that can be expressed in DPella are data
independent and can be built using primitives for counting,

average, max as well as any aggregation of their results. DPella

supports both pure-DP, with parameter ε, and approximate-DP,

with parameters ε and δ. Accordingly, it supports the use of

both Laplace and Gaussian noise, and the use of sequential or

advanced [20] composition, respectively, together with parallel

composition for both notions. For simplicity, in the main part

of the paper we focus only on ε-DP and we discuss the use of

the Laplace mechanism. DPella is implemented as a library in

the general purpose language Haskell; a programming language

that is well-known to easily support information-flow analyses

[25, 26]. Furthermore, DPella is designed to be extensible
through the addition of new primitives (see Section VI).

To reason about privacy and accuracy, DPella provides

two primitives responsible to symbolically interpret programs

(which implement data analyses). DPella’s symbolic interpreta-

tion for privacy consists on decreasing the privacy budget of a

query by deducing the required budget of its sub-parts. On the

other hand, the accuracy interpretation uses as abstraction the

inverse Cumulative Distribution Function (iCDF) representing

an upper bound on the (theoretical) error that the program incurs

when guaranteeing DP. The iCDF of a query is build out of

the iCDFs of the different components, by using as a basic

composition principle the union bound. These interpretations

provide overestimates of the corresponding quantities that they

track. In order to make these estimates as precise as possible,

DPella uses taint analysis to track the use of noise to identify

which variables are statistically independent. This information

is used by DPella to soundly replace, when needed, the union

bound with the Chernoff bound, something that to the best of

our knowledge other program logics or program analyses also

focusing on accuracy, such as [22] and [27], do not consider. We

envision DPella’s accuracy estimations to be used in scenarios

which align with those considered by tools like GUPT, PSI,

and Apex.

In summary, our contributions are:

� We present DPella, a programming framework that allows

data analysts to reason compositionaly about privacy-accuracy

trade-off.

� We show how to use taint analysis to detect statistical

independence of the noise that different primitives add, and

how to use this information to achieve better error estimates.

� We inspect DPella’s expressiveness and error estimations by

implementing PINQ-like queries from previous work [28, 2, 29]

and workloads from the matrix mechanism [30, 31, 32].

II. DPELLA BY EXAMPLE

We start by providing a brief background on the notions of

privacy and accuracy DPella considers.

A. Background

Differential privacy [1] is a quantitative notion of privacy

that bounds how much a single individual’s private data can
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affect the result of a data analysis. More formally, we can

define differential privacy as a property of a randomized query

Q̃(·) representing the data analysis, as follow.

Definition II.1 (Differential Privacy (DP)[1]). A randomized
query Q̃(·) : db → R satisfies ε-differential privacy if and only
if for any two datasets D1 and D2 in db, which differ in one
row, and for every output set S ⊆ R we have

Pr[Q̃(D1) ∈ S] � eε Pr[Q̃(D2) ∈ S] (1)

In the definition above, the parameter ε determines a bound

on the distance between the distributions induced by Q̃(·) when

adding or removing an individual from the dataset—the farther

away they are, the more at risk the privacy of an individual is,

and vice versa. In other words, ε imposes a limit on the privacy
loss that an individual can incur in, as a result of running a

data analysis.

A standard way to achieve ε-differential privacy is adding

some carefully calibrated noise to the result of a query. To

protect all the different ways in which an individual’s data can

affect the result of a query, the noise needs to be calibrated to

the maximal change that the result of the query can have when

changing an individual’s data. This is formalized through the

notion of sensitivity.

Definition II.2 ([1]). The (global) sensitivity of a query Q(·) :
db → R is the quantity ΔQ = max{|Q(D1) − Q(D2)| for
D1, D2 differing in one row

The sensitivity gives a measure of the amount of noise

needed to protect one individual’s data. Besides, in order to

achieve differential privacy, it is also important the choice of

the kind of noise that one adds. A standard approach is based

on the addition of noise sampled from the Laplace distribution.

Theorem II.1 (Laplace Mechanism [1]). Let Q(·) : db → R be
a deterministic query with sensitivity ΔQ. Let Q̃(·) : db → R

be a randomized query defined as Q̃(D) = Q(D) + η, where
η is sample from the Laplace distribution with mean μ = 0
and scale b = ΔQ/ε. Then Q̃ is ε-differentially private.

Notice that in the theorem above, for a given query, the

smaller the ε is, the more noise Q̃(·) needs to inject in order to

hide the contribution of one individual’s data to the result—this

protects privacy but degrades how meaningful the result of the

query is—and vice versa. In general, the notion of accuracy
can be defined more formally as follows.

Definition II.3 (Accuracy, see e.g.[20]). Given an ε-
differentiallly private query Q̃(·), a target query Q(·), a
distance function d(·), a bound α, and the probability β, we
say that Q̃(·) is (d(·), α, β)-accurate with respect to Q(·) if
and only if for all dataset D:

Pr[d(Q̃(D)−Q(D)) > α] � β (2)

This definition allows one to express data independent error

statements such as: with probability at least 1− β the query

Q̃(D) diverge from Q(D), in terms of the distance d(·), for

less than α. Then, we will refer to α as the error and 1− β

as the confidence probability or simply confidence. In general,

the lower the β is, i.e., the higher the confidence probability

is, the higher the error α is.

As previously discussed, an important property of differential

privacy is composeability.

Theorem II.2 (Sequential Composition [1]). Let Q̃1(·) and
Q̃2(·) be two queries which are ε1- and ε2-differentially
private, respectively. Then, their sequential composition Q̃(·) =
(Q̃1(·), Q̃2(·)) is (ε1 + ε2)-differentially private.

Theorem II.3 (Parallel Composition [2]). Let Q̃(·) be a ε-
differentially private query. and data1, data2 be a partition
of the set of data. Then, the query Q̃1(D) = (Q̃(D ∩
data1), Q̃(D ∩ data2)) is ε-differentially private.

Thanks to the composition properties of differential privacy,

we can think about ε as a privacy budget that one can spend on

a given data before compromising the privacy of individuals’

contributions to that data. The global ε for a given program

can be seen as the privacy budget for the entire data. This

budget can be consumed by selecting the local ε to “spend” in

each intermediate query. Thanks to the composition properties,

by tracking the local ε that are consumed, one can guarantee

that a data analysis will not consume more than the allocated

privacy budget.

Given an ε, DPella gives data analysts the possibility to

explore how to spend it on different queries and analyze the

impact on accuracy. For instance, data analysts might decide to

spend “more” epsilon on sub-queries which results are required

to be more accurate, while spending “less” on the others. The

next examples (inspired by the use of DP in network trace

analyses [28]) show how DPella helps to quantify what “more”

and “less” means.

B. Example: CDF

Suppose we have a tcpdump trace of packets which yields a

table where each row is represented as list of String values

containing the following information:

[<id>, <timestamp>, <src>, <dest>, <protocol>,
<length>, <payload> ]

From this table, we would like to inspect—in a differentially

private manner—the packet’s length distribution by comput-

ing its Cumulative Distribution function (CDF), defined as

CDF(x) = number of records with value � x. Hence, we are

just interested in the values of the attribute <length>.

McSherry and Mahajan [28] proposed three different ways

to approximate (due to the injected noise) CDFs with DP, and

they argued for their different levels of accuracy. We revise

two of these approximations (the third one can be found in

the extended version of the paper) to show how DPella can

assist in showing the accuracy of these analyses.

1) Sequential CDF: A simple approach to compute the CDF

consists in splitting the range of lengths into bins and, for

each bin, count the number of records that are � bin. A

natural way to make this computation differentially private is

to add independent Laplace noise to each count.
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1 cdf1 bins eps dataset = do
2 sizes ← dpSelect getPktLen dataset
3 counts ← sequence [ do elems ← dpWhere (� bin)
4 sizes
5 dpCount localEps elems
6 | bin ← bins ]
7 return (norm∞ counts)
8 where localEps = eps / (length bins)

(a) Sequential approach

9 cdf2 bins eps dataset = do
10 sizes ← dpSelect ((� max bins) ◦ getPktLen) dataset
11 -- parts :: Map Integer (Value Double)
12 parts ← dpPartRepeat (dpCount eps) bins assignBin
13 sizes
14 let counts = Map.elems parts
15 cumulCounts = [add (take i counts)
16 | i ← [1 . . length counts ] ]
17 return (norm∞ cumulCounts)

(b) Parallel approach

Fig. 1: CDF’s implementations

We show how to do this using DPella in Figure 1a. We define

a function cdf1 which takes as input the list of bins describing

length ranges, the amount of budget eps to be spent by the

entire query, and the dataset where it will be computed. For

now, we assume that we have a fixed list of bins for packets’

length. cdf1 uses the primitive transformation2 dpSelect to

obtain from the dataset the length of each packet via a selector

function getPktLen::String → Integer (where :: is used to

describe the type of a term in Haskell). This computation results

in a new dataset sizes. Then, we create a counting query for

each bin using the primitive dpWhere. This filters all records

that are less than the bin under consideration (� bin). Finally,

we perform a noisy count using the DPella primitive dpCount.

The noise injected by the primitive dpCount is calibrated so

that the execution of dpCount is localEps-DP (line 8 3). The

function sequence then takes the list of queries and compute

them sequentially collecting their results in a list—to create a

list of noisy counts. We then return this list. The combinator

norm∞ in line 7 is used to mark where we want the accuracy

information to be collected, but it does not have any impact

on the actual result of the cdf.

To ensure that cdf1 is eps-differential privacy, we distributed

the given budget eps evenly among the sub-queries (this is

done in lines 5 and 8). However, a data analyst may forget

to do so, e.g., she can define localEps = eps, and in this

case the final query is (length bins)*eps-DP, which is a

significant change in the query’s privacy price. To prevent such

budget miscalculations or unintended expenditure of privacy

budget, DPella provides the analyst with the function budget

(see Section III) that, given a query, statically computes an

2Anticipating on Section III, in our code we will usually use the red color
for transformations, the blue color for aggregate operations, and the green
color for combinators for privacy and accuracy.

3The casting operation fromIntegral is omitted for clarity

upper bound on how much budget it will spend. To see how to

use this function, consider the function cdf1 and a its modified

version cdf′1 with localEps = eps. Suppose that we want

to compute how much budget will be consumed by running

it on a list of bins of size 10 (identified as bins10) and on a

dataset networkTraffic. Then, the data analyst can ask this

as follow:

>budget (cdf1 bins10 1 networkTraffic)
ε = 1

>budget (cdf′1 bins10 1 networkTraffic)
ε = 10

The function budget will not execute the query, it simply

performs an static analysis on the code of the query by

symbolically interpreting it. The static analysis uses infor-

mation encoded by the type of the database networkTraffic

(explained in Section III).

DPella also provides primitives to statically explore the

accuracy of a query. The function accuracy takes a query Q(·)
and a probability β and returns an estimate of the (theoretical)

error that can be achieved with confidence probability 1− β.

Suppose that we want to estimate the error we will incur in by

running cdf1 with a budget of ε = 1 on with the same list of

bins and dataset as above, and we want to have this estimate

for β = 0.05 and β = 0.2, respectively. Then, the data analyst

can ask this as follow:

>accuracy (cdf1 bins10 1 networkTraffic) 0.05
α = 53

>accuracy (cdf1 bins10 1 networkTraffic) 0.2
α = 40

Since the result of the query is a vector of counts, we

measure the error α in terms of �∞ distance with respect to

the CDF without noise. This is the max difference that we can

have in a bin due to the noise. The way to read the information

provided by DPella is that with confidence 95% and 80%, we

have errors 53 and 40, respectively. These error bounds can be

used by a data analyst to figure out the exact set of parameters

that would be useful for her task.

2) Parallel CDF: Another way to compute a CDF is by first

generating an histogram of the data according to the bins, and

then building a cumulative sum for each bin. To make this

function private, an approach could be to add noise at the

different bins of the histogram, rather than to the cumulative

sums themself, so that we could use the parallel composition,

rather than the sequential one [28], which we show how to

implement in DPella in Figure 1b. —where double-dashes are

used to introduce single-line comments.

In cdf2, we first select all the packages whose length

is smaller than the maximum bin, and then we partition

the data accordingly to the given list of bins. To do this,

we use dpPartRepeat operator to create as many (disjoint)

datasets as given bins, where each record in each parti-

tion belongs to the range determined by an specific bin—

where the record belongs is determined by the function
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Fig. 2: Error comparison (95% confidence)

assignBin :: Integer → Integer. After creating all par-

titions, the primitive dpPartRepeat computes the given query

dpCount eps in each partition—the name dpPartRepeat

comes from repetitively calling dpCount eps as many times

as partitions we have. As a result, dpPartRepeat returns a

finite map where the keys are the bins and the elements are

the noisy count of the records per partition—i.e., the histogram.

In what follows (lines 15–17), we compute the cumulative

sums of the noisy counts using the DPella primitive add, and

finally we build and return the list of values denoting the CDF.

The privacy analysis of cdf2 is similar to the one of cdf1.

The accuracy analysis, however, is more interesting: first it gets

error bounds for each cumulative sum, then these are used to

give an error bound on the maximum error of the vector. For

the error bounds on the cumulative sums DPella uses either the

union bound or the Chernoff bound, depending on which one

gives the lowest error. For the maximum error of the vector,

DPella uses the union bound, similarly to what happens in

cdf1. A data analyst can explore the accuracy of cdf2.

>accuracy (cdf2 bins10 1 networkTraffic) 0.05
α = 22

>accuracy (cdf2 bins10 1 networkTraffic) 0.2
α = 20

3) Exploring the privacy-accuracy trade-off: Let us assume

that a data analyst is interested in running a CDF with an error

bounded with 90% confidence, i.e., with β = 0.1, having three

bins (named bins3), and ε = 1. With those assumptions in

mind, which implementation should she use? To answer that

question, the data analyst can ask DPella:

>accuracy (cdf1 bins3 1 networkTraffic) 0.1
α = 11

>accuracy (cdf2 bins3 1 networkTraffic) 0.1
α = 12

So, the analyst would know that using cdf1 in this case would

give, likely, a lower error. Suppose further that the data analyst

realize that she prefers to have a finer granularity and have 10

bins, instead of only 3. Which implementation should she use?

Again, she can compute:

>accuracy (cdf1 bins10 1 networkTraffic) 0.1
α = 46

>accuracy (cdf2 bins10 1 networkTraffic) 0.1
α = 20

So, the data analyst would know that using cdf2 in this case

would give, likely, a lower error. One can also use DPella to

show a comparison between cdf1 and cdf2 in terms of error

when we keep the privacy parameter fixed and we change

the number of bins, where cdf2 gives a better error when the

number of bins is large [28] as illustrated in Figure 2. In the

figure, we also show the empirical error to confirm that our

estimate is tight—the oscillations on the empirical cdf1 are

given by the relative small (300) number of experimental runs

we consider.

Now, what if the data analyst choose to use cdf2 because

of what we discussed before but she realizes that she can

afford an error α � 50; what would be then the epsilon that

gives such α? One of the feature of DPella is that the analyst

can write a simple program that finds it by repetitively calling
accuracy with different epsilons—this is one of the advantages

of providing a programming framework. These different use

cases shows the flexibility of DPella for different tasks in

private data analysis.
Synthetic data: When compared with (non-compositional)

approaches for estimating accuracy based on synthetic or public

data, such as [33], the static analysis of DPella can be used in

a complimentary manner to quickly (and precisely) estimate

privacy and accuracy for a wide range of simple queries. There

are also certain kind of queries (e.g., k-way marginal) where it

is more convenient to use our static analysis than synthetic data

for high-dimensional datasets—see Appendix G for details.

The following sections will introduce the theoretical and

technical aspects of DPella.

III. PRIVACY

DPella have two kind of actors: data curators, owners of

the private dataset that decide the global privacy budget and

split it among the data analysts, the ones who write queries to

mine useful information from the data and spend the budget

they received. DPella is designed to help data analysts to have

an informed decision about how to spend their budget based

on exploring the trade-offs between privacy and accuracy.

A. Components of the API

Figure 3 shows part of DPella API. DPella introduces two

abstract data types to respectively denote datasets and queries:

data Data s r -- datasets

data Query a -- queries

The attentive reader might have observed that the API also

introduces the data type Value a. This type is used to capture

values resulting from data aggregations. However, we defer its

explanation for Section IV since it is only used for accuracy

calculations—for this section, readers can consider the type

Value a as isomorphic to the type a. It is also worth noticing

that the API enforces an invariant by construction: it is not
possible to branch on results produced by aggregations—

observe that there is no primitive capable to destruct a value
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-- Transformations (data analyst)
dpWhere :: (r → Bool) → Data s r → Query (Data s r)
dpSelect :: (r → r′) → Data s r → Query (Data s r′)
dpGroupBy :: Eq k ⇒ (r → k) → Data s r

→ Query (Data (2*s) (k, [r ]))
dpIntersect :: Eq r ⇒ Data s1 r → Data s2 r

→ Query (Data (s1+s2) r)
dpUnion :: Data s1 r → Data s2 r

→ Query (Data (s1+s2) r)
dpPart :: Ord k ⇒ (r → k) → Data s r

→ Map k (Data s r) → Query (Value a))
→ Query (Map k (Value a))

-- Aggregations (data analyst)
dpCount :: Stb s ⇒ ε → Data s r → Query (Value Double)
dpSum :: Stb s ⇒ ε → (r → Double) → Data s r

→ Query (Value Double)
dpAvg :: Stb s ⇒ ε → (r → Double) → Data s r

→ Query (Value Double)
dpMax :: Eq a ⇒ ε → Responses a → (r → a)

→ Data 1 r → Query (Value a)

-- Budget
budget :: Query a → ε

-- Execution (data curator)
dpEval :: (Data 1 r → Query (Value a)) → [r ] → ε → IO a

Fig. 3: DPella API: Part I

of type Value a. While it might seem restrictive, it enables

to write counting queries, which are the bread and butter of

statistical analysis and have been the focus of the majority of

the work in DP. Section VI discusses, however, how to lift this

limitation for specific analyses.

Values of type Data s r represent sensitive datasets

with accumulated stability s, where each row is of type r.

Accumulated stability, on the other hand, is instantiated to

type-level positive natural numbers, i.e., 1, 2, etc. Stability is

a measure that captures the number of rows in the dataset that

could have been affected by transformations like selection or

grouping of rows. In DP research, stability is associated with

dataset transformations rather than with datasets themselves.

In order to simplify type signatures, DPella uses the type

parameter s in datasets to represent the accumulated stability

of the transformations for which datasets have gone through—

as done in [34]. Different than, e.g., PINQ [2], one novelty of

DPella is that it computes stability statically using Haskell’s

type-system.

Values of type Query a represent computations, or queries,

that yield values of type a. Type Query a is a monad [35],

and because of this, computations of type Query a are built

by two fundamental operations:

return :: a → Query a

(>>=) :: Query a → (a → Query b) → Query b

The operation return x outputs a query that just produces the

value x without causing side-effects, i.e., without touching any

dataset. The function (>>=)—called bind—is used to sequence

queries and their associated side-effects. Specifically, qp>>= f

executes the query qp, takes its result, and passes it to the

function f, which then returns a second query to run. Some

languages, like Haskell, provide syntactic sugar for monadic

computations known as do-notation. For instance, the program

qp1 >>= (λx1 → qp2 >>= (λx2 → return (x1, x2))), which

performs queries qp1 and qp2 and returns their results in a pair,

can be written as do x1 ← qp1; x2 ← qp2; return (x1, x2)
which gives a more “imperative” feeling to programs. We split

the API in four parts: transformations, aggregations, budget

prediction, and execution of queries—see next section for the

description of API’s accuracy components. The first three parts

are intended to be used by data analysts, while the last one is

intended to be only used by data curators4.

1) Transformations: The primitive dpWhere filters rows in

datasets based on a predicate functions (r → Bool). The

created query (of type Query (Data s r)) produces a dataset

with the same row type r and accumulated stability s as

the dataset given as argument (Data s r). Observe that if

we consider two datasets which differ in s rows in two

given executions, and we apply dpWhere to both of them,

we will obtain datasets that will still differ in s rows—thus,

the accumulated stability remains the same. The primitive

dpGroupBy returns a dataset where rows with the same

key are grouped together. The functional argument (of type

r → k) maps rows to keys of type k. The rows in the return

dataset (Data (2*s) (k, [r ])) consist of key-rows pairs of type

(k, [r ])—syntax [r ] denotes the type of lists of elements of

type r. What appears on the left-hand side of the symbol ⇒
are type constraints. They can be seen as static demands for the

types appearing on the right-hand side of ⇒. Type constraint

Eq k demands type k, denoting keys, to support equality;

otherwise grouping rows with the same keys is not possible.

The accumulated stability of the new dataset is multiplied by

2 in accordance with stability calculations for transformations

[2, 34]—observe that 2*s is a type-level multiplication done

by a type-level function (or type family [37]) *. Our API also

considers transformations similar to those found in SQL like

intersection (dpIntersect), union (dpUnion), and selection

(dpSelect) of datasets, where the accumulated stability is

updated accordingly. Providing a general join transformation

is known to be challenging [2, 38, 39, 40]. The output of a join

may contain duplicates of sensitive rows, which makes difficult

to bound the accumulated stability of datasets. However, and

similar to PINQ, DPella supports a limited form of joins, where

a limit gets imposed on the number of output records mapped

under each key in order to obtain stability. For brevity, we skip

its presentation and assume that all the considered information

is contained by the rows of given datasets.

2) Partition: Primitive dpPart deserves special attention.

This primitive is a mixture of a transformation and aggregations

since it partitions the data (transformation) to subsequently

apply aggregations on each of them. More specifically, it splits

the given dataset (Data s r) based on a row-to-key mapping

(r → k). Then, it takes each partition for a given key k

and applies it to the corresponding function Data s r →
Query (Value a), which is given as an element of a key-

4A separation that can be enforced via Haskell modules [36]
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query mapping (Map k ((Data s r) → Query (Value a))).
Subsequently, it returns the values produced at every partition

as a key-value mapping (Query (Map k (Value a))). The

primitive dpPartRepeat, used by the examples in Section II,

is implemented as a special case of dpPart and thus we do

not discuss it further.

Partition is one of the most important operators to save

privacy budget. It allows to run the same query on a dataset’s

partitions but only paying for one of them—recall Theorem II.3.

The essential assumption that makes this possible is that

every query runs on disjoint datasets. Unfortunately, data

analysts could ignore this assumption when writing queries—

see Appendix A for an example. To catch such possible coding

errors, DPella deploys an static information-flow control (IFC)

analysis similar to that provided by MAC [41]. IFC ensures

that queries run by dpPart do not perform queries on shared

datasets by attaching provenance labels to datasets Data s r

indicating to which part of the query they are associated with

and propagates that information accordingly. The implemented

IFC mechanism is transparent to data analysts and curators,

i.e., they do not need to understand how it works. Analysts and

curators only need to know that, when the IFC analysis raises

an alarm, is due to a possibly access to non-disjoint datasets

when using dpPart.

3) Aggregations: DPella presents primitives to count

(dpCount), sum (dpSum), and average (dpAvg) rows in datasets.

These primitives take an argument eps :: ε, a dataset, and

build a Laplace mechanism which is eps-differentially private

from which a noisy result gets return as a term of type

Value Double. The purpose of data type Value a is two

fold: to encapsulate noisy values of type a originating from

aggregations of data, and to store information about its

accuracy—intuitively, how “noisy” the value is (explained

in Section IV). The injected noise of these queries gets

adjusted depending on three parameters: the value of type ε,
the accumulated stability of the dataset s, and the sensitivity of

the query (recall Definition II.2). More specifically, the Laplace

mechanism used by DPella uses accumulated stability s to scale

the noise, i.e., it consider b from Theorem II.1 as b = s · ΔQ

ε .

The sensitivity of DPella’s aggregations are hard-coded into the

implementation—similar to what PINQ does. The sensitivities

of dpSum and dpAvg are set to 1 and 2, respectively, by

applying a clipping function (r → Double). This function

maps the values under scrutiny into the interval [−1, 1] before

executing the query. The sensitivity of dpCount and dpMax

is set to 1. To implement the Laplace mechanism, the type

constrain Stb s in dpCount, dpSum, and dpAvg demands the

accumulated stability parameter s to be a type-level natural

number in order to obtain a term-level representation when

injecting noise. Finally, primitive dpMax implements report-

noisy-max [20]. This query takes a list of possible responses

(Responses a is a type synonym for [a ]) and a function of

type r → a to be applied to every row. The implementation

of dpMax adds uniform noise to every score—in this case, the

amount of rows voting for a response—and returns the response
with the highest noisy score. This primitive becomes relevant

to obtain the winner option in elections without singling out

any voter. However, it requires that the accumulated stability of

the dataset to be 1 in order to be sound [22]. DPella guarantees

such requirement by typing: the type of the given dataset as

argument is Data 1 r.

4) Privacy budget and execution of queries: The primitive

budget statically computes how much privacy budget is

required to run a query. It is worth notice that DPella returns

an upper bound of the required privacy budget rather than the

exact one—an expected consequence of using a type-system

to compute it and provide early feedback to data analysts.

Finally, the primitive dpEval is used by data curators to run

queries (Query a) under given privacy budgets (ε), where

datasets are just lists of rows ([r ]). It assumes that the initial

accumulated stability as 1 (Data 1 r) since the dataset has

not yet gone through any transformation, and DPella will

automatically calculate the accumulated stability for datasets

affected by subsequent transformations via the Haskell’s type

system. This primitive returns a computation of type IO a,

which in Haskell are computations responsible to perform side-

effects—in this case, obtaining randomness from the system

in order to implement the Laplace mechanism.

5) Implementation: DPella is implemented as a deep em-
bedded domain-specific language (EDSL) in Haskell. Due to

such design choice, data analysts can piggyback on Haskell’s

infrastructure to build queries in a creative way. For instance, it

is possible to leverage on any of Haskell’s pure functions. The

following one-liner (of type Query [Value Double]) shows

how to write a query that generates possibly non-disjoint

datasets from ds :: Data s r based on different criteria for

then performing a counting.

mapM (flip dpSelect ds>=>dpCount eps) fs

Variable eps is the epsilon to spend in each counting while

fs :: [r → Bool ] is the criteria list. The high-order functions

flip, mapM, and (>=>) are standard in Haskell and represent

a function who switches arguments, the monadic versions of

map, and the Kleisli arrow, respectively. Despite DPella being a

first-order interface, data analysts can use Haskell’s high-order

functions to compactly describe queries.

IV. ACCURACY

DPella uses the data type Value a responsible to store a

result of type a as well as information about its accuracy.

For instance, a term of type Value Double stores a noisy

number (e.g., coming from executing dpCount) together with

its accuracy in terms of a bound on the noise introduced to
protect privacy.

DPella provides an static analysis capable to compute the

accuracy of queries via the following function

accuracy :: Query (Value a) → β → α

which takes as an argument a query and returns a function,

called inverse Cumulative Distribution Function (iCDF), captur-

ing the theoretical error α for a given confidence 1-β. Function

accuracy does not execute queries but rather symbolically
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-- Accuracy analysis (data analyst)
accuracy :: Query (Value a) → β → α

-- Norms (data analyst)
norm∞ :: [Value Double ] → Value [Double ]
norm2 :: [Value Double ] → Value [Double ]
norm1 :: [Value Double ] → Value [Double ]
rmsd :: [Value Double ] → Value [Double ]

-- Accuracy combinators (data analyst)
add :: [Value Double ] → Value Double
neg :: Value Double → Value Double

Fig. 4: DPella API: Part II

interpret all of its components in order to compute the accuracy

of the result based on the sub-queries and how data gets

aggregated. DPella follows the principle of improving accuracy

calculations by detecting statistical independence. For that, it

implements taint analysis [24] in order to track if values were

drawn from statistically independent distributions.

A. Accuracy calculations

DPella starts by generating iCDFs at the time of running

aggregations based on the following known result of the Laplace

mechanism:

Definition IV.1 (Accuracy for the Laplace mechanism). Given
a randomized query Q̃(·) : db → R implemented with the
Laplace mechanism as in Theorem II.1, we have that

Pr
[
|Q̃(D)−Q(D)| > log(1/β) · ΔQ

ε

]
� β (3)

Recall that the Laplace mechanism used by DPella utilizes

accumulated stability s to scale the noise, i.e., it consider

b from Theorem II.1 as b = s · ΔQ

ε . Consequently, DPella

stores the iCDF λβ → log(1/β) · s · ΔQ

ε for the values of

type Value Double returned by aggregation primitives like

dpCount, dpSum, and dpAvg. However, queries are often more

complex than just calling aggregation primitives—as shown by

CDF2 in Figure 1b. In this light, DPella provides combinators

responsible to aggregate noisy values, while computing its

iCDFs based on the iCDFs of the arguments. Figure 4 shows

DPella API when dealing with accuracy.

1) Norms: DPella exposes primitives to aggregate the

magnitudes of several errors predictions into a single measure—

a useful tool when dealing with vectors. Primitives norm∞,

norm2, and norm1 take a list of values of type Value Double,

where each of them carries accuracy information, and produces

a single value (or vector) that contains a list of elements

(Value [Double ]) whose accuracy is set to be the well-

known �∞-, �2-, �1-norms, respectively. Finally, primitive rmsd

implements root-mean-square deviation among the elements

given as arguments. In our examples, we focus on using norm∞,

but other norms are available for the taste, and preference, of

data analysts.

2) Adding values: The primitive add aggregates values and,

in order to compute accuracy of the addition, it tries to apply the

Chernoff bound if all the values are statistically independent;

otherwise, it applies the union bound. More precisely, for the

next definitions we assume that primitive add receives n terms

0 20 40 60 80 100
0

1,000

2,000
2303

155

Sub-queries

α

Union

Chernoff

Fig. 5: Union vs. Chernoff bounds

v1::Value Double, v2::Value Double, ... , vn::Value Double.

Importantly, since we are calculating the theoretical error, we

should consider random variables rather than specific numbers.

The next definition specifies how add behaves when applying

union bound.

Definition IV.2 (add using union bound). Given n � 2 random
variables Vj with their respective iCDF j , where j ∈ 1 . . . n,
and αj = iCDFj(

β
n ), then the addition Z =

∑n
j=1 Vj has

the following accuracy:

Pr[|Z| > ∑n
j=1 αj ] � β (4)

Observe that to compute the iCDF of Z, the formula uses

the iCDFs from the operands applied to β
n . Union bound

makes no assumption about the distribution of the random

variables Vj .

In contrast, the Chernoff bound often provides a tighter

error estimation than the commonly used union bound when

adding several statistically independent queries sampled from
a Laplace distribution. To illustrate this point, Figure 5 shows

that difference for the cdf2 function we presented in Section II

with ε = 0.5 (for each DP sub-query) and β = 0.1. Clearly, the

Chernoff bound is asymptotically much better when estimating

accuracy, while the union bound works best with a reduced

number of sub-queries—observe how lines get crossed in Figure

5. In this light, and when possible, DPella computes both

union bound and Chernoff bound and selects the tighter error

estimation. However, to apply Chernoff bound, DPella needs

to be certain that the events are independent. Before explaining

how DPella detects that, we give an specification of the formula

we use for Chernoff.

Definition IV.3 (add using Chernoff bound [42]). Given
n � 2 independent random variables Vj ∼ Lap(0, bj),
where j ∈ 1 . . . n, bM = max {bj}j=1...n, and ν >

max{
√∑n

j=1 b
2
j , bM

√
ln 2

β }, then the addition Z =
∑n

j=1 Vj

has the following accuracy:

Pr[|Z| > ν ·
√

8 ln 2
β ] � β (5)

DPella uses the value ν = max{
√∑n

j=1 b
2
j , bM

√
ln 2

β } +
0.00001 to satisfy the conditions of the definition above when

applying the Chernoff bound—any other positive increment to
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the computed maximum works as well5.

Lastly, to support subtraction, DPella provides primitive

neg responsible to change the sign of a given value. We next

explain how DPella checks that values come from statistically

independent sampled variables.

3) Detecting statistical independence: To detect statistical

independence, we apply taint analysis when considering terms

of type Value a. Specifically, every time a result of type

Value Double gets generated by an aggregation query in

DPella’s API (i.e., dpCount, dpSum, etc.), it gets assigned

a label indicating that it is untainted and thus statistically

independent. The label also carries information about the scale

of the Laplace distribution from which it was sampled—a

useful information when applying Definition IV.3. When the

primitive add receives all untainted values as arguments, the

accuracy of the aggregation is determined by the best estimation

provided by either the union bound (Definition IV.2) or the

Chernoff bound (Definition IV.3). Importantly, values produced

by add are considered tainted since they depend on other

results. When add receives any tainted argument, it proceeds

to estimate the error of the addition by just using union bound—

we refer readers to Appendix B for a piece of DPella code

which intituively illustrates how our taint analysis works. In

the next Section, we proceed to formally define our accuracy

analysis.

B. Implementation

The accuracy analysis consists on symbolically interpreting

a given query, calculating the accuracy of individual parts,

and then combining them using our taint analysis. We in-

troduce two polymorphic symbolic values: D :: Data s r

and S[iCDF, s, ts] :: Value a. Symbolic dataset D represents

concrete datasets arising from data transformations. A symbolic

value S[iCDF, s, ts] represents concrete values with tags ts

and a iCDF which is computed assuming a noise scale s. Tags

are used to detect the provenance of symbolic values and when

they arise from different noisy sources.

Function accuracy takes queries that produce a result

of type Value a. Such queries are essentially built by

performing data aggregation queries (e.g., dpCount) preceded

by a (possibly empty) sequence of other primitives like data

transformations6. Figure 6 and 7 show the interesting parts

of our analysis—Appendix C shows the calculation of norms

and thus we skip them here for brevity. Given a well-typed
query q :: Query (Value a), accuracy q = iCDF where

q� S[iCDF, s, ts] for some s and ts. The rules in Figure 6

are mainly split into two cases: considering data aggregation

queries and sequences of primitives glued together with (>>=).
The symbolic interpretation of dpCount is captured by

rule DPCOUNT—see Figure 6a. This rule populates the iCDF

of the return symbolic value with the corresponding error

5 There are perhaps other ways to compute the Chernoff bound for the sum
of independent Laplace distributions, changing this equation in DPella does
not require major work.

6We ignore the case of return val ::Query (Value a) since the definition
of accuracy is trivial for such case.

DPCOUNT

dataset :: Data s r

iCDF = λβ → log(
1

β
) · s · 1

ε
t fresh

dpCount ε dataset� S[iCDF, s · 1
ε
, {t}]

(a) DP-queries

SEQ-TRANS

k D �∗
next next� S[iCDF, s, ts]

transform>>= k� S[iCDF, s, ts]

SEQ-QUERY

query� S[iCDFq, sq, tsq]
k (S[iCDFq, sq, tsq])�∗

next next� S[iCDF, s, ts]
query>>= k� S[iCDF, s, ts]

(b) Sequential traversal

SEQ-PART

(m j D �∗
nextj)j∈dom(m)

(nextj � S[iCDFj , sj , tsj ])j∈dom(m)

m’ = (j �→ S[iCDFj , sj , tsj ])j∈dom(m)

k m’�∗
next next� S[iCDF, s, ts]

dpPart sel dataset m>>= k� S[iCDF, s, ts]

(c) Accuracy calculation when partitioning data

Fig. 6: Accuracy analysis implemented by accuracy

calculations for Laplace as presented in Definition A.1 (with

the scale adjusted with the accumulated stability). Observe

that it extracts the stability information from the type of

the considered dataset (ds :: Data s r) and attaches a fresh

tag indicating an independently generated noisy value. The

symbolic interpretation of dpSum and dpAvg proceeds similarly

to dpCount and we thus omit them for brevity. We also omit

the symbolic interpretation of dpMax for brevity—readers can

refer to Appendix D for details.

To symbolically interpret a sequence of primitives, the

analysis gets further split into two cases depending if the first

operation to interpret is a transformation or an aggregation,

respectively—see Figure 6b. Rule SEQ-TRANS considers the

former, where transform can be any of the transformation

operations in Figure 3. It simply uses the symbolic value D to

pass it to the continuation k. It can happen that k D does not

match (yet) any part of DPella’s API required for our analysis

to continue7. However, the EDSL nature of DPella makes

Haskell’s to reduce k D to the next primitive to be considered,

which we capture as k D �∗ next—and we know that it will

occur thanks to type preservation. We represent � (�∗) to

pure reduction(s) in the host language like function application,

pair projections, list comprehension, etc. The analysis then

continues symbolically interpreting the next yield instruction.

Rule SEQ-QUERY computes the corresponding symbolic value

for the aggregation query. The symbolic value is then passed

to the continuation, and the analysis continues with the next

7For instance, k D = (λx → dpCount 1 x) D, and thus ((λx →
dpCount 1 x) D)�∗ dpCount 1 D.
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UNION-BOUND

vj = S[iCDFj, sj, tsj]
αj = iCDFj(

b

n
) iCDF = λβ →

n∑
j=1

αj

ub [v1, v2, ..., vn ]� iCDF

CHERNOFF-BOUND

vj = S[iCDFj, sj, tsj] vM = max {sj}j=1...n

ν = max{
√∑n

j=1 s
2
j , vM

√
ln 2

β
}+ 0.0001

iCDF = λβ → ν ·
√

8 ln 2
β

cb [v1, v2, ..., vn ]� iCDF

ADD-UNION

(∃j · tsj = ∅) ∨⋂
j=1...n tsj 
= ∅

add [v1, v2, ..., vn ]� S[ub [v1, v2, ..., vn ], 0, ∅]

ADD-CHERNOFF-UNION

vj = S[iCDFj, sj, tsj] (∀j · tsj 
= ∅) ⋂
j=1...n tsj = ∅

iCDF = λβ → min (ub [v1, v2, ..., vn ] β) (cb [v1, v2, ..., vn ] β)

add [v1, v2, ..., vn ]� S[iCDF, 0, ∅]

Fig. 7: Calculation of concentration bounds

yield instruction.

Rule SEQ-PART shows the symbolic interpretation of

dpPart. The argument m :: Map k (Data s r →
Query (Value a)) describes the queries to execute once given

the corresponding bins. Since these queries produce values,

we need to symbolically interpret each of them to obtain their

accuracy estimations. The rule applies each of those queries

to a symbolic dataset (m j D)8. The symbolic values yield

by each bin are collected into the mapping m’, which is then

passed to continuation k in order to continue the analysis on

the next yield instruction.

Figure 7 shows the part of our analysis responsible to apply

concentration bounds. Rules UNION-BOUND and CHERNOFF-

BOUND define pure functions (reduction �) which produce

the concentration bounds as described in Definitions IV.2 and

IV.3, respectively. We define the function add based on two

cases. Rule ADD-UNION produces a symbolic value with a

iCDF generated by the union bound (ub [v1, v2, ..., vn ]). The

symbolic value is tainted, which is denoted by the empty

tags (∅). The scale 0 denotes that the scale of the noise and

its distribution is unknown—adding Laplace distributions do

not yield a Laplace distribution. (However, the situation is

different with Gaussians where the analysis keeps the scale

of the noise and taint tags—see Appendix E for details.)

This rule gets exercised when either the list of symbolic

values contains a tainted one (∃j · tsj = ∅) or have not

been independently generated (
⋂

k=1...n tsj �= ∅). Differently,

ADD-CHERNOFF-UNION produces a symbolic value with a

iCDF which chooses the minimum error estimation between

union and Chernoff bound for a given β—sometimes union

8For simplicity, we assume that maps are implemented as functions

bound provides tighter estimations when aggregating few noisy-

values (recall Figure 5). This rule triggers when all the values

are untainted (∀j · tsj �= ∅) and independently generated

(
⋂

j=1...n tsj = ∅). At a first glance, one could believe that

it would be enough to use the scale of the noise to track when

values are untainted, i.e., if the scale is different from 0, then the

value is untainted. Unfortunately, this design choice is unsound:

it will classify adding a variable twice as an independent

sum: do x ← dpCount ε ds; return (add [x, x ]). It is also

possible to consider various ways to add symbolic values to

boost accuracy. We could easily write a pre-processing function

which, for instance, firstly partitions the arguments into subset

of independently generated values, applies add to them (thus

triggering ADD-CHERNOFF-UNION), and finally applies add

to the obtained results (thus triggering ADD-UNION). The

implementation of DPella enables to write such functions in a

few lines of code.

V. CASE STUDIES

Category Application Programs

PINQ-like

CDFs [28]
cdf1, cdf2,
cdfSmart

Term
frequency [2]

queryFreq,
queriesFreq

Network
analysis [28]

packetSize,
portSize

Cumulative
sums [29]

cumulSum1
cumulSum2
cumulSumSmart

Counting
queries

Range queries via Identity,
Histograms [31], and
Wavelet [32]

i_n
h_n
y_n

TABLE I: Implemented literature examples

In this section, we will discuss the advantages and limitations

of our programming framework. Moreover, we will go in-

depth into using DPella to analyze the interplay of privacy and

accuracy parameters in hierarchical histograms.

A. DPella expressiveness

First, we start by exploring the expressiveness of DPella. For

this, we have built several analyses found in the DP literature—

see Table I—which we classify into two categories, PINQ-like
queries and counting queries. The former class allows us to

compare DPella expressivity with the one of PINQ, while the

latter with APEx.

PINQ-like queries: We have implemented most of PINQ’s

examples [2, 28], such as, different versions of CDFs (sequen-

tial, parallel, and hybrid) and network tracing-like analyses

(such as determining the frequency a term or several terms

have been searched by the users, and computing port’s and

packets’ size distribution); additionally, we considered analyses

of cumulative sums [29]—which are queries that share some

commonalities with CDFs. The interest over differentially

private CDFs and cumulative partial sums applications rely on

the existing several approaches to inject noise, such choices

will directly impact the accuracy of our results, and therefore,
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are ideal to be tested and analyzed in DPella. The structures of

these examples follow closely the ones of the CDFs presented

in previous sections, which are straightforward implementations.

DPella supports these queries naturally since its expressiveness

relies on its primitives and, by construction, they follow PINQ’s

ones very closely. However, as stated in previous sections, our

framework goes a step further and exposes to data analysts

the accuracy bound achieved by the specific implementation.

This feature allows data analyst to reason about accuracy of

the results—without actually executing the query—by varying

i) the strategy of the implementation ii) the parameters of

the query. For instance, in Section II, we have shown how an

analyst can inspect the error of a sequential and parallel strategy

to compute the CDF of packet lengths. Furthermore, the data

analyst can take advantage of DPella being an embedded DSL

and write a Haskell function that takes any of the approaches

(cdf1 or cdf2) and varies epsilon aiming to certain error

tolerance (for a fixed confidence interval), or vice versa. Such

a function can be as simple as a brute force analysis or as

complex as an heuristic algorithm.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1
0 1 0 0
0 1 1 0
0 1 1 1
0 0 1 0
0 0 1 1
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 8: WR4

Counting queries: To compare our ap-

proach with the tool APEx [18], we consider

range queries analyses—an specific subclass

of counting queries. APEx uses the matrix
mechanism [30] to compute counting queries.

This algorithm answers a set of linear queries

(called the workload) by calibrating the

noise to specific properties of the workload

while preserving differential privacy. More

in detail, the matrix mechanism uses some

query strategies as an intermediate device to

answer a workload; returning a DP version

of the query strategies (obtained using the Laplace or Gaussian

mechanism), from which noisy answers of the workload are

derived. The matrix mechanism achieves an almost optimal

error on counting queries. To achieve such error, the algorithm

uses several non-trivial transformations which cannot be

implemented easily in terms of other components. APEx

implements it as a black-box and we could do the same in

DPella (see Section VI). Instead, in this section we show

how DPella can be directly used to answer sets of counting

queries using some of the ideas behind the design of the matrix

mechanism, and how these answers improve with respect to

answering the queries naively, thanks to the use of partition

and the Chernoff bound.

To do this, we have implemented several strategies to answer

an specific workload WR: the set of all range queries over

a domain. Figure 8 illustrates the workload that would be

answer for a frequency count of four ranges. Having the

identity I4, hierarchical H4 and wavelet Y4 strategies to

compute the noisy count of each range, binary hierarchy of

sums, and the Haar wavelet, respectively. Our implementation

generates noisy counts and any possible combination of them

will yield (at least) the same error as using strategy I4. In

other words, the more accurate answer for WR will be yield

by the identity strategy. This is not unexpected, since in order
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Fig. 9: Error of each range query in WR using strategy In
with n = 512, ε = 1, and β = 0.05

to use the other queries strategies more efficiently we would

need transformations similar to the ones used in the matrix

mechanism.

Figure 9 exposes the error of answering each range query

(i.e., each row) in WR with strategy In and n = 512. While

we use the same kind of plot, this error cannot be directly

compared with the one shown in Figure 7 of [30], since we use

a different error metrics: (α,β)-accuracy vs MSE. Nonetheless,

we share the tendency of having lower error on small ranges and

significant error on large ranges. Now, since the noisy values

that will be added (using the function add) are statistically

independent, we can use the Chernoff bound to show that the

error is approximately O(
√
n) for each range query, and a

maximum error of O(
√
n log n) for answering any query in

WR. If we compare our maximum error O(
√
n log n) with

the one of the matrix mechanism based on the identity strategy

O(n/ε2), it becomes evident how Chernoff bound is useful to

provide tighter accuracy bounds. Unfortunately, as previously

stated, the error of strategies Hn and Yn in DPella is not better

than the one of the strategy In, so we cannot reach the same

accuracy the matrix mechanism achieves with these strategies

(see Figure 7 of [30]). This limitation can be addressed by

leveraging the fact that DPella is a programming framerwork

that could be extended by adding the matrix mechanism—and

some other features—as black-box primitives.

VI. LIMITATIONS & EXTENSIONS

We have discussed so far the use of DPella as an API

allowing a programmer to implement her own data analyses.

However, we foreseen DPella to also serve as a ”glue” which

enables a programmer to integrate arbitrary DP-algorithms, as

(black-box) building blocks while reasoning about accuracy. In

this light, our design supports the introduction of new primitives

when some analyses cannot be directly implemented because

either (i) the static analysis for accuracy provided by DPella

is too conservative, or (ii) DPella’s API building blocks are

not enough to express the desired analysis. Below, we describe

several possible such extensions.

The matrix mechanism (MM): As we discussed in the

previous section, in some situations DPella allows to answer

in an accurate way multiple counting queries in a way that is

similar to the MM. As an example, DPella estimates accuracy

better then MM for the strategy I—recall Section V. However,
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for other workloads and other strategies the accuracy provided

by DPella is too conservative. To consider other workloads

and strategies, the MM can be incorporated into DPella as a

primitive for answering counting queries. The requirements for

this are that the return values are tainted, and that we have an

iCDFs for it—this can be calculated as in [18]. In general, it

is sound to add new primitives which permit a more precise

accuracy analysis as long as the return values are tainted, and

an accuracy information is provided—thus effectively allowing

to further compose the primitive with other analyses by means

of the union bound.

Primitives with non-compositional privacy analyses: Several

DP-algorithms have a privacy analysis which does not follow

directly by composition. Some well-known examples are report-

noisy-max, the exponential mechanism, and the sparse-vector

technique—see [20] and [43] for more details. In their natural

implementations, these algorithms branch on the result of

some noised query’s result, and the privacy analyses use

some properties of the noise distributions that are not directly

expressible in terms of composition of differentially private

components. Because DPella’s API does not allow to branch

on the results of noised queries, and because the privacy

analyses that DPella support are based on composition, we

cannot implement these analyses directly using the DPella API.

However, we can provide them as (black-box) primitives. We

already discussed how to integrate report-noisy-max through a

primitive dpMax (Figure 3). The exponential mechanism (EM)

can be incorporated into DPella in a similar way. One subtleties

that one has to consider is the fact that the privacy guarantee of

EM depends on a bound of the sensitivity of the score function.

We handle this by requiring the score function’s output to be

bound between 0 and 1, bounding the sensitivity to be at most

1. As with dpMax, the output of EM is tainted. The EM is an

important mechanism which allows to implement many other

techniques. In particular, we can use EM to implement the

offline version of the sparse vector technique, as discussed

in [20]. These components allow DPella to support automated

reasoning about accuracy for complex algorithms such as the

offline version of the MWEM algorithm [44] following an

analysis similar to the one discussed in [22].

Online adaptive algorithms: Several DP-algorithms have

different implementations depending if they work offline—

where all the decision are taken upfront before running the

program—or online—where some of the decision are taken

while running the program. Online algorithms usually have a

more involved control flow which depend on information that

are available at runtime. As an example, the online version

of the sparse vector technique uses the result of a DP query

to decide whether to stop or not the computation (or whether

to stop or not giving meaningful answers). These kind of

algorithms usually are based on some re-use of a noised result

which correspond to a taint value in DPella. So, the current

design of DPella cannot support them. We plan to explore as

future how to integrate these algorithms in DPella.

Improving accuracy through post-processing: Several works

have explored the use of post-processing techniques to improve

on accuracy, e.g. [31, 45, 46]. Most of these works use accuracy

measure that differ from the one we consider here, and use

some specific properties of the particular problem at hand. As

an example, the work by Hay et al. [31] describes how to

boost accuracy in terms of Mean Squared Error (MSE) for DP

hierarchical queries by post-processing the DP results by means

of some relatively simple optimization. This improvement in

accuracy relies among other things on the impact that the

optimization has on the MSE, which does not directly apply

to the α-β notion of accuracy we use here. We expect that,

also for the notion of α-β accuracy we use, it is possible to

use post-processing for improve accuracy. However, we leave

this for future works. Moreover, the reason for us to chose

α-β accuracy as the principal notion of accuracy in DPella is

because of its compositional nature expressible through the use

of probability bounds. It is an interesting future direction to

design a similar compositional theory also for other accuracy

notions such as MSE. We expect DPella to be extensible to

incorporate such a theory, once it is available.

VII. RELATED WORK

Programming frameworks for DP: PINQ [2] uses dynamic

tracking and sensitivity information to guarantee privacy

of computations. Among the frameworks and tools sharing

features with PINQ we highlight: Airavat [3] ; wPINQ [47];

DJoin [38]; Ektelo [12]; Flex [40]; and PrivateSQL [48]. In

contrast to DPella, none of these works keeps track of accuracy,

nor static analysis for privacy or accuracy. As discussed in

Section III, DPella supports a limited form of joins, and it is still

able to provide accuracy estimates. We leave as future work to

support more general join operations through techniques similar

to the ones proposed in Flex and PrivateSQL. While several

of the components from the frameworks discussed above are

not supported in the current implementation of DPella, these

can be added as black-box primitives, as we discussed in

Section VI. All the programming frameworks discussed above

support reasoning about privacy for complex data analyses

while neglecting accuracy, whereas DPella supports accuracy,

but restricts the programming framework to rule out certain

analysis (e.g., adaptive ones) for which we do not have a

general compositional theory, yet.

Tools for DP: In a way similar to DPella, there exist tools

which support reasoning about accuracy and restrict the kind of

data analyses they support. GUPT [15] is a tool based on the

sample-and-aggregate framework for differential privacy [49].

GUPT allows analysts to specify the target accuracy of the

output, and compute privacy from it—or vice versa. This

approach has inspired several of the subsequent works and

also our design. The limitations of GUPT are that it supports

only analyses that fit in the sample-and-aggregate framework,

and it supports only confidence intervals estimates expressed

at the level of individual queries. In contrast, DPella supports

analyses of a more general class, such as the ones we discussed

in Section II and Section V, and it also allows to reason about

the accuracy of combined queries, rather that just about the

individual ones. PSI [17] offers to the data analyst an interface
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for selecting either the level of accuracy that she wants to

reach, or the level of privacy she wants to impose. The error

estimates that PSI provides are similar to the ones that are

supported in DPella. However, similarly to GUPT, PSI supports

only a limited set of transformations and primitives, it supports

only confidence intervals at the level of individual queries, and

in its current form it does not allow analysts to submit their

own (programmed) queries.

APEx [18] has similar goals as DPella and it allows data

analysts to write queries as SQL-like statements. However, the

model that APEx uses is different from DPella’s. It supports

three kind of queries: WCQ (counting queries), ICQ (iceberg

counting queries), and TCQ (top-k counting queries). To answer

WCQ queries, APEx uses the matrix mechanism (recall Section

V) and applies a Monte Carlo simulations to achieve accuracy

bounds in terms of α and β, and to determine the least privacy

parameter (ε) that fits those bounds. We have shown how DPella

can be used to answer queries based on the identity strategies

using partition and concentration bounds. To answer effectively

different workloads and strategies as well as ICQ and TCQ

queries, we would need to extend DPella with the matrix

mechanism as a black-box (recall Section VI). While APEx

supports advanced query strategies, it does not provide means

to reason about combinations of analyses, e.g., it does not

support reasoning about the accuracy of a query using results

from WCQs queries to perform TCQs ones. DPella instead

has been designed specifically to support the combination of

different queries. As we discussed in Section VI, DPella can

be seen as a programming environment that could be combined

with some of the analyses supported by tools similar to PSI,

GUPT or APEx in order to reason about the accuracy of the

combined queries.

Formal Calculi for DP: There are several works on enforcing

differential privacy relying on different models and techniques.

Within this group are Fuzz [4]—a programming language

which enforces (pure) differential privacy of computations

using a linear type system which keeps track of program

sensitivity—and its derivatives DFuzz [6], Adaptive Fuzz [10],

Fuzzi [13], and Duet [50]. Hoare2 [7], a programming language

which enforces (pure or approximate) differential privacy using

program verification, together with its extension PrivInfer [8]

supporting differentially private Bayesian programming; and

other systems using similar ideas [43, 51, 9, 52].

Barthe et al. [29] devise a method for proving differential

privacy using Hoare logic. Their method uses accuracy bounds

for the Laplace Mechanism for proving privacy bounds of the

Propose-Test-Release Mechanism, but cannot be used to prove

accuracy bounds of arbitrary computations. Later, Barthe et

al. [22] develop a Hoare-style logic, named aHL, internalizing

the use of the union bound for reasoning about probabilistic

imperative programs. The authors show how to use aHL for

reasoning in a mechanized way about accuracy bounds of

several basic techniques such as report-noisy-max, sparse vector

and MWEM. This work has largely inspired our design of

DPella but with several differences. First, aHL mixes the

reasoning about accuracy with the more classical Hoare-style

reasoning. This choice makes aHL very expressive but difficult

to automate. DPella instead favors automation over expressivity.

As discussed before, the use of DPella to derive accuracy bound

is transparent to a programmer thanks to its automation. On

the other hand, there are mechanisms that can be analyzed

using aHL and cannot be analyzed using DPella, e.g. adaptive

online algorithms. Second, aHL supports only reasoning about

accuracy but it does not support reasoning about privacy. This

makes it difficult to use aHL for reasoning about the privacy-

accuracy trade-offs. Finally, aHL supports only reasoning using

the union bound and it does not support reasoning based

on the Chernoff bound. This makes DPella more precise

on the algorithms that can be analyzed using the Chernoff

Bound. Barthe et al [53] use aHL, in combination with a logic

supporting reasoning by coupling, to verify differentially private

algorithms whose privacy guarantee depends on the accuracy

guarantee of some sub-component. We leave exploring this

direction for future works. More recently, Smith et al. [27]

propose an automated approach for computing accuracy bounds

of probabilistic imperative programs. This work shares some

similarities with our. However, it does not support reasoning

about privacy, and it only uses the Union Bound and do not

attempt to reason about probabilistic independence to obtain

tighter bounds.

Other works: In a recent work, Ligett et al. [54] propose

a framework for developing differentially private algorithms

under accuracy constraints. This allows one to chose a given

level of accuracy first, and then finding the private algorithm

meeting this accuracy. This framework is so far limited to

empirical risk minimization problems and it is not supported

by a system, yet.

VIII. CONCLUSIONS

DPella is a programming framework for reasoning about

privacy, accuracy, and their trade-offs. DPella uses taint analysis

to detect probabilistic independence and derive tighter accuracy

bounds using Chernoff bounds. We believe the principles behind

DPella, i.e., the use of concentration bounds guided by taint

analysis, could generalize for more notions of privacy such

as Renyi-DP [55], concentrated differential privacy [56], zero

concentrated differential privacy [57], or truncated concentrated

differential privacy [58] (as done with (ε, δ)-DP). As future

work, we envision lifting the restriction that programs should

not branch on query outputs.

ACKNOWLEDGMENT

We thank the anonymous reviewers for constructive feedback

on an earlier version of this work. We would like to thank

Gilles Barthe for early feedback on the development of DPella.

This work was initiated by a STINT Initiation grant (IB 2017-

77023) and supported by the Swedish Foundation for Strategic

Research (SSF) under the project Octopi (Ref. RIT17-0023)

and WebSec (Ref. RIT17-0011) as well as the Swedish research
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APPENDIX

A. Primitive dpPart and disjoint datasets

1 q :: ε → [Color ] → Data 1 Double
2 → Query (Map Color Double)
3 q eps bins dataset = dpPart id dataset dps
4 where dps = fromList [(c, λds → dpCount eps dataset)
5 -- dps = fromList [(c, λds → dpCount eps ds
6 | c ← bins ]

Fig. 10: DP-histograms by using dpPart

We present the code in Figure 10. Query q produces a ε-
DP histogram of the colors found in the argument dataset,

which rows are of type Color and variable bins enumerates

all the possible values of such type. The code partitions the

dataset by using the function id ::Color → Color (line 2) and

executes the aggregation counting query (dpCount) in each

partition (line 3)—function fromList creates a map from a

list of pairs. The attentive reader could notice that dpCount

is applied to the original dataset rather than the partitions.

This type of errors could lead to break privacy as well as

inconsistencies when estimating the required privacy budget.

A correct implementation consists on executing dpCount on

the corresponding partition as shown in the commented line 4.

The IFC analysis assigns the provenance of dataset in

q to the top-level fragment of the query rather than to sub-

queries executed in each partition—and DPella will raise an

error at compile time when ds is accessed by the sub-queries!

Instead, if we comment line 3 and uncomment line 4, the

query q is successfully run by DPella (when there is enough

privacy budget) since every partition is only accessing their

own partitioned data (denoted by variable ds).

B. Taint analysis example

Figure 11 presents the query plan totalCount which

adds the results of hundred dpCount queries over different

datasets, namely ds1, ds2, . . . , ds100. (The ... denotes code

intentionally left unspecified.) The code calls the primitive add

with the results of calling dpCount. (We use [x1, x2, x3 ] to

denote the list with elements x1, x2, and x3.) What would it

be then the theoretical error of totalCount? The accuracy

calculation depends on whether all the values are untainted

in line 7. When no dependencies are detected between v1, v2,

. . . , v100, namely all the values are untainted, DPella applies

Chernoff bound in order to give a tighter error estimation.

Instead, for instance, if v3 were computed as an aggregation
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1 totalCount :: Query (Value Double)
2 totalCount = do
3 v1 ← dpCount 0.3 ds1
4 v2 ← dpCount 0.25 ds2
5 ...
6 v100 ← dpCount 0.5 ds100
7 return (add [v1, v2, . . , v100 ])

Fig. 11: Combination of sub-queries results

NORM-INF

vj = S[iCDFj, sj, tsj]
iCDF = λβ → max {|iCDFj(β

n
)|}j=1...n

norm∞ [v1, v2, ..., vn ]� S[iCDFM, 0, ∅]

NORM-1

vj = S[iCDFj, sj, tsj] iCDF = λβ →
n∑

j=1

|iCDFj(β
n
)|

norm1 [v1, v2, ..., vn ]� S[iCDF, 0, ∅]

Fig. 12: Calculation of norms

of v1 and v2, e.g., let v3 = add [v1, v2 ], then line 7 applies

union bound since v3 is a tainted value. With taint analysis,

DPella is capable to detect dependencies among terms of

type Value Double, and leverages that information to apply

different concentrations bounds.

C. Norms calculation

Figure 12 shows our static analysis when computing norm∞
and norm1, respectively. There is nothing special about the

rules except to note that the results are symbolic values which

are tainted. The reason for that is that norms are designed to

condense (in one measure) the error of the list of the arguments.

By doing so, it is hard to assign an specific Laplace distribution

with sensitivity s to the overall given vector. We simply say

that the return symbolic values are tainted—thus they can only

be aggregated by ADD-UNION in Figure 7.

D. Accuracy for dpMax

Figure 13 shows the iCDF computed by dpMax, which aligns

with the one appearing in [22]. Observe that the return value

is tainted. The reason for that relies in the fact that the result,

which is one of the responses in res, contains no noise—it is

rather the process that lead to determining the winning response

which has been “noisy.” In this light, no scale of noise nor

distribution can be associated to the response—as we did, for

instance, with dpCount.

DPCOUNT

ds :: Data 1 r iCDF = λβ → 4

ε
· log(length res

β
)

dpMax ε res vote ds� S[iCDF, 0, ∅]

Fig. 13: iCDF implemented by dpMax

DPCOUNT

ds :: Data s r σ = s · 1 ·
√

2 · log(1.25/δ)/ε
iCDF = λβ → σ ·

√
2 · log(2/β) t fresh

dpCount ε ds� S[iCDF, σ2, {t}]
Fig. 14: Accuracy analysis for aggregations

CHERNOFF-BOUND

vj = S[iCDFj, sj, tsj]
iCDF = λβ →

√
2 ·∑n

j=1 sj · log (1/β)
cb [v1, v2, ..., vn ]� iCDF

ADD-CHERNOFF-UNION

vj = S[iCDFj, sj, tsj] (∀j · tsj 
= ∅) ⋂
j=1...n tsj = ∅

iCDF = λβ → min (ub [v1, v2, ..., vn ] β) (cb [v1, v2, ..., vn ] β)

add [v1, v2, ..., vn ]� S[iCDF,∑n

j=1 sj,
⋃

j=1...n tsj]

Fig. 15: Calculation of concentration bounds

E. Accuracy of Gaussian mechanism

For Q : db → R an arbitrary function with sensitivity ΔQ

as defined in II.2, the Gaussian mechanism with parameter σ
add noise scaled to N (0, σ2) to its output.

Theorem A.1 (Gaussian Mechanism [59]). For any ε, δ ∈
(0, 1), the Gaussian output perturbation mechanism with stan-
dard deviation σ = ΔQ

√
2 log( 1.25δ )/ε is (ε, δ)-differentially

private

Definition A.1 (Accuracy for the Gaussian mechanism). Given
a randomized query Q̃(·) : db → R implemented with the
Gaussian mechanism as previously described, we have that

Pr
[
|Q̃(D)−Q(D)| > σ

√
2 log (2/β)

]
� β (6)

Figure 15 shows how concentration bounds are applied

for the case of the Gaussian mechanism—UNION-BOUND

and ADD-UNION are omitted since they are the same as

the ones in Figure 7. In general, the accuracy analysis for

addition of aggregations follows the one presented in Section IV.

The main difference is seen when adding independent values.

In this case, we use the well-known fact the addition of

independent normally distributed random variables is also

normally distributed. This means that after executing the ADD-

CHERNOFF-UNION we do not lose information about the

distribution of our result as we used to do under the Laplacian

setting.

F. Privacy and accuracy trade-off analysis in DPella

We study histograms with certain hierarchical structure

(commonly seen in Census Bureaus analyses) where different

accuracy requirements are imposed per level and where

varying one privacy or accuracy parameter can have a cascade
impact on the privacy or accuracy of others. We consider the

scenario where we would like to generate histograms from the
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Adult database9 to perform studies on gender balance. The

information that we need to mine is not only an histogram

of the genders (for simplicity, just male and female) but also

how the gender distributes over age, and within that, how

age distributes over nationality—thus exposing a hierarchical

structure of three levels.

1 hierarchical1 [e1, e2, e3 ] dat = do
2 -- h1 :: Map Gen (Value Double)
3 -- h2 :: Map (Gen, Age) (Value Double)
4 -- h3 :: Map (Gen, Age, Nationality) (Value Double)

5 h1 ← byGen e1 dat
6 h2 ← byGenAge e2 dat
7 h3 ← byGenAgeNat e3 dat
8 return (h1, h2, h3)

(a) Hierarchical histogram I: distribute budget among the levels

9 hierarchical2 e dat = do
10 h3 ← byGenAgeNat e dat
11 h2 ← level2 h3
12 h1 ← level1 h3
13 return (h1, h2, h3)

(b) Hierarchical histogram II: spend budget only on the most
detailed histogram

Fig. 16: Implementation of hierarchical histograms

Our first approach is depicted in Figure 16a, where query

hierarchical1 generates three histograms with different

levels of details. This query puts together the results produced

by queries byGen, byGenAge, and byGenAgeNationality

where each query generates an histogram of the specified set

of attributes. Observe that these sub-queries are called with

potentially different epsilons, namely e1, e2, and e3, then

under sequential composition, we expect hierarchical1 to

be e1+e2+e3-differentially private.
We proceed to explore the possibilities to tune the privacy

and accuracy parameters to our needs. In this case, we want

a confidence of 95% for accuracy, i.e., β = 0.05, with a total

budget of 3 (ε = 3). We could manually try to take the budget

ε = 3 and distribute it to the different histograms in many

different ways and analyze the implication for accuracy by

calling accuracy on each sub-query. Instead, we write a small

(simple, brute force) optimizer in Haskell that splits the budget

uniformly among the queries, i.e., e1 = 1, e2 = 1, and e3 = 1,

and tries to find the minimum epsilon that meets the accuracy

demands per histogram. In other words, we are interested

in minimizing the privacy loss at each level bounding the

maximum accepted error. The optimizer essentially adjusts the

different epsilons and calls accuracy during the minimization

process. To ensure termination, the optimizer aborts after a

fixed number of calls to accuracy, or when the local budget

ei is exhausted.
Table II shows some of our findings. The first row shows

what happens when we impose an error of 100 at every level

9https://archive.ics.uci.edu/ml/datasets/adult

Histogram α tolerance Status ε α
byGen 100 � 0.06 61.48
byGenAge 100 � 0.06 96.13
byGenAgeNat 100 � 0.11 85.74
byGen 10 � 0.41 8.99
byGenAge 50 � 0.16 36.05
byGenAgeNat 5 × MaxBud 1 9.43
byGen 5 � 0.76 4.85
byGenAge 5 × MaxBud 1 5.76
byGenAgeNat 10 � 0.96 9.82

TABLE II: Budgeting with α tolerances, β = 0.05, & total

ε = 3

of detail, i.e., each bar in all the histograms could be at most

+/ − 100 off. Then, we only need to spend a little part of

our budget—the optimizer finds the minimum epsilons that

adheres to the accuracy constrains. Instead, the second row

shows that if we ask to be gradually more accurate on more

detailed histograms, then the optimizer could fulfill the first

two demands and aborted on the most detailed histogram

(byGenAgeNat) since it could not find an epsilon that fulfills

that requirement—the best we can do is spending all the budget

and obtain and error bound of 9.43. Finally, the last row shows

what happens if we want gradually tighter error bounds on the

less detailed histograms. In this case, the middle layer can be

“almost” fulfilled by expending all the budget and obtaining an

error bound of 5.76 instead of 5. While the results from Table

II could be acceptable for some data analysts, they might not

be for others.

We propose an alternative manner to implement the same

query which consists on spending privacy budget only for

the most detailed histogram. As shown in Figure 16b, this

new approach spends all the budget e on calling h3 ←
byGenAgeNat e dat. Subsequently, the algorithm builds the

other histograms based on the information extracted from the

most detailed one. For that, we add the noisy values of h3
(using helper functions level2 and level1) creating the rest of

the histograms representing the Cartesian products of gender

and age, and gender, respectively. These methodology will

use add and norm∞ to compute the derived histograms, and

therefore will not consume more privacy budget. Observe that

the query proceeds in a bottom-up fashion, i.e., it starts with the

most detailed histogram and finishes with the less detailed one.

Now that we have two implementations, which one is better?

Which one yields the better trade-offs between privacy and

accuracy? Figure 17 shows the accuracy of the different level

of histograms, i.e., h1, h2, and h3, when fixing β = 0.05 and

a global budget of ε = 1 (h1-ε1, h2-ε2, and h3-ε3) and ε = 3
(h1-ε3, h2-ε3, and h3-ε3)—we obtained all this information by

running repetitively the function accuracy. Form the graphics,

we can infer that the splitting of the privacy budget per level

often gives rise to more accurate histograms. However, observe

the exception when ε = 3 for hierarchical2: in this case,

hierarchical1 will use an ε = 1 in that histogram so it will

receive a more noisy count than using ε = 3.

427



h1-ε1 h2-ε1 h3-ε1 h1-ε3 h2-ε3 h3-ε3

50

100

11 17
29

4 6 9

105

45

9

35
15

3

α

hierarchical1
hierarchical2

h1 = byGen, h2 = byGenAge, h3 = byGenAgeNat

Fig. 17: hierarchical1 vs. hierarchical2

G. K-way marginal queries on synthetic data

We focus on the problem of releasing, in a differentially

private manner, the k-way marginals of a binary dataset D ∈
(0, 1d)n. This is a classical learning problem that has been

extensively studied in the DP literature, see [60, 61, 62]

among others. A k-marginal query, also called a k-conjunction,

returns the count of how many individual records in D have

k < d attributes set to certain values. For simplicity, we focus

on 3-way marginal queries to compare performance between

DPella and using synthetic data. The goal of our analysis is to

release all the 3-way marginals of a dataset.
This is implemented through the following code:

1 -- Perform all 3-way combinations up to attribute dim

2 allChecks :: ε → Int → Data s {0, 1}d
3 → [Query (Value Double)]
4 allChecks localEps dim db = do
5 (i, j, k) ← combinatory (dim-1) 3
6 let allOne r = (r !! i) ≡ (r !! j) ≡ (r !! k) ≡ 1
7 return (do tab ← dpWhere allOne db
8 dpCount localEps tab
9 )

10 -- Compute k-way marginals

11 threeMarginal :: ε → Int → Data s {0, 1}d
12 → Query (Value [Double ])
13 threeMarginal localEps dim db = do
14 checks ← sequence (allChecks localEps dim db)
15 return (norm∞ checks)

Function allChecks counts how many records have 3-

attributes set to 1. Auxiliary function combinatory d k

generates k-tuples arising from the combination of indexes

0, 1, . . . , d taken k at the time. In our example, the number

of generated tuples is
(
dim
3

)
. For each tuple, allChecks

filters the rows which have attributes i, j, and k set to

1 (dpWhere allOne db) for then making a noisy count

(dpCount localEps tab). Function threeMarginal collects

the counts for the different considered attributes and places

them into a vector (norm∞ checks).

We run threeMarginal considering a synthetic dataset (db)

which has only 1 row with all the attributes set to zeros. Setting

all the attributes to zero produces that all the counts are 0, thus

we are able to measure the noisy on each run and accuracy

accordingly. We run threeMarginal approx. 1000 times for

each dimension to measure the noisy magnitude, where we
took the 1-β percentile with β = 0.05 (as we did in many

of our case studies). Notice that we have
(
dim
3

)
queries and

so
(
dim
3

)
independent sources of noise, which need an high

number of runs to be well-represented. In general, for this kind

of task one is interested in bounding the max error that can

occur in one of the queries (the �∞ norm over the output). For

this task, the empirical error is well aligned with the theoretical

one provided by DPella by calling the function accuracy. The

latter is computed by taking a union bound over the error of

each individual query. For each query we have a tight bound

and the union bound gives us a tight bound over the max.

However, we observe a significant different in performance.
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10−6

10−2

102

Dimension (dim)

Time(seconds)

accuracy

synthetic

Fig. 18: Performance comparison between accuracy (DPella)

and estimating errors using synthetic analysis

Figure 18 shows (in log scale) the time difference when

calculating accuracy by DPella and on synthetic data when the

dimension of the dataset increases. Already in low dimension,

the difference in performance is many orders of magnitude in

favor of DPella—a tendency which does not change when the

dimension goes above 20. The main reason for that comes down

to that DPella, as an static analysis, do not execute the filtering

dpWhere allOne db (as well as any other transformation,

recall Section IV-B) which an approach based on synthetic

data should do and many times—in our case 1000 iterations

for each dimension. We expect that for more complex tasks

this difference is even more evident.
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