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Abstract—The recent Spectre attack first showed how to inject
incorrect branch targets into a victim domain by poisoning
microarchitectural branch prediction history. In this paper, we
generalize injection-based methodologies to the memory hierar-
chy by directly injecting incorrect, attacker-controlled values into
a victim’s transient execution. We propose Load Value Injection
(LVI) as an innovative technique to reversely exploit Meltdown-
type microarchitectural data leakage. LVI abuses that faulting
or assisted loads, executed by a legitimate victim program, may
transiently use dummy values or poisoned data from various
microarchitectural buffers, before eventually being re-issued by
the processor. We show how LVI gadgets allow to expose
victim secrets and hijack transient control flow. We practically
demonstrate LVI in several proof-of-concept attacks against Intel
SGX enclaves, and we discuss implications for traditional user
process and kernel isolation.

State-of-the-art Meltdown and Spectre defenses, including
widespread silicon-level and microcode mitigations, are orthog-
onal to our novel LVI techniques. LVI drastically widens the
spectrum of incorrect transient paths. Fully mitigating our
attacks requires serializing the processor pipeline with lfence
instructions after possibly every memory load. Additionally and
even worse, due to implicit loads, certain instructions have to
be blacklisted, including the ubiquitous x86 ret instruction.
Intel plans compiler and assembler-based full mitigations that
will allow at least SGX enclave programs to remain secure
on LVI-vulnerable systems. Depending on the application and
optimization strategy, we observe extensive overheads of factor
2 to 19 for prototype implementations of the full mitigation.

I. INTRODUCTION

Recent research on transient-execution attacks has been

characterized by a sharp split between on the one hand Spectre-

type misspeculation attacks, and on the other hand, Meltdown-

type data extraction attacks. The first category, Spectre-type

attacks [4, 23, 38, 39, 44], trick a victim into transiently

diverting from its intended execution path. Particularly, by

poisoning the processor’s branch predictor machinery, Spectre

adversaries steer the victim’s transient execution to gadget code

snippets, which inadvertently expose secrets through the shared

microarchitectural state. Importantly, Spectre gadgets execute

entirely within the victim domain and can hence only leak

architecturally accessible data.

The second category consists of Meltdown-type attacks [9,

42, 53, 57, 61, 67, 70], which target architecturally inaccessible

data by exploiting illegal data flow from faulting or assisted

instructions. Particularly, on vulnerable processors, the results

of unauthorized loads are still forwarded to subsequent transient

operations, which may encode the data before an exception

is eventually raised. Over the past year, delayed exception

handling and microcode assists have been shown to transiently

expose data from various microarchitectural elements (i.e., L1D

cache [42, 61], FPU register file [57], line-fill buffer [42, 53,

67], store buffer [9], and load ports [29, 67]). Unlike Spectre-

type attacks, a Meltdown attacker in one security domain can

directly exfiltrate architecturally inaccessible data belonging to

another domain (e.g., kernel memory). Consequently, existing

Meltdown mitigations focus on restricting the attacker’s point

of view, e.g., placing victim data out of reach [20], flushing

buffers after victim execution [25, 29], or zeroing unauthorized

data flow directly at the silicon level [28].
Given the widespread deployment of Meltdown countermea-

sures, including changes in operating systems and CPUs, we

ask the following fundamental questions in this paper:

Can Meltdown-type effects only be used for leakage or also
for injection? Would current hardware and software defenses
suffice to fully eradicate Meltdown-type threats based on illegal
data flow from faulting or assisted instructions?

A. Our Results and Contributions
In this paper, we introduce an innovative class of Load

Value Injection (LVI) attack techniques. Our key contribution

is to recognize that, under certain adversarial conditions,

unintended microarchitectural leakage can also be inverted

to inject incorrect data into the victim’s transient execution.

Being essentially a “reverse Meltdown”-type attack, LVI abuses

that a faulting or assisted load instruction executed within a

victim domain does not always yield the expected result, but

may instead transiently forward dummy values or (attacker-

controlled) data from various microarchitectural buffers. We

consider attackers that can either directly or indirectly induce

page faults or microcode assists during victim execution. LVI

provides such attackers with a primitive to force a legitimate
victim execution to transiently compute on “poisoned” data

(e.g., pointers, array indices) before the CPU eventually detects

the fault condition and discards the pending architectural

state changes. Much like in Spectre attacks, LVI relies on

“confused deputy” code gadgets surrounding the faulting or

assisted load in the victim to hijack transient control flow and

disclose information. We are the first to combine Meltdown-

style microarchitectural data leakage with Spectre-style code
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TABLE I. Characterization of known side-channel and transient-execution
attacks in terms of targeted microarchitectural predictor or data buffer (vertical
axis) vs. leakage- or injection-based methodology (horizontal axis). The LVI
attack plane, first explored in this paper, is indicated on the lower right and
applies an injection-based methodology known from Spectre attacks (upper
right) to reversely exploit Meltdown-type data leakage (lower left).

μ-Arch Buffer
Methodology

Leakage Injection

Pr
ed

ic
tio

n
hi

st
or

y

PHT BranchScope [15], Bluethunder [24] Spectre-PHT [38]

BTB SBPA [1], BranchShadow [40] Spectre-BTB [38]

RSB Hyper-Channel [8] Spectre-RSB [39, 44]

STL — Spectre-STL [23]
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ta L1D Meltdown [42] LVI-NULL

L1D Foreshadow [61] LVI-L1D

FPU LazyFP [57] LVI-FPU

SB Fallout [9] LVI-SB

LFB/LP ZombieLoad [53], RIDL [67] LVI-LFB/LP

gadget abuse to compose a novel type of transient load value

injection attacks.

Table I summarizes how Spectre [38] first applied an

injection-based methodology to invert prior branch prediction

side-channel attacks, whereas LVI similarly shows that recent

Meltdown-type microarchitectural data leakage can be reversely

exploited. Looking at Table I, it becomes apparent that Spectre-

style injection attacks have so far only been applied to auxiliary

history-based branch prediction and dependency prediction

buffers that accumulate program metadata to steer the victim’s

transient execution indirectly. Our techniques, on the other

hand, intervene much more directly in the victim’s transient

data stream by injecting erroneous load values straight from

the CPU’s memory hierarchy, i.e., intermediate load and store

buffers and caches.

These fundamentally different microarchitectural behaviors

(i.e., misprediction vs. illegal data flow) also entail that LVI

requires defenses that are orthogonal and complementary to

existing Spectre mitigations. Indeed, we show that some of

our exploits can transiently redirect conditional branches, even

after the CPU’s speculation machinery correctly predicted the

architectural branch outcome. Furthermore, since LVI attacks

proceed entirely within the victim domain, they remain intrin-

sically immune to widely deployed software and microcode

Meltdown mitigations that flush microarchitectural resources

after victim execution [25, 29]. Disturbingly, our analysis

reveals that even state-of-the-art hardened Intel CPUs [28], with

silicon changes that zero out illegal data flow from faulting or

assisted instructions, do not fully eradicate LVI-based threats.

Our findings challenge prior views that, unlike Spectre,

Meltdown-type threats could be eradicated straightforwardly at

the operating system or hardware levels [10, 18, 22, 45, 72].

Instead, we conclude that potentially every illegal data flow in

the microarchitecture can be inverted as an injection source

to purposefully disrupt the victim’s transient behavior. This

observation has profound consequences for reasoning about

secure code. We argue that depending on the attacker’s

capabilities, ultimately, every load operation in the victim may

potentially serve as an exploitable LVI gadget. This is in sharp

contrast to prior Spectre-type effects that are contained around

clear-cut (branch) misprediction locations.

Successfully exploiting LVI requires the ability to induce

page faults or microcode assists during victim execution. We

show that this requirement can be most easily met in Intel

SGX environments, where we develop several proof-of-concept

attacks that abuse dangerous real-world gadgets to arbitrarily

divert transient control flow in the enclave. We furthermore

mount a novel transient fault attack on AES-NI to extract full

cryptographic keys from a victim enclave. While LVI attacks

in non-SGX environments are generally much harder to mount,

we consider none of the adversarial conditions for LVI to be

unique to Intel SGX. We explore consequences for traditional

process isolation by showing that, given a suitable LVI gadget

and a faulting or assisted load in the kernel, arbitrary supervisor

memory may leak to user space. We also show that the same

vector could be exploited in a cross-process LVI attack.

Underlining the impact and the practical challenges arising

from our findings, Intel plans to mitigate LVI by extensive

revisions at the compiler and assembler levels to allow at

least compilation of SGX enclaves to remain secure on LVI-

vulnerable systems. Particularly, fully mitigating LVI requires

introducing lfence instructions to serialize the processor

pipeline after possibly every memory load operation. Addi-

tionally, certain instructions featuring implicit loads, including

the pervasive x86 ret instruction, should be blacklisted and

emulated with equivalent serialized instruction sequences. We

observe extensive performance overheads of factor 2 to 19 for

our evaluation of prototype compiler mitigations, depending

on the application and whether lfences were inserted by an

optimized compiler pass or through a naive post-compilation

assembler approach.

In summary, our main contributions are as follows:

• We show that Meltdown-type data leakage can be inverted

into a Spectre-like Load Value Injection (LVI) primitive.

LVI transiently hijacks data flow, and thus control flow.

• We present an extensible taxonomy of LVI-based attacks.

• We show the insufficiency of silicon changes in the latest

generation of acclaimed Meltdown-resistant Intel CPUs

• We develop practical proof-of-concept exploits against Intel

SGX enclaves, and we discuss implications for traditional

kernel and process isolation in the presence of suitable LVI

gadgets and faulting or assisted loads.

• We evaluate compiler mitigations and show that a full

mitigation incurs a runtime overhead of factor 2 to 19.

B. Responsible Disclosure and Impact

We responsibly disclosed LVI to Intel on April 4, 2019.

We also described the non-Intel-specific parts to ARM and

IBM. To develop and deploy appropriate countermeasures, Intel

insisted on a long embargo period for LVI, namely, until March

10, 2020 (CVE-2020-0551, Intel-SA-00334). Intel considers

LVI particularly severe for SGX and provides a compiler and

assembler-based full mitigation for enclave programs, described

and evaluated in Section IX. Intel furthermore acknowledged
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Fig. 1. Overview of an x86 page-table entry and attributes that may trigger
architectural page fault exceptions (red bold) or microcode assists (green italic).
Attributes that are periodically cleared by some OS kernels are underlined; all
other fields can only be modified by privileged attackers.

that LVI may in principle be exploited in non-SGX user-

to-kernel or process-to-process environments and suggested

addressing by manually patching any such exploitable gadgets

upon discovery.

We also contacted Microsoft, who acknowledged the rel-

evance when paging out kernel memory and continues to

investigate the applicability of LVI to the Windows kernel.

Microsoft likewise suggested addressing non-SGX scenarios

by manually patching any exploitable gadgets upon discovery.

II. BACKGROUND

A. CPU Microarchitecture

In a complex instruction set architecture (ISA) such as Intel

x86 [31] instructions are decoded into RISC-like micro-ops.

The CPU executes micro-ops from the reorder buffer out of

order when their operands become available but retires micro-

ops in order. Modern CPUs perform history-based speculation

to predict branches and data dependencies ahead of time.

While the CPU implements the most common fast-path logic

directly in hardware, certain corner cases are handled by

issuing a microcode assist [13, 17]. In such a corner case,

the CPU flags the corresponding micro-op to be re-issued

later as a microcode routine. When encountering exceptions,

misspeculations, or microcode assists, the CPU pipeline is

flushed, and any outstanding micro-op results are discarded

from the reorder buffer. This rollback ensures that the results of

unintended transient instructions, which were wrongly executed

ahead of time, are never visible at the architectural level.

Address translation: Modern CPUs use virtual addresses

to isolate concurrently running tasks. A multi-level page-table

hierarchy is set up by the operating system (OS) or hypervisor

to translate virtual to physical addresses. The lower 12 address

bits are the index into a 4 KB page, while higher address

bits index a series of page-table entries (PTEs) that ultimately

yield the corresponding physical page number (PPN). Figure 1

overviews the layout of an Intel x86 PTE [13, 32]. Apart from

the physical page number, PTEs also specify permission bits to

indicate whether the page is present, accessible to user space,

writable, or executable.

The translation lookaside buffer (TLB) caches recent address

translations. Upon a TLB miss, the CPU’s page-miss handler

performs a page-table walk and updates the TLB. The CPU’s

TLB miss handler circuitry is optimized for the fast path, and

delegates more complex operations, e.g., setting of “accessed”

and “dirty” PTE bits, using microcode assists [17]. Depending

on the permission bits, a page fault (#PF) may be raised to

abort the memory operation and redirect control to the OS.
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Fig. 2. Overview of the memory hierarchy in modern x86 microarchitectures.

Memory hierarchy: Superscalar CPUs consist of multiple

physical cores connected through a bus interconnect to the

memory controller. As the main memory is relatively slow,

the CPU uses a complex memory subsystem (cf. Figure 2),

including various caches and buffers. On Intel CPUs, the L1

cache is the fastest and smallest, closest to the CPU, and split

into a separate unit for data (L1D) and instructions (L1I). L1D

is usually a 32 KB 8-way set-associative cache. It is virtually-

indexed and physically-tagged, such that lookups can proceed

in parallel to address translation. A cache line is 64 bytes, which

also defines the granularity of memory transactions (load and

store) through the cache hierarchy. To handle various sized

memory operations, L1D is connected to a memory-order buffer

(MOB), which is interfaced with the CPU’s register files and

execution units through dedicated load ports (LPs).

The MOB includes a store buffer (SB) and load buffer (LB),

plus various dependency prediction and resolution circuits to

safeguard correct ordering of memory operations. The SB keeps

track of outstanding store data and addresses to commit stores

in order, without stalling the pipeline. When a load entry in LB

is predicted to not depend on any prior store, it is executed out

of order. If a store-to-load (STL) dependency is detected, the

SB forwards the stored data to the dependent load. However, if

the dependency of a load and preceding stores is not predicted

correctly, these optimizations may lead to situations where

the load consumes either stale data from the cache or wrong

data from the SB while the CPU reissues the load to obtain

the correct data. These optimizations within the MOB can

undermine security [9, 23, 35].

Upon on L1D cache miss, data is fetched from higher levels

in the memory hierarchy via the line-fill buffer (LFB), which

keeps track of outstanding load and store requests without

blocking the L1D cache. The LFB retrieves data from the

next cache levels or main memory and afterward updates the

corresponding cache line in L1D. An “LFB hit” occurs if the

CPU has a cache miss for data in a cache line that is in the

LFB. Furthermore, uncacheable memory and non-temporal

stores bypass the cache hierarchy using the LFB.

B. Intel SGX

Intel Software Guard Extensions (SGX) [13] provides

processor-level isolation and attestation for secure “enclaves”

in the presence of an untrusted OS. Enclaves are contained in

the virtual address space of a conventional user-space process,

and virtual-to-physical address mappings are left under explicit
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control of untrusted system software. To protect against active

address remapping attackers [13], SGX maintains a shadow

entry for every valid enclave page in the enclave page-cache

map (EPCM) containing amongst others the expected virtual

address. Valid address mappings are cached in the TLB, which

is flushed upon enclave entry, and a special EPCM page fault

is generated when encountering an illegal virtual-to-physical

mapping (cf. Appendix A).

However, previous work showed that Intel SGX root attackers

can mount high-resolution, low-noise side-channel attacks

through the cache [7, 46, 52], branch predictors [15, 24, 40],

page-table accesses [63, 65, 71], or interrupt timing [64]. In

response to recent transient-execution attacks [11, 53, 61, 67],

which can extract enclave secrets from side-channel resistant

software, Intel released microcode updates which flush microar-

chitectural buffers on every enclave entry and exit [25, 29].

C. Transient-Execution Attacks

Modern processors safeguard architectural consistency by

discarding the results of any outstanding transient instructions

when flushing the pipeline. However, recent research on

transient-execution attacks [38, 42, 61] revealed that these

unintended transient computations may leave secret-dependent

traces in the CPU’s microarchitectural state, which can be

subsequently recovered through side-channel analysis. Follow-

ing a recent classification [10], we refer to attacks exploiting

misprediction [23, 37, 38, 39, 44] as Spectre-type, and attacks

exploiting transient execution after a fault or microcode

assist [9, 42, 53, 57, 61, 67] as Meltdown-type.

Meltdown-type attacks extract unauthorized program data

across architectural isolation boundaries. Over the past years,

faulting loads with different exception types and microcode

assists have been demonstrated to leak secrets from intermediate

microarchitectural buffers in the memory hierarchy: the L1 data

cache [42, 61, 70], the line-fill buffer and load ports [53, 67],

the FPU register file [57], and the store buffer [9, 51].

A perpendicular line of Spectre-type attacks, on the other

hand, aims to steer transient execution in the victim domain

by poisoning various microarchitectural predictors. Spectre

attacks are limited by the depth of the transient-execution

window, which is ultimately bounded by the size of the reorder

buffer [68]. Most Spectre variants [38, 39, 44] hijack the

victim’s transient control flow by mistraining shared branch

prediction history buffers prior to entering the victim domain.

Yet, not all Spectre attacks depend on branch history, e.g.,

in Spectre-STL [23] the processor’s memory disambiguation

predictor incorrectly speculates that a load does not depend on

a prior store, allowing the load to transiently execute with a

stale outdated value. Spectre-STL has for instance been abused

to hijack the victim’s transient control flow in case the stale

value is a function pointer or indirect branch target controlled

by a previous attacker input [68].

III. LOAD VALUE INJECTION

Table I summarizes the existing transient-execution attack

landscape. The Spectre family of attacks (upper right) con-

array[B] or CALL *B

Fill &A
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2
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Fig. 3. Phases in a Load Value Injection (LVI) attack: (1) a microarchitectural
buffer is filled with value A; (2) the victim executes a faulting or assisted load
to retrieve value B which is incorrectly served from the microarchitectural
buffer; (3) the injected value A is forwarded to transient instructions following
the faulting or assisted load, which may now perform unintended operations
depending on the available gadgets; (4) the CPU flushes the faulting or assisted
load together with all other transient instructions.

tributed an injection-based methodology to invert prior predic-

tion history side-channels (upper left) by abusing confused-

deputy code gadgets within the victim domain. At the same

time, Meltdown-type attacks (lower left) demonstrated cross-

domain data leakage. The LVI attack plane (lower right)

remains unexplored until now. In this paper, we adopt an

injection-based methodology known from Spectre attacks

to reversely exploit Meltdown-type microarchitectural data

leakage. LVI brings a significant change in the threat model,

similar to switching from branch history side-channels to

Spectre-type attacks. Crucially, LVI has the potential to replace

the outcome of any victim load, including implicit load micro-

ops like in the x86 ret instruction, with attacker-controlled

data. This is in sharp contrast to Spectre-type attacks, which

can only replace the outcomes of branches and store-to-load

dependencies by poisoning execution metadata accumulated in

various microarchitectural predictors.

A. Attack Overview

We now outline how LVI can hijack the result of a trusted

memory load operation, under the assumption that attackers

can provoke page faults or microcode assists for (arbitrary)

load operations in the victim domain. The attacker’s goal is

to force a victim to transiently compute on unintended data,

other than the expected value in trusted memory. Injecting such

unexpected load values forces a victim to transiently execute

gadget code immediately following the faulting or assisted load

instruction with unintended operands.

Figure 3 overviews how LVI exploitation can be abstractly

broken down into four phases.

1) In the first phase, the microarchitecture is optionally

prepared in the desired state by filling a hidden buffer

with an (attacker-controlled) value A.

2) The victim then executes a load micro-op to fetch a trusted

value B. However, in case this instruction suffers a page

fault or microcode assist, the CPU may erroneously serve

the load request from the microarchitectural buffer. This

results in incorrect forwarding of value A to dependent

transient micro-ops following the faulting or assisted load.

At this point, the attacker has succeeded in tricking the
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victim into transiently computing on the injected value A
instead of the trusted value B.

3) These unintended transient computations may subsequently

expose victim secrets through microarchitectural state

changes. Depending on the specific “gadget” code sur-

rounding the original load operation, LVI may either encode

secrets directly or serve as a transient control or data flow

redirection primitive to facilitate second-stage gadget abuse,

e.g., when B is a trusted code or data pointer.

4) The architectural results of gadget computations are even-

tually discarded at the retirement of the faulting or assisted

load instruction. However, secret-dependent traces may have

been left in the CPU’s microarchitectural state, which can

be subsequently recovered through side-channel analysis.

B. A Toy Example

Listing 1 provides a toy LVI gadget to illustrate how faulting

loads in a victim domain may trigger incorrect transient

forwarding. Our example gadget bears a high resemblance

to known Spectre gadgets but notably does not rely on branch

misprediction or memory disambiguation. Furthermore, our

gadget executes entirely within the victim domain and is hence

not affected by widely deployed microcode mitigations that

flush microarchitectural buffers on context switch. Regardless

of the prevalence of this specific toy gadget, it serves as an

initial example which is easy to understand and illustrates the

power of LVI as a generic attack primitive.

Following the general outline of Figure 3, the gadget code

in Listing 1 first copies a 64-bit value untrusted_arg
provided by the attacker into trusted memory (e.g., onto the

stack) at line 2. In the example, the argument copy is further

not used, and this store operation merely serves to bring some

attacker-controlled value into some microarchitectural buffer.

Subsequently, in the second phase of the attack, a pointer-

to-pointer trusted_ptr (e.g., a pointer in a dynamically

allocated struct) is dereferenced at line 3. We assume that, upon

the first-level pointer dereference, the victim suffers a page fault

or microcode assist. The faulting load causes the processor to

incorrectly forward the attacker’s value untrusted_arg that

was previously brought into the store buffer by the completely

unrelated store at line 2, like in a Meltdown-type attack [9].

At this point, the attacker has succeeded in replacing the

architecturally intended value at address *trusted_ptr with

her own chosen value. In the third phase of the attack, the

gadget code transiently uses untrusted_arg as the base

address for a second-level pointer dereference and uses the

result as an index in a lookup table. Similar to a Spectre

gadget [38], the lookup in array serves as the sending end

of a cache-based side-channel, allowing to encode arbitrary

memory locations within the victim’s address space.

Figure 4 illustrates how in the final phase of the attack,

after the fault has been handled and the load has been re-

issued allowing the victim to complete, adversaries can abuse

access timings to the probing array to reconstruct secrets

from the victim’s transient execution. Notably, the timing

diagram showcases two clear drops: one dip corresponds to
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Fig. 4. Access times to the probing array after the execution of Listing 1.
The dip at 68 (‘D’) is the transmission specified by the victim’s architectural
program semantics. The dip at 83 (‘S’) is the victim secret at the address
untrusted_arg injected by the attacker.

1 void call_victim(size_t untrusted_arg) {
2 *arg_copy = untrusted_arg;
3 array[**trusted_ptr * 4096];
4 }

Listing 1: An LVI toy gadget for leaking arbitrary data from a victim domain.

the architecturally intended value that was processed after the

faulting load got successfully re-issued, while the second dip

corresponds to the victim secret at the address chosen by the

attacker. This toy example hence serves as a clear illustration

of the danger of incorrect transient forwarding following a

faulting load in a victim domain. We elaborate further on

attacker assumptions and gadget requirements for different LVI

variants in Sections IV and VI respectively.

C. Difference with Spectre-type Attacks

While LVI adopts a gadget-based exploitation methodology

known from Spectre-type attacks, both attack families exploit

fundamentally different microarchitectural behaviors (i.e., incor-

rect transient forwarding vs. misprediction). We explain below

how LVI is different from and requires orthogonal mitigations

to known Spectre variants.

a) LVI vs. branch prediction: Most Spectre variants [10,

38, 39, 44] transiently hijack branch outcomes in a victim pro-

cess by poisoning various microarchitectural branch prediction

history buffers. On recent and updated systems, these buffers

are typically not simultaneously shared anymore and flushed

on context switch. Furthermore, to foil mistraining strategies

within a victim domain, hardened compilers insert explicit

lfence barriers after potentially mispredicted branches.

In contrast, LVI allows to hijack the result of any victim load

micro-op, not just branch targets. By directly injecting incorrect

values from the memory hierarchy, LVI allows data-only attacks

as well as control-flow redirection in the transient domain.

Essentially, LVI and Spectre exploit different subsequent phases

of the victim’s transient execution: while Spectre hijacks control

flow before the architectural branch outcome is known, LVI-

based control-flow redirection manifests only after the victim

attempts to fetch the branch-target address from application

memory. LVI does not rely on mistraining of any (branch)

predictor, and hence, applies even to CPUs without exploitable

prediction elements, and to systems protected with up-to-date

microcode and compiler mitigations.
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b) LVI vs. speculative store bypass: Spectre-STL [23]

exploits the memory disambiguation predictor, which may

speculatively issue a load even before all prior store addresses

are known. That is, in case a load is mispredicted to not depend

on a prior store, the store is incorrectly not forwarded and the

load transiently executes with a stale outdated value.

Crucially, while Spectre-STL is strictly limited to injecting

stale values for loads that closely follow a store to the exact

same address, LVI has the potential to replace the result of

any victim load with unrelated and possibly attacker-controlled

data. LVI therefore drastically widens the spectrum of incorrect

transient paths. As an example, the code in Listing 1 is

not in any way exposed to Spectre-STL since the store and

load operations are to different addresses, but this gadget

can still be exploited with LVI in case the load suffers a

page fault or microcode assist. Consequently, LVI is also not

affected by Spectre-STL mitigations, which disable the memory

disambiguation predictor in microcode or hardware.

c) LVI vs. value prediction: While value prediction has

already been proposed more than two decades ago [41, 69],

commercial CPUs do not implement it yet due to complexity

concerns [49]. As long as no commercial CPU supports value

speculation, Spectre-type value misprediction attacks are purely

theoretical. In LVI, there is no mistraining of any (value)

predictor, and hence, it applies to today’s CPUs already.

IV. ATTACKER MODEL AND ASSUMPTIONS

We focus on software adversaries who want to disclose

secrets from an isolated victim domain, e.g., the OS kernel,

another process, or an SGX enclave. For SGX, we assume

an attacker with root privileges, i.e., the OS is under control

of the attacker [13]. Successful LVI attacks require carefully

crafted adversarial conditions. In particular, we identify the

following three requirements for LVI exploitability:

a) Incorrect transient forwarding: As with any fault

injection attack, LVI requires some form of exploitable incorrect

behavior. We exploit that faulting or assisted loads do not al-

ways yield the expected architectural result, but may transiently

serve dummy values or poisoned data from various microarchi-

tectural buffers. There are many instances of incorrect transient

forwarding in modern CPUs [9, 10, 42, 53, 57, 61, 67]. In

this work, we show that such incorrect transient forwarding is

not limited to cross-domain data leakage. We are the first to

show cross-domain data injection and identify dummy 0x00
values as an exploitable incorrect transient forwarding source,

thereby widening the scope of LVI even to microarchitectures

that were previously considered Meltdown-resistant.

b) Faulting or assisted loads: LVI requires firstly the

ability to (directly or indirectly) provoke architectural excep-

tions or microcode assists for legitimate loads executed by

the victim. This includes implicit load micro-ops as part of

larger ISA instructions, e.g., popping the return address from

the stack in the x86 ret instruction. Privileged SGX attackers

can straightforwardly provoke page faults for enclave memory

loads by modifying untrusted page tables, as demonstrated

by prior research [65, 71]. Even unprivileged attackers can

induce demand paging non-present faults by abusing the

OS interface to unmap targeted victim pages through legacy

interfaces or contention of the shared page cache [19]. Finally,

more recent works showed that Meltdown-type effects are not
limited to architectural exceptions, but also exist for assisted

loads [9, 53, 67]. In case a microcode assist is required, the

load micro-op does not architecturally commit, but may still

transiently forward incorrect values before being re-issued as

a microcode routine. Microcode assists occur in a wide variety

of conditions, including subnormal floating point numbers and

setting of “accessed” and “dirty” PTE bits [13, 29].

c) Code gadgets: A final yet crucial requirement for LVI

is the presence of a suitable code gadget that allows to hijack the

victim’s transient execution and encode unintended secrets in

the microarchitectural state. In practice, this requirement comes

down to identifying a load operation in the victim code that

can be faulting or assisted, followed by an instruction sequence

that redirects control or data flow based on the loaded value

(e.g., a pointer, or array index). We find that there are many

different types of gadgets which mostly consist of only a few

ubiquitously used instructions. We provide practical instances

of such exploitable gadgets in Section VI.

V. BUILDING BLOCKS OF THE ATTACK

We compose transient fault-injection attacks using the three

building blocks described in the previous section and Figure 3.

A. Phase P1: Microarchitectural Poisoning

The main challenge in the first phase is to prepare the

CPU’s microarchitectural state such that a (controlled) incorrect

transient forwarding happens for the faulting load in the

second stage. We later classify LVI variants based on the

microarchitectural buffer that forwards the incorrect data.

Depending on the variant, it suffices in this phase to fill a

particular buffer (cf. Section II-A: L1D, LFB, SB, LP) with

a chosen value at a chosen location. This is not always a

requirement, as we also consider a special LVI-NULL variant

that abuses incorrect forwarding of 0x00 dummy values which

are often returned when faulting loads miss the cache, or on

Meltdown-resistant microarchitectures [28]. Such null values

are “hard wired” in the CPU, and the poisoning phase can

hence be entirely omitted for LVI-NULL attacks.

In a straightforward scenario, the shared microarchitectural

buffer can be poisoned directly from within the attacker context.

This scenario assumes, however, that said buffer is not explicitly

overwritten or flushed when switching from the attacker to the

victim domain, which is often not anymore the case with recent

software and microcode mitigations [25, 29]. Alternatively,

for buffers competitively shared among logical CPUs, LVI

attackers can resort to concurrent poisoning from a co-resident

hyperthread running in parallel to the victim [53, 61, 67].

Finally, in the most versatile LVI scenario, the attack

runs entirely within the victim domain without placing any

assumptions on prior attacker execution or co-residence. We

abuse appropriate “fill gadgets” preceding the faulting load

within the victim execution. As explored in Section VI, LVI
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variants may impose more or fewer restrictions on suitable fill

gadget candidates. The most generically exploitable fill gadget

loads or stores attacker-controlled data from or to an attacker-

chosen location, without introducing any architectural security

problem. This is a common case if attacker and victim share

an address space (enclave, user-kernel boundary, sandbox) and

exchange arguments or return values via pointer passing.

B. Phase P2: Provoking Faulting or Assisted Loads
In the second and principal LVI phase, the victim executes a

faulting or assisted load micro-op triggering incorrect transient

forwarding. The crucial challenge here is to provoke a fault or

assist for a legitimate and trusted load executed by the victim.
a) Intel SGX: When targeting Intel SGX enclaves,

privileged adversaries can straightforwardly manipulate PTEs

in the untrusted OS to provoke page-fault exceptions [71]

or microcode assists [9, 53]. Even user-space SGX attackers

can indirectly revoke permissions for enclave code and data

pages through the unprivileged mprotect system call [61].

Alternatively, if the targeted LVI gadget requires a more precise

temporal granularity, privileged SGX attackers can leverage a

single-stepping interrupt attack framework like SGX-Step [63]

to manipulate PTEs and revoke enclave-page permissions

precisely at instruction-level granularity.
b) Generalization to other environments.: In the more

general case of unprivileged cross-process, cross-VM, or

sandboxed attackers, we investigated exploitation via memory

contention. Depending on the underlying OS or hypervisor

implementation and configuration, an attacker can forcefully

evict selected virtual memory pages belonging to the victim

via legacy interfaces or by increasing physical memory utiliza-

tion [19]. The “present” bit of the associated PTE is cleared (cf.

Figure 1), and the next victim access faults. On Windows, this

can even affect the kernel heap due to demand paging [50].
Furthermore, prior research has shown that the page-

replacement algorithm on Windows periodically clears “ac-

cessed” and “dirty” PTE bits [53]. Hence, unprivileged attackers

can simply wait until the OS clears the accessed bit on the

victim PTE. Upon the next access to that page, the CPU’s

page-miss handler circuitry prematurely aborts the victim’s

load micro-op to issue a microcode assist for re-setting the

accessed bit on the victim PTE [13, 53]. Finally, even without

any OS intervention, a victim program may expose certain

load gadget instructions that always require a microcode assist

(e.g., split-cacheline accesses which have been abused to leak

data from load ports [66, 67]).

C. Phase P3: Gadget-Based Secret Transmission
The key challenge in the third LVI phase is to identify an ex-

ploitable code “gadget” exhibiting incorrect transient behavior

over poisoned data forwarded from a faulting load micro-

op in the previous phase. In contrast to all prior Meltdown-

type attacks, LVI attackers do not control the instructions

surrounding the faulting load as the load runs entirely in

the victim domain. We, therefore, propose a gadget-oriented

exploitation methodology closely mirroring the classification

from the Spectre world [10, 38].

a) Disclosure gadget: A first type of gadget, akin Spectre-

PHT-style information disclosure, encodes victim secrets in

the instructions immediately following the faulting load (cf.

Listing 1). The gadget encodes secrets in conditional control

flow or data accesses. Importantly, however, this gadget does

not need to be secret-dependent. Hence, LVI can even target

side-channel resistant constant-time code [16]. That is, at the

architectural level, the victim code only dereferences known,

non-confidential values when evaluating branch conditions or

array indices. At the microarchitectural level, however, the

faulting load in the second LVI phase causes the known value to

be transiently replaced. As a result of this “transient remapping”

primitive, the gadget instructions may now inadvertently leak

secret values that were brought into the targeted microarchi-

tectural buffer during prior victim execution.

b) Control-flow hijack gadget: A second and more

powerful type of LVI gadgets, mirroring Spectre-BTB-style

branch-target injection, exploits indirect branches in the victim

code. In this case, the attacker’s goal is not to disclose

forwarded values, but instead to abuse them as a transient

control-flow hijacking primitive. That is, when dereferencing

a function pointer (call, jmp) or loading a return address

from the stack (ret), the faulting load micro-op in the victim

code may incorrectly pick up attacker-controlled values from

the poisoned microarchitectural buffer. This essentially enables

the attacker to arbitrarily redirect the victim’s transient control

flow to selected second-stage code gadgets found in the victim

address space. Adopting established techniques from jump-

oriented [5] and return-oriented programming (ROP) [56],

second-stage gadgets can further be chained together to com-

pose arbitrary transient instruction sequences. Akin traditional

memory-safety exploits, attackers may also leverage “stack

pivoting” techniques to transiently point the victim stack to an

attacker-controlled memory region.

Although they share similar goals and exploitation method-

ologies, LVI-based control-flow hijacking should be regarded as

a complementary threat compared to Spectre-style branch-target

injection. Indeed, LVI only manifests after the victim attempts

to fetch the architectural branch target, whereas Spectre abuses

speculative execution before the actual branch outcome is

determined. Hence, the CPU may first (correctly or incorrectly)

predict transient control flow based on the history accumulated

in the BTB and RSB, until the victim execution later attempts

to verify the speculation by comparing the actual branch-target

address loaded from application memory. At this point, LVI

kicks in since the faulting load micro-op yields an incorrect

attacker-controlled value and erroneously redirects the transient

instruction stream to a poisoned branch-target address.

LVI-based control-flow hijack gadgets can be as little as a

single x86 ret instruction, making this case extremely danger-

ous. As explained in Section IX, fully mitigating LVI requires

blacklisting all indirect branch instructions and emulating them

with equivalent serialized instruction sequences.

c) Widening the transient window: A final challenge

is that, unlike traditional fault-injection attacks that cause

persistent bit flips at the architectural level [36, 47, 59], LVI
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attackers can only disturb victim computations for a limited

time interval before the CPU eventually catches up, detects

the fault, and aborts transient execution. This implies that

there is only a limited “transient window” in which the victim

inadvertently computes on the poisoned load values, and all

required gadget instructions need to complete within this

window to transmit secrets. The transient window is ultimately

bounded by the size of the processor’s reorder buffer [68].

Naturally, widening the transient window is a requirement

common to all transient-execution attacks. Therefore, we can

leverage techniques known from prior Spectre attacks [11, 39,

44]. Common techniques include, e.g., flushing selected victim

addresses or PTEs from the CPU cache.

d) Summary: To summarize, we construct LVI attacks

with the three phases P1 (poisoning), P2 (provoking injection),

P3 (transmission). For each of the phases, we have different

instantiations, based on the specific environment, hardware,

and attacker capabilities. We now discuss gadgets in Section VI

and, subsequently, practical LVI attacks on SGX in Section VII.

VI. LVI TAXONOMY AND GADGET EXPLOITATION

We want to emphasize that LVI represents an entirely new

class of attack techniques. Building on the (extended) transient-

execution attack taxonomy by Canella et al. [10], we propose an

unambiguous naming scheme and multi-level classification tree

to reason about and distinguish LVI variants in Appendix B.

In the following, we overview the leaves of our classification

tree by introducing the main LVI variants exploiting different

microarchitectural injection sources (cf. Table I). Given the

particular relevance of LVI to Intel SGX, we especially focus

on enclave adversaries but also include a discussion on gadget

requirements and potential applicability to other environments.

A. LVI-L1D: L1 Data Cache Injection

In this section, we contribute an innovative “reverse Fore-

shadow” injection-based exploitation methodology for SGX

attackers. Essentially, LVI-L1D can best be regarded as a

transient page-remapping primitive allowing to arbitrarily

replace the outcome of any legitimate enclave load value (e.g.,

a return address on the stack) with any data currently residing

in the L1D cache and sharing the same virtual page offset.

a) Microarchitectural poisoning: An “L1 terminal fault”

(L1TF) occurs when the CPU prematurely early-outs address

translation when a PTE has the present bit cleared or a reserved

bit set [61, 70]. A special type of L1TF may also occur for

SGX EPCM page faults (cf. Appendix A) if the untrusted

PTE contains a rogue physical page number [25, 61]. In our

LVI-L1D attack, the root attacker replaces the PPN field in

the targeted untrusted PTE, before entering or resuming the

victim enclave. If the enclave dereferences the targeted location,

SGX raises an EPCM page fault. However, before the fault

is architecturally raised, the poisoned PPN is sent to the L1D

cache. If a cache hit occurs at the rogue physical address

(composed of the poisoned PPN and the page offset specified

by the load operation), illegal values are “injected” into the

victim’s transient data stream.

P3 gadget address
virtual page offset

RAX

Page table entry stack
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ser�� page
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nclave code

P2_gadget:
pop  %rax
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P3_gadget:

movb (%rax), %al
mov  (%rdi,%al), %rcx

%rdi
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P1_gadget:
mov  (%rdi), %r12 
mov  -8(%rdi), %r13

2
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Fig. 5. Transient control-flow hijacking using LVI-L1D: (1) the enclave’s stack
PTE is remapped to a user page outside the enclave; (2) a P1 gadget inside the
enclave loads attacker-controlled data into L1D; (3) a P2 gadget pops trusted
data (return address) from the enclave stack, leading to faulting loads which
are transiently served with poisoned data from L1D; (4) the enclave’s transient
execution continues at an attacker-chosen P3 gadget encoding arbitrary secrets
in the microarchitectural CPU state.

b) Gadget requirements: LVI-L1D works on processors

vulnerable to Foreshadow, but with patched microcode, i.e., not

on more recent silicon-resistant CPUs [25]. The P1 gadget, a

load or store, brings secrets or attacker-controlled data into the

L1D cache. The P2 gadget is a faulting or assisted memory

load. The P3 gadget creates a side-channel from the transient

domain, or it redirects control flow based on the injected

data (e.g., x86 call or ret), ultimately also leading to the

execution of an attacker-chosen P3 gadget. The addresses in

both memory operations must have the same page offset (i.e.,
lowest 12 virtual address bits). This is not a limiting factor

since L1D can hold 32 KiB of data, allowing the three gadgets

(P1, P2, P3) to be far apart in the enclaved execution. Similar

to architectural memory-safety SGX attacks [62], we found

that high degrees of attacker control are often provided by

enclave entry and exit code gadgets copying user data to or

from chosen addresses outside the enclave.

Current microcode flushes L1D on enclave entry and exit,

and hyperthreading is recommended to be disabled [25]. We

empirically confirmed that if hyperthreading is enabled, no P1
gadget is required and that on outdated microcode, L1D can

trivially be poisoned before enclave entry.

c) Gadget exploitation: Figure 5 illustrates LVI-L1D

hijacking return control flow in a minimal enclave. First, the

attacker uses a page fault controlled-channel [71] or SGX-

Step [63] to precisely advance the enclaved execution to right

before the desired P1 gadget. Next, the attacker sets up the

malicious memory mapping 1 by changing the PPN of the

enclave stack page to a user-controlled page. The enclave then

executes a P1 gadget 2 accessing the user page and loading

attacker-controlled data into the L1D cache (e.g., when invoking

memcpy to copy parameters into the enclave). Next, the enclave

executes the P2 gadget 3 which pops some data plus a return

address from the enclave stack. For address resolution, the CPU

first walks the untrusted page tables leading to the rogue PPN

to be forwarded to L1D. Since the prior P1 gadget ensured

that data is indeed present in L1D at the required address, a

cache hit occurs, and the poisoned data (including the return
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address) is served to the dependent transient micro-ops. Now,

execution transiently continues at the attacker-chosen P3 gadget

4 residing at an arbitrary location inside the enclave. The

P3 gadget encodes arbitrary secrets into the microarchitectural

state before the CPU resolves the EPCM memory accesses,

unrolls transient execution, and raises a page fault.

Note that for clarity, we focused on hijacking ret con-

trol flow in the above example, but we also demonstrated

successful LVI attacks for jmp and call indirect control-

flow instructions. We observe that large or repeated P1 loads

enable attackers to setup a fake “transient stack” in L1D to

repeatedly inject illegal values for consecutive enclave stack

loads (pop-ret sequences). Much like in architectural ROP

code re-use attacks [56], we experimentally confirmed that

attackers may chain together multiple P3 gadgets to compose

arbitrary transient computations. LVI attackers are only limited

by the size of the transient window (cf. Section V-C).

d) Applicability to non-SGX environments: We care-

fully considered whether cross-process or virtual machine

Foreshadow variants [70] may also be reversely exploited

through an injection-based LVI methodology. However, we

concluded that these variants are already properly prevented by

the recommended PTE inversion [12] countermeasure, which

has been widely deployed in all major OSs (cf. Appendix B).

B. LVI-SB, LVI-LFB, and LVI-LP: Buffer and Port Injection

LVI-SB applies an injection-based methodology to reversely

exploit store buffer leakage. The recent Fallout [9] attack

revealed how faulting or assisted loads can pick up SB data if

the page offset of the load (least-significant 12 virtual address

bits) matches with that of a recent outstanding store. Similarly,

LVI-LFB and LVI-LP inject from the line-fill buffer and load

ports, respectively, which were exploited for data leakage in

the recent RIDL [67] and ZombieLoad [53] attacks.

a) Gadget requirements: In response to Fallout, RIDL,

and ZombieLoad, recent Intel microcode updates now overwrite

SB, LFB, and LP entries on every enclave and process context

switch [29]. Hence, to reversely exploit SB, LFP, or LP leakage,

we first require a P1 gadget to bring interesting data (e.g.,

secrets or attacker-controlled addresses) into the appropriate

buffer. Next, we need a P2 gadget consisting of a trusted load

operation which can be faulted or assisted, followed by a P3
gadget creating a side-channel for data transmission or control

flow redirection. For LVI-SB, we further require that the store

and load addresses in P1 and P2 share the same page offset

and are sufficiently close, such that the injected data in P1
has not yet been drained from the store buffer. Alternatively,

for LVI-LFB and LVI-LP, attackers may resort to injecting

poisoned data from a sibling logical core, as LFB and LP are

competitively shared between hyperthreads [29, 53].

b) Gadget exploitation: We found that LVI-SB can be a

particularly powerful primitive, given the prevalence of store

operations closely followed by a return or indirect call. We

illustrate this point in Listing 2 with trusted proxy bridge code

that is automatically generated by Intel’s edger8r tool of

the official SGX-SDK [30]. The edger8r-generated bridge

1 ; %rbx: user-controlled argument ptr (outside enclave)
2 sgx_my_sum_bridge:
3 ...
4 call my_sum ; compute 0x10(%rbx) + 0x8(%rbx)
5 mov %rax,(%rbx) ; P1: store sum to user address
6 xor %eax,%eax
7 pop %rbx
8 ret ; P2: load from trusted stack

Listing 2: Intel edger8r-generated code snippet with LVI-SB gadget.

code is responsible for transparently verifying and copying

user arguments to and from enclave memory. The omitted code

verifies that the untrusted argument pointer, which is also used

to pass the result, lies outside the enclave [62].

An attacker can interrupt the enclave after line 4, clear the

supervisor or accessed bit for the enclave stack, and resume

the enclave. As the edger8r bridge code solely verifies that

the attacker-provided argument pointer lies outside the enclave,

it provides the attacker with full control over the lower 12 bits

of the store address (P1). When the enclave code returns at

line 8, the control flow is redirected to the attacker-injected

location, as the faulting or assisted ret (P2) incorrectly picks

up the value from the SB (which in this case is the sum of two

attacker-provided arguments). Similar to LVI-L1D (Figure 5),

an attacker can encode arbitrary enclave secrets by chaining

together one or more P3 gadgets in the victim enclave code.

Finally, note that LVI is not limited to control flow redirection

as secrets may also be encoded directly in the data flow through

a combined P2-P3 gadget (e.g., by means of a double-pointer

dereference as illustrated in the toy example of Listing 1).

c) Applicability to non-SGX environments: Importantly,

in contrast to LVI-L1D above, SB, LFB, and LP leakage does

not necessarily require adversarial manipulation of PTEs, or

rely on microarchitectural conditions that are specific to Intel

SGX. Hence, given a suitable fault or assist primitive plus the

required victim code gadgets, LVI-SB, LVI-LFB, and LVI-LP

may be relevant for other contexts as well (cf. Section VIII).

C. LVI-NULL: 0x00 Dummy Injection

A highly interesting special case is LVI-NULL, which

is based on the observation that known Meltdown-type at-

tacks [42, 61] commonly report a strong bias to the value

zero for faulting loads. We experimentally confirmed that the

latest generation of acclaimed Meltdown-resistant Intel CPUs

(RDCL_NO [28] from Whiskey Lake onwards) merely zero-out

the results of faulting load micro-ops while still passing a

dummy 0x00 value to dependent transient instructions. While

this nulling strategy indeed suffices to prevent Meltdown-type

data leakage, we show that the ability to inject zero values in the

victim’s transient data stream can be dangerously exploitable.

Hence, LVI-NULL reveals a fundamental shortcoming in

current silicon-level mitigations, and ultimately requires more

extensive changes in the way the CPU pipeline is organized.

a) Gadget requirements: Unlike the other LVI variants,

LVI-NULL does not rely on any microarchitectural buffer to

inject poisoned data, but instead directly abuses dummy 0x00
values injected from the CPU’s silicon circuitry in the P1 phase.
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Fig. 6. Transient control-flow hijacking using LVI-NULL: (1) a P2 gadget
inside the enclave dereferences a function pointer-to-pointer, leading to a
faulting load which forwards the dummy value null; (2) the following indirect
call transiently dereferences the attacker-controlled null page outside the
enclave, causing execution to continue at an attacker-chosen P3 gadget address.

The P2 gadget consists of a trusted load operation that can

be faulted or assisted, followed by a P3 gadget which, when

operating on the unexpected value null, creates a side-channel

for secret transmission or control-flow redirection.

In some scenarios, transiently replacing a trusted load micro-

op with the unexpected value zero may directly lead to

information disclosure, as explored in the AES-NI case study of

Section VII-B. Moreover, LVI-NULL is especially dangerous

in the common case of indirect pointer dereferences.

b) Gadget exploitation: While transiently computing on

zero values might at first seem rather innocent, we make the

key insight that zero can be regarded as a valid virtual address

and that SGX root attackers can trivially map an arbitrary

memory page at virtual address null. Using this technique,

we contribute an innovative transient null-pointer dereference
primitive that allows to hijack the result of any indirect pointer

dereference in the victim enclave’s transient domain.

We first consider the case of a data pointer stored in trusted

memory, e.g., as a local variable on the stack. After revoking

access rights on the respective enclave memory page, loading

the pointer forces its value to zero, causing any following

dereferences in the transient domain to read attacker-controlled

data via the null page. This serves as a powerful “transient

pointer-value hijacking” primitive to inject arbitrary data in a

victim enclaved execution, which can be subsequently used in

a P3 gadget to disclose secrets or redirect control flow.

Figure 6 illustrates how the above technique can furthermore

be exploited to arbitrarily hijack transient control flow in

the case of function pointer-to-pointer dereferences, e.g., a

function pointer in a heap object. The first dereference yields

zero, and the actual function address is thereafter retrieved

via the attacker-controlled null page. For the simpler case of

single-level function pointers, we experimentally found that

transient control flow cannot be directly redirected to the zero

address outside the enclave, which is in line with architectural

restrictions imposed by Intel SGX [13]. However, adversaries

might load the relocatable enclave image at virtual address

null. We, therefore, recommend that the first page is marked as

non-executable or that a short infinite loop is included at the

base of every enclave image to effectively “trap” any transient

control flow redirections to virtual address null.

Finally, a special case is loading a stack pointer. Listing 3

shows a trusted code snippet from the Intel SGX-SDK [30] to

1 asm_oret: ; (linux-sgx/sdk/trts/linux/trts_pic.S#L454)
2 ...
3 mov 0x58(%rsp),%rbp ; %rbp <- NULL
4 ...
5 mov %rbp,%rsp ; %rsp <- NULL
6 pop %rbp ; %rbp <- *(NULL)
7 ret ; %rip <- *(NULL+8)

Listing 3: LVI-NULL stack hijack gadget in Intel SGX-SDK.

restore the enclave execution context when returning from an

untrusted function.1 An attacker can interrupt the victim code

right before line 3, and revoke access rights on the trusted

stack page used by the enclave entry code. After resuming the

enclave, the victim then page faults at line 3. However, the

transient execution first continues with a zeroed %rbp register,

which eventually gets written to the %rsp stack pointer register

at line 5. Crucially, at this point, all subsequent pop and

ret transient instructions dereference the attacker-controlled

memory page mapped at virtual address null. This stack pointer

zeroing primitive essentially allows LVI-NULL attackers to

setup an arbitrary fake transient “shadow stack” at address null.

We experimentally validated that this technique can furthermore

be abused to mount a full transient ROP [56] attack by chaining

together multiple subsequent pop-ret gadgets.

c) Applicability to non-SGX environments: LVI-NULL

does not exploit any microarchitectural properties that are

specific to Intel SGX, and may apply to other environments as

well. However, we note that exploitation may be hindered by

various architectural and software-level defensive measures that

are in place to harden against well-known architectural null

pointer dereference bugs. Some Linux distributions do not allow

to map virtual address zero in user space. Furthermore, recent

x86 SMAP and SMEP architectural features further prohibit

respectively user-space data and code pointer dereferences in

kernel mode. SMAP and SMEP have been shown to also hold

in the microarchitectural transient domain [10, 26].

VII. LVI CASE STUDIES ON INTEL SGX

A. Gadget in Intel’s Quoting Enclave

In this section, we show that exploitable LVI gadgets may

occur in real-world software. We analyze Intel’s trusted quoting

enclave (QE), which has been widely studied in previous

transient-execution research [11, 53, 61] to dismantle remote

attestation guarantees in the Intel SGX ecosystem. As a

result, the QE trusted codebase has been thoroughly vetted

and hardened against all known Meltdown-type and Spectre-

type attacks by manually inserting lfence instructions after

potentially mispredicted branches, as well as flushing leaky

microarchitectural buffers on every enclave entry and exit.

a) Gadget description: We started from the observation

that most LVI variants first require a P1 load-store gadget

with an attacker-controlled address and data, followed by a

faulting or assisted P2 load that picks up the poisoned data.

Similar to the edger8r gadget discussed in Section VI-B, we

1 Note that we also found similar, potentially exploitable gadgets in the
rsp-rbp function epilogues emitted by popular compilers such as gcc.
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1 __intel_avx_rep_memcpy: ; libirc_2.4/efi2/libirc.a
2 ... ; P1: store to user address
3 vmovups %xmm0,-0x10(%rdi,%rcx,1)
4 ...
5 pop %r12 ; P2: load from trusted stack
6 ret

Listing 4: LVI gadget in SGX-SDK intel_fast_memcpy used in QE.

therefore focused our manual code review on pointer arguments

which are passed to copy input and output data via untrusted

memory outside the enclave [62]. Particularly, we found that

QE securely verifies that the output pointer to hold the resulting

quote falls outside the enclave while leaving the base address

in unprotected memory under attacker control. An Intel SGX

quote is composed of various metadata fields, followed by the

asymmetric signature (cf. Appendix C). After computing the

signature, but before erasing the EPID private key from enclave

memory, QE invokes memcpy to copy the corresponding quote

metadata fields from trusted stack memory to the output buffer

outside the enclave. Crucially, we found that as part of the last

metadata fields, a 64-byte attacker-controlled report_data
value is written to the attacker-provided output pointer.

We reverse engineered the proprietary intel_fast_me
mcpy function used in QE and found that in this case, the

quote is outputted using 128-bit vector instructions. Listing 4

provides the corresponding assembly code snippet, where the

final 128-bit store at line 3 (including 12 bytes of attacker data)

is closely followed by a pop and ret instruction sequence at

lines 5-6 when returning from the memcpy invocation. This

forms an exploitable LVI-SB transient control-flow hijacking

gadget: the vmovups instruction (P1) first fills the store buffer

with user data at a user-controlled page offset aligned with the

return address on the enclave stack, and closely afterwards the

faulting or assisted ret instruction (P2) incorrectly picks up

the poisoned user data. The attacker now succeeded to redirect

transient control flow to an arbitrary P3 gadget address in

the enclave code, which may subsequently lead to QE private

key disclosure [11]. Note that when transiently executing the

P3 gadget, the attacker also controls the value of the %r12
register popped at line 5 (which can be injected via the prior

stores similarly to the return address). We further remark that

Listing 4 is not limited to LVI-SB, since the store data may

also have been committed from the store buffer to the L1 cache

and subsequently picked up using LVI-L1D.

The Intel SGX-SDK [30] randomizes the 11 least significant

bits of the stack pointer on enclave entry. However, as return

addresses are aligned, the entropy is only 7 bits, resulting on

average in a correct alignment in 1 out of every 128 enclave

entries when fixing the store address in P1.

b) Experimental results: We validate the exploitability

and success rate of the above assembly code using a benchmark

enclave on an i7-8650U with the latest microcode 0xb4. We

inject both the return address and the value popped into %r12
via the store buffer. For P3, we can use the poisoned value in

%r12 to transmit data over an address outside the enclave. We

ensure that the code in Listing 4 is page aligned to interrupt the

victim enclave using a controlled-channel attack [71]. Before

resuming the victim, we clear the user-accessible bit for the

enclave stack. Additionally, to extend the transient window, we

inserted a memory access which misses the cache before line 3.

In the first experiment, we disable stack randomization in

the victim enclave to reliably quantify the success rate of the

attack in the ideal case. LVI works very reliably, picking up

the injected values 99 453 times out of 100 000 runs. With

on average 9090 tries per second, we achieve an error-free

transmission rate of 9.04 kB/s for our disclosure gadget.

In the second experiment, we simulate the full attack

environment including stack randomization. As expected, the

success rate drops by an average factor of 128. The injected

return address is picked up 776 times out of 100 000 runs,

leading to a transmission rate of 70.54B/s. We did not

reproduce this attack against Intel’s officially signed quoting

enclave, as we found it especially challenging to debug the

attack for production QE binaries and to locate P3 gadgets that

fit within the limited transient window without excessive TLB

misses. However, we believe that our experiments showcased all

the required primitives to break Intel SGX’s remote attestation

guarantees, as demonstrated before by SGXPectre [11] and

Foreshadow [61]. In response to our findings, Intel will harden

all architectural enclaves with full LVI software mitigations (cf.

Section IX) so as to restore trust and initiate TCB recovery

for the SGX ecosystem [27].

B. Transient Fault Attack on AES-NI

In this case study, we show that LVI-NULL can be exploited

to perform a cryptographic fault attack [47, 59] on Intel’s

constant-time AES-NI hardware extension. We exploit that a

privileged SGX attacker can induce faulty all-zero round keys

into the transient data stream of a minimal AES-NI enclave.

After the fault, the output of the decryption carries a faulty

plaintext in the transient domain. To simplify the attack, we

consider a known-ciphertext scenario and we assume a side-

channel in the post-processing which allows to recover the

faulty decryption output from the transient domain. Note that

prior research [68] on Spectre-type attacks has shown that

transient execution may fit a significant number of AES-NI

decryptions (over 100 rounds on modern Intel processors).

Intel AES-NI [21] is implemented as an x86 vector extension.

The aesdec and aesdeclast instructions perform one

round of AES on a 128-bit register using the round key provided

in the first register operand. Round keys are stored in trusted

memory and, depending on the available registers and the

AES-NI software implementation, the key schedule is either

preloaded or consulted at the start of each round. In our case

study, we assume that round keys are securely fetched from

trusted enclave memory before each aesdec instruction.

a) Attack outline: Figure 7 illustrates the different phases

in our transient fault injection attack on AES-NI:

1) We use SGX-Step [63] to precisely interrupt the victim

enclave after executing only the initial round of AES.

2) The root attacker clears the user-accessible bit on the

memory page containing the round keys.
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4

2

movdqu      (%rdx), %xmm0
movdqu      (%rcx), %xmm4
add             $0x10, %rdx
pxor           %xmm4, %xmm0

movdqu      0x10(%rcx), %xmm4
aesdec        %xmm4, %xmm0
movdqu      0x20(%rcx), %xmm4
aesdec         %xmm4, %xmm0
...
movdqu      0xa0(%rcx), %xmm4
aesdeclast   %xmm4, %xmm0
movdqu      %xmm0, -0x10(%r8,%rdx,1) 

access oracle[output[byte_index] * 4096];

Load RK0
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Output
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Fig. 7. Overview of the AES-NI fault attack: (1) the victim architecturally
executes the initial AES round, which xors the input with round key 0; (2)
access rights on the memory page holding the key schedule are revoked; (3)
upon the next key access (P2), the enclave suffers a page fault, causing the
CPU to transiently execute the next 10 AES rounds with zeroed round keys; (4)
finally the faulty output is encoded (P3) through a cache-based side-channel.

3) The attacker resumes the enclave, leading to a page fault

when loading the next round keys from trusted memory. We

abuse theses faulting load as P2 gadgets which transiently

forward dummy (all-zero) round keys to the remaining

aesdec instructions. Note that we do not need a P1
gadget, as the CPU itself is responsible for zero-injection.

4) Finally, we use a P3 disclosure gadget after the decryption.

By forcing all but the first AES round key to zero, our

attack essentially causes the victim enclave to compute a round-

reduced AES in the transient domain. To recover the first round

key, and hence the full AES key, the attacker can simply feed

the faulty output plaintext recovered from the transient domain

to an inverse AES function with all keys set to zero. This

results in an output that holds the secret AES first round key,

xor-ed with the (known) ciphertext.

b) Experimental results: We run the attack for 100

different AES keys on a Core i9-9900K with RDCL_NO and

the latest microcode 0xae. For each experiment, we run the

attack to recover 10 candidates for each byte of the faulty

output. On average, each recovered key candidate matches the

expected faulty output 83% of the time. Using majority vote

for the 10 candidates, we recover the correct output for an

average of 15.61 out of 16 bytes of the AES block, indicating

that the output matches the attack model with 97% accuracy.

The attack takes on average 25.94 s (including enclave creation

time) and requires 246 707 executions of the AES function.

For post-processing, we modified an AES implementation to

zero out the round keys after the first round. We successfully

recovered the secret round-zero key using any of the recovered

faulty plaintext outputs to the inverse encryption function.

VIII. LVI IN OTHER CONTEXTS

A. User-to-Kernel

The main challenge in a user-to-kernel LVI attack scenario

is to provoke faulting or assisted loads during kernel execution.

As any application, the kernel may encounter page faults or

microcode assists, e.g., due to demand paging via the extended

page tables setup by the hypervisor, or when swapping out

supervisor heap memory pages in the Windows kernel [50].

We do not investigate the more straightforward scenario where

the kernel encounters a page fault when accessing a user-space

address, as in this case the user already architecturally controls

the value read by the kernel.

a) Experimental setup: We focus on exploiting LVI-SB

via microcode assists for setting the accessed bit in supervisor

PTEs. In our case study, we execute the P1 poisoning phase

directly in user space by abusing that current microcode

mitigations only flush the store buffer on kernel exit to prevent

leakage [9, 29]. As the store buffer is not drained on kernel

entry, it can be filled with attacker-chosen values by writing

to arbitrary user-accessible addresses before performing the

system call. Note that, alternatively, the store buffer could also

be filled during kernel execution by abusing a selected P1
gadget, similar to our SGX attacks.

In the P2 phase, the attacker needs to trigger a faulting or

assisted load micro-op in the kernel. In our proof-of-concept,

we assume that the targeted supervisor page is swappable, as

is the case for Windows kernel heap objects [50], but to the

best of our knowledge not for the Linux kernel. In order to

repeatedly execute the same experiment and assess the overall

success rate, we simulate the workings of the page-replacement

algorithm by means of a small kernel module, which artificially

clears the accessed bit on the targeted kernel page.

As we only want to demonstrate the building blocks of the

attack, we did not actively look for real-world gadgets in the

kernel. For our evaluation, we manually added a simple P3
disclosure gadget, which, similar to a Spectre gadget, indexes

a shared memory region based on a previously loaded value

as follows: array[(*kernel_pt) * 4096]. In case the

trusted load on kernel_pt requires a microcode assist, the

value written by the user-space attacker will be transiently

injected from the store buffer and subsequently encoded into

the CPU cache.

b) Experimental results: We evaluated LVI-SB on an

Intel Core i7-8650U with Linux kernel 5.0. On average, 1

out of every 7739 (n = 100 000) assisted loads in the kernel

use the injected value from the store buffer instead of the

architecturally correct value. For our non-optimized proof-of-

concept, this results on average in a successfully injected value

into the kernel execution every 6.5 s. One of the reasons for

this low success rate is the context switch between P1 and

P2, which reduces the probability that the attacker’s value is

still outstanding in the store buffer [9]. We verified this by

evaluating the injection rate without a context switch, i.e., if

the store buffer is poisoned via a suitable P1 gadget in the

kernel. In this case, on average, 1 out of every 8 (n = 100 000)

assisted loads in the kernel use the injected value.

B. Cross-Process

We now demonstrate how LVI-LFB may inject poisoned

data from a concurrently running attacker process.

a) Experimental setup: For the poisoning phase P1, we

assume that the attacker and the victim are co-located on the

same physical CPU core [53, 61, 67]. The attacker directly

poisons the line-fill buffer by writing or reading values to or

from the memory subsystem. To ensure that the values travel

through the fill buffer, the attacker simply flushes the accessed
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values using the unprivileged cflflush instruction. In case

hyperthreading is disabled, the adversary would have to find a

suitable P1 gadget that processes untrusted, attacker-controlled

arguments in the victim code, similar to our SGX attacks.

In our proof-of-concept, the victim application loads a value

from a trusted shared-memory location, e.g., a shared library.

As shown by Schwarz et al. [53], Windows periodically clears

the PTE accessed bit, which may cause microcode assists

for trusted loads in the victim process. The attacker flushes

the targeted shared-memory location from the cache, again

using clflush, to ensure that the victim’s assisted load P2
forwards incorrect values from the line-fill buffer [53, 67]

instead of the trusted shared-memory content.

b) Experimental results: We evaluated the success rate

of the attack on an Intel i7-8650U with Linux kernel 5.0. We

used the same software construct as in the kernel attack for the

transmission phase P3. Both attacker and victim run on the

same physical core but different logical cores. On average, 1

out of 101 (n = 100 000) assisted loads uses the value injected

by the attacker, resulting in an injection probability of nearly

1%. With on average 1122 tries per second, we achieve a

transmission rate of 11.11B/s for our disclosure gadget.

IX. DISCUSSION AND MITIGATIONS

In this section, we discuss both long-term silicon mitigations

to rule out LVI at the processor design level, as well as compiler-

based software workarounds that need to be deployed on the

short-term to mitigate LVI on existing systems.

A. Eradicating LVI at the Hardware Design Level

The root cause of LVI needs to be ultimately addressed

through silicon-level design changes in future processors.

Particularly, to rule out LVI, the hardware has to ensure that

no illegal data flows from faulting or assisted load micro-

ops exist at the microarchitectural level. That is, no transient

computations depending on a faulting or assisted instruction are

allowed. We believe this is already the behavior in certain ARM

and AMD processors, where a faulting load does not forward

any data [2]. Notably, we showed in Section VI-C that it does

not suffice to merely zero out the forwarded value, as is the

case in the latest generation of acclaimed Meltdown-resistant

Intel processors enumerating RDCL_NO [28].

B. A Generic Software Workaround

Silicon-level design changes take considerable time, and

at least for SGX enclaves a short-term solution is needed

to mitigate LVI on current, widely deployed systems. In

contrast to previous Meltdown-type attacks, merely flushing

microarchitectural buffers before or after victim execution

is not sufficient to defend against our novel, gadget-based

LVI attack techniques. Instead, we propose a software-based

mitigation approach which inserts explicit lfence speculation

barriers to serialize the processor pipeline after every vulnerable

load instruction. The lfence instruction is guaranteed by

Intel to halt transient execution until all prior instructions

have completed [28]. Hence, inserting an lfence after every

TABLE II. Indirect branch instruction emulations needed to prevent LVI and
whether or not they require a scratch register which can be clobbered.

Instruction Possible Emulation Clobber

ret pop %reg; lfence; jmp *%reg �
ret not (%rsp); not (%rsp); lfence; ret �
jmp (mem) mov (mem),%reg; lfence; jmp *%reg �
call (mem) mov (mem),%reg; lfence; call *%reg �

potentially faulting or assisted load micro-op guarantees that

the value forwarded from the load operation is not an injected

value but the architecturally correct one. Relating to the general

attack scheme of Figure 3, we introduce an lfence instruction

in between phases P2 and P3 to inhibit any incorrect transient

forwarding by the processor. Crucially, in contrast to existing

Spectre-PHT compiler mitigations [10, 28] which only insert

lfence barriers after potentially mispredicted conditional

jump instructions, fully mitigating LVI requires stalling the

processor pipeline after potentially every explicit as well as

implicit memory-load operation.

Explicit memory loads, i.e., instructions with a memory

address as input parameter, can be protected straightforwardly.

A compiler, or even a binary rewriter [14], can add an lfence
instruction to ensure that any dependent operations can only

be executed after the load instruction has successfully retired.

However, some x86 instructions also include implicit memory

load micro-ops which cannot be mitigated in this way. For

instance, indirect branches and the ret instruction load an

address from the stack and immediately redirect control flow to

the loaded, possibly injected value. As the faulting or assisted

load micro-op in this case forms part of a larger ISA-level

instruction, there is no possibility to add an lfence barrier

between the memory load (P2) and the control-flow redirection

(P3). Table II shows how indirect branch instructions have to be

blacklisted and emulated through an equivalent sequence of two

or more instructions, including an lfence after the formerly

implicit memory load. Notably, as some of these emulation

sequences clobber scratch registers, LVI mitigations for indirect

branches cannot be trivially implemented using binary rewriting

techniques and should preferably be implemented in the

compiler back-end, before the register allocation stage.

a) Evaluation of our prototype solution: We initially im-

plemented a prototypical compiler mitigation using LLVM [43]

(8.3.0) and applied it to a recent OpenSSL [48] version

(1.1.1d) with default configuration. We chose OpenSSL as

it serves as the base of the official Intel SGX-SSL library [33]

allowing to approximate the expected performance impact of

the proposed mitigations. Our proof-of-concept mitigation tool

allows to augment the building process of arbitrary C code by

first instrumenting the compiler to emit LLVM intermediate

code, adding the necessary lfence instructions after every

explicit memory load, and finally proceeding to compile the

modified file to an executable. Our prototype tool cannot

mitigate loads which are not visible at the LLVM intermediate

representation, e.g., the x86 back-end may introduce loads

for registers spilled onto the stack after register allocation.
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Fig. 8. Performance overhead of our LLVM-based prototype (fence loads + ret vs. ret-only) and Intel’s mitigations for non-optimized assembler gcc (fence
loads + ret) and optimized clang (fence loads + indirect branch + ret vs. ret-only) for OpenSSL on an Intel i7-6700K CPU.

To deal with assembly source files, our tool introduces an

lfence after every mov operating on memory addresses. Our

prototype does not mitigate all types of indirect branches, but

can optionally replace ret instructions with the proposed

emulation code, where %r11 is used as a caller-save register

that can be clobbered.

To measure the performance impact of the introduced

lfence instructions and the ret emulation, we recorded

the average throughput (n = 10) of various cryptographic

primitives using OpenSSL’s speed tool on an isolated core

on an Intel i7-6700K. As shown in Figure 8, the performance

overhead reaches from a minimum of 0.91% for a partial

mitigation which only rewrites ret instructions to a maximum

of 978.13% for the full mitigation including ret emulation

and load serialization. Note that for real-world deployment,

the placement of lfence instructions should be evaluated

for completeness and more optimized than in our prototype

implementation. Still, our evaluation serves as an approximation

of the expected performance impact of the proposed mitigations.

b) Evaluation of Intel’s proposed mitigations: To further

evaluate the overheads of more mature, production-quality

implementations, we were provided with access to Intel’s

current compiler-based mitigation infrastructure. Hardening of

existing code bases is facilitated by a generic post-compilation

script that uses regular expressions to insert an lfence after

every x86 instruction that has a load micro-op. Working

exclusively at the assembly level, the script is inherently

compiler-agnostic and can hence only make use of indirect

branch emulation instruction sequences that do not clobber

registers. In general, it is therefore recommended to first

decompose indirect branches from memory using existing

Spectre-BTB mitigations [60]. As not all code respects calling

conventions, ret instructions are by default replaced with a

clobber-free emulation sequence which first tests the return

address, before serializing the processor pipeline and issuing

the ret (cf. Table II). We want to note that this emulation

sequence still allows privileged LVI adversaries to provoke a

fault or assist on the return address when leveraging a single-

stepping framework like SGX-Step [63] to precisely interrupt

and resume the victim enclave after the lfence and before the

final ret. However, we expect that in such a case the length of

the transient window would be severely restricted as eresume
appears to be a serializing instruction itself [32]. Furthermore,

as recent microcode flushes microarchitectural buffers on

enclave entry, the poisoning phase would be limited to LVI-

NULL. Any inadvertent transient control-flow redirections to
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Fig. 9. Performance overhead of Intel’s mitigations for non-optimized
assembler gcc (fence loads + ret) and optimized clang (fence loads +
indirect branch + ret vs. ret-only) for SPEC2017 on an Intel i9-9900K CPU.

virtual address null can be mitigated by marking the first

enclave page as non-executable (cf. Section VI-C).

Intel furthermore developed an optimized LVI mitigation pass

for LLVM-based compilers. The pass operates at the LLVM

intermediate representation and uses a constraint solver from

integer programming to optimally insert lfence instructions

along all paths in the control-flow graph from a load (P2) to

a transmission (P3) gadget [3, 34]. As the pass operates at

the LLVM intermediate representation, any additional loads

introduced by the x86 back-end are not mitigated. We expect

such implicit loads from e.g., registers that were previously

spilled onto the stack to be difficult to exploit in practice,

but we leave further security evaluation of the mitigations as

future work. The pass also replaces indirect branches, and ret
instructions are eliminated in an additional machine pass using

a caller-save clobber register.

Figure 8 provides the OpenSSL evaluation for the Intel

mitigations (n = 10). The unoptimized gcc post-compilation

full mitigation assembly script for fencing all loads and ret
instructions clearly incurs the highest overheads from 352.51%
to 1868.15%, which is slightly worse than our own (incom-

plete) LLVM-based prototype. For the OpenSSL experiments,

Intel’s optimized clang LLVM mitigation pass for fencing

loads, conditional branches, and ret instructions generally

reduces overheads within the same order of magnitude, but

more significantly in the AES case. Lastly, in line with our

own prototype evaluation, smaller overheads from 2.52% to

86.23% are expected for a partial mitigation strategy which

patches only ret instructions while leaving other loads and

indirect branches potentially exposed to LVI attackers.

Finally, to assess expected overheads in larger and more

varied applications, we evaluated Intel’s mitigations on the

SPEC2017 intspeed benchmark suite. Figure 9 provides
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the results as executed on an isolated core on a i9-9900K

CPU, running Linux 4.18.0 with Ubuntu 18.10 (n = 3).2 One

clear trend is that Intel’s optimized LLVM mitigation pass

outperforms the naive post-compilation assembly script.

X. OUTLOOK AND FUTURE WORK

We believe that our work presents interesting opportunities

for developing more efficient compiler mitigations and software

hardening techniques for current, widely deployed systems.

A. Implications for Transient-Execution Attacks and Defenses

LVI again illustrates the constant race between attackers and

defenders. With LVI, we introduced an advanced attack tech-

nique that bypasses existing software and hardware defenses.

While potentially harder to exploit than previous Meltdown-

type attacks, LVI shows that Meltdown-type incorrect transient

forwarding effects are not as easy to fix as expected [10, 42, 72].

The main insight with LVI is that transient-execution attacks,

as well as side-channel attacks, have to be considered from two

viewpoints: observing and injecting data. It is not sufficient

to only mitigate data leakage direction, as it was done so far,

and the injection angle also needs to be considered. Hence,

in addition to flushing microarchitectural buffers on context

switch [25, 29], additional mitigations are required. We believe

that our work has a substantial influence on future transient-

execution attacks as new discoveries of Meltdown-type effects

now need to be studied in both directions.

Although the most realistic LVI attack scenarios are secure

enclaves such as Intel SGX, we demonstrated that none of the

ingredients for LVI are unique to SGX and other environments

can possibly be attacked similarly. We encourage future attack

research to further investigate improved LVI gadget discovery

and exploitation techniques in non-SGX settings, e.g., cross-

process and sandboxed environments [38, 44].

An important insight for silicon mitigations is that merely

zeroing out unintended data flow is insufficient to protect

against LVI adversaries. At the compiler level, we expect that

advanced static analysis techniques may further improve the

extensive performance overheads of current lfence-based

mitigations (cf. Section IX-B). Particularly, for non-control-

flow hijacking gadgets, it would be desirable to serialize only

those loads that are closely followed by an exploitable P3
gadget for side-channel transmission.

B. Raising the Bar for LVI Exploitation

While not completely eliminated, our analysis in Section VI

and Appendix B revealed that the LVI attack surface may be

greatly reduced by certain system-level software measures in

non-SGX environments. For instance, the correct sanitization

of user-space pointers and the use of x86 SMAP and SMEP fea-

tures in commodity OS kernels may greatly reduce the possible

LVI gadget space. Furthermore, we found that certain software

mitigations, which were deployed to prevent Meltdown-type

data leakages, also unintentionally thwart their LVI counterparts,

2 Note that we had to exclude the 648.exchange2_s benchmark program
as it is written in Fortran and hence not supported by the mitigation tools.

e.g., eager FPU switching [57] and PTE inversion [12]. LVI

can also be inhibited by preventing victim loads from triggering

exceptions and microcode assists. However, this may come with

significant changes in system software, as e.g., PTE accessed

and dirty bits must not be cleared anymore, and kernel pages

must not be swapped anymore. Although such changes are

possible for the OS, they are not possible for SGX, as the

attacker is in control of the page tables.

As described in Section IX-B, Intel SGX enclaves require

extensive compiler mitigations to fully defend against LVI.

However, we also advocate architectural changes in the SGX

design which may further help raising the bar for LVI

exploitation. LVI is for instance facilitated by the fact that SGX

enclaves share certain microarchitectural elements, such as the

cache, with their host application [13, 46, 52]. Furthermore,

enclaves can directly operate on untrusted memory locations

passed as pointers in the shared address space [55, 62]. As a

generic software hardening measure, we suggest that pointer

sanitization logic [62] further restricts the attacker’s control over

page offset address bits for unprotected input and output buffers.

To inhibit transient null-pointer dereferences in LVI-NULL

exploits, we propose that microcode marks the memory page

at virtual address zero as uncacheable [6, 54, 58]. Similarly,

LVI-L1D could be somewhat restricted by terminating the

enclave or disabling SGX altogether upon detecting a rogue

PPN in the EPCM microcode checks, which can only indicate

a malicious or buggy OS.

XI. CONCLUSION

We presented Load Value Injection (LVI), a novel class

of attack techniques allowing the direct injection of attacker

data into a victim’s transient data stream. LVI complements

the transient-execution research landscape by turning around

Meltdown-type data leakage into data injection. Our findings

challenge prior views that, unlike Spectre, Meltdown threats

could be eradicated straightforwardly at the operating system or

hardware levels and ultimately show that future Meltdown-type

attack research must also consider the injection angle.

Our proof-of-concept attacks against Intel SGX enclaves

and other environments show that LVI gadgets exist and may

be exploited. Existing Meltdown and Spectre defenses are

orthogonal to and do not impede our novel attack techniques,

such that LVI necessitates drastic changes at the compiler

level. Fully mitigating LVI requires including lfences after

possibly every memory load, as well as blacklisting indirect

jumps, including the ubiquitous x86 ret instruction. We

observe extensive slowdowns of factor 2 to 19 for our prototype

evaluation of this countermeasure. LVI demands research on

more efficient and forward-looking mitigations on both the

hardware and software levels.
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APPENDIX A

INTEL SGX PAGE TABLE WALKS

For completeness, Figure 10 summarizes the additional

access control checks enforced by Intel SGX to verify the

outcome of the untrusted address translation process [13, 65].

Page
walk?

Enclave
mode?

padrs in
PRM?

Allow

Page fault vadrs in
enclave?

Abort page

padrs in
EPC?

EPCM
checks?

ok no

yes

no

yesfail

no

yes

fail
yes ok

Fig. 10. Access control checks (page faults) in the SGX page table walk for
a virtual address vadrs that maps to a physical address padrs.

LVI-type

LVI-NM-FPU

LVI-PF

LVI-MCA

LVI-US

LVI-PPN

LVI-P

LVI-AD

LVI-US-NULL

LVI-US-LFB

LVI-US-SB

LVI-US-LP

LVI-PPN-NULL

LVI-PPN-L1D

LVI-P-NULL

LVI-P-L1D

LVI-P-LFB

LVI-P-SB

LVI-P-LP

LVI-AD-LFB

LVI-AD-SB

LVI-AD-LP

Fig. 11. Extensible LVI classification tree (generated using https://transient.
fail/) with possible attack variants (red, bold), and neutralized variants that
are already prevented by current software and microcode mitigations (green,
dashed).

APPENDIX B

LVI CLASSIFICATION TREE

In this appendix, we propose an unambiguous naming

scheme to reason about and distinguish LVI variants, following

the (extended) transient-execution attack classification tree by

Canella et al. [10]. Particularly, in a first level, we distinguish

the fault or assist type triggering the transient execution, and at

a second level we specify the microarchitectural buffer which

is used as the injection source. Figure 11 shows the resulting

two-level LVI classification tree. Note that, much like in the

perpendicular Spectre class of attacks [10], not all CPUs from

all vendors might be susceptible to all of these variants.

a) Applicability to Intel SGX: We remark that some of

the fault types that may trigger LVI in Figure 11 are specific to

Intel SGX’s root attacker model. Particularly, LVI-US generates

supervisor-mode page faults by clearing the user-accessible bit

in the untrusted page table entry mapping a trusted enclave

memory location. The user-accessible bit can only be modified

by root attackers that control the untrusted OS, and hence

does not apply in a user-to-kernel or user-to-user LVI scenario.

Furthermore, LVI-PPN generates SGX-specific EPCM page
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faults by supplying a rogue physical page number in a page-

table entry mapping trusted enclave memory (cf. Section VI-A).

This variant is specific to Intel SGX’s EPCM memory access

control model.

Finally, as explored in Section VIII, LVI-P and LVI-AD are

not specific to Intel SGX, and might apply to traditional kernel

and process isolation as well.

b) Neutralized variants: Interestingly, as part of our

analysis, we found that some LVI variants are in principle

feasible on unpatched systems, but are already properly

prevented as an unintended side-effect of software mitigations

that have been widely deployed in response to Meltdown-type

cross-domain leakage attacks.

We considered whether virtual machine or OS process

Foreshadow variants [70] may also be reversely exploited

through an injection-based LVI methodology, but we concluded

that no additional mitigations are required. In the case of virtual

machines, the untrusted kernel can only provoke non-present

page faults (and hence LVI-P-L1D injection) for less-privileged

applications, and never for more privileged hypervisor software.

Alternatively, we find that cross-process LVI-P-L1D is possible

in demand-paging scenarios when the kernel does not properly

invalidate the PPN field when unmapping a victim page and

assigning the underlying physical memory to another process.

The next page dereference in the victim process provokes a

page fault leading to the L1TF condition and causing the L1D

cache to inject potentially poisoned data from the attacker

process into the victim’s transient data stream. However, while

this attack is indeed feasible on unpatched systems, we found

that it is already properly prevented by the recommended PTE

inversion [12] countermeasure which has been widely deployed

in all major operating systems in response to Foreshadow.

Secondly, we considered that some processors transiently

compute on unauthorized values from the FPU register file

before delivering a device-not-available exception (#NM) [57].

This may be abused in a “reverse LazyFP” LVI-NM-FPU attack

to inject attacker-controlled FPU register contents into a victim

application’s transient data stream. However, we concluded

that no additional mitigations are required for this variant as

all major operating systems inhibit the #NM trigger completely

by unconditionally applying the recommended eager FPU

switching mitigation. Likewise, Intel confirmed that for every

enclave (re-)entry SGX catches and signals the #NM exception

before any enclave code can run.

Finally, we concluded that the original Meltdown [42] attack

to read (cached) kernel memory from user space cannot be

inverted into an LVI-L1D equivalent. The reasoning here is that

the user-accessible page-table entry attribute is only enforced

in privilege ring 3, and a benign victim process would never

dereference kernel memory.

APPENDIX C

INTEL SGX QUOTE LAYOUT

We first provide the C data structure layout representing

a quote in Listing 5. Note that the report_data field in

the sgx_report_body_t; is part of the (untrusted) input

1 typedef struct _sgx_report_data_t {
2 uint8_t d[64];
3 } sgx_report_data_t;
4

5 typedef struct _report_body_t {
6 ...
7 /* (320) Data provided by the user */
8 sgx_report_data_t report_data;
9 } sgx_report_body_t;

10

11 typedef struct _quote_t {
12 uint16_t version; /* 0 */
13 uint16_t sign_type; /* 2 */
14 sgx_epid_group_id_t epid_group_id; /* 4 */
15 sgx_isv_svn_t qe_svn; /* 8 */
16 sgx_isv_svn_t pce_svn; /* 10 */
17 uint32_t xeid; /* 12 */
18 sgx_basename_t basename; /* 16 */
19 sgx_report_body_t report_body; /* 48 */
20 uint32_t signature_len; /* 432 */
21 uint8_t signature[]; /* 436 */
22 } sgx_quote_t;

Listing 5: https://github.com/intel/linux-sgx/blob/master/common/inc/sgx
quote.h#L87

1 /* emp_quote: Untrusted pointer to quote output
2 * buffer outside enclave.
3 * quote_body: sgx_quote_t holding quote metadata
4 * (without the actual signature).
5 */
6 ret = qe_epid_sign(...
7 emp_quote, /* fill in signature */
8 &quote_body, /* fill in metadata */
9 (uint32_t)sign_size);

10 ...
11

12 /* now copy sgx_quote_t metadata (including user-
13 provided report_data) into untrusted output buffer*/
14 memcpy(emp_quote, &quote_body, sizeof(sgx_quote_t));
15

16 /* now erase enclave secrets (EPID private key) */
17 CLEANUP:
18 if(p_epid_context)
19 epid_member_delete(&p_epid_context);
20 return ret;
21 }

Listing 6: https://github.com/intel/linux-sgx/blob/master/psw/ae/qe/quoting
enclave.cpp#L1139

provided as part of the QE invocation. The only requirement on

this data is that it needs to have a valid SGX report checksum,

and hence needs to be filled in by a genuine enclave running

on the target system (but this can also be for instance an

attacker-controlled debug enclave).

Furthermore, Listing 7 provides the get_quote entry

point in Intel SGX-SDK Enclave Definition Language (EDL)

specification. Note that the quote data structure holding the

asymmetric cryptographic signature is relatively big, and hence

is not transparently cloned into enclave memory. Instead this

pointer is declared as user_check and explicitly verified to

lie outside the enclave in the QE implementation, allowing to

directly read from and write to this pointer from the trusted

enclave code.

Listing 6 finally provides the C code fragment including the

memcpy invocation discussed in Section VII-A.
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TABLE III. Number of lfences inserted by different compiler and assembler mitigations for the OpenSSL and SPEC benchmarks (cf. Figures 8 and 9).

Benchmark Unoptimized assembler (Intel) Optimized compiler (Intel) Unoptimized LLVM intermediate (ours)

gcc
-pl

ain

gcc
-lf

enc
e

cla
ng-

pla
in

cla
ng-

ful
l

cla
ng-

ret

loa
d+r

et

ret
-on

ly

OpenSSL (libcrypto.a) 0 73 998 0 24 710 5608 39 368 5119
OpenSSL (libssl.a) 0 15 034 0 5248 1615 10 228 1415
600.perlbench 0 104 475 0 32 764 2584 - -
602.gcc 10 458 799 1 148 069 17 198 - -
605.mcf 0 1191 0 266 44 - -
620.omnetpp 0 78 968 0 36 940 5578 - -
623.xalancbmk 2 252 080 0 110 353 10 750 - -
625.x264 0 31 748 0 5582 528 - -
631.deepsjeng 0 4315 0 545 118 - -
641.leela 0 8997 0 1669 340 - -
657.xz 0 7820 0 1534 419 - -

1 public uint32_t get_quote(
2 [size = blob_size, in, out] uint8_t *p_blob,
3 uint32_t blob_size,
4 [in] const sgx_report_t *p_report,
5 sgx_quote_sign_type_t quote_type,
6 [in] const sgx_spid_t *p_spid,
7 [in] const sgx_quote_nonce_t *p_nonce,
8 // SigRL is big, so we cannot copy it into EPC
9 [user_check] const uint8_t *p_sig_rl,

10 uint32_t sig_rl_size,
11 [out] sgx_report_t *qe_report,
12 // Quote is big, we should output it in piece meal.
13 [user_check] uint8_t *p_quote,
14 uint32_t quote_size, sgx_isv_svn_t pce_isvnsvn);

Listing 7: https://github.com/intel/linux-sgx/blob/master/psw/ae/qe/quoting
enclave.edl#L43

APPENDIX D

LFENCE COUNTS FOR COMPILER MITIGATIONS

Table III additionally provides the number of lfence
instructions inserted by the various compiler and assembler

mitigations introduced in Section IX-B for the OpenSSL and

SPEC2017 benchmarks.
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