
Tactical Provenance Analysis for
Endpoint Detection and Response Systems

Wajih Ul Hassan
University of Illinois at

Urbana-Champaign

whassan3@illinois.edu

Adam Bates
University of Illinois at

Urbana-Champaign

batesa@illinois.edu

Daniel Marino
NortonLifeLock

Research Group

daniel.marino@nortonlifelock.com

Abstract—Endpoint Detection and Response (EDR) tools pro-
vide visibility into sophisticated intrusions by matching system
events against known adversarial behaviors. However, current so-
lutions suffer from three challenges: 1) EDR tools generate a high
volume of false alarms, creating backlogs of investigation tasks
for analysts; 2) determining the veracity of these threat alerts re-
quires tedious manual labor due to the overwhelming amount of
low-level system logs, creating a “needle-in-a-haystack” problem;
and 3) due to the tremendous resource burden of log retention, in
practice the system logs describing long-lived attack campaigns
are often deleted before an investigation is ever initiated.

This paper describes an effort to bring the benefits of data
provenance to commercial EDR tools. We introduce the no-
tion of Tactical Provenance Graphs (TPGs) that, rather than
encoding low-level system event dependencies, reason about
causal dependencies between EDR-generated threat alerts. TPGs
provide compact visualization of multi-stage attacks to analysts,
accelerating investigation. To address EDR’s false alarm problem,
we introduce a threat scoring methodology that assesses risk
based on the temporal ordering between individual threat alerts
present in the TPG. In contrast to the retention of unwieldy
system logs, we maintain a minimally-sufficient skeleton graph
that can provide linkability between existing and future threat
alerts. We evaluate our system, RapSheet, using the Symantec
EDR tool in an enterprise environment. Results show that our
approach can rank truly malicious TPGs higher than false
alarm TPGs. Moreover, our skeleton graph reduces the long-
term burden of log retention by up to 87%.

I. INTRODUCTION

Today’s system intrusions are remarkably subtle and so-

phisticated. Exemplified by the “living-off-the-land” attack

strategies of Advanced Persistent Threats (APTs), adversaries

now lurk in the enterprise network for longer periods to extend

their reach before initiating a devastating attack. By avoiding

actions that would immediately arouse suspicion, the dwell

time for such attackers can range from weeks to months, as

was the case in numerous data breaches including Target [1],

Equifax [2], and the Office of Personnel Management [3].

The canonical enterprise solution for combatting APTs is

known as Endpoint Detection and Response (EDR). EDR tools

constantly monitor activities on end hosts and raise threat

alerts if potentially-malicious behaviors are observed. In con-

trast to signature scanning or anomaly detection techniques,

EDR tools hunt threats by matching system events against a

knowledge base of adversarial Tactics, Techniques, and Proce-

dures (TTPs) [4], which are manually-crafted expert rules that

describe low-level attack patterns. TTPs are hierarchical, with

tactics describing “why” an attacker performs a given action

while techniques and procedures describe “how” the action is

performed. According to a recent survey, 61% of organizations

deploy EDR tools primarily to provide deep visibility into

attacker TTPs and facilitate threat investigation [5]. MITRE’s

ATT&CK [6] is a publicly-available TTP knowledge base

which is curated by domain experts based on the analysis of

real-world APT attacks, and is one of the most widely used

collections of TTPs [7], [8], [9]. In fact, all 10 of the top

EDR tools surveyed by Gartner leverage the MITRE ATT&CK

knowledge base to detect adversary behavior [10].

While EDR tools are vital for enterprise security, three

challenges undermine their usefulness in practice. The first

challenge is that TTP knowledge bases are optimized for

recall, not precision; that is, TTP curators attempt to describe

all procedures that have any possibility of being attack re-

lated, even if the same procedures are widely employed for

innocuous purposes. An obvious example of this problem can

be found in the “File Deletion” Technique [11] in MITRE

ATT&CK – while file deletion may indicate the presence of

evasive APT tactics, it is also a necessary part of benign user

activities. As a result, EDR tools are prone to high volumes of

false alarms [12], [13], [14], [15]. In fact, EDR tools are one

of the key perpetrators of the “threat alert fatigue” problem1

that is currently plaguing the industry. A recent study found

that the biggest challenge for 35% of security teams is keeping

up with the sheer volume of alerts [16]. Consequently, the true

attacks detected by EDR tools are at risk of being lost in the

noise of false alerts.

The second challenge comes from the dubious nature of

EDR-generated threat alerts. After receiving an alert, the first

job of a cyber analyst is to determine the alert’s veracity.

For validation, cyber analysts review the context around the

triggered alert by querying the EDR for system logs. Although

EDR tools collect a variety of useful contextual information,

such as running processes and network connections, the onus

is on the cyber analyst to manually piece together the chain of

system events. If the alert is deemed truly suspicious, the cyber

analyst then attempts to recover and correlate various stages

1A phenomenon in which cyber analysts do not respond, or respond
inadequately, to threat alerts because they receive so many each day.
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of the attack through further review of enormous system logs.

Security Indicator & Event Management (SIEM) products are

often the interface through which this task is performed (e.g.,

Splunk [17]), allowing analysts to write long ad-hoc queries

to join attack stages, provided that they have the experience

and expertise to do so.

Long-term log retention is the third challenge for existing

EDR tools. It is still commonplace for EDR tools to delete sys-

tem logs soon after their capture. Logs are commonly stored

in a small FIFO queue that buffers just a few days of audit

data [18], [19], such that system events are commonly unavail-

able when investigating a long-lived attack. Even worse, unless

an organization staffs a 24/7 security team, the audit data for an

alert that fires over the weekend may be destroyed by Monday.

This indicates that despite advancements in the efficiency of

causal analysis, long-term retention of system log simply does

not scale in large enterprises. Not only does this mean that

EDR tools cannot reap the benefits of causal analysis during

threat investigation, but it also means that current EDR tools

lack the necessary context to understand the interdependencies

between related threat alerts.

To aid alert validation and investigation, it would seem that

the research community has already arrived at a solution –

data provenance. Data provenance analysis can be applied

to system logs to parse host events into provenance graphs

that describe the totality of system execution and facilitate

causal analysis of system activities. In recent years, significant

advancements have been made that improve the fidelity [20],

[21], [22], [23], [24], [25], [26], [27], [28] and efficiency [29],

[30], [31], [32], [33], [34], [35], [36], [37] of causal analysis,

and recent results indicate that causal analysis can even be

leveraged to improve alert triage [38], to detect intrusions [39],

[40], [41], and to derive alert correlations [42], [43]. Better yet,

most causal analysis engines are based on commodity auditing

frameworks (e.g., Windows ETW), which analyze the same

information stream that is already being used by EDR tools.

Based on data provenance, we introduce a new concept in

this paper which we call Tactical Provenance that can reason

about the causal dependencies between EDR-generated threat

alerts. Those causal dependencies are then encoded into a

tactical provenance graph (TPG). The key benefit of TPG is

that a TPG is more succinct than a classical whole-system

provenance graph because it abstracts away the low-level

system events for cyber analysts. Moreover, TPGs provide

higher-level visualizations of multi-stage APT attacks to the

analysts, which help to accelerate the investigation process.

To tackle the threat alert fatigue problem, we present meth-

ods of triaging threat alerts based on analysis of the associated

TPGs. APT attacks usually conform to a “kill chain” where

attackers perform sequential actions to achieve their goals [44],

[45]. For instance, if the attacker wants to exfiltrate data, they

must first establish a foothold on a host in the enterprise,

locate the data of interest (i.e., reconnaissance), collect it, and

finally transmit the data out of the enterprise. Our key idea

is that these sequential attack stages seen in APT campaigns
can be leveraged to perform risk assessment. We instantiate

this idea in a threat score assignment algorithm that inspects

the temporal and causal ordering of threat alerts within the

TPG to identify sequences of APT attack actions. Afterward,

we assign threat score to that TPG based on the identified

sequences and use that threat score to triage TPGs.

To better utilize the limited space available on hosts for

long-term log storage, we present a novel log reduction

technique that, instead of storing all the system events present

in the logs, maintains a minimally-sufficient skeleton graph.

This skeleton graph retains just enough context (system events)

to not only identify causal links between the existing alerts but

also any alerts that may be triggered in the future. Even though

skeleton graphs reduce the fidelity of system logs, they still

preserve all the information necessary to generate TPGs for

threat score assignment, risk assessment, and high-level attack

visualization.

In summary, we make the following contributions:

• We propose tactical provenance graphs (TPGs), a new

representation of system events that brings the benefits of

data provenance into the EDR ecosystem.

• We present a threat scoring algorithm based on TPGs to

rank threat alerts.

• We present a novel log reduction scheme that can reduce

the storage overhead of system logs while preserving causal

links between existing and future threat alerts.

• We integrate our prototype system, RapSheet, into the

Symantec EDR tool. We evaluated RapSheet with an enter-

prise dataset to show that RapSheet can rank truly malicious

TPGs higher than false alarm TPGs. Moreover, our skeleton

graph reduces the storage overhead of system logs by up to

87% during our experiments.

II. BACKGROUND & MOTIVATION

A. Data Provenance

Data provenance is a promising approach to investigate

cyber attacks [46]. In the context of operating systems, data

provenance techniques parse logs generated by system-level

auditing frameworks, such as Windows ETW [47] and Linux

Audit [48] into a provenance graph. Provenance graphs encode

causal dependence relations between system subjects (e.g.,

processes) and system objects (e.g., files, network sockets).

Given a symptom event of an attack, cyber analysts can find

the root cause of the attack by issuing a backward tracing

query on the provenance graph. After identifying the root

cause, cyber analysts can also issue a forward tracing query

to understand the ramifications of the same attack. Thus, data

provenance is a powerful technique for attack attribution.

B. MITRE ATT&CK and EDR tools

MITRE ATT&CK is a publicly-available knowledge base

of adversary tactics and techniques based on real-world ob-

servations of cyber attacks. Each tactic contains an array of

techniques that have been observed in the wild by malware or

threat actor groups. Tactics explain what an attacker is trying
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to accomplish, while techniques2 and procedures3 represent

how an adversary achieves these tactical objectives (e.g., How

are attackers escalating privileges? or How are adversaries

exfiltrating data?) The MITRE ATT&CK Matrix [49] visually

arranges all known tactics and techniques into an easy-to-

understand format. Attack tactics are shown at the top of the

matrix. Individual techniques are listed down each column. A

completed attack sequence would be built by moving through

the tactic columns from left (Initial Access) to right (Impact)

and performing one or more techniques from those columns.

Multiple techniques can be used for one tactic. For example,

an attacker might try both an attachment (T1193) and a link

(T1192) in a spearphishing exploit to achieve the Initial Access

tactic. Also, some techniques are listed under multiple tactics

since they can be used to achieve different goals.

One common use of MITRE ATT&CK tactics and tech-

niques is in malicious behavior detection by Endpoint De-

tection and Response (EDR) tools. EDR tools serve four

main purposes in enterprises: 1) detection of potential se-

curity incidents, 2) scalable log ingestion and management,

3) investigation of security incidents, and 4) providing re-

mediation guidance. To implement those capabilities, EDR

tools record detailed, low-level events on each host including

process launches and network connections. Typically, this data

is stored locally on end hosts. Events that are of potential

interest may be pushed to a central database for alerting and

further analysis, during which additional events may be pulled

from the endpoint to provide forensic context. EDR tools

provide a rule matching system that processes the event stream

and identifies events that should generate alerts. Major EDR

vendors [7], [8], [9] already provide matching rules to detect

MITRE ATT&CK TTPs; however, cyber analysts can also add

new rules to detect additional TTPs at an enterprise where the

EDR tool is deployed.

C. Motivating Example

We now consider a live attack exercise that was conducted

by the Symantec’s red team over a period of several days; this

exercise was designed to replicate the tactics and techniques

of the APT29 threat group. APT29 is one of the most

sophisticated APT groups documented in the cyber security

community [50]. Thought to be a Russian state-sponsored

group, APT29 has conducted numerous campaigns with differ-

ent tactics that distribute advanced, custom malware to targets

located around the globe. Discovered attacks attributed to

APT29 have been carefully analyzed by MITRE, yielding a

known set of tactics and techniques that APT29 commonly use

to achieve their goals [51]. In this exercise, different techniques

were performed from that known set, ranging from Reg-

istry Run Keys (T1060) to Process Injection (T1055). These

techniques allowed us to observe different MITRE tactics

2 Techniques are referenced in ATT&CK as Txxxx such as Spearphishing
link is T1192 and Remote Access Tools is T1219. Description of these
techniques is available at https://attack.mitre.org/techniques/enterprise/

3 A procedure is a specific instantiation of a technique; in this paper we
use the term “technique” to describe both techniques and procedures.
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Fig. 1: Top 10 techniques based on the number of times exploited by
93 MITRE-curated APT groups. 6 of these 10 techniques are benign
in isolation and occur frequently during normal system execution.

including persistence, privilege escalation, lateral movement,

and defense evasion.

1) Limitations of EDR tools: Existing EDR tools excel at

scalably identifying potentially malicious low-level behaviors

in real-time. They can monitor hundreds or thousands of hosts

for signs of compromise without event congestion. However,

they suffer from some major usability and resource issues

which we list below.

False-positive Prone. Existing EDR tools are known to

generate many false alarms [12], [13], [14] which lead to the

threat alert fatigue problem. The main reason for this high

false alarm rate is that many MITRE ATT&CK behaviors are

only sometimes malicious. For example, MITRE ATT&CK

lists a technique called “File Deletion” T1107 under the

“Defense Evasion” tactic. Finding this individual behavior

and generating an alert is straightforward. But how would

the analyst discern whether this file deletion is the result

of normal system activity, or an attempt by an attacker to

cover his tracks? Alerting on individual MITRE techniques

generates false alarms and requires a human in the loop for

alert validation.

To further quantify how many techniques from the MITRE

ATT&CK knowledge-base can be benign in isolation, we took

techniques used by 93 APT attack groups provided by MITRE

and identified the most used techniques from these attack

groups. Figure 1 shows the top ten most used techniques.

After manual inspection, we found that 6 of 10 techniques

may be benign in isolation, and in fact occur frequently during

typical use. For example, the Powershell technique (T1086)

can be triggered during a normal execution of applications

like Chrome or Firefox. During our attacks simulation period,

the Symantec EDR generated a total of 58,096 alerts on the

34 machines. We analyzed these alerts and found that only

1,104 were related to true attacks from the APT29 exercise and

from other attack simulations we describe later. The remaining

56,992 were raised during benign activity, yielding a precision

of only 1.9%.

Laborious Context Generation. To investigate and validate

the triggered alerts, analyst usually write ad hoc queries

using the SIEM or EDR tool’s interface to generate context

around alerts or to correlate them with previous alerts. Such
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userinit.exe

HKEY_USERS/
S-1-5-21-1603624627-40259

59035-3120021394-1103/
Software/Microsoft/Windows/

CurrentVersion/RunOnce/
ctfmon.exe

T1060
eRegistryRunKeys
persistence

Alert A
Alert B

mstsc.exe

src: 10.0.10.21:57291
dst: 10.0.0.10:3389

T1076
eRemoteDesktopProtocol
lateral-movement

Fig. 2: Part of the APT29 attack provenance graph. We zoomed-in on two threat alerts from this attack, and excluded the network connections
and registry operations from this graph for presentation purposes. In the complete graph, there are total 2,342 edges and 1,541 vertices.
In this graph, and the rest of the paper, we use boxes to represent processes (count=79), diamonds to represent sockets (count=750), and
oval nodes to represent files (count=54), registries (count=132), kernel objects (count=30), and modules (count=496). Edges represent casual
relationships between the entity nodes, and red edges represent threat alerts (count=26).

context generation requires a lot of manual effort and time,

which can delay investigation and recovery. Even after analysts

have generated the context around an alert, it is difficult to

understand the progression of the attack campaign by looking

at system-level events. Depicting these events in a graph helps

to show the causal relationships, but the volume of information

is still overwhelming. Note that certain EDR tools, such as

CrowdStrike Falcon [52] provide interfaces to only get the

chain of process events that led to the triggered alert. These

process chains do not capture information flow through system

objects (e.g., files, registries). As a result, such EDR tools can

not aggregate causally related alerts that are associated with

system objects, leading to incomplete contexts.

During our exercise, APT29 generated 2,342 system events

such as process launches and file creation events. Figure 2

shows a classical whole-system provenance graph for all the

events related to APT29. The unwieldy tangle of nodes and

edges in the figure demonstrates how daunting it can be for

a cyber analyst to explore and validate a potential attack and

understand the relationship between alerts.

Storage Inefficiency. EDR tools constantly produce and

collect system logs on the end hosts. These system logs can

quickly become enormous [31], [34]. In our evaluation dataset,

the EDR recorded 400K events per machine per day from total

of 34 end hosts, resulting in 35GB worth of system logs with

a total of 40M system events. Note that the database used to

store the events on hosts performs light compression, resulting

in on-disk sizes roughly half this size. Retaining those system

logs can become costly and technically challenging over longer

periods. Further, for enterprises, it is important to clarify how

long logs will be stored for and plan for the resulting financial

and operational impact. For example, keeping log data for a

week may be inexpensive, but if an attack campaign spans

more than a week (which is common [3], [2], [1]), then the

company will lose critical log data necessary for forensic

investigation.

We surveyed the white papers and manuals of the top 5

EDR tools curated by Gartner [10]. In these white papers, we

specifically looked for techniques used by these EDR tools for

log retention. We found that no EDR tool currently describes

any meaningful log retention techniques that can best utilize

the limited storage for the investigation of long-lived APTs.

Instead, those EDR tools use a FIFO queue that depending

on the EDR vendor’s retention policies buffers only a few

days of system logs. For example, by default, Symantec’s EDR

allocates 1GB of space on each host which is sufficient for a

couple of days or perhaps a week’s worth of logs. The oldest

logs are purged when this limit is reached. Events that are

pushed to the server are also purged, with the oldest 10% of

events deleted when used storage capacity reaches 85% [18].

III. SYSTEM OVERVIEW

A. Threat Model
This work considers an enterprise environment comprised

of thousands of machines that is the target of a sophisticated

remote attacker. The attacker follows the strategy of low
– primarily utilizing techniques that are unlikely to draw

significant attention, and slow – often spanning weeks to

months in duration. Moreover, we consider APT-style attacks

that are highly disruptive [53], creating significant business

disruption. We make the following assumptions about the

environment. First, we assume that an EDR tool is collecting

system logs on each end host in the enterprise. Next, we

assume that APT attacks begin after the EDR has started

monitoring the victim host. We assume that the underlying

EDR tool is not compromised and that the system logs are

correct (not tampered with by the attacker) at the time of the

investigation. However, tamper-evident logging solutions [54],

[55] can help alleviate log integrity assumption. Finally, we

do not consider hardware trojans, side-channels, and backdoor

attacks in this paper.

B. Design Goals
We set out to design a system that will bring the best of

provenance-based solutions to solve the shortcomings of EDR

tools. The following are the design goals of our system:

G1 Multi-stage Attack Explanations. The system should

provide a compact visualization to describe different high-

level stages of attack campaigns.
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G2 Causal Alert Triage. The system should triage threat

alerts based on their severity.

G3 Long-Term Log Retention. Our techniques for investiga-

tion and triage must be possible for even prolonged attack

campaigns without sacrificing accuracy.

G4 Broadly Applicable. The techniques we develop for alert

triage and log management should comply with EDR

tool use cases. Our techniques should work with generic

system logs collected already by most EDR tools.

G5 Minimally Invasive. The system should be able to work

with any commodity host without requiring changes to the

underlying OS or the EDR tool.

G6 Extensible. Our algorithms should be able to work with

any adversarial TTP knowledge base as long as those

TTPs are detected by the underlying EDR tool.

C. Our Approach

A high-level overview of our system, RapSheet, is shown

in Figure 3. Full details will be given in the next section,

but we overview the approach here. First, RapSheet performs

rule matching on system logs to identify the events that

match MITRE ATT&CK behaviors. In our APT29 exercise,

we were able to match techniques T1060, T1086, T1085,

T1055, T1082, T1078, T1076, T1040 against logs. Each rule

match signifies an alert of a possible threat behavior. Next,

we generate a provenance graph database from the logs.

During the graph generation, we annotate the edges (events)

that match the MITRE ATT&CK techniques in the previous

step. Figure 2 shows the provenance graph for the APT29

engagement.

Once the construction of the provenance graph with alert

annotations is done, we generate a tactical provenance graph

(TPG) which is a graph derived from the provenance graph that

shows how causally related alerts are sequenced. To generate

a TPG, we first identify the initial infection point (IIP) vertex,

i.e., the first vertex in the timeline that generated a threat alert.

Then we find all the alerts in the progeny of the IIP vertex

using forward tracing. Finally, extraneous system events are

removed from this progeny graph (Goal G1), forming what

we call the IIP graph. Figure 4a shows the IIP graph for the

APT29 attack. After that, we perform threat score assignment.

The key idea behind our threat score assignment algorithm

is to use temporal ordering between all the causally related
alerts (i.e., all the alerts in the IIP graph) to rank the alerts
that conform to the MITRE ATT&CK kill chain higher than
the alerts that appear in an arbitrary order. However, ordering

information for alerts on different paths is not immediately

apparent in the IIP graph. To remedy this, we perform a

happens-before analysis to find temporal orderings between

the different alerts present in the IIP graph which gives us a

TPG. Figure 4b shows the TPG for the APT29 attack scenario.

After that our threat score assignment algorithm finds ordered

subsequences of alerts from the TPG that conform to the

MITRE kill chain and uses these to assign a severity score

for alert prioritization (Goal G2). Note that our evaluation

and implementation are based on an offline analysis similar

System 
Logs

Rule
 Matching

Provenance 
Graph

Database Tactical  Provenance Analysis

Threat 
Score 

Assignmenti

IIP
Graphs

Host Prov. 
Graph

RapSheet

TPGs

Fig. 3: Overview of RapSheet architecture (Section III-C)

to prior causal analysis work (e.g., [38], [31]). We discuss

how to adapt our system to online settings in Section IX.

IV. SYSTEM DESIGN

A. Log Collection

EDR tools collect system logs on each host in the enterprise.

For Linux hosts, our underlying EDR uses Linux Audit

framework [48] while for Windows it uses ETW [47] as well

as custom system call hooking. This is standard for most EDR

tools [56], [57]. System logs contain low-level system events

including process launches and file operations. Those system

events capture causal relationships between different system

entities. For example, in Linux the causal relationship between

a parent process creating a child process is represented by

an event generated by capturing calls to sys_clone(). Once

those system logs are collected on each host they are processed

into a JSON format.

We note that we supplemented the events collected by our

underlying EDR with logs of Asynchronous Local Procedure

Call (ALPC) messages which we collected separately on

Windows hosts. ALPC is the mechanism that Windows com-

ponents use for inter-process communication (IPC) [58]. After

running real-world attack scenarios on Windows machines, we

realized that many of the attacks manifest in part through

system activities that are initiated using ALPC messages.

Missing those causal links can undermine the forensic in-

vestigation, as the provenance graph becomes disconnected

without them. Note that previous papers [42], [25], [43], [22],

[38] on Windows provenance do not capture ALPC messages,

resulting in disconnected provenance chains.

B. Rule Matching

Generating alerts for individual MITRE techniques is a

feature of most EDR tools, including the one that we use in

our experiments. Because of RapSheet’s novel use of TPGs for

grouping, scoring, and triaging alerts, we are able to include

even the most false-positive-prone MITRE techniques as alerts

without overwhelming an analyst. In our experiments, we use a

default set of MITRE rules that was provided by the Symantec

EDR tool, and we supplemented these with additional rules for

MITRE techniques that were not already covered. Users can

easily extend our system by adding new rules for additional

TTPs (Goal G6). Moreover, to ensure Goal G4 our rule

matching only relies on events that are commonly collected

by EDR tools or readily available from commodity auditing

frameworks.
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Fig. 4: APT29 attack scenario. (a) IIP Vertex graph generated by RapSheet. Threat alert edges are annotated with the MITRE technique
ID, technique name, and tactic name. “PS” stands for PowerShell. (b) Tactical Provenance Graph (TPG) for APT29 attack after applying
readability pass. RapSheet generated TPG is 2 orders of magnitude smaller than the classical provenance graph shown in Figure 2

As is described next, the low-level system events will form

edges in a provenance graph. In RapSheet, we annotate the

edges that triggered an alert with the alert information (e.g.,

the MITRE technique ID). Some rules provided by the EDR

vendor generate alerts for behaviors not covered by the MITRE

ATT&CK, which we ignore these for the purposes of this

work. For our example attack scenario described in Section II,

the threat alert annotated as Alert B in Figure 2 matched the

following rule (syntax simplified for clarity):

Listing 1: Example MITRE technique matching rule.

IF EXISTS E WHERE E.tgtType = ’network’ AND
E.action = ’connect’ AND E.dstPort = 3389
THEN ALERT(E.actorProc, ’T1076’)

C. Provenance Graph Database

The system logs on each host are parsed into a graph

structure called a provenance graph. The provenance graph

generated by RapSheet is similar to previous work on prove-

nance graphs [26], [21], [22], [23], [27] with some new

additions to reason about MITRE ATT&CK tactics. Our

provenance graph data model is shown in Figure 5. We have

two types of vertices: process vertex type and object vertex

type which includes files, registry, etc. The edges that connect

these vertices are labeled with an event type that describes the

relationship between the connected entities and the timestamp

of event occurrence. Moreover, process vertices are marked

with start and terminate time which allows us to check if a

process is still alive during our analysis.

We also implemented a summarization technique from

previous work, causality-preserved reduction [31], [34] in our

provenance graph database. This technique merges the edges

between two vertices that have the same operation and keeps

only one edge with the latest timestamp. For example, most

File
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Terminate,
Injection,

ALPC
Create, Rename,
Delete, Modify,
Set Security,
Set Attributes

Open

Module

Load

Socket
Accept

Connect

ProcessRegistry  
Key & Value Kernel 

ObjectCreate

Create
Delete,Set,

Rename Get, 
Open

Fig. 5: Data model of our provenance graph database. Vertices repre-
sent the system entities (actors and objects) while the edges represent
the causal dependency. Edges are annotated with the timestamp of
event occurrence and event type.

operating systems and many EDRs produce several system-

level events for a single file operation. RapSheet aggregates

those events into a single edge in the provenance graph. This

technique has been shown to reduce the size of the provenance

graph while still preserving the correctness of causal analysis.

D. Tactical Provenance Analysis

Given a list of triggered alerts and host provenance graphs,

we find all the initial infection point (IIP) vertices in the

graphs. We define an IIP to be a vertex that meets two

conditions: (i) it corresponds to a process that generated an

alert event ea, and (ii) a backward trace from ea in the

provenance graph contains no other alert events. Note that

there can be multiple IIP vertices in a given provenance graph.

Intuitively, we are finding the earliest point that potentially

suspicious behavior occurred on a given provenance chain.

The IIP represents the process that exhibited this behavior. If

it turns out that ea was the first step in a multistage attack,

then the remainder of the attack will be captured by future

alerts generated by this process and its progeny. This gives

us an effective way to group correlated alerts. For each IIP

vertex, we generate a graph that is rooted at the IIP. We call

this an IIP graph and define it as follows:
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Def. 1. IIP Graph Given a provenance graph G < V,E >
and alert event ea incident on IIP Vertex va, the IIP Graph
G′ < V ′, E′ > is a graph rooted at Va where e ∈ E′ iff e is
causally dependent on ea and e is either an alert event or an
event that leads to an alert event.

We generate the IIP graph by issuing a forward tracing

query from the IIP vertex, producing a progeny provenance

graph containing only events which happened after that first

alert event incident on the IIP vertex. We then perform a

pruning step on this subgraph, removing all provenance paths

originating from the IIP that do not traverse an alert edge.

Each path in the resulting, pruned graph contains at least

one alert event. In Algorithm 1, Lines 1-16 show the IIP

graph generation process. For our attack scenario example

from Section II, the pruned progeny graph rooted at the IIP is

shown in Figure 4a.

This IIP graph based approach is a key differentiating factor

that sets RapSheet apart from the path-based approach to

alert triage in NoDoze [38] and the full graph approach in

Holmes [43]. A path-based approach fails to correlate alerts

that are causally related but appear on different ancestry paths.

For example, after initial compromise, an attacker can launch

several child processes, with each child generating its own,

separate path. Even though all child paths are causally related,

the path-based approach will fail to correlate alerts on the

separate paths. On the other hand, Holmes’ full graph approach

requires a normal behavior database and other heuristics to

reduce false alarms from benign activities before threat score

assignment. RapSheet does not require a normal behavior

database, rather we rely on extracting certain subgraphs (the

IIP graphs) and assigning scores based on well-known attacker

behaviors, which alleviates the problem of false alarms (further

discussed in Section V).

The IIP graph captures the temporal ordering between

events on the same path. However, when reasoning about

the overall attack campaign, we are not concerned with, e.g.,

which attacker-controlled process takes a given action. Instead,

we want to capture the temporal order of all alerts contained

in the IIP graph, which better reflects attacker intent. Because

this graph may consist of multiple paths, we need a way to

capture ordering between edges on different paths. To achieve

this goal, we transform the IIP graph into a new graph in

which each vertex is an alert event and edges indicate the

temporal ordering between alerts based on a happens-before

relationship [59]. We call these edges sequence edges, and

they are defined as follows:

Def. 2. Sequence Edge. A sequence edge (ea, eb) exists
between two alerts ea and eb iff any of the following hold:
(a) ea and eb are alerts on the same host and on the same
provenance path and ea causally preceded eb; or
(b) ea and eb are alerts on the same host and the vertex
timestamp of ea is less than the vertex timestamp of eb or
(c) ea had an outgoing Connect event edge on one host, while
eb has the corresponding Accept edge on the receiving host.

In other words, for events that happen on the same machine,

we can use the event timestamps to generate sequence edges.

For events on different machines, we can use communication

between the machines to generate the happens-before relation-

ship (events before a packet was sent on one machine definitely

happened before events that happened after the packet was

received on the other machine). In the end, we generate a graph

(Algorithm 1 Lines 17-30) which we call a tactical provenance

graph whose formal definition is as follows:

Def. 3. Tactical Provenance Graph. A tactical provenance
graph TPG can be defined as a pair (V,E), where V is a
set of threat alert events and E is a set of sequence edges
between the vertices.

As defined above, the TPG is already useful for analysts

to visualize multi-stage APT campaigns because it shows

temporally ordered and causally related stages of an attack

without getting bogged down in low-level system events.

However, the tactical provenance graph may not be as succinct

as the analyst would like, since MITRE techniques may

be matched repeatedly on similar events, such as a process

writing to multiple sensitive files or a process sending network

messages to multiple malicious IP addresses. This can add

redundant alert event vertices in the tactical provenance graph.

To declutter the TPG, we perform a post-processing step where

we aggregate the alert vertices ascribing the same technique if

they were triggered by the same process. Note that for events

on a single host, without cross-machine links, the TPG is a

single chain. An illustration of this post-processing step is

given in Figure 4a. While the IIP shows mstsc.exe triggering

three lateral movement alerts, the TPG in Figure 4b only has

one lateral movement vertex.

V. THREAT SCORE ASSIGNMENT

A key goal of RapSheet is to group alerts and assign them

a threat score that can be used to triage those contextualized

alerts. Because some alerts are more suspicious than others,

we pursued a scoring mechanism that incorporated a risk score

of the individual alerts. Where available, we used information

published by MITRE to assign those scores to individual alerts.

Many of the MITRE ATT&CK technique descriptions in-

clude a metadata reference to a pattern in the Common

Attack Pattern Enumeration and Classification (CAPEC) [60]

knowledge base. The CAPEC pattern entries sometimes in-

clude two metrics for risk assessment: “Likelihood of Attack”

and “Typical Severity”. Each of these is rated on a five

category scale of Very Low, Low, Medium, High, Very

High. The first metric captures how likely a particular attack

pattern is to be successful, taking into account factors such

as the attack prerequisites, the required attacker resources,

and the effectiveness of countermeasures that are likely to be

implemented. The second metric aims to capture how severe

the consequences of a successful implementation of the attack

would be. This information is available on MITRE’s website,

as well as in a repository of JSON files [61] from which we

programmatically extracted the scores.
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Algorithm 1 Tactical Provenance Analysis

Inputs:
Raw provenance graph G(V,E); Alert Events AE

Output:
List of Tactical Provenance Graphs ListTPG

1: AE′ ← {ae : time(ae)}, ae ∈ AE, sort by timestamp in asc. order
2: Seen ← ∅, set of seen alert events
3: ListIIP ← ∅, List of IIP Vertex Graphs
4: for all ae : AE′, ae /∈ Seen do
5: Seen ← Seen ∪ {ae}
6: // return all forward tracing paths from input event using DFS
7: Paths ← ForwardPaths(ae)
8: IIPG ← ∅ , IIP graph
9: for all path : Paths do

10: // return all alert events in the input provenance path
11: alerts ← GetAlertEvents(path)
12: // keep only those paths in IIP graph with at least one alert
13: if alerts �= ∅ then
14: IIPG ← IIPG ∪ path
15: Seen ← Seen ∪ alerts
16: ListIIP ← ListIIP ∪ IIPG

17: ListTPG ← ∅, List of TPGs to return
18: for all IIPG : ListIIP do
19: TPG ← ∅ , tactical provenance graph
20: alerts ← GetAlertEvents(IIPG)
21: // sort alerts according to Happens Before rules
22: alertshb ← {a : time(a)}, a ∈ alerts
23: // Loop over sorted alerts, two at a time
24: for all ae1, ae2 : alertshb do
25: V ← ae1
26: V ′ ← ae2
27: TPG ← TPG ∪ (V, V ′) // add sequence edge
28: // Post process the TPG for readability
29: TPG ← ReadabilityPass(TPG)
30: ListTPG ← ListTPG ∪ TPG

For some MITRE techniques, no CAPEC reference is

provided, or the provided CAPEC reference has no likelihood

and severity scores. In these cases, we fall back on a separate

severity score that was provided by the EDR vendor, normal-

ized to our fifteen point scale. We converted the descriptive

values for each metric into a numeric scale of one to five,

and combined the two metrics together. We give the severity

score a higher weight than the likelihood score since we

are defending against advanced adversaries that have many

resources at their disposal to effectively execute techniques

that might be considered unlikely due to their difficulty or

cost. The resulting threat score for each individual alert is:

TS(technique) = (2 ∗ SeverityScore) + LikelihoodScore (1)

For example, the MITRE technique called Registry Run
Keys / Startup Folder (T1060) [62] refers to the attack pattern

called Modification of Registry Run Keys (CAPEC-270) [63]

which assigns a likelihood of attack of “medium” and a

severity of “medium”. Thus, we assign an alert that detects

technique T1060 a score of nine out of a possible fifteen

(TS(T1060) = 2 ∗ 3 + 3 = 9).

Next, we explain different schemes that we used to combine

individual alert scores into an overall threat score.

A. Limitations of Path-Based Scoring Schemes

To aggregate scores, we first tried an approach based on

grouping and scoring alerts using a single, non-branching

provenance path as was proposed by Hassan et al. in [38].

For each alert, we generated the backward tracing path and

then aggregated the scores that occurred on that path. We tried

different aggregation schemes such as adding the individual

alert scores or multiplying them, with and without technique

or tactic deduplication. Unfortunately, we realized during our

experiments that the path-based approach was not capturing

the entire context of the attacks in some situations. This led

us to explore another approach to grouping and scoring alerts.

B. Graph-Based Scoring Schemes

To capture the broader context of a candidate alert, we

generate the TPG for the candidate alert which is derived from

the subgraph rooted at the shallowest alert in the candidate’s

backward tracing provenance path as described in Section IV.

The key insight behind our proposed scheme is that we

would like to maximize the threat score for TPGs where the

alerts are consistent with an attacker proceeding through the

ordered phases of the tactical kill chain defined by MITRE.

We formalize this intuition in a scoring algorithm as follows.

The sequence edges in the TPG form a temporally ordered

sequence of the graph’s constituent alerts. We find the longest

(not necessarily consecutive) subsequence of these ordered

alerts that is consistent with the phase order of MITRE’s

tactical kill chain. We then multiply the scores of the individual

alerts in this subsequence to give an overall score to the TPG.

If there are multiple longest subsequences, we choose the one

that yields the highest overall score. More formally:

TS(TPG) = max
Ti∈T

∏

T i
j∈Ti

TS(T i
j ) (2)

In Equation 2, T is the set of all longest subsequences

in TPG consistent with both temporal and kill-chain phase

ordering. Note that an attacker cannot evade detection by

introducing out-of-order actions from earlier, already com-

pleted stages of the attack. RapSheet’s scoring approach will

simply ignore these actions as noise when finding the longest

subsequence of alerts from the TPG, which need not be

consecutive.

VI. GRAPH REDUCTION

System logs enable two key capabilities of EDR tools: 1)

threat alert triage based on alert correlation and 2) after-the-

fact attack investigation using attack campaign visualization.

Thus, EDR tools need to retain these logs long enough to

provide these capabilities. However, system logs can become

enormous quickly in large enterprises, making long-term reten-

tion practically prohibitive. As mentioned in Section II, most

EDR tools store logs in a limited FIFO buffer, destroying old

logs to make space for new logs. Unfortunately, this naive log

retention strategy can lose critical information from older logs.

So, it is important to use this limited memory efficiently.
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Fig. 6: Graph reduction example. After every configurable time
interval, RapSheet runs graph reduction and store only skeleton graph
which preserves the linkability between current and future tactics.

We propose a novel technique to reduce the fidelity of logs

while still providing the two key EDR capabilities. To provide

these key capabilities, we need to ensure that we can generate

the TPG from the pruned graph. Once we have the TPG, we

can derive correlations between alerts, assign threat scores to

correlated alerts and provide high-level visual summaries of

attacks to the cyber analyst.

For our graph reduction algorithm, we assume the properties

of the provenance graph and backward tracing graph described

in Section IV-C. We also assume all the alert events in the

provenance graph are incident to at least one process vertex.

Based on these properties, we propose the following two rules

to prune the provenance graph at any point in time while

preserving TPG-based alert correlation.

Rule#1: Remove object vertex O iff there are no alert
events in the backward tracing graph of O and there are
no alert event edges directly connected to O.

This rule ensures that O is not currently part of any IIP

graph derived from the current provenance graph. If it were,

then it either would be directly involved in an alert (i.e., there

would be an alert edge incident to O), or it would be on a path

from some IIP vertex to some alert edge, which entails that

the alert incident to that IIP vertex would be in O’s backward

tracing graph. Note that even if there is a live process vertex

in the ancestry of object O, and that process generates an

alert event E1 in the future, this new alert event will have a

timestamp later than the edges currently leading to O. Hence,

O would not be part of the IIP graph containing E1.

To explain our graph reduction algorithm we use an example

provenance graph shown in Figure 6(a). Vertices labeled with

a P represent processes while those with an O represent object

vertices. The red edges indicate alerts, green vertices show live

processes at the time of reduction, and edges are marked with

ordered timestamps t1 to t9. Gray vertices and edges show

candidates for removal according to Rule#1 and Rule#2.

The only candidate for object vertex reduction is O2 since

it satisfies all the conditions of Rule#1. The backward tracing

graph of O2 consists of vertices {P2, P1} and the edges with

timestamps {t5, t1}, which do not have any alert events. Thus,

we can safely remove O2 and the edge with timestamp t5
from the graph without losing any connectivity information

for current or future alerts. Note that the edge with timestamp

t7 will not be included in the backward tracing graph because

it happened after t5. After graph reduction, if some process

vertex reads or writes to the object O2, then vertex O2 will

reappear in the provenance graph. Next, we discuss how to

prune process vertices from the graph.

Rule#2: Remove process vertex P iff: i) there are no alert
events in the backward tracing graph of P , ii) there are no
alert event edges directly connected to P and iii) process
P is terminated.

The first two conditions of Rule#2 have the same reasoning

as Rule#1. In addition, we have to ensure that process P
is terminated so that it does not generate new alerts which

will become part of an IIP graph. In the example shown in

Figure 6(a), process P3 is terminated, has no alert event in

its backward tracing graph, and does not have any incident

edges that are alert events. Thus, we can safely remove the

process vertex P3 from the graph along with the edges that

have timestamp {t2, t3}.

By applying these two reduction rules to a given prove-

nance graph, RapSheet generates a space-efficient skeleton

graph which can still identify all the causal dependencies

between alerts and can generate exactly the same set of TPGs

(procedure described in Section IV-D) as from the classical

provenance graph. Figure 6(b) shows the skeleton graph for

our example graph. We describe an efficient way to generate

the skeleton graph, which does not require performing a

backward trace for every vertex of a given provenance graph,

in Appendix B.

Properties. A skeleton graph generated by RapSheet will

not have any false positives, that is, TPGs generated from the

skeleton graph will not have alert correlations that were not

present in the original provenance graph. This is clear since

RapSheet does not add any new edges or vertices during the

reduction process. Furthermore, a skeleton graph generated

by RapSheet will not have any false negatives, meaning it

will capture all alert correlations that were present in the

original provenance graph. This follows from the properties of

provenance and our backward tracing graphs. The reduction

rules ensure that, at the time of reduction, the removed nodes

and edges are not part of any IIP graph. And since our

backward traces include only events that happened before a

given event, they would not be part of any future IIP graph.

Retention Policy. To provide log reduction and prevent stor-

age requirements from growing indefinitely, enterprises can

run the graph reduction algorithm at a configurable retention

time interval. This configuration value must be long enough

for alert rule matching to complete. The retention policy can

be easily refined or replaced according to enterprise needs.

The configured retention interval controls how long we store

high-fidelity log data (i.e., the unpruned graph). RapSheet’s

backward tracing and forward tracing works seamlessly over

the combined current high-fidelity graph and the skeleton

graph that remains from prior pruning intervals.
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VII. EVALUATION

In this section, we focus on evaluating the efficacy of

RapSheet as a threat investigation system in an enterprise

setting. In particular, we investigated the following research

questions (RQs):

RQ1 How effective is RapSheet as an alert triage system?

RQ2 How fast can RapSheet generate TPGs and assign threat

scores to TPGs?

RQ3 How much log reduction is possible when using skeleton

graphs?

RQ4 How well does RapSheet perform against realistic attack

campaigns?

A. Implementation

We used Apache Tinkerpop [64] graph computing frame-

work for our provenance graph database. Tinkerpop is an

in-memory transactional graph database and provides robust

graph traversal capabilities. We implemented the three Rap-

Sheet components (tactical graph generation, threat score

assignment, and graph reduction) in 6K lines of Java code.

We use a single thread for all our analyses. We generate our

provenance graphs in GraphViz (dot) format which can be eas-

ily visualized in any browser. Our implementation interfaces

with Symantec EDR. Symantec EDR is capable of collecting

system logs, matching events against attack behaviors, and

generating threat alerts.

B. Experiment Setup & Dataset

We collected system logs and threat alerts from 34 hosts

running within Symantec. The logs and alerts were generated

by Symantec EDR which was configured with 67 alert gener-

ating rules that encode techniques from the MITRE ATT&CK

knowledge-base. In our experiments, we turned off other EDR

rules that did not relate to MITRE ATT&CK. During all

experiments, RapSheet was run on a server with an 8-core

AMD EPYC 7571 processor and 64 GB memory running

Ubuntu 18.04.2 LTS.

Our data was collected over the period of one week from

hosts that were regularly used by members of a product devel-

opment team. Tasks performed on those hosts included web

browsing, software coding and compilation, quality assurance

testing, and other routine business tasks. Due to variations

in usage, some machines were used for only one day while

others logged events every day during data collection week.

In total, 35GB worth of (lightly compressed) logs with around

40M system events were collected. On average, each host

produced 400K events per machine per day. We describe

further characteristics of our dataset in Appendix A.

During the experimental period, we injected attack behav-

iors into three different hosts. The attack behaviors correspond

to three different attack campaigns, two based on real-world

APT threat groups (APT3 and APT29) and one custom-built

data theft attack. These simulated attacks were crafted by

an expert security red-team. The underlying EDR generated

58,096 alerts during the experiment period. We manually

examined the alerts from the machines which were targeted

Fig. 7: ROC curve for our experiments. We tried two different
schemes to rank TPGs. TPG-Seq means sequence-based scoring
while TPG-mult means strawman approach of score multiplication.
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Fig. 8: CDF of threat scores for false alarm and true attack TPGs.

by the simulated attacks to determine that 1,104 alerts were

related to simulated attacker activity. The remaining alerts

were not associated with any of the simulated attacks and we

consider them to be false positives.

C. Effectiveness

The first research question of our evaluation is how effective

RapSheet is as an alert triage tool. In our experiment, we

used the EDR tool to monitor hosts for MITRE ATT&CK

behaviors and generate alerts. We then manually labeled these

alerts as true positives and false positives based on whether the

log events that generated the alert were related to simulated

attacker activity. This labeled set is used as the ground truth

in our evaluation. Then, we used RapSheet to automatically

correlate these alerts, generate TPGs, and assign threat scores

to TPGs.

Of the 1,104 true alerts and 56,992 false alarms generated

during our experiments, RapSheet correlated these alerts into

681 TPGs. Of these, 5 were comprised of true alerts and

676 contained only false alarms.4 We then calculated threat

scores for these TPGs and sorted them according to their

score. We tried two different scoring schemes. For the first

scheme, we assigned scores to each TPG using a strawman

approach of multiplying the threat scores of all alerts present

in the TPG. However, since TPGs may contain duplicate alerts,

we normalize the score by combining alerts which have the

same MITRE technique, process, and object vertex. For the

second scheme, we used the scoring methodology described

in Section V.

Different true positive rates (TPRs) and false positive rates

(FPRs) for the scoring schemes above are shown in the ROC

graph in Figure 7. Our sequence-based scoring scheme was

4Three out of five truly malicious TPGs were related to the APT29
simulation, which the red team performed three times during the week with
slight variations. The other two attack campaigns resulted in one TPG each.
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Fig. 9: CDF of response times to run RapSheet analysis.

more effective than the other scheme. Figure 8 shows the

cumulative distribution function for ranked true attack and

false alarm TPGs based on threat scores. When we set a

threshold (shown with a vertical red line) that captures 100%

of true positives, we can remove 97.8% of false TPGs since

all true attack TPGs are scored significantly higher than most

false alert TPGs. At this threshold, RapSheet has a 2.2% FPR.

Note that the goal of RapSheet is not to eliminate false TPGs

from consideration, but to prioritize TPG investigation based

on their threat score. The threshold is a configurable parameter

and can be set more conservatively or aggressively based on

the goals of a particular enterprise security team. A ranked list

of the TPGs with the highest threat scores in our evaluation

is presented in Appendix C.

D. Response Times

To answer RQ2, we measured the TPG generation query

response (turn-around) time for all the alerts in our evaluation

dataset. We divided the response time of TPG generation

queries into two parts. First, we measured how long RapSheet

takes to generate the provenance graph for each alert in our

58,096 alerts dataset. These provenance graphs are generated

by performing backward and forward tracing queries for each

alert, which reads the provenance graph database from disk.

Figure 9a shows the cumulative distribution function (CDF) of

response times for all the alerts. The results show that for 80%

of alerts, RapSheet generates the provenance graph in less than

10 secs. Note that most of this time was spent in disk reads,

which we can likely speed up using existing main-memory

graph databases [65], [66].

Second, we measured the response time for performing

tactical provenance analysis, which includes first extracting

the IIP graph from the provenance graph of each alert,

transforming this IIP vertex graph into a TPG, and finally

assigning threat score to the TPG. For this response time, we

assume that the provenance graph of the alert (from Figure 9a)

is already in the main memory. Figure 9b shows that RapSheet

was able to perform tactical provenance analysis and calculate

threat scores on 95% of all the alerts in less than 1 ms.

E. Graph Reduction

To answer RQ3, we measured the graph size reduction from

applying the technique discussed in Section VI. Figure 10

shows the percentage reduction in the number of edges for the

34 hosts in our evaluation, one bar for each host. On average,
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Fig. 10: Percentage of edges removed from each host’s provenance
graph after applying our graph reduction algorithm.

�0
�0.2
�0.4
�0.6
�0.8

�1

�0 �20 �40 �60 �80 �100 �120 �140

C
D
F

Time�[min]

Fig. 11: CDF of running graph reduction algorithm on each of the
hosts’ provenance graph.

RapSheet reduces the graph size by 63%, increasing log buffer

capacities by 2.7 times. Note that we saw a similar reduction in

the number of vertices. In other words, the same end host can

store 2.7 times more data without affecting storage capacity

provided by EDR and data processing efficiency. This shows

that skeleton graphs can effectively reduce log overhead.

Since currently RapSheet does not support cross-machine

provenance tracking, our graph reduction algorithm is limited

to ensure the correctness of causality analysis. Recall that our

reduction algorithm does not remove a provenance path if it

leads to some alert. So in our implementation we conserva-

tively assume all the network connections made to hosts within

our enterprise can lead to an alert and thus do not remove such

network connections during the reduction process (Line 21 in

Algorithm 16). We expect to see a further reduction in graph

size once we incorporate cross-machine provenance analysis

using the methodology described in Section IX and remove

our assumption.

We also measured the cost of running our graph reduction

algorithm on the full provenance graphs for the full duration

of our data collection for each machine. The results are shown

in Figure 11. As we can see, graph reduction finished in under

15 minutes on 80% of the hosts. In the worst case, one host

took around two hours to finish. Upon further investigation,

we found that this host has the highest number of edges in our

dataset with 1.5M edges while the average is 370K edges. This

overhead, which can be scheduled at times when machines

are not busy, is acceptable for enterprises since the benefit

of extra storage space from pruning graph (Section II) while

maintaining alert scoring and correlation outweighs the cost

of running the graph reduction algorithm.

F. APT Attack Campaign Case Studies

For our evaluation, we analyzed APT attacks from two well-

known threat groups (APT3 and APT29) and one custom-

designed attack executed using the MITRE CALDERA frame-
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Fig. 12: APT3 Attack Scenario. (a) IIP Vertex graph generated by RapSheet. (b) Tactical Provenance Graph for APT3 attack after applying
readability post-processing pass. TPG is three orders of magnitude smaller than classical provenance graph. RapSheet will choose the
maximum ordered tactic sequence from this TPG for the final threat score assignment.

work [67]. We already presented the APT29 attack scenario

as a motivating example in Section II. Details of the attack

using CALDERA, as well as further statistics about the

provenance graphs and TPGs for all three attacks are included

in Appendix D. We now describe the APT3 attack scenario.

APT3 is a China-based threat group that researchers have

attributed to China’s Ministry of State Security. This group is

responsible for the campaigns known as Operation Clandes-

tine Fox, Operation Clandestine Wolf, and Operation Double

Tap [68]. Similar to APT29, APT3 has been well studied.

ATP3’s goals have been modeled using MITRE tactics and

techniques. In our attack scenario, we performed various

techniques from this known set ranging from System Service

Discovery (T1007) to Remote Desktop Protocol (T1076).

These techniques allowed us to achieve several of the MITRE

tactics including execution, lateral movement, and defense

evasion on the victim host. Figure 12a shows the IIP graph for

the APT3 attack scenario, while Figure 12b shows the TPG

extracted from this IIP graph. Our threat scoring algorithm

ranked this TPG at number 15 out of 681, higher than the vast

majority of the 676 false TPGs. To score this TPG, RapSheet

found the following temporally ordered sequence of tactics:

execution, defense-evasion, discovery, and lateral-movement.

VIII. RELATED WORK

This work joins a growing body of literature seeking to

bridge the gap between causal analysis and threat detection.

Holmes [43] is the first system to demonstrate that event-

matching techniques can be applied to data provenance, and

also includes a method for threat score assignment. However,

several factors may complicate the deployment of Holmes on

top of commercial EDR tools. First, Holmes assumes 100%

log retention in perpetuity to assign threat scores and identify

alert correlations. In practice, EDR tools have limited log

buffers making such an approach practically prohibitive, a

limitation addressed in RapSheet through the introduction of

skeleton graphs. Second, Holmes assumes a normal behavior

database to reduce false alarms from benign activities, creating

a risk of adversarial poisoning of normal behavior due to

concept drift as benign usage changes; in contrast, RapSheet

makes no such assumption instead mitigates false alarms

through the construction of IIP graphs and sequence-based

threat scoring scheme. Finally, Holmes is evaluated based

on 16 author-created TTP matching rules, whereas RapSheet

makes use of 67 TTP rules written in an actual EDR tool. We

believe this distinction is significant – 16 rules is insufficient

to encode all tactics in the MITRE ATT&CK knowledge

base, which means that Holmes would encounter more false

negatives and less false positives than an EDR tool. As a

result, while Holmes demonstrates the feasibility of EDR-like

approaches on provenance graphs, the original study cannot be

easily compared to EDR tools, which are optimized for recall.

NoDoze [38] is an anomaly-based alert triage that uses

historical information to assign threat scores to alerts. Like

Holmes, NoDoze assumes the availability of an accurate nor-

mal behavior database. Unlike RapSheet, NoDoze uses a path-

based threat scoring scheme; as we described in Section V, this

approach can miss attack-related events lie on different graph

paths. Further, both Holmes and NoDoze consider only UNIX-

like system call events when constructing provenance graphs.

As a result they do not track ALPC messages (extensively

used in Windows environment) which in practice would create

disconnected provenance graphs and admit more error into

causal analysis.

An important component of RapSheet is the log reduction

algorithm, which is a topic that is well-studied in recent

literature [30], [29], [34], [37], [36]. In the early stages of

this study, we realized that existing log reduction techniques

were inapplicable to our design because they did not preserve

the necessary connectivity between EDR generated alerts.

For example, LogGC [30] removes unreachable events, and

thus would not be able to correlate alerts that were related

through garbage-collected paths. Similarly, Hossain et al.’s

dependence-preserving data compaction technique [37] does

not consider that some edges are alert events and must, there-

fore, be preserved. Alternately, Winnower [29] and Process-

centric Causality Approximation [34] both reduce log size by

over-approximating causal relations, introducing new sources

of false alerts. Other techniques, while similarly motivated, are

orthogonal to the present study.

In the absence of provenance-based causality, alert corre-

lation is another technique to assist analysts by correlating

similar alerts. Existing systems use statistical-, heuristic-, and

probabilistic-based alert correlation [69], [70], [71], [72], [73]

to correlate alerts. Similar approaches are used in industry

for building SIEMs [74], [75]. These techniques are based on

feature correlations that do not establish causality. In contrast,

RapSheet can establish actual system-layer dependencies be-

tween events. BotHunter [73] searches for a specific pattern
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of events in IDS logs to detect successful infections caused by

botnets. This approach relies on network-level communication

to identify the stages of a botnet infection. RapSheet, on the

other hand, uses host-level provenance graphs to chain together

different APT attack stages.

Elsewhere in the literature, several provenance-based tools

have been proposed for network debugging and troubleshoot-

ing [76], [77], [78], [79], [80]. Chen et al. [78] introduced

the concept of differential provenance to perform precise

root-cause analysis by reasoning about differences between

provenance trees. Zeno [77] proposed temporal provenance

to diagnose timing-related faults in networked systems. Using

sequencing edges Zeno was able to explain why the event

occurred at a particular time. RapSheet also uses the se-

quencing edges but to reason about dependencies between

different attack tactics. Zhou et al. [55] designed SNOOPY

a provenance-based forensic system for distributed systems

that can work under adversarial settings. RapSheet can use

tamper-evident logging from SNOOPY to defend against anti-

forensic techniques. DTaP [81] introduced a distribute time-

aware provenance system. RapSheet can leverage DTaP’s

efficient distributed storage and query system to improve its

query response times.

IX. DISCUSSION & LIMITATIONS

Cross-Machine Analysis. In our experiments and implemen-

tation, we exclusively considered each host in isolation, i.e.,

cross-machine provenance was not analyzed. That said, our

method of extracting TPGs retains sufficient information to

connect provenance graphs across machines through network

vertices in the same way as has been observed by previous

papers [31], [82]. Afterward, our score assignment algorithm

would work the same as in the single-machine scenario.

Online Analysis. Our implementation and experiments are

based on offline analysis. As the offline implementation is able

to process alerts in roughly 10 seconds, it is already possible

for RapSheet to provide real-time intelligence to analysts.

Adapting RapSheet to an online setting poses new challenges,

but such online solution is attainable. In an online setting,

RapSheet would need to be extended with a data structure that

tracks the threat score of the current TPG and can check if new

events need to be added to the TPG. Further, threat scoring

(Eq. 2) is monotonic, which means that it permits incremental

updates to the score without having to fully recalculate as the

TPG updates. We leave such extensions to future work.

Adaptive Attacks. When considering APT detection, it is

essential that the problem of adaptive attack behaviors be

considered. As RapSheet analyzes alerts based on the MITRE

ATT&CK kill-chain, an adaptive strategy would be for an

attacker to employ tactics in an order that violates the expected

sequence in an attempt to lower their behaviors’ threat score.

While it may be feasible to somewhat reduce a threat score

through careful attack sequencing, it is not straightforward

since in many cases one MITRE tactic cannot be performed

before another tactic has been completed. For example, in

order to perform the “Credential Access” tactic, the attacker

must first successfully perform “Privilege Escalation” to have

the permissions necessary to open credential files. As another

example, the “Discovery” tactic, which identifies other hosts in

the victim environment, is a necessary prerequisite to “Lateral

Movement”. An even more sophisticated scoring algorithm

could encode the partial order defined by strict dependen-

cies between certain MITRE phases in order to reduce the

effectiveness of this already difficult evasion technique. Note

that an attacker is certainly able to inject out-of-order tactics

that act as noise between the necessarily sequenced stages of

their attack. But this strategy would not reduce the final threat

score assigned by RapSheet, since we extract the longest, not-

necessarily-consecutive subsequence of tactics from the IIP

graph that is consistent with the MITRE kill-chain ordering.

The injected noise will simply be ignored.

Limitations of APT Exercises. For obvious reasons, our

experiments are based on simulated APT behaviors, not actual

APT campaigns. Those simulations were written by expert an-

alysts at Symantec through analysis of APT malware samples.

One limitation of these simulations is that the threat actors did

not add innocuous events in between different stages of the

APT attacks, which is less realistic. That said, such activity

would not affect the threat scores assigned by RapSheet in any

way – the alerts associated with the malicious activities would

still appear in the same order in the TPG.

Missing Alerts. RapSheet’s log reduction algorithm assumes

that all the threat alerts are detected by the underlying EDR

tool. As we have seen in Section II, it is not unrealistic

to assume that most of the attack’s constituent events will

generate alerts since EDR tools are designed to optimize

recall, and hence generate alerts even when they detect low

severity, potentially suspicious activity. However, if an alert

was not caught by the underlying EDR tool, then our log

reduction may remove edges and vertices from the provenance

graph and break the linkability between existing and future

alerts. In other words, if some attack behavior does not cause

the underlying EDR to generate an alert, our log reduction

algorithm cannot necessarily preserve the ability to generate

accurate TPGs from the skeleton graph for future alerts.

X. CONCLUSION

In this work, we propose a viable solution for incorporating

data provenance into commercial EDR tools. We use the

notion of tactical provenance to reason about causally related

threat alerts, and then encode those related alerts into a

tactical provenance graph (TPG). We leverage the TPG for

risk assessment of the EDR-generated threat alerts and for

system log reduction. We incorporated our prototype system,

RapSheet, into the Symantec EDR tool. Our evaluation results

over an enterprise dataset show that RapSheet improves the

threat detection accuracy of the Symantec EDR. Moreover,

our log reduction technique dramatically reduces the overhead

associated with long-term system log storage while preserving

causal links between existing and future alerts.
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APPENDIX A

DATASET CHARACTERIZATION

In this section, we characterize dataset that we used in our

evaluation. We collected 40M system monitoring event from

34 hosts in a real-world enterprise environment. These host

machines were used by employees daily for web browsing,

software coding and compilation, quality assurance testing,

project management, and other routine business tasks. We

used 67 total alert rules to detect various MITRE ATT&CK

techniques in our experiments. Of these rules, some were

written by us, while the other were included by default in

the Symantec EDR software.
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Fig. 13: Number of matched MITRE ATT&CK techniques during
our evaluation with their true positive rates.

First, we look at how often the various MITRE ATT&CK

technique and tactic rules caused alerts on the hosts in our

experiment. Figure 13 shows which MITRE ATT&CK tech-

niques were matched, how many times, and what proportion

of the alerts for each technique were related to a true attack.

We can see from the figure that rules for techniques like

RunDLL32 (T1085) and Scripting (T1064) generated many

alerts, but have very low true positive rates since these

techniques are commonly used for benign purposes. On the

other hand, techniques like “Change File Association” (T1042)

and “System Service Discovery” (T1007) were triggered many

times and have high true positive rate because these techniques

usually only happen during malicious activity. Thus, these

techniques can be strong indication of an attack campaign.
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Fig. 14: Number of matched MITRE ATT&CK tactics during our
evaluation.

Figure 14 shows the tactics to which the alerting techniques

in our data belong. During evaluation, we observed 10 out of
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the 12 tactics defined by MITRE ATT&CK. As is evident

from the graph, there are certain tactics, such as “Exfiltration”

and “Defense Evasion”, are more false-positive prone. Others,

such as “Discovery”, still have many false alarms, but have a

more balanced distribution.
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Fig. 15: Number of vertices and edges in the provenance graph for
each of 34 hosts in our evaluation.

Figure 15 shows the number of vertices and edges in prove-

nance graph database for each of 34 hosts in our evaluation.

We see that all hosts have a similar number of edges and

vertices except for two hosts. From these two hosts, we had

only few hours worth of logs.

APPENDIX B

GRAPH REDUCTION ALGORITHM

We describe two rules for alert correlation preserving graph

reduction in Section VI. Here we present our efficient graph

reduction algorithm that removes edges and vertices from the

graph according to those two rules.
Function REDUCEGRAPH in Figure 16 is the main function

that takes the input provenance graph G and deletes edges and

vertices from G. We loop over each edge e in G and extract

actor vertex vproc which is always a process vertex and target

vertex vtarget which can be either a process or an object vertex.

First of all we check that if edge e is an alert event. If e is

an alert event then we ignore this edge. Then, we check that

if vtarget is a registry type because we do not delete registry

events during our reduction as we discussed in Section VI.
Then, we check that if there are any outgoing or in-

going edges of vtarget that are alert events (Function

CHECKALERTINOUT in Figure 16). If there is an alert event

then we continue to next edge because this vtarget with edge

e cannot be deleted to preserve alert correlations.
After that we check that if vtarget is a process type vertex.

In which case, we apply Rule#2 described in Section VI where

we check that if vtarget is terminated. If it is not terminated

we do not delete vtarget vertex and corresponding edge e and

continue to next edge from G. After that we check if vtarget
is a registry type vertex then we do not remove that vertex.

Then, we check that vtarget is a network type vertex and the

outgoing IP address is an internal IP address that belongs to

other host within the enterprise. If that is the case then we do

not remove such vertex. The reason why we do not remove

such network vertices is described in Section VII.

For our underlying EDR, there are certain events that will

not be part of any TPG because these events do not generate

information flow between alerts. For example, our underlying

EDR only tracks Module read operation for performance

purposes. Since, it does not capture write operation there will

be no information flow from one process to another process

using module vertex. Similarly, connections made outside the

enterprise network also do not generate information flow to

another machine in the enterprise network. We simply remove

these events during our graph generation without losing any

alert connectivity information. Function CHECKSAFETORE-

MOVE in Figure 16 handles these cases.

After we have performed above-mentioned checks, we add

current edge in a Hashmap ProcMap. In this hashmap, key is

an actor process vertex vproc and value is a priority queue of

edges that are directly connected to the vproc. The priority is

based on descending order of timestamps present on edges. We

use this hashmap to reduce the number of calls on backward

tracing on target vertices of edges. The key idea is that we poll

an edge elatest from priority queue which will return the latest

happened edge (event) from the buffer. We then call backward

tracing function on target vertex vtarget from that edge elatest.
If we do not find any alert in the backward trace of vtarget then

we can safely remove all the edges in the priority queue of

key vertex vproc since their backward trace will also not have

any alerts. Function CHECKALERTBACKTRACE and Function

BACKWARDDFS in Figure 16 performs backward tracing on

input vertex.

One precondition to performing above optimization is that

we need to ensure that target vertices in the buffer have

incoming edges from the same key vertex vproc (Function

CheckAllInSame in Figure 16). If this condition is not true

we have to perform backward tracing on that target vertex

because there can be another path besides vproc which can

lead to alert. After deleting the edges from graph, we delete

all the vertices that now have no incoming or outgoing edges

using Function DeleteIsolatedVertices.

APPENDIX C

ADDITIONAL EXPERIMENTAL RESULTS

Table I summarizes the ranking of top 16 threat scoring

TPGs out of total 681 TPGs in our evaluation. This list

contains all the 5 truly malicious TPGs that are present in our

evaluation. In this table, the first column represents the root

vertex ID given by RapSheet. Recall that TPG is identified

by the IIP root vertex. The second column shows where the

TPG was a false alarm or truly malicious. The third column

shows the threat score given by RapSheet to the TPG. The

fourth column shows the number of threat alerts present in

the corresponding TPG. Finally, the fifth column represents

the longest ordered sub-sequence extracted by RapSheet from

the TPG that gave the highest threat score.
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1: function REDUCEGRAPH(G < V,E >)
2: ProcMap ← {}, hashmap from vertex to timestamp-based priority queue of

edges connected to vertex
3: for all e : E do
4: type← GetType(e)
5: vproc ← GetProcVertex(e), get process vertex
6: vtarget ← GetTargetVertex(e), get target vertex
7: t← GetTime(e), return timestamp on edge
8: // From Rule No. 1 & 2
9: if type is an alert event then

10: continue
11: // From Rule No. 1 & 2
12: if CHECKALERTINOUT(vtarget) then
13: continue
14: // From Rule No. 2
15: if vtarget is a process and vtarget not terminated then
16: continue
17: // Exception that we described in Section VI
18: if vtarget ∈ registry then
19: continue
20: // Do not remove connections made to hosts within enterprise
21: if vtarget ∈ network and has an internal IP address then
22: continue
23: if CHECKSAFETOREMOVE(vtarget, type) then
24: DeleteEdge(G, e)
25: continue
26: ProcMap.put(vproc, queue.push(e))

27: for all vproc, queue← ProcMap.entries do
28: fsame ← False, flag to show edges coming in from same process
29: fflush ← False, flag to remove rest of queue without backtracking
30: while queue �= ∅ do
31: elatest ← queue.pop()
32: vtarget ← GetTargetVertex(elatest)
33: fsame ← CheckAllInSame(vproc, vtarget)
34: if fsame then
35: if not fflush and CHECKALERTBACKTRACE(vtarget, t) then
36: continue
37: fflush ← True
38: DeleteEdge(G, elatest)
39: else
40: if CHECKALERTBACKTRACE(vtarget, t) then
41: continue
42: DeleteEdge(G, elatest)

43: // Deletes vertices from G that have no incoming or outgoing edges
44: DeleteIsolatedVertices(G)
45: // Return skeleton graph
46: return G

47: function CHECKSAFETOREMOVE(vtarget, type)
48: if vtarget ∈ module or kernel then
49: return True
50: if vtarget ∈ network and has an external IP address then
51: return True
52: if type ∈ FileDelete then
53: return True

54: function CHECKALERTINOUT(vtarget)
55: for all einout : getInOutEdges(vtarget) do
56: if einout is an alert event then
57: return True
58: return False

59: function CHECKALERTBACKTRACE(v,t)
60: Seen← ∅, set of seen vertices during traversal
61: d← 0, current depth in DFS traversal
62: return BACKWARDDFS(v, d, t, seen)

63: function BACKWARDDFS(v,d,t,seen)
64: flag = False, return flag true if we see an alert during traversal
65: if d ≥ maxdepth then
66: return flag

67: // returns edges going out of the given vertex
68: edgesout ← getOutEdges(v)
69: // filter edges which happened before given time
70: edgesout ← FilterAfter(outedges, t)
71: for all edgeout : edgesout do
72: if edgeout is an alert event then
73: return True
74: // returns edges going in the given vertex
75: edgesin ← getInEdges(v)
76: // filter edges which happened before given time
77: edgesin ← FilterAfter(inedges, t)
78: for all edgein : edgesin do
79: if edgein is an alert event then
80: return True
81: for all edgein : edgesin do
82: tin ← GetTime(edgein)
83: // Returns tail of directed edge
84: vout ← GetOutVertex(edgein)
85: if vout /∈ seen then
86: // Recursive call
87: flag ← BACKWARDDFS(vout, d + 1, tin, seen)
88: if flag then
89: break
90: return flag

Fig. 16: Efficient algorithm to perform graph reduction on given provenance graph G and generate skeleton graph. We set maximum depth
(maxdepth) of backward DFS traversal in our experiments to 6.

TABLE II: Summary of observed space overheads for our attack
simulations. “#E” and “#V” mean the number of edges and vertices
respectively.

Raw Prov. Graph IIP Graph TPG
Scenario #E #V #E #V #E #V

APT29 2,342 1,541 30 31 12 13

APT3 22,645 15,979 14 15 5 6

CALDERA 1,029 247 49 50 19 20

Note that the highest threat score was given to a benign or

false alarm TPG. This is an interesting case which shows the

limitation of our approach that a high threat score is given to a

sequence of actions that match MITRE kill chain even if such

sequence is performed for a benign or legitimate purpose. In

this case, we found that a company employee compressed a

bunch of sensitives files on different hosts and then transferred

them to the company’s external data-hosting website. Even

though no attack was performed in this case, this whole course
of actions by employee matched, in order, to different tactics

from MITRE ATT&CK which led to a higher threat score.

APPENDIX D

ADDITIONAL CASE STUDY

The size of the raw provenance graphs, IIP graphs, and

TPGs in terms of total number of vertices and edges for

all three APT attack cases we used in our evaluation is

summarized in Table II. TPG size is shown after applying

our readability pass.

In addition to the two simulations of actual advanced adver-

sary groups that were performed by red teams, we performed

our own third campaign using a configurable, automated

attack emulation framework called CALDERA [67] which is

maintained by MITRE. CALDERA provides a client “mal-

ware” agent and a command-and-control server that agents

can communicate with to receive commands to execute on the

infected machines.
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TABLE I: Top 16 threat scoring TPGs out of total 681 TPGs.

TPG ID Category Threat
Scores Threat

Alerts
Longest Ordered Subsequence of Tactics

052c89 False Alarm 125000 54
execution, persistence, privilege-escalation, defense-evasion, discovery, lateral-movement,
command-and-control

e431ac True Attack 116640 992 execution, persistence, privilege-escalation, defense-evasion, credential-access, discovery

69f88c False Alarm 25000 30 execution, persistence, privilege-escalation, defense-evasion, discovery, lateral-movement

2e91b2 False Alarm 15625 52403 execution, persistence, privilege-escalation, defense-evasion, lateral-movement, exfiltration

c17d94 True Attack 14400 26 persistence, privilege-escalation, defense-evasion, discovery, lateral-movement

9b1f4a False Alarm 7350 12 execution, persistence, privilege-escalation, defense-evasion, discovery

3f3fa5 False Alarm 5250 26 persistence, privilege-escalation, defense-evasion, discovery, exfiltration

08f25f False Alarm 4375 45 execution, persistence, privilege-escalation, lateral-movement, exfiltration

ba6b01 False Alarm 3750 11 execution, persistence, privilege-escalation, defense-evasion, discovery

b464e4 True Attack 3750 77 persistence, privilege-escalation, defense-evasion, discovery, exfiltration

8d88e3 False Alarm 3125 127 execution, persistence, defense-evasion, discovery, exfiltration

d68b64 False Alarm 3125 16 initial-access, execution, persistence, defense-evasion, exfiltration

3fb85e False Alarm 1600 44 execution, persistence, lateral-movement, exfiltration

ae5f39 False Alarm 1600 64 execution, persistence, lateral-movement, command-and-control

e448f1 True Attack 1440 13 execution, defense-evasion, discovery, lateral-movement

0c1d5e True Attack 1350 48 execution, defense-evasion, discovery, lateral-movement
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Fig. 17: Caldera attack scenario. (a) IIP Vertex graph generated by RapSheet. We have omitted some of the edges and vertices from the
graph for presentation. Complete IIP graph consists of 49 edges and 50 vertices. (b) Tactical Provenance Graph for Caldera attack after
applying readability pass. RapSheet will choose the maximum ordered tactic sequence from this TPG for the final threat score assignment.

As a first step, we manually installed the client agent on one

machine. This is a realistic scenario, since the initial infection

stage is often missed by deployed defenses, either because

a zero-day vulnerability is exploited or because the agent is

installed by an unsuspecting, legitimate user. We then config-

ured the command-and-control server to issue commands to

discover other machines on the network, attempt to log in to

those machines using stolen credential, copy the agent to any

machines it successfully logged into, search for document files

on all infected machines, zip up any found files and exfiltrate

the files by sending the stolen file archives to the command
and control server.

This covers a variety of ATT&CK techniques, from System

User Discovery (T1033) to Remote File Copy (T1105), and

several tactics including credential access, lateral movement,

and exfiltration on the victim hosts. The IIP vertex graph and

tactical provenance graph for one of the victim machines are

shown in Figure 17.
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