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Abstract—Over 55% of the world’s websites run on
Content Management Systems (CMS). Unfortunately,
this huge user population has made CMS-based
websites a high-profile target for hackers. Worse still,
the vast majority of the website hosting industry has
shifted to a “backup and restore” model of security,
which relies on error-prone AV scanners to prompt
users to roll back to a pre-infection nightly snapshot.
This research had the opportunity to study these
nightly backups for over 300,000 unique production
websites. In doing so, we measured the attack
landscape of CMS-based websites and assessed the
effectiveness of the backup and restore protection
scheme. To our surprise, we found that the evolution
of tens of thousands of attacks exhibited clear
long-lived multi-stage attack patterns. We now
propose TARDIS, an automated provenance inference
technique, which enables the investigation and
remediation of CMS-targeting attacks based on only
the nightly backups already being collected by website
hosting companies. With the help of our industry
collaborator, we applied TARDIS to the nightly
backups of those 300K websites and found 20,591
attacks which lasted from 6 to 1,694 days, some of
which were still yet to be detected.

I. Introduction

Over 55% of the world’s websites run on Content
Management Systems (CMS) [1], with WordPress
controlling nearly 60% of the CMS market [2].
Unfortunately, this widespread adoption has led to a
swift increase in CMS-targeting cyber attacks. These
attacks are made even easier, because CMS deployments
are an amalgam of layered software and interpreters, all
with varying degrees of network and system permission,
which execute on the internet-facing web server. Worse
still, this research has uncovered an unnerving trend:
in-the-wild compromises of CMS deployments
overwhelmingly exhibit the “low and slow”
characteristics indicative of multi-stage attacks.

Despite the significant deployment of these complex
software systems, to date, little research has been done
to investigate and remediate CMS-targeting cyber
attacks. Traditionally, the research community has
turned to fine-grained logging to understand the
provenance of an attack [3]–[17]. Unfortunately, in the
CMS domain, these techniques are hardly deployed in
practice. Specifically, despite recent advances,
fine-grained logging solutions still incur notable

performance/space overhead [3], [14]–[16] and often
require instrumenting and training with the target
systems [4], [7], [12], [17]. Moreover, website owners often
have no control over the underlying web server, because
the entire platform is owned and maintained by a
hosting provider (e.g., HostGator [18] or even a
university IT department).

For these reasons, industry standard has long shifted
to a “backup and restore” model of security, offered by
popular platforms such as Dropmysite [19],
Codeguard [20], GoDaddy [21], Sucuri [22], and
iPage [23]. Anti-virus (AV) scanners are deployed to
detect compromises in websites, and nightly backups of
the website’s files are maintained offsite. Unfortunately,
these approaches also have well-known limitations: AV
signatures only catch well-known malware, they fail to
detect stealthy multi-stage attacks, and high false alarm
rates cause real alerts to be ignored [24], [25]. Moreover,
website owners often (erroneously) revert to the most
recent snapshot which did not trigger an AV alert. In
fact, this research has found that website owners only
take action (i.e., rollback to a snapshot) for 31% of true
alerts and only one-third of those rollback to a
pre-initial-infection state.

This research had the unique opportunity to study
these attack trends in nightly backups from over 300,000
production websites. In collaboration with CodeGuard1,
we had initially set out to develop a website protection
methodology that could replace the ineffective backup
and restore standard. We began by assessing the entire
history of nightly backups for 70 websites which our
collaborator identified as having recently been targeted
by cyber attacks. Our preliminary investigation of this
dataset (detailed in §II) revealed something we had not
expected: the evolution of each attack exhibited clear
multi-stage attack patterns — slowly establishing an
initial foothold, quietly maintaining persistence, lateral
movement, cleaning up traces of earlier phases, etc.

Based on this discovery, we turned our attention to
how forensic investigators could recover from these
attacks. In order to make a practical impact in this
space, we propose that forensic techniques must focus on

1One of the largest corporate website security and backup solutions
on the market. Company name redacted for anonymous submission.
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the only artifact widely available to CMS owners: the
nightly backups. To this end, this paper presents
TARDIS, a novel provenance inference technique which
enables the investigation of multi-stage CMS-targeting
attacks. Based on only the nightly backups, TARDIS

reconstructs a timeline of the attack phases and recovers
the compromise window, or the period of time during
which the snapshots should not be trusted.

Through our collaboration with CodeGuard, we used
TARDIS to perform a systematic study of the attack
landscape across 306, 830 CMS-based production
websites — unique domains ranging from 38 websites
within the Alexa Top 10K and 4,038 in Alexa Top 1M to
mom-and-pop e-commerce sites, with nightly backups
covering approximately 1900 days (March 2014 to May
2019). Based on this study, we uncovered 20, 591
websites (6.7%) which were compromised with advanced
multi-phase attacks. Our empirical measurement revealed
several concerning facts: We found that attacks persisted
in CMS websites for a minimum of 6 days and a
maximum of 1694 days, with a median of 40 to 100 days.
More than 20% of WordPress websites, in particular,
housed attacks for over a year (likely due to WordPress’s
significant market share). These attacks involved
stealthily dropping a huge volume of malicious code
affecting the web server. We found that during an attack
the number of files increased by at least 50%, ranging
from visitor-attacking browser exploits to full-fledged
HTML-based remote control GUIs.

II. Preliminary Investigation

Our investigation began with 70 websites that were
known to have been recently compromised. We started
by asking the key cyber forensics question: How would
an investigator recover the website from these attacks?
Unfortunately, CMS website owners generally lack the
expertise and control over the hosting server required to
enable robust forensic logging. Given only these nightly
backups, we quickly realized that an investigator’s
visibility is significantly limited.
Inferring Provenance Patterns. In trying to solve
this problem, we made our first key observation: A finite
number of identical provenance patterns exist within the
evolution of all the websites. We first found that a file in
a given snapshot can exist in 1 of 3 states: added,
modified, or deleted. Figure 1 illustrates the three
infection scenarios we observed in the website backups. A
file added A can be flagged as suspicious (denoted by
! ) by an AV at some point throughout its life cycle.

These files could also be flagged as suspicious (by an AV)
after they are modified M . In some cases, a snapshot
rollback is performed to treat the suspicious files by
deleting D them. If the rollback deletes all of the
attacker’s files then the attack is cured, as shown in
Figure 1(a). In other cases, no action is taken despite
detecting a suspicious file (Uncured in Figure 1(c)).
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Fig. 1: Three models of temporal infection evolution.

Unfortunately, this led to the discovery that the industry
standard of “backup and restore” is entirely insufficient.
We found that an alarming 80% of these websites were in
fact still infected — many website owners had rolled
back to a snapshot and patched the vulnerability, but
given their lack of forensic expertise, they were unable to
identify a pre-infection snapshot (leaving initial
backdoors in place and allowing the attack to recur).

In order to quickly rollback to a clean snapshot,
investigators must recover the compromise window, or
the period of time during which the snapshots should not
be trusted. This is further complicated by the fact that
each snapshot contains tens of thousands of files (11,292
on average), making this investigation a search for
needles in a haystack. Not discouraged, we drilled down
into the individual snapshots from a single Drupal
website, W6828862, which will serve as a running example
throughout this paper.
Single Snapshot Metrics. When looking into the
individual snapshots from W682886, we made our second
key observation: The complexity of each snapshot can be
reduced to a set of measurements, called spatial metrics,
that highlight the existence of cyber attack evidence. In
addition to the state of each file in the snapshot from
before (our first spatial metric), we designed another
spatial metric which measures extension mismatches
among the files, i.e. if a file’s internal format matches the
filename’s extension. Similarly, we implemented another
spatial metric to identify UTF-8 based code obfuscation
patterns in server-side script files. For example, in the
case of W682886, we found 3 PHP files with obfuscated
payloads disguised as icon files in the 5 June 2018
snapshot which initiated the attack. In the end, we
settled on the 9 spatial metrics detailed in §III. These
spatial metrics were effective at highlighting the presence
of cyber attack artifacts within a single snapshot.
However, while this was a good first step, it was neither
sufficient to explain the evolution of the attack nor to
understand the length of compromise.
Temporal Evolution Of Attack Phases. We
collected spatial metrics to represent each snapshot of
W682886, paying specific attention to sudden changes
between pairs of consecutive snapshots. This revealed our
third key observation: Modelling the implicit events
which trigger these sudden changes can expose the attack

2Website domain is omitted pending responsible disclosure.
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TABLE I: Temporal File Differential Analysis.

Date Outlier PHP HTML ASCII XML PNG ZIP

20 Apr - 0 0 +1 0 0 0
21 Apr ! +7 +1 +3 +21 0 0
22 Apr - -2 0 +1 0 0 0
23 Apr - 0 +2 +2 0 0 0
24 Apr - 0 0 +1 0 0 0
25 Apr - +3 -1 +6 0 0 0
05 Jun ! -13 +5 +50 0 +9 +1
07 Jun ! -31 0 +1 0 0 0
08 Jun ! -18 -6 -22 -20 -9 -1
09 Jun - +5 0 0 0 0 0
10 Jun - 0 0 +3 0 0 0
11 Jun - +5 0 +1 0 0 0
12 Jun - +3 -7 -4 0 0 0
13 Jun ! +9 +13 +28 +20 0 +1
14 Jun ! -13 -13 -26 -20 0 -1
15 Jun - 0 0 +1 0 0 0
16 Jun - 0 0 +1 0 0 0

phases. This led us to plot the temporal progression of
the spatial metrics across all of W682886’s snapshots.

Table I shows one such progression considering only a
single spatial metric, i.e. the file format numbers. The
temporal evolution of this metric exposed the first attack
signs. As seen in Table I, sudden changes in the file
format metric stand out on 21 April, 5-8 June, and 13-14
June. We found identical spatial metric outliers in 3
other Drupal websites from 14 April to 21 May 2018,
suggesting the attack’s lateral movement. Canali
et.al. [26] also found that web attacks dropped large
volumes of files on the web server, which explains the
sudden changes we observed in the file format metrics.
We also observed that these patterns evolved similarly
over time — adding more functionality to the existing
malicious code (e.g. it started with only file read
capabilities, and after 8 days evolved to modify files and
communicate over an SSL gateway). Eventually, we saw
that these attacks tried to clean up their footprints by
deleting most of the attack files.
Attack Model. These patterns formed the basis of the
multi-stage attack model presented in this paper. Our
study found that these attacks consisted of slow and
steady attack patterns starting with establishing an
initial foothold, malware injection, maintaining
persistence, lateral movement, and eventually cleaning
up any traces of malicious activity. This was confirmed
by our case studies (§VI), which provide an intriguing
view of this widespread attack evolution.

Taken together, the above key observations drove our
design of TARDIS. Modeling the temporal evolution of
the spatial metrics allows TARDIS to infer the
provenance of attack evidence. Further, identifying
outliers within that evolution reveals both the
compromise window (starting Apr 21 for W682886) and
the progression of the attack phases. Using TARDIS,
forensic investigators know where to focus their efforts
and website owners can quickly revert the website to a
clean snapshot. In §IV, we will revisit these original 70
websites as manually-investigated ground truth to
evaluate the effectiveness of the TARDIS framework.

III. Design

TARDIS overcomes the challenges described in §II via
a novel provenance inference technique, using only the
nightly backups of the CMS deployment. Figure 2 shows
the phases of TARDIS’s operation: First, TARDIS

constructs a temporally ordered set of spatial elements
from each snapshot (§III-A). It then computes spatial
metrics for each individual snapshot’s elements (§III-B).
This is followed by temporally correlating the collected
spatial metrics and querying them against attack models
to recover the timeline and label attack events (§III-C).
Finally, it verifies the sequence of assigned attack labels
and extracts the compromise window (§III-D).

A. Spatial Element Sequencing
TARDIS extracts the files associated with each night’s

snapshot and maps them as spatial elements (elj (ψi) ∈
Vi) for each snapshot ψi ∈ Ψ. Here, Ψ is the set of all
ψi, the label i denotes the index of the temporal snapshot
under analysis, and j denotes the index of a spatial element
in Vi. Basically, ψi is a point in time when the ith snapshot
was taken. Vi is the set of spatial elements (elj) collected
at time ψi. For example, the initial snapshot is collected
at ψ0, the next snapshot at ψ1 and so on. At snapshot ψ0,
the set of elements are represented as V0 = [el0, el1, ...].
These elements (elj (ψi)) ∈ Vi reside in the space Θ that
denotes the monitoring space of all spatial elements (i.e.,
all versions of all files hosted on the web server).

While processing each temporal snapshot ψi, a set of
initial spatial metrics (mk (ψi) ∈ Mi) are recorded in the
set Mi. Here, the label k denotes the index of the spatial
metrics collected at temporal snapshot ψi. These initial
spatial metrics consists of the file type counts, and the
state of each spatial element in terms of added, modified,
or deleted. Mi is further populated with carefully
selected measurements as discussed in §III-B. A
comprehensive definition of the terminology used is
presented in Table II.

For example, the website W682886’s initial snapshot
(ψ0) contains 11, 327 files. All of these files are mapped
as a sequence of spatial elements in V0. As an example of
a single spatial metric, this snapshot also contains 23
different file types (e.g. PHP, HTML, JS, CSS, etc.).
This information is recorded within the spatial metric set
M0. If the backups are collected on a nightly basis for 3
months (e.g., 91 backups), then:

V = [V0,V1, ...,V90]
M = [M0,M1, ...,M90]
V0 = [el0, el1, ..., el11326]
M0 = [num (PHP ) = 727, num (CSS) = 829, ...]

B. Spatial Analysis
The set of spatial elements comprise of various file types

(such as PHP, HTML, JS, CSS, images, plaintext, etc.),
each of which requires disparate investigation techniques
to identify attack attributes. To address this challenge, we
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Fig. 2: TARDIS Overview. Phase 1 constructs spatial element sets from the website backup. Phase 2 computes the
structural and code metrics for each individual snapshot. Phase 3 temporally correlates the collected metrics and labels
attack events. Phase 4 verifies the assigned attack labels and extracts the compromise window.

split spatial analysis to extract two types of metrics: (1)
structural metrics and (2) code metrics.

1) Structural Metrics: With the computed set of
spatial elements V and the initial metrics M for each
temporal snapshot, we turn to investigating this set V.
Based on our observations from the preliminary study,
we developed a suite of lightweight measurements that
highlight the existence of suspicious elements.
Hidden Files and Directories. Long-lived multi-stage
attacks can be characterized by the attacker’s intent to
modify the existing setup and laying low at the same
time. During our preliminary study, we observed that
this was achieved by dropping malicious and/or
suspicious elements as a hidden file or by placing them in
a hidden directory to evade first order defenses.
TARDIS employs pattern matching by filtering the
typically expected hidden elements (such as .htaccess)
and appends a structural metric Hide(elj(ψi)) to Mi

upon finding an element elj ∈ Vi in a hidden location,
because websites did not often employ hidden files or
directories.
Extension Mismatch. We also observed that another
common tactic used in CMS-targeting attacks was to
disguise a server-side executable as something else. For
example, we commonly observed spatial elements
renamed deceptively as an icon file (e.g. favicon.ico) but
containing PHP code to evade less technical CMS users.
TARDIS uses the spatial element’s filename to extract
its extension and then matches it against the inferred file
format (e.g., via the file type’s magic number or other
formatting that can identify the type of file). If TARDIS

finds a discrepancy while matching the file type and the
file extension for an element elj ∈ Vi, it appends the

structural metric ExtMis(elj(ψi)) to Mi.
Filename Entropy. Another indicator of suspicious
activity seen in CMS-targeting attacks is long,
incoherent, or randomly generated filenames. TARDIS

measures the entropy of filenames for all spatial elements
elj . A higher entropy indicates a more random filename
that is less likely to be a human-generated benign
filename. Entropy is measured by password strength
calculation logic [27], which computes a filename’s
“randomness” score by measuring its similarity to several
dictionaries, spatial keyboard patterns (e.g., QWERTY,
Dvorak), repetition of a single character, sequences of
numbers or characters, and other commonly used
keywords (e.g., l33t). For TARDIS, the password
strength output was analogous to higher entropy (more
randomness) and thus a more suspicious filename.

Since it is not possible to identify an absolute
threshold for high entropy in filenames, TARDIS

compares the relative entropy of the spatial elements
using the median absolute deviation (MAD [28]) test.
Specifically, instead of computing an absolute threshold
for filename entropy, which is difficult to predict with
certainty, TARDIS considers all the elements in a given
temporal snapshot to first find the median entropy of all
elements, followed by computing the median absolute
deviations for each element and eventually checking if
the median absolute deviation is greater than a relative
threshold. When a relatively higher entropy is identified
for an element elj ∈ Vi from a temporal snapshot ψi, the
structural metric HEntrp(elj(ψi)) is appended to Mi.
Permission Change. TARDIS uses temporal tracking
of each spatial element to detect permission changes
between snapshots. In particular, when the permissions

TABLE II: Formal Definitions of the State of the CMS Deployment.

Name Symbol Definition Description

Time Ψ = (ψ, ...) Ψ = (Z, +) Time measured in terms of the snapshot versions.
Space Θ = (θ, ...) Θ = (Z, +) Space of elements that can be monitored.

Elements V = (el, ...) el = el (θ, ψ, ψ′) Files under investigation within their life span.
Spatial Metrics M = (m, ...) m = m (θ, ψ) Measurements computed against a single night’s snapshot of the website

backup attributes.
Labels L = (lb, ...) lb = lb (ψ, θ) An enumerable set of labels describing the events associated with the

security of the elements.
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Fig. 3: Outlier detection within the directive length
distribution of all code elements in one snapshot.

of spatial elements change from non-executable
(read-only, read-write, etc.) to executable, it raises
suspicion since it is unusual for a developer to start with
a non-executable and provide execute privileges to it. An
observation from our study was that multi-stage attacks
package shell scripts in a text file and then change the
permissions of the file to explore privilege escalation
opportunities. Upon identifying an element elj ∈ Vi from
a temporal snapshot ψi with permission change
equipping it with execute capabilities, TARDIS appends
a structural metric Exec(elj(ψi)) to Mi.

2) Code Metrics: Since we are interested in the
investigation of server-side attacks targeting CMSs,
TARDIS analyzes the spatial elements containing code.
These collected metrics are recorded for each snapshot ψi

and appended to the spatial metric set M.
Script Directive Outlier Analysis. Most of the
server-side source code is either part of the CMS core,
associated plugins, or website-owner developed code. As
they are meant to be maintained by developers, it is
unusual to find source code files among the spatial
elements with script directives (parsable instruction
sequences) that are thousands of characters long. Hence,
we observed that injecting exceptionally long and
complex lines of obscure code in the spatial elements is a
strong hint that can be leveraged to identify attack
behaviors. Our study found that attackers use this tactic
to limit the readability of injected code, delaying
immediate reverse engineering attempts.

Figure 3 shows the directive length distribution for all
spatial elements containing server-side code for W682886’s
2 May 2018 snapshot. The x-axis presents the spatial
element index j, and the longest directive length for each
of these code files is plotted along the y-axis. In benign
elements (green dot) none of the directives were more
than 500 characters long, whereas most attacker-injected
elements (red star) in this snapshot contained directives
longer than 1500 characters. There was a mix of benign
and malicious elements with maximum directive length
between 500 and 1500 characters, which becomes the
suspicious range (purple diamond).

Despite learning that long directives in spatial
elements are suspicious, finding a threshold for directive

length is not feasible due to varied coding styles and
practices followed by different developers. However, it is
possible to decide if a spatial element is suspicious by
relatively comparing all the elements in any given
temporal snapshot and performing outlier analysis. We
leverage this observation to find suspicious files with
relatively long directives using the median absolute
deviation (MAD) previously described in §III-B1. Upon
detection of the suspiciously long directive lines in a
spatial element elj ∈ Vi from a temporal snapshot ψi,
TARDIS appends the code metric LongLine(elj(ψi)) to
the spatial metric set Mi.
Obfuscation Detection. We observe that server-side
malware often uses a string that contains both UTF-8
characters (i.e., wide characters) and traditional 8-bit
characters. While the construction of such a string itself
is not malicious, it is a commonly used tactic to avoid
detectors that look for known malicious string/code
snippets. For example, the malicious PHP file disguised
as an icon file which we mentioned earlier is included
from the root of the CMS using the following long
UTF-8 (black) coupled with ASCII (red) path to the file:
@include "\x2fmn\x74/s\x74or\x31-w\x632-\x64fw\x31/4\

x3505\x327/\x77ww\x2ecv\x6dar\x61ci\x6eg.\x63om\
x2fwe\x62/c\x6fnt\x65nt\x2fmo\x64ul\x65s/\x61gg\
x72eg\x61to\x72/t\x65st\x73/f\x61vi\x63on\x5fbd\
x33fd\x35.i\x63o";

Array map obfuscation is another obfuscation scheme
commonly used to evade defenses [26]. An array map is
defined to map each character to a different character.
This map is used to deobfuscate what appears to be a
jumbled list of characters to a reverse engineer trying to
make sense of this obfuscated spatial element. For
example, in the following code snippet, lnhqvwxeon() is
a function that takes a jumbled character string (in the
variable $zvkgw) and uses the array map in $lyfuf to
generate malicious code that gets executed as part of the
PHP eval function:
$lyfuf = Array(’1’=>’G’, ’0’=>’6’, ’3’=>’4’,

’2’=>’L’, ’5’=>’1’, ’4’=>’W’, ’7’=>’y’, ... ,
’y’=>’w’, ’x’=>’F’, ’z’=>’l’);

eval(lnhqvwxeon($zvkgw,$lyfuf));

Upon spatial detection of obfuscation in an element
elj ∈ Vi from a temporal snapshot ψi via regex pattern
matching for the cases described above, TARDIS

appends a code metric Obfus(elj(ψi)) to Mi indicating
the presence of obfuscation in the element elj .
Suspicious Payload Evaluation. In server-side
spatial elements, functions such as eval, base64_decode,
and url_decode are commonly paired to execute
previously identified obfuscated code. TARDIS identifies
and flags instances of the eval and
base64_decode/url_decode pairing via pattern
matching along each control flow. Upon identifying this
code unwrapping technique in an element elj ∈ Vi from a

1160



TABLE III: Rules to Model Compromised CMS Events as Multi-Stage Attack Phases.

Attack Label L Severity Attack Modeling Rule
Establish Foothold Medium ExtMis(elj (ψi))∨[(elj /∈V)∧[HEntrp(elj (ψi))∨Hide(elj (ψi))]]

Obfuscated Code Injection High [(size(elj (ψi))>size(elj(ψi−1)))∨(MaxL(elj (ψi))>MaxL(elj(ψi−1)))]∧Obfus(elj (ψi))

Malware Dropped High (elj /∈Vi−1)∧[Obfus(elj (ψi))∨LongLine(elj (ψi))∨EvDc(elj (ψi))]

Code Generation Capability Low CodeGen(elj (ψi))

Defense Evasion High Hide(elj (ψi))∧[Obfus(elj (ψi))∨EvDc(elj (ψi))∨HEntrp(elj (ψi))∨ExtMis(elj (ψi))]

Escalate Privileges High Exec(elj (ψi))∧¬Exec(elj(ψi−1))

Maintain Presence Medium (Sev(elj (ψi))==High)∧(Sev(elj(ψi−1))==High)

Attack Cleanup Medium (Sev(elj(ψi−1))==High)∧[(Sev(elj (ψi))==None)∨(Sev(elj (ψi))==Low)∨((elj (ψi))/∈Vi)]

temporal snapshot ψi, TARDIS appends a code metric
EvDc(elj(ψi)) to Mi indicating unsafe or suspicious
code, compressed to avoid more conventional detectors.
Code Generation Capability. We observed that
almost every server-side spatial element contributing to
the multi-stage CMS-targeting attack contained code
generation capabilities such as the use of
create_function. Although several developers use this
as part of certain CMS plugins, it is very rarely
employed in ordinary server-side code development.
TARDIS scouts for such code generation capabilities
and appends a code metric CodeGen(elj(ψi)) to the
spatial metric set Mi upon finding an element elj ∈ Vi

satisfying the constraints.

C. Temporal Correlation and Forensic Recovery
Based on the collected spatial metrics for each

snapshot, TARDIS now attempts to temporally
correlate these metrics across snapshots to identify
suspicious activities that evolve within the website. Here,
TARDIS is programmed to track developments over a
sliding n − day time window (e.g. n = 20 means track
developments in the spatial metrics by comparing them
across 20 days). In this stage, TARDIS temporally
correlates the spatial metric set Mi at any temporal
snapshot ψi with the spatial metrics Mx from all
previous temporal snapshots within the sliding window
(i − n < x ≤ i) to capture the persistent adversary
relationship and extract the timeline of events.

Patterns in the metrics M, assigned as a function of
spatial elements, are indicative of long-lived multi-stage
attack behaviors which can be detected. We construct
rules to encode these behaviors based on the Boolean
composition of the spatial metrics. These rules are
designed to be agnostic to the individual metrics and are
based on the invariants of the phases that long-lived
multi-stage attacks go through. Table III shows the
representative set of rules applied as part of the current
implementation. Further, the temporal correlation of
events encapsulating the patterns in spatial metrics is
implemented by considering two consecutive temporal
snapshots at a time. In particular, the 2-tuple 〈Mi−1,Mi〉
is passed to TARDIS’s temporal correlation phase (as

shown in Figure 2) where it is queried against the attack
models from Table III. An attack label set Li and a
severity are assigned to each temporal snapshot, thus
incrementally building the attack timeline. The assigned
severity of the attack labels tells the investigator which
of the labels are more critical than the others.

The rules presented in Table III capture the overall
intuition behind our insights. For example, our running
example W682886 has two cases of obfuscated code
injection: (1) Suspicious obfuscated code injected into an
existing unobfuscated element. (2) Additional obfuscated
code appended to an already obfuscated element. Based
on this observation, if an obfuscated spatial element
elj (ψi) ∈ Vi increases in size (i.e. obfuscated attack
progression), or if a script directive outlier is flagged in
elj (ψi) but not elj (ψi−1) (i.e. obfuscated code is
injected into an existing unobfuscated element), and the
code metric Obfus (elj (ψi)) ∈ Mi, then an attack label
“Obfuscated Code Injection” is appended to the set Li at
snapshot ψi. For W682886, we see this label assigned on
21 April, 7 June, and 13 June 2018.

Note that multiple spatial elements elj (ψi) ∈ Vi can
give rise to multiple labels for each temporal snapshot.
For example, there can be three spatial elements
associated with Obfus (elj (ψi)) ∈ Mi (i.e. 3 files with
obfuscated code in them), and four other spatial elements
associated with ExtMis (elj (ψi)) ∈ Mi (i.e. four shell
scripts disguised as gifs). In this case, both event labels
Obfuscated Code Injection and Privilege Escalation are
appended to the set Li, and the highest severity of the
union of this set Li is assigned to the temporal snapshot
ψi. It is also possible that multiple labels get assigned to
a temporal snapshot due to one spatial element, i.e. an
adversary can move a benign file to a hidden directory
and inject it with suspicious obfuscated code. In this
case, both Defense Evasion and Obfuscated Code
Injection labels get appended to the set Li, and follow
the highest severity assignment as described earlier.

D. Compromise Window Recovery
With the attack labels in hand, TARDIS proceeds to

extract the compromise window by parsing consecutive
pairs of the 3-tuple of spatial elements, spatial metrics,
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Algorithm 1: Compromise Window Detection
Input: V = [V0,V1, ...,VN−1], M = [M0,M1, ...,MN−1],

L = [L0,L1, ...,LN−1],
N = Number of temporal snapshots

Output: SuspiciousRanks = [ψx0 , ψx1 , ..., ψxN−1 ],
CompromiseW indow = [ψx0 , ψx1 , ..., ψxk ]

// Calculate frequency of each attribute value
1 for ∀ψi ∈ Ψ do
2 DiffAttri ← Vi − Vi−1, for each elj ∈ Vi

3 DiffAttri ← Mi − Mi−1, for each mj ∈ Mi

// Verify label sequence
4 if i! = 0 and Li comes after Li−1 then
5 CorrectLabeli = T rue
6 end
7 end
8 AttrF req = Frequency of each attribute daj ∈ DiffAttr
// Calculate AVF scores

9 for ∀DiffAttri ∈ DiffAttr do
10 score ← 0;
11 for daj ∈ DiffAttri do

// Score for snapshot ψi

12 score ← score + AttrF req[daj ]
13 end
14 AV F scores ← score/size(DiffAttri)
15 end
16 SuspiciousRanks ← return (sort ψi in order of minimum

AV F scores)
17 for ∀ψi ∈ Ψ do
18 if CorrectLabeli == T rue then
19 while AV F Scores outside CompromiseW indow <

AV F Scores inside CompromiseW indow do
20 CompromiseW indow ← compute (range between

first and last ψi with verified Li )
21 end
22 end
23 end
24 return SuspiciousRanks, CompromiseW indow

and the assigned attack labels (i.e. 〈V,M,L〉i).
Algorithm 1 presents the pseudocode for this procedure.
Lines 1-3 in Algorithm 1 describe how it takes the
3-tuple 〈V,M,L〉 as input, computes the differential
spatial metrics DiffAttri for each snapshot at ψi from
consecutive pairs of 〈V,M〉i−1,〈V,M〉i (e.g. recall the
differential file type information shown in Table I).

As shown in Lines 8-16 in Algorithm 1, it then
computes the attribute value frequencies (AVF) using
the AVF algorithm [29] on the differential spatial metrics
DiffAttri and processes it to rank the temporal
snapshots ψi in order of suspicious activities. The AVF
algorithm performs well on categorical data with
multiple attributes, the differential spatial metrics in our
case [29]. In a typical AVF application, the number of
anomalies to be detected are pre-programmed. Here,
instead of choosing the number of anomalies to be
detected, TARDIS uses the AVF algorithm to rank the
temporal snapshots in the compromise window in the
order of most suspicious to least suspicious.

Before TARDIS outputs the final attack labels for the
entire temporal sequence, it passes the label set L

through logical sequence verification of the associated
labels (Lines 4-6 in Algorithm 1) and assesses their order
of appearance. For example, when the only labels
assigned are ‘code generation capability’ and ‘attack

cleanup’, it has been observed that these behaviors arise
from benign elements populated by the web developer
and mean no harm. In such cases, the labels are retained
but their severities are reduced to ‘None’. If the label
‘maintain presence’ is seen on a snapshot prior to any
other event label such as ‘establish foothold’ or ‘malware
dropped’ or any other high severity modeling rule, since
we know that this event sequence is intuitively not
feasible, TARDIS has been programmed (again via
Boolean composition of the previous label rules) to filter
out sequences that do not make logical sense.

Notice that TARDIS’s compromise window is only
influenced by the order of 2 out of the 8 labels, i.e. attack
cleanup and maintain presence. TARDIS considers all
combinations of the other labels as the beginning of a
compromise window. This makes TARDIS robust
against attackers who might try to deploy out-of-order
payloads to confound TARDIS.

Once the logical sequence of the assigned labels is
verified and the temporal snapshots are ranked in the
order of suspicious activities, TARDIS then identifies
the compromise window — the period between the first
and the last temporal snapshot comprising of suspicious
activities with assigned and verified labels L. Also, the
window is chosen such that the AVF score for every
temporal snapshot outside the compromise window is
higher than the score for every temporal snapshot within
the compromise window (lines 17 - 21 Algorithm 1). This
is the period when maximum suspicious activities take
place in the website and help the investigator narrow
down the analysis to a smaller window. We find that
these intuitive temporally correlated spatial metrics and
the attack models both align well with the design and
work well in practice, as we show in §IV and §V.

For our website under investigation W682886, from 1
April - 30 June 2018, the compromise window is
identified from 21 April - 16 June 2018. By applying the
AVF algorithm, TARDIS outputs the following
temporal snapshots for this website ranked in order of
most suspicious to least suspicious as follows:
<- Most suspicious...............Least suspicious ->

5 June, 13 June, 8 June, 14 June,21 April,..,29 June

This aligns with our earlier visual inspection of the
differential file type metrics presented in Table I.

Note than these attack models are scalable irrespective
of the underlying CMS, i.e. when a new tactic is
identified, the TARDIS framework is designed to be
highly modularized and can be easily updated to capture
the essence of the new tactic and the attack label
associated with it. Essentially, applying the attack
modeling rules to spatial metrics and incrementally
sliding along each temporal snapshot enables TARDIS

to assign appropriate labels L along the compromise
window, thus providing a timeline of the events as part
of the long-lived multi-stage attack investigation.
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IV. Validating our Intuition

This research began with the key insight that
CMS-targeting cyber attacks exhibit the “low and slow”
characteristics indicative of multi-stage attacks. Based on
this, we designed TARDIS to recover the compromise
window and reconstruct the attack timeline. We now
perform several micro-benchmarks with a ground truth
set of websites to validate this intuition.
Data Set and Ground Truth. Our preliminary study
in §II looked at the nightly backups of 70 CMS websites
which CodeGuard had identified as recently
compromised. We manually investigated these websites
and labeled the observed attack models. We will use
these 70 websites again here as ground truth. To these 70
websites, we added the full history of nightly backups
from 93 additional CMS websites, selected randomly
from our collaborator’s data. Again, we performed a
manual investigation of these 93 new websites to obtain
ground truth (discussed below). This yielded a total of
163 websites, each of which represents backups collected
nightly during a 13-month period between April 2018
and May 2019.

In order to validate TARDIS’s performance, we
manually investigated the 163 websites to obtain ground
truth. We first installed a clean version of the CMS
locally and removed any file which had not been
modified for each snapshot. We then searched all the
code files for malware payloads and confirmed our
findings with CodeGuard engineers. If our investigation
found an attack, we labeled the snapshot when the
attack first appeared. If the attack was cleaned up via a
rollback, we labeled the corresponding snapshot. We then
annotated the expected attack labels for every snapshot
within that compromise window. From our 163 websites,
80 were found to be compromised. We note that this is
biased by the original 70 (all of which were
known-compromised) but still provides a varied test suite
of benign and malicious cases.

We identified the CMS platform used by each website
using WhatCMS [30] and CMS Garden [31]. The CMS
market share distribution in this dataset is shown in
Table IV. The distribution is roughly similar to the
real-world distribution of CMS-based websites, e.g., a
majority of websites are built on WordPress with Drupal
and Joomla a close second and third.

A. Identification of Attack Models
We then drilled down into the websites identified as

compromised. To validate TARDIS’s attack timeline
reconstruction capability, we first ran each website’s
sequence of backups through TARDIS and recorded
what attack labels were assigned to each nightly
snapshot. Note that TARDIS did not have nor need
access to our ground truth for investigating the website
backups, and it relied only on the temporal correlation of
spatial metrics and attack models for timeline extraction.

TABLE IV: Distribution of Compromises in the
Evaluation Dataset of 163 Websites.

CMS # of
websites1 #GT2 TARDIS

3

#TP4 #FP5 #FN6

WordPress 92 47 47 1 0
Drupal 23 15 15 1 0
Joomla 17 10 10 0 0
PivotX 9 2 2 0 0
Prestastop 2 0 0 0 0
TYPO3 CMS 8 3 3 1 0
Bourbon 4 1 1 0 0
Contao 3 0 0 0 0
Contenido 5 2 2 0 0
Total 163 80 80 3 0
1: Total number of websites evaluated for each CMS.
2: Total number of compromised websites (Groud Truth)
3: Total number of websites flagged as compromised by TARDIS.
4: True Positive, 5: False Positive, 6: False Negative.

We then compared the TARDIS output attack labels
with our manually derived ground truth.

Table V presents the micro-benchmark results for the
163 websites. The CMS platform is listed in Column 1.
For each CMS platform, the subsequent pairs of columns
show the number of websites which TARDIS marked as
containing each attack label (denoted by #) and the
number of those labels which were false positive cases
(denoted by #FP), i.e. our derived ground truth for that
website does not contain that attack label. For example,
Row 3 of Table V shows TARDIS labeled obfuscated
code injection in 8 Joomla-based websites and 1 of them
is an FP. Note also that any attack labels detected in
known clean websites were marked as FPs.

From Table V, we make several observations: Taken
individually, TARDIS’s attack models detect the attack
labels within compromised websites with high accuracy.
The labels escalate privileges and establish foothold were
identified with zero FPs, as seen in Table V. Also,
obfuscated code injection, maintain presence, malware
dropped, and attack cleanup labels saw low FP counts of
1, 1, 3, and 4, respectively, highlighting TARDIS’s
attack model detection accuracy.

Most importantly, when all of these attack models are
considered together within a single website, TARDIS is
able to prune individual false positives. TARDIS verifies
the logical sequence of the recorded attack labels,
computes the compromise window, and then tags the
website as compromised or not, as discussed §III-C. This
procedure pruned 38 of the 39 FPs in the code
generation capability label, all 4 FPs in attack cleanup,
all 3 FPs in malware dropped, 8 of the 9 FPs in defense
evasion, and the only FP in obfuscated code injection,
effectively removing 94.7% of the FPs listed in Table V.

Another observation is that the attack tactics vary
greatly across CMS platforms, but a few labels are
present in all attacks. In particular, the maintain
presence, malware dropping, and defense evasion labels
are seen in all compromised CMSs. This is confirmed by
our ground truth investigation. This may seem intuitive,
but it confirms our premonition that CMS-targeting
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TABLE V: Evaluation of the Multi-Stage Attack Phase Models.

CMS
Obf. Code
Injection

Maintain
Presence

Code Gen.
Capability

Malware
Dropped

Attack
Cleanup

Establish
Foothold

Defense
Evasion

Escalate
Privileges

# #FP # #FP # #FP # #FP # #FP # #FP # #FP # #FP
WordPress 17 0 39 1 71 24 46 2 21 4 2 0 42 6 4 0
Drupal 6 0 15 0 18 4 13 0 9 0 0 0 12 2 5 0
Joomla 8 1 8 0 13 4 7 1 2 0 0 0 10 1 2 0
PivotX 1 0 2 0 2 0 1 0 0 0 0 0 2 0 0 0
Prestastop 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
TYPO3 CMS 0 0 2 0 3 1 3 0 1 0 0 0 2 0 0 0
Bourbon 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0
Contao 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
Contenido 2 0 1 0 5 3 2 0 1 0 0 0 2 0 1 0

attacks overwhelmingly exhibit long-lived multi-stage
attack behaviors.

Notice that TARDIS recorded 115 out of the 163
websites with code generation capabilities (a common
tactic used in multi-stage attacks). However, from the
Column #FP for code generation capability label in
Table V, we find that in 39 of the websites, these labels
were FPs. This can be attributed to the open-source
nature of the CMSs and the varied coding practices
followed by CMS plugin developers. The other
significantly higher FP (9 out of 71 websites) is defense
evasion; these are due to the presence of obfuscation used
to prevent visibility into paid CMS plugins that appear
like multi-stage attack behaviors at first glance.

B. Multi-Stage Attack Timeline
Based on our previous runs of TARDIS, we recorded

the compromise window which was reported or “Not
Compromised” for each website. We evaluate TARDIS’s
correctness by comparing these with our manually
recorded compromise labels for the 163 websites. The
results are presented in Table IV.

Table IV shows the CMS platform and its distribution
in Columns 1 and 2, respectively. Column 3 (#GT)
presents the ground truth number of compromised
websites in this dataset derived by manual investigation.
Columns 4 through 6 show the number of websites for
which TARDIS output a compromise window. Column 4
(#TP) presents the number of websites for which the
TARDIS compromise window output matched the
ground truth, and Column 5 (#FP) presents the number
of false positives produced by TARDIS. Here, FP is
essentially a “false alarm”, meaning that TARDIS

produced a compromise window, but the website was
known to not be compromised (via our ground truth).
Column 6 (#FN) presents the number of websites that
are compromised and not identified by TARDIS.

Overall, TARDIS found a total of 83 websites infected
with multi-stage attacks. Interestingly, more than 50% of
these attacks targeted WordPress CMS, as seen in
Table IV. In addition to the 70 known-compromised
websites from §II, TARDIS found the 10 additional
attacks in the added set of 93 websites. TARDIS

reported an attack timeline that matched our ground
truth for these 80 compromised websites. Manual
verification confirmed the correctness of this result. To
the best of our knowledge, we did not find any websites
that contained an attack that was missed by TARDIS,
thus showing a zero FN count.

Notice that TARDIS produced 3 FPs, i.e. Column 4
from Table IV shows 3 websites (one from WordPress,
Drupal, and TYPO3 CMS). Our manual investigation
revealed that all 3 websites contained user-developed
security plugins with obfuscated code, similar to the
tactic used by attackers, which caused TARDIS to
output a compromise window for these websites. Note
that there are several publicly available security plugins
that contain obfuscated code (Sucuri, Wordfence, etc.),
but TARDIS can handle such well-known benign
obfuscation cases by checking if it belongs to a CMS
security plugin with licensing information.

V. Deploying TARDIS in the Wild

After validating that TARDIS’s analysis accurately
captures the attack labels in CMS-based website
backups, we worked with CodeGuard to deploy TARDIS

on a significant portion of their data set. We leveraged
this access to nightly backups from 306, 830 unique
websites (spanning from March 2014 to May 2019) to
empirically measure the health of CMS-based websites in
the real world. In this section, we document our findings
from using TARDIS to understand the threat landscape
with respect to CMS-based websites. We are also in the
process of working with CodeGaurd to inform the
website owners of our findings and remediate the
identified attacks.
Experimental Setup. We used a fleet of Amazon Web
Services (AWS) Elastic Compute (EC2) r5.2xlarge
instances with 8 virtual CPUs and 64 GB of RAM.
These instances are supervised by the AWS Batch job
scheduling engine to run TARDIS on hundreds of
website backups in parallel.

We used several tools to assist in the investigation:
Our CMS classification is built on top of WhatCMS [30]
and CMS Garden [31]. TARDIS is written in Python
(2500 lines of code) and leverages zxcvbn [27] for entropy
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TABLE VI: Overall Distribution of Compromised Websites and Average File Counts per CMS.

CMS Number of
Websites

# Comp.
Websites

Total Avg.
Files Count

Only Comp.
CMS

Only Benign
CMS

WordPress 295,774 19,260 10,981.9 19,072.7 10,418.4
Drupal 1,340 215 17,760.0 22,288.7 16,894.5
Joomla 4,115 563 20,950.0 32,391.5 19,136.5
PivotX 509 27 28,739.7 42,075.9 27992.7
Prestashop 464 86 28,665.3 43,032.4 25,396.6
TYPO3 CMS 81 4 31,044.5 71,984.0 28,917.8
Contenido 4,543 436 16,709.8 25,851.5 15,739.3
Contao 4 0 7,634.0 NA 7,634.0

estimation in the injected element names and
Pandas [32] for data analysis.

A. The CMS Landscape
Table VI presents the distribution of compromises in

the 306, 830 websites. Columns 1 and 2 show the CMS
platform and its distribution, respectively. Column 3
shows the number of websites marked as compromised by
TARDIS, i.e., the websites for which TARDIS outputs
multi-stage attack labels and a compromise window.
Columns 4 through 6 show the total average number of
files (“spatial elements”) for each CMS, the average
number of files in compromised websites, and the average
number of files in only the benign websites, respectively.

Table VI provides interesting insights into the attack
landscape of CMSs. As seen in Column 2, the majority of
the websites use WordPress as their underlying CMS. In
this dataset, we see that 96% of the total websites use
WordPress, higher than real-world trends [2]. This is due
to the high market share of WordPress users in
CodeGuard’s production set. From Column 2 in
Table VI, it is evident that, except for Contao, all CMSs
in this dataset are victims of multi-stage attacks. In
total, we found 20, 591 compromised websites. There
were 19,260 WordPress websites alone infected with
these attacks (6.5% of the total WordPress websites).
Interestingly, more than 16% of Joomla, 13% of Drupal,
18% of Prestashop, and 9% of Contenido websites were
victims to multi-stage attacks. This goes to show that
not only do these attacks target CMSs, but they target
popular and the less popular CMSs alike. In this dataset,
about 5% of PivotX and TYPO CMS3 websites were
compromised by long-lived multi-stage attacks, showing
that these CMSs might not be popular attack targets
due to their smaller market share.

As seen in Column 4 from Table VI, almost all CMSs
contain tens of thousands of files on an average. However,
an interesting metric is to compare the average number
of files in compromised CMSs with those in benign CMSs.
Upon comparing Columns 5 and 6, it becomes evident that
invariably the attacks inject an extremely large number of
files into the CMS (which we also observed during our
manual investigation). As highlighted in Table VI, almost
all the compromised websites see a 50% or more increase

in files. The highest bloat in the number of files is seen for
TYPO3 CMS with a 150% increase in the average number
of files upon compromise. WordPress stands second, which
sees an average increase of 80%.

B. Evolution of Attacks
Table VII presents the distribution of attack models in

the 20, 591 websites that TARDIS identified as
compromised. Rows 1 through 8 present these outputs
for all the attack labels assigned by TARDIS. Recall
that the assignment of these labels is described in
Table III. Columns 2 through 8 show the number of
websites marked as compromised by TARDIS for each
CMS. A reading from Row 4 of Table VII can be
interpreted as follows: After running TARDIS on a total
of 295,774 WordPress websites in our dataset, it found
13,317 compromised websites with code generation
capability. Lastly, Row 9 in Table VII presents the total
number of compromises from each CMS for comparison.

From Table VII, it is evident that the code generation
capability is the most common tactic, seen in more 70%
of all attacks, regardless of the underlying CMS. From
Row 1 of this table, we see that it is not common to
identify the establish foothold label in all CMSs, mainly
due to the nature of our dataset. However, when
identified, it is a robust metric that confirms a
multi-stage attack. It is also interesting to note that
more than 20% of all such attacks attempt to clean up
their traces after accomplishing the attack motive.
However, not all multi-stage attacks actively hide their
presence. As seen from Row 5 of Table VII, more than
60% of compromised WordPress websites try to evade
defenses by following the popular hidden file/directory or
the disguised file approaches. Conversely, the popular
defense evasion techniques are not widely seen in
compromised websites belonging to other CMSs. This
could be attributed to the less-technical nature of the
website owner due to which the adversaries do not spend
resources on active hiding during the attack.

A significant portion of these attacks (8%) use
obfuscation techniques to make it harder for the website
owners to reverse engineer the injected code. Since the
hosted websites cannot be taken down immediately upon
detecting any traces of suspicious activity, by the time
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TABLE VII: Attack Phase Distribution Across the 306, 830 Websites.

Phases WordPress Drupal Joomla PivotX Prestashop TYPO3
CMS Contenido Contao

Establish Foothold 339 3 34 0 1 0 22 0
Obf. Code Injection 1,629 19 29 1 0 0 39 0
Malware Dropped 7,223 141 528 11 80 0 265 0
Code Gen. Capability 13,317 188 510 27 86 4 420 0
Defense Evasion 12,491 79 63 0 0 0 181 0
Escalate Privileges 12,078 72 55 17 6 4 176 0
Maintain Presence 1,704 27 45 1 0 0 37 0
Attack Cleanup 3,795 53 123 6 6 0 84 0
Total Number of
Compromised Websites 19,260 215 563 27 86 4 436 0

incident response can understand the obfuscated code,
the adversary would have completed reconnaissance in
the websites (as presented in Figure 4), achieved their
goals, and moved towards attack cleanup.

C. Compromise Window
The most important finding from this dataset was the

length of compromise in CMS-based websites. Once
attacked, multi-stage attacks persist in the websites for
long periods of time. Figure 4 shows the compromise
window distribution from the TARDIS output for each
of the compromised CMSs. Note that this is a truncated
version of the box plot to improve readability. Not shown
in this figure: More than 20% of attacks on WordPress
websites persist between 300 to 1694 days. As seen from
Figure 4, most attacks in WordPress websites persist for
around 40 days, as is evident from the median of the
box-plot for WordPress. In comparison, the median
length of the attacks is longer in Joomla and PivotX in
the range of 75 to 85 days. In more than 4000 WordPress
websites, these attacks persist anywhere between 3
months and 4.5 years. It is the multi-stage attacks
belonging to this quartile (top 25%) that pose the most
significant threat to website visitors: The dropped files
simply lurk in the websites, many of which aim to
exploit website visitors.

Among all CMSs, an average multi-stage attack
persists the longest in Joomla, for 3 months on an
average. Further, for websites that use more popular

Fig. 4: Compromise window distribution in CMSs
(truncated to 300 days).

TABLE VIII: Effectiveness of the Current Industry Attack
Mitigation Framework.

CMS Infected
Websites1

AV
Alerts2 Rollbacks3 Reinfects4

WordPress 19,260 52 17 7
Drupal 215 9 4 4
Joomla 563 28 7 7
PivotX 27 0 0 0
Pretashop 86 0 0 0
TYPO3 4 0 0 0
Contenido 436 2 1 1
Contao 0 0 0 0
Total 20,591 91 29 19
1: # of websites compromised for each CMS, 2: # of websites
with AV alerts, 3: # of websites with attempted rollbacks,
4: # of websites with reinfections after the rollbacks.

CMSs such as WordPress, Joomla, and Drupal, the
attacks likely persist longer since the adversaries see a
wider opportunity base and get a better return on the
investment of their resources. Conversely, the less
popular CMSs, TYPO3 CMS and Prestashop, are not
only targeted less by persistent attacks, but those attacks
also do not persist for as long. This can be attributed to
the higher opportunity cost and lower returns for
targeting an attack toward less popular CMSs.

D. Existing Attack Mitigation Framework
Recall, the current industry standard is a naive

“backup and restore” model in conjunction with an
integrated AV. Once a compromise is detected by the
AV, the website owners are prompted to rollback to a
previous clean snapshot. We extracted the AV reports for
the dataset of 306, 830 websites and instrumented
TARDIS to record the number of user-initiated
rollbacks and reinfections post rollback. The results are
presented in Table VIII. Note that TARDIS has no
knowledge of the AV reports and relies only on its attack
models for timeline reconstruction. Table VIII shows
that AVs are ineffective in identifying almost all infected
websites thus reaffirming our claim that AV signatures
only catch well-known malware, and they fail to detect
stealthy multi-stage attacks.

Columns 1 and 2 present the CMS platforms and the
number of compromised websites from each CMS.

1166



Column 3 shows the number of infected websites from
each CMS that triggered AV alerts. Column 4 presents
the number of websites with AV alerts that attempted to
rollback to a previous version in order to mitigate the
threat identified by the AV. Column 5 presents the
number of websites that attempted rollbacks and
remained infected or were reinfected. As expected, the
distribution of the AV alerts and the rollbacks reflect the
market share of the CMSs in CodeGuard’s production
set, which we consider representative of CMSs at large.
Rollbacks. As presented in Table VIII, we find it
extremely concerning that among the 20,591 websites
identified as compromised with long-lived multi-stage
attacks by TARDIS, only 91 websites see AV alerts.
More so, because the website owners are alerted to
rollback to a clean snapshot only when an AV alerts the
website owner about a suspicious activity. This low
number of AV alerts (i.e. less than 1% of the total
number of compromises) is the reason why the “backup
and restore” model is proving to be ineffective and these
attacks persist for a significant time period.

Among the 91 websites that trigger AV alerts, not all
of them take action. As seen in Table VIII, only 29 of
these 91 websites attempt a rollback to a pre-AV-alert
snapshot to recover the website from the attack.
Moreover, AVs are infamous for generating false alerts
causing threat alert fatigue [24] — another reason why
true AV alerts are ignored, perhaps explaining why only
29 of the 91 websites attempted rollbacks.
Reinfections. As seen from Table VIII, of the 29
websites that attempted rollbacks to recover from an
attack, TARDIS found reinfections in more than 65% of
these websites. We imagine this was quite confusing to
the attacker to find the website files rolled back but their
original backdoors persisted. This confirms the long-held
belief that AVs are unreliable. Not only are they missing
a vast majority of the attacks, but a strong dependence
on AVs is making the existing “backup and restore”
technique largely ineffective. These numbers reaffirm the
motivation behind TARDIS’s design — the need for a
systematic provenance inference technique in the space of
nightly backups. We hand-verified the websites with
rollbacks and found that our intuition was correct: In
every case of reinfection, the rollback snapshot was inside
the compromise window (identified by TARDIS) causing
a reinfection. Of all the compromised websites, only 10
websites managed to rollback outside of the compromise
window, thus remediating the infections. This confirms
that TARDIS’s provenance inference is essential for
compromised website investigation.

E. Performance
Figure 5 shows the time taken by TARDIS to measure

all the attributes for 306, 830 websites versus the size of
the websites in terms of the number of files. TARDIS

linearly assesses each temporal snapshot to provide a

Fig. 5: Time to process a CMS backup (seconds) versus
total number of files in the CMS.

timeline of events and event labels for the entire website
with acceptable overhead. While this overhead scales
with the number of files in the website (regardless of the
size of these files), the increase is minimal as is seen from
the gradual slope of the plot in Figure 5. The worst-case
for TARDIS, i.e., the maximum time taken, was to
process 1859 snapshots (an average of 100,000 spatial
elements) is close to 3500s. As an offline forensics
technique, we consider this to be quite reasonable.

VI. Case Study

A. Case Study 1: A Global View of Attack Movement
Beyond the investigation of individual websites,

deploying TARDIS within commercial website backup
platforms [19]–[23] can provide a global view of the
evolution of attack campaigns. During our experiments,
we found identical provenance evolution across 5
different WordPress websites between September and
November 2018. In all of these websites, the adversary
uses similar tactics of disguised obfuscated code injection
( O ) in 28 PHP files in different locations over 5 days,
followed by 83 instances of malware dropped ( M ) to
inject backdoor functionalities, then maintaining
presence ( P ) for about 2 months, and eventually
attempting attack cleanup ( C ) to remove all traces of
those steps. In each of these cases, the dropped malware
disables all error logging functionalities and fetches
payloads from a remote server (active at the time of
investigation) which it executes on the victim web server.
It also collects the output buffers, sends them back to
the remote server, and finally re-enables error logging.
These actions were programmed to run every 48 hours.

Fig. 6: Global attack movement in WordPress websites.
Interestingly, as shown in Figure 6, each of these

websites exhibited the same attack phase evolution and
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persistence for the same duration. All of these websites
belong to different unique small businesses that just
happen to build their website upon WordPress. Once the
first WordPress website (W1413857) was attacked,
another WordPress website (W0697120), completely
unrelated to the initial website, exhibits the exact same
injection 6 days later. This is followed by 3 other
infections in three websites (W1438887, W1467224,
W1532897) within the next 10 days. In all five of these
websites, the obfuscated code injection phase lasts for 5
days, malware dropped phase for 1 day, maintain
presence 51 to 56 days, and finally, the attack is cleaned
up by deleting all the injected files. Since this attack was
not known to the AV, none of the attacks were flagged
and the website owners did not attempt rollback.
Future Deployment. We are currently working with
CodeGuard to deploy TARDIS at a global level in their
backup framework to detect and track large scale attack
trends. This has required expanding TARDIS to enable
cross-website modeling and correlation.

B. Case Study 2: “User-Friendly” Remote Control
In a Drupal-based website, investigation of the backups

for a 3 month period (Feb 2019 - Apr 2019) revealed the
existence of the following phases.
23 Feb Obfuscated Code Injection
24 Feb - 3 Mar Maintain Presence
4 Mar Malware Dropped & Defense evasion
6 Mar Escalate Privileges
7 Mar - 12 Apr Maintain Presence
13 Apr Attack Cleanup

The integrated AV at the backup site never triggered
an alert, keeping the website owner in the dark about the
attack. The compromise window identified by TARDIS

showed that the adversary injected obfuscated PHP code
starting 23 February 2019 and maintained presence for
the next few days until 3 March 2019. Starting 4 March
2019, the attacker dropped malware and used defense
evasion methods: They disguised a PHP file as an icon
file and uploaded a backdoor shell inside a hidden
directory. On March 6, the attackers injected a
full-fledged graphical user interface (GUI) for the
backdoor, giving them full control of the website as
shown in Figure 7. All of these files remained in the
website for over a month. On 13 April 2019, TARDIS

found that the attackers deleted the earlier injected
malware to hide their previous footprints. The timeline
provided by TARDIS reveals that multi-stage attack
activities persisted in this website during a period of 3
months and provides a compromise window (23 February
to 13 April 2019) outside of which the website can be
safely rolled back. Manual investigation revealed that the
CVE-2018-7600 [33] vulnerability, insufficient input
sanitation on Form API (FAPI) AJAX requests, was
exploited by the attacker. Note that this vulnerability
was not patched until a month after this attack began.

Fig. 7: GUI backdoor injected in a Drupal website.

VII. Limitations

The accuracy of inferring the provenance of attacks is
limited by the granularity of the backups. The current
industry norm is to collect website backups
nightly [19]–[23]. We have shown that this is sufficient for
recovering the timeline of an attack. However, if a
fast-paced attack goes through multiple stages in
between two consecutive backups, TARDIS would only
have visibility into files at the time of the backups.
Essentially, TARDIS enables website owners to calibrate
between the granularity of taking backups (i.e., making
TARDIS more accurate) versus requiring a deeper
manual inspection when an attack does occur.

As these multi-stage attacks evolve, TARDIS’s spatial
metric identification rules might need to change over
time. This evolution is expected, and TARDIS’s
modular nature makes adding new spatial metrics
straightforward. Further, TARDIS’s methodology of
temporal correlation of spatial metrics should stand the
test of time, as it was designed agnostic to the individual
metrics and is based on the invariants of the phases
which multi-stage attacks go through.

VIII. Related Work

Large-Scale Study of Web Attacks. Several studies
have been published which used high-interaction
honeypots to understand web attacks on a large
scale [26], [34], [35]. Further, some techniques tried to
assess the impact of web application compromises by
studying the role of hosting providers [36] and
understanding the response landscape by studying
large-scale notification campaigns [37]. Similar to
TARDIS, Canali et.al. [26] also found attackers
dropping large volumes of files on the web server. While
these techniques focused on attacks targeting a generic
web application, this research studied the spread of
multi-stage attacks on CMS-based websites and, more
specifically, within production websites. Our study and
TARDIS were designed to investigate such multi-stage
attacks based on only nightly website backups.
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Causality Modeling. There have been significant
advances in identifying the provenance of an attack by
monitoring the behavior of a system in order to
reconstruct the chain of events that led to the attack [4],
[7], [12], [13], [17], [38], [39]. Most works which focused
on advanced multi-stage attack detection, e.g.,
Holmes [3] and Sleuth [16], are built on OS audit data
and used system-call level logs for real-time analytics.
However, these fine-grained log-based provenance
tracking techniques require significant instrumentation
and are hardly deployed by CMS hosting companies.
TARDIS leverages what is already the industry
standard (nightly backups) to model long-lived
multi-stage attack progression via temporal correlation of
spatial metrics and outlier detection.
Web Application Security. To preemptively secure
websites against attack, recent research has focused on
analyzing particular classes of attacks, such as ad
injection [40]–[42], survey scams [43], [44], cross-site
scripting [45]–[48], PHP code injection [49], [50], SQL
injection [48], [51]–[53], file inclusion attacks [54], [55],
etc. These research techniques focus on individual layers
of web applications. However, since CMSs contain code
across all of these layers and are marketed to
less-technical website operators, attack-vector-specific
solutions are not commonly deployed. TARDIS is
attack-vector agnostic and enables the investigation of a
compromised CMS post-attack.

IX. Conclusion

This paper presented a systematic study of the CMS
attack landscape across 306, 830 unique production
websites, using TARDIS. Targeting the problem of
investigating compromises in CMS-based websites using
only the readily available nightly backups, TARDIS

provides a novel provenance inference technique that
reconstructs the attack phases and enables rapid
recovery from an attack. Using the temporal correlation
of spatial metrics representing each snapshot, TARDIS

recovers the compromise window and the progression of
attack phases. TARDIS uncovered 20,591 websites that
were victims of long-lived multi-stage attacks and was
shown to be highly accurate in revealing attacks in
CMS-based websites, regardless of the underlying CMS.
We are working with CodeGuard to informing the
website owners and remediate the identified attacks.
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