
Adversarial Watermarking Transformer: Towards
Tracing Text Provenance with Data Hiding

Sahar Abdelnabi and Mario Fritz
CISPA Helmholtz Center for Information Security

Abstract—Recent advances in natural language generation
have introduced powerful language models with high-quality
output text. However, this raises concerns about the potential
misuse of such models for malicious purposes. In this paper,
we study natural language watermarking as a defense to help
better mark and trace the provenance of text. We introduce the
Adversarial Watermarking Transformer (AWT) with a jointly
trained encoder-decoder and adversarial training that, given an
input text and a binary message, generates an output text that is
unobtrusively encoded with the given message. We further study
different training and inference strategies to achieve minimal
changes to the semantics and correctness of the input text.

AWT is the first end-to-end model to hide data in text by
automatically learning -without ground truth- word substitutions
along with their locations in order to encode the message.
We empirically show that our model is effective in largely
preserving text utility and decoding the watermark while hiding
its presence against adversaries. Additionally, we demonstrate
that our method is robust against a range of attacks.

I. INTRODUCTION

Recent years have witnessed major achievements in natural
language processing (NLP), generation, and understanding.
This is in part driven by the introduction of attention-based
models (i.e., transformers [1]) that outperformed recurrent or
convolutional neural networks in many language tasks such
as machine translation [1], [2], language understanding [3],
[4], and language generation [5]. In addition, model pre-
training further fueled these advances and it is now a common
practice in NLP [6], [7]; many large-scale models are now pre-
trained on large datasets with either denoising auto-encoding
or language modelling objectives and then fine-tuned on other
NLP downstream tasks [3], [4], [8]–[11].

On the other hand, this raises concerns about the potential
misuse of such powerful models for malicious purposes such
as spreading neural-generated fake news and misinformation.
For example, OpenAI used a staged release to publicize their
GPT-2 language model in order to evaluate the impact and
potential risks [12]. Moreover, Zellers et al. [5] proposed a
generative model called Grover demonstrating that a language
model such as GPT-2 can be trained on news articles and can
consequently generate realistically looking fake news.

These models can generate highly fluent text which some-
times had even higher ratings than human-written text and
fooled human detectors [5], [13], [14]. While it is now
possible to perform automatic detection, it is subject to recent
advances in text generation (e.g., architecture, model size,
and decoding strategies) [5], [13], which could hinder the
automatic detection in the long run. Hence, we seek a more

1010

Input text
Other positions from the
Department of Air included
Air Commodore Plans from
October 1957 to January
1959, and Director General
Plans and Policy from
January to August 1959.

Output text

Input message

1010
Reconstructed

message

Other positions at the
Department of Air included
Air Commodore Plans from
October 1957 to January
1959, and Director General
Plans and Policy from
January to August 1959.

Hiding network
1010

Transformer
Encoder

Revealing network

Transformer
Encoder

Transformer
Decoder

Fig. 1: An overview of our text watermarking solution at
inference time.

sustainable solution that can disambiguate between real and
fake text.

To this end, we aim to perform automatic and unobstructive
data hiding within language towards eventually watermarking
the output of text generation models. Specifically, we envision
black-box access scenarios to the language model APIs [15] or
to services such as text generation and editing-assistance that
could be misused to create misinformation. Watermarking can
then be used to introduce detectable fingerprints in the output
that enable provenance tracing and detection. As deep learning
models are widely deployed in the wild as services, they are
subject to many attacks that only require black-box access
(e.g., [16]–[19]). Thus, it is important to proactively provide
solutions for such potential attacks before their prevalence.

a) Language watermarking: There have been several
attempts to create watermarking methods for natural language,
such as synonym substitutions [20], [21], syntactic tools
(e.g., structural transformation [22]), in addition to language-
specific changes [23]–[25]. However, these previous methods
used fixed rule-based substitutions that required extensive
engineering efforts to design, in addition to human input
and annotations, which hinders the automatic transformation.
Also, the designed rules are limited as they might not apply
to all sentences (e.g., no syntactic transformations can be
applied [22]). Additionally, they introduce large lexical or
style changes to the original text, which is not preferred when
keeping the original state is required (such as the output of
an already well-trained language model). Besides, rule-based
methods could impose restrictions on the use of the language
(e.g., by word masking). Finally, using fixed substitutions can
systematically change the text statistics which, in turn, under-

ar
X

iv
:2

00
9.

03
01

5v
2

 [
cs

.C
R

]
 2

9
M

ar
 2

02
1

mines the secrecy of the watermark and enables adversaries
to automatically detect and remove the watermark.

b) Data hiding with neural networks: Data hiding can
be done in other mediums as well such as images [26].
Several end-to-end methods have been proposed to substitute
hand-crafted features and automatically hide and reveal data
(e.g., bit strings) in images. This can be done using a jointly
trained encoder and decoder architecture that is sometimes
coupled with adversarial training to enforce secrecy [27]–
[31]. However, automatic hiding approaches for language
are still lacking, which could be attributed to the relatively
harder discrete nature of language and having less redundancy
compared to images.

c) Our approach: We introduce the Adversarial Wa-
termarking Transformer (AWT); a solution for automatically
hiding data in natural language without having paired training
data or designing rule-based encoding. Similar to sequence-
to-sequence machine translation models [32], AWT consists
of a transformer encoder-decoder component that takes an
input sentence and a binary message and produces an output
text. This component works as a hiding network, which is
jointly trained with a transformer encoder that takes the output
text only and works as a message decoder to reconstruct the
binary message. We utilize adversarial training [33] and train
these two components against an adversary that performs a
classification between the input and modified text. The model
is jointly trained to encode the message using the least amount
of changes, successfully decode the message, and at the same
time, fool the adversary. An example of using the data hiding
and revealing networks at test time is shown in Figure 1.

d) Evaluation axes: We evaluate the performance of
our model on different axes inspired by the desired require-
ments: 1) The effectiveness denoted by message decoding
accuracy and preserving text utility (by introducing the least
amount of changes and preserving semantic similarity and
grammatical correctness), 2) The secrecy of data encoding
against adversaries. 3) The robustness to removing attempts.
These requirements can be competing and reaching a trade-
off between them is needed. For example, having a perfectly
and easily decoded message can be done by changing the text
substantially, which affects the text preserving, or by inserting
less likely tokens, which affects the secrecy.

e) Contributions: We formalize our contributions as
follows: 1) We present AWT; a novel approach that is the
first to use a learned end-to-end framework for data hiding
in natural language that can be used for watermarking. 2) We
study different variants of the model and inference strategies
in order to improve the text utility, secrecy, and robustness.
We measure the text utility with quantitative, qualitative,
and human evaluations. To evaluate the secrecy, we analyze
and visualize the modified text statistics and we evaluate
the performance of different adversaries. Besides, we study
the robustness under different attacks. 3) We show that our
model achieves a better trade-off between the evaluation axes
compared to a rule-based synonym substitution baseline.

II. RELATED WORK

We summarize previous work related to ours, such as lan-
guage watermarking and steganography, model watermarking,
and neural text detection.

A. Language Watermarking

Watermarking for multimedia documents has many appli-
cations such as identifying and protecting authorship [26],
[34]–[36]. It consists of an embedding stage where the hidden
information (i.e., watermark) is encoded in the cover signal,
followed by a decoding stage where the watermark is recov-
ered from the signal. Initial text watermarking attempts aimed
to watermark documents, rather than language, by altering
documents’ characteristics such as characters’ appearance,
fonts, or spacing, by specific patterns depending on the code-
word [37]. However, these methods are prone to scanning and
re-formatting attacks (e.g., copying and pasting) [34], [38].

The other category of methods relies on linguistic charac-
teristics of the natural language such as making syntactic or
semantic changes to the cover text [38]. An example of such
is the synonym substitution method in [20] in which WordNet
was used to find synonyms of words that are then divided
into two groups to represent ‘0’ or ‘1’. The authors relied on
ambiguity by encoding the message with ambiguous words or
homographs (i.e., a word that has multiple meanings). This
was used to provide resilience as attackers would find it hard
to perform automatic disambiguation to return to the original
sentence. However, words in the dataset were annotated/tagged
by meanings from the WordNet database. These annotations
were then used to select suitable synonyms, which does not
allow automatic methods with no human input. Generally, syn-
onym substitution methods are vulnerable to an adversary who
performs random counter synonym substitutions. In addition,
they perform fixed pairwise substitutions which makes them
not flexible and also vulnerable to detection.

Additionally, sentence structure can be altered to encode
the codeword according to a defined encoding [22], [39].
These methods introduce changes such as passivization, cleft-
ing, extraposition, and preposing [38], [40]. However, these
transformations might not be applicable to all sentences, also,
they change the sentence to a large extent.

In contrast, we perform an end-to-end data hiding approach
that is data-driven and does not require efforts to design rules
and unique dictionary lookups.

B. Linguistic Steganography

Steganography hides information in text for mainly secret
communication. However, it might have different requirements
from watermarking [20], [27]; while both of them target
stealthiness to avoid detection, steganography does not assume
an active warden. Thus, watermarking should have robustness
to local changes. In our case, it should also preserve the
underlying cover text and utility.

Translation by modifying a cover text was used in steganog-
raphy such as the work in [41]–[43] that used a set of rule-
based transformations to convert tweets to possible transla-

tions. The encoding and decoding were done with a keyed hash
function ; the translations that map to the desired hash values
were selected. Therefore, the decoding is not robust to local
changes to the sentence. Another synonym-based method was
proposed in [44] based on assigning different bits to American
and British words which makes it not applicable to a large
number of sentences. Another direction is to generate text
according to a shared key, instead of using translation. For
example, the work in [45] used a trained LSTM language
model that generates sentences according to a masked vo-
cabulary and a binary stream; the vocabulary was partitioned
into different segments where each segment was assigned a
sequence of bits. However, this imposes a large constraint on
the usage of the language model since it needs to abide by
the masking. Therefore, these steganography solutions are not
suitable for our scenario as they specifically prioritize secret
communication over flexibility or watermarking requirements.

C. Model Watermarking

To protect the intellectual property of deep learning models,
several approaches have been proposed to watermark mod-
els [46]–[49]. This could be done by embedding the watermark
into the model’s weights, which requires white-box access for
verification [50]–[52], or by assigning specific labels for a
trigger set (i.e., backdoors [53]), which only requires black-
box access [46], [48], [54].

These methods were mainly addressing image classification
networks; there is no previous work that attempted to wa-
termark language models. We also differentiate our approach
from model watermarking; instead of watermarking a model,
we study data/language watermarking using a deep learning
method that could eventually be used to watermark the lan-
guage model’s output.

Our task shares some similarities in requirements with
model watermarking (e.g., preserving model utility, authenti-
cation, and robustness against removal attempts), but they are
different in the objective and assumptions about attacks. While
the main purpose of model watermarking is to prove ownership
and protect against model stealing or extraction [55], our
language watermarking scheme is designed to trace prove-
nance and to prevent misuse. Thus, it should be consistently
present in the output, not only a response to a trigger set.
Moreover, while the adversary might aim to falsely claim
or dispute ownership in model watermarking/stealing [56],
we assume in our task that the adversary’s goal is not to
get detected or traced by the watermark. We elaborate on
this difference in Section V-D3. Finally, model stealing can
be done with white-box or black-box access to the victim
model [55], while we assume black-box access only to the
language and watermarking model.

D. Neural Text Detection

Similar to the arms race in image deepfakes detection [57]–
[59], recent approaches were proposed to detect machine-
generated text. For example, the Grover language model [5]

was fine-tuned as a classifier to discriminate between human-
written news and Grover generations. The authors reported that
the model size played an important factor in the arms race; if a
larger generator is used, the detection accuracy drops. Another
limitation was observed in [13] in which the authors fine-tuned
BERT to classify between human and GPT-2 generated text.
The classifier was sensitive to the decoding strategy used in
generation (top-k, top-p, and sampling from the untruncated
distribution). It also had poor transferability when trained with
a certain strategy and tested with another one. Therefore, while
detecting machine-generated text is an interesting problem, it
largely depends on the language model and decoding strategy.

Analogous to image deepfake classifiers’ limitations [60],
this suggests that the success of classifiers might drop based
on future progress in language modelling [5] (e.g., larger
models [11], arbitrary order generation [61], and reducing ex-
posure bias [62]), in addition to decoding strategies that could
reduce statistical abnormalities without introducing semantic
artifacts [13]. Thus, it now becomes important to provide more
sustainable solutions.

III. PROBLEM STATEMENT AND THREAT MODEL

In this section, we discuss our usage scenario, requirements,
assumptions about the adversary, and attacks.

a) Watermarking as a defense against models’ abuse:
We study watermarking as a sustainable solution towards
provenance tracing of machine-generated text in the case of
models’ abuse. An example of that scenario is a commercial
black-box language model API [15] or a text generation
service that has legitimate usages such as editing assistance.
The service is offered by the language model’s owner or
creator. However, it can be used in an unintended way by
an adversary to automatically generate entire fake articles or
misinformation at scale, aiming to achieve financial gains or
serve a political agenda [5]. The owner can then proactively
and in a responsible manner provide a way to identify and
detect the model’s generations by watermarking its output [60].

News platforms can cooperate with the model owner, by
having a copy of the watermark decoder, in order to identify
the watermarks in the news articles and, thus, detect machine-
generated articles. That is similar to [5] that suggests that
news platforms can use the Grover classifier to detect Grover’s
articles. This is also in line with video-sharing platforms such
as YouTube that uses deep networks to detect pornographic
content [63], and [64] which suggests using machine learning
classifiers to flag videos that could be targeted by hate attacks.

b) Watermarking using AWT: The hiding network (mes-
sage encoder) of AWT is used by the owner to embed a
watermark (m) into the text. The same message encoder can
be used to encode different watermarks (m1, m2, ..., mn) if
needed (e.g., if the service is offered to different parties). The
multi-bit watermarking framework (as opposed to zero-bit)
helps to trace provenance to different parties. The revealing
network (message decoder) of AWT can, in turn, be used to
reveal a watermark m′ which is then matched to the set of
watermarks (m1, m2, ..., mn).

c) Requirements: We draw insights from digital water-
marking studies in images to define the requirements. For
example, the main requirements defined in [26] include:
successful watermark embedding and verification, perceptual
similarity (imperceptibility), robustness to removal attempts
and edits (e.g., cropping, compression), and security to unau-
thorized detection. We adapt these requirements to our task
and define the problem as a trade-off between the following:
• Effectiveness: The watermark should be successfully

embedded and verified. At the same time, it should keep
the text utility; it should introduce the least amount of
changes to the cover text, and ideally produce natural,
grammatically and semantically correct changes, to pre-
serve the perceptual similarity.

• Secrecy: The watermark should achieve stealthiness by
not introducing evident changes that can be easily de-
tectable by automated classifiers. Ideally, it should be
indistinguishable from non-watermarked text. This, in
part, contributes to the text utility and naturalness pre-
serving factor, and it helps to avoid suspicion and hinders
the adversary’s efforts to tamper with the watermark by
identifying it. Therefore, we study the watermark secrecy
and consider a range of possible discriminators.

• Robustness: The watermark should be resilient and not
easily removable by simple changes. Ideally, to remove
the watermark, one has to introduce heavy modifications
that render the text ‘unusable’. Satisfying the previous
two requirements (text utility and secrecy) can, in part,
contribute to the robustness, since the adversary would
not be able to distinguish the watermark.
d) Assumptions about the adversary and attacks: We

consider a black-box API and assume that the attacker has
no white-box access to the language model or the watermark-
ing model (the watermark encoder and decoder), and also
no access to the input watermark or the cover text before
watermarking. We assume that the adversary aims to use
the service without getting detected, thus, to tamper with
(remove) the watermark while largely preserving the service’s
output (i.e., utility). We consider the following robustness
attacks: 1) Random changes and denoising, where the attacker
has knowledge about using a translation-based watermarking
scheme but not the model details. 2) Re-watermarking and
de-watermarking, where the attacker has full knowledge about
AWT details and training data but no access to the model itself.

IV. ADVERSARIAL WATERMARKING TRANSFORMER

We propose the Adversarial Watermarking Transformer
(AWT) as an end-to-end framework for language watermark-
ing. As shown in Figure 2, the proposed solution includes a
hiding network, a revealing network, and they are both trained
against a discriminator. In this section, we discuss the details
of these components and the training procedures.

A. Hiding Network (Message Encoder)

This component is responsible for translating the input
text to the watermarked text. Similar to sequence-to-sequence

machine translation models [1], [65], [66], it consists of an
encoder and a decoder.

a) Encoder: The encoder (E) is a transformer-encoder
block consisting of several transformer encoder layers. Each
layer consists of a self-attention block followed by a fully-
connected layer. The encoder takes an input sentence S =
{W0,W1, ...,Wn}, consisting of one-hot encoded words that
are then projected to the embedding space using the word-
embedding layer. As transformers are position-invariant, posi-
tion embeddings (sinusoidal embeddings [1]) are then added
to the word embeddings. The encoder produces a fixed-length
vector which is an average pooling across the time dimension
of the last encoder layer [67].

b) Message: The input message: M = {b0, b1, ..., bq} (q
binary bits sampled randomly), is first fed to a fully connected
layer in order to match the embeddings’ dimension and is
then added to the sentence encoding produced by the encoder,
producing a shared embedding between the sentence and the
message, which is then passed to the autoregressive decoder
and added to its input at each time-step.

c) Decoder: The decoder (D) has a similar architecture
as the encoder, in addition to having an attention layer over the
encoder’s output, following the transformer architecture [1].
In paired machine translation, the decoder usually takes the
ground-truth target sequence (shifted right) and is trained to
predict the next word at each time step. Since our problem
does not have paired training data, the model is trained as an
autoencoder [67]; the decoder takes the shifted input sentence
and is trained to reconstruct the sequence given to the encoder,
producing an output sentence S

′
= {W ′

0,W
′

1, ...,W
′

n}. This
serves as the reconstruction component in similar image data
hiding methods [27], and it helps to largely preserve the
input. In order to train the whole network jointly and allow
back-propagation from the other components, we use Gumbel-
Softmax approximation [68], [69] with one-hot encoding in
the forward pass (Straight-Through Gumbel Estimator using
argmax [68]), and differentiable soft samples in the backward
pass (softmax is used to approximate the argmax opera-
tion [68]). The reconstruction loss is the cross-entropy loss:

Lrec = Epdata(S)[− log pD(S)]

B. Revealing Network (Message Decoder)

This part of the network is responsible for reconstructing
the input message. It takes the one-hot samples produced by
the autoencoder, multiplied by the embedding matrix, and
with adding position embeddings. The message decoder (M)
is a transformer-encoder block since it is typically used in
text classification applications [4], [13]. The output of the
last transformer encoder layer is averaged across the time
dimension and fed to a fully connected layer with an output
size that is equivalent to the message length q. The message
reconstruction loss is the binary cross-entropy over all bits:

Lm = −
q∑

i=1

bi log(pM (bi)) + (1− bi) log(1− pM (bi))

+

Transformer
decoder layer

...

+

Gumbel Softmax

 ...

Data hiding network

Linear +

Attention
Transformer
encoder layer

...

...

...

Position embeddings

Word embeddings

Shared
embeddings

 ...0 ...

Word embeddings

Position embeddings
+

Average
pooling

 ...
Output sequence

Word embeddings
+

Average
pooling

Linear

Binary: encoded (fake) / cover (real)

Word embeddings
+

Average
pooling

Discriminator

Position embeddings
Position embeddings

Shared
embeddings

Transformer
encoder layer

...

...

 ...

 /

Transformer
encoder layer

...

...

Linear

 /

 /

Input message

Output
message

Repeat

AWD-LSTM
(Unconditional LM)

InferSent
(Sentence embedding)

Language model loss

Semantic loss

Trainable

Fixed weights

Fine-tuning only
Output sequence
Input sequence Input sequence

Ouput sequence

 ...

 ...

Shifted input sequence

Data revealing network

Output/input sequence

Fig. 2: The architecture of AWT . The model consists of a data hiding network (sequence-to-sequence model), a data revealing
network to decode the message, and a discriminator, in addition to the auxiliary components used at the fine-tuning step.

Weight tying: To reduce the number of parameters in the
network, we share the embedding weights across the whole
network [1] (i.e., text autoencoder including the encoder and
decoder, message decoder, and discriminator), and also with
the pre-softmax layer that maps from the embedding space to
tokens in the text decoder [1], [70], [71]. We found it beneficial
in terms of the model size and faster convergence to also share
the weights between the encoder part of the text autoencoder
and the message decoder.

C. Discriminator

In order to have a subtle message encoding that does not
alter the language statistics, we utilize adversarial training and
train the previous two components against a discriminator.
The discriminator (A) is a transformer-encoder with a similar
structure to the message decoder. It takes the non-watermarked
sentences S and the watermarked sentences S

′
, multiplies the

one-hot samples with the shared embeddings, and adds the
position embeddings. It produces an average over the time
steps of the last transformer encoder layer, which is used for
the binary classification using the binary cross-entropy loss:

Ldisc = − log(A(S))− log(1−A(S
′
))

while the adversarial loss is: LA = − log(A(S
′
)). As we show

later, we found this component essential in supporting the
watermark secrecy against adversaries.

D. Training and Fine-tuning

The model is first trained jointly with the above three losses
with weighted averaging:

L1 = wALA + wrecLrec + wmLm

These losses are competing; e.g., a perfect sentence reconstruc-
tion would fail to encode the message. Therefore, we tuned the
losses’ weights on the validation set to achieve a good trade-
off; e.g., it was helpful to assign a relatively higher weight to
the message loss, otherwise, the reconstruction dominates. We
did not need to anneal the message weight after the start. The
other losses had comparable weights to each other.

The previous loss function aims to preserve the input
sentence and encode the message with the least amount of
changes while not changing the text statistics. However, we
still do not have an explicit constraint on the type of changes
done by the network to encode the message. Therefore, after
training the network with L1, we further fine-tune the network
to achieve semantic consistency and grammatical correctness.

a) Preserving semantics: One way to force the output
to be semantically similar to the input sentence is to embed
both sentences into a semantic embedding space and compute
the distance between the two encodings. We follow [72] and
use the pre-trained Facebook sentence embedding model [73]
that was trained to produce a sentence representation based
on the natural language inference (NLI) task. The model was
trained on the Stanford Natural Language Inference (SNLI)
dataset [74]. We fix the sentence encoder (F) weights and use
it to compute the semantic loss between S and S

′
as follows:

Lsem = ||F (S)− F (S
′
)||

b) Sentence correctness: To explicitly enforce correct
grammar and structure, we fine-tune the model with a language
model loss [72]. We independently trained the AWD-LSTM
(ASGD Weight-Dropped LSTM) [70] on the used dataset,
as a medium-scale, but widely used and effective language
model [7], [75], [76]. We then use the trained AWD-LSTM
model (LM) with fixing its weight to compute the likelihood
of the output sentence S

′
. Sentences with higher likelihood

are more likely to be syntactically similar to the original text
used in training. The language model loss is defined as:

LLM = −
∑
i

log pLM(W
′

i |W
′

<i)

These previous two components take the one-hot samples
and map them to their respective embedding space. We fine-
tune the network using these two losses in addition to the
previous ones as follows: L2 = wALA + wrecLrec + wmLm +
wsemLsem + wLMLLM.

As we later show, fine-tuning with these auxiliary losses
helps to produce more realistically looking and natural samples

compared to only training with reconstructing the sentence.
Introducing these new losses after the first training stage was
mainly to speed-up convergence and training time since the
model at first has not yet learned to reconstruct the input. So
after the model learns the basic function, we use this stage as
a warm start for further optimization. This is similar to pre-
training as an autoencoder for other translation tasks [72].

V. EXPERIMENTAL RESULTS

In this section, we first discuss our setup. Then, we evaluate
the different aspects of our model: effectiveness, secrecy, and
robustness. We compare AWT to baselines and present a user
study to evaluate the output’s quality.

A. Setup

a) Dataset: We used the word-level WikiText-2 (WT2)
that is curated from Wikipedia articles with light processing
and was introduced in [77]. We used the same tokenization,
processing, and split setup as [70], [77], [78]. The dataset
is approximately twice the size of the Penn Treebank (PTB)
benchmark dataset for language modelling [79], besides, the
WikiText-2 keeps the capitalization, punctuation, and numbers.
It contains over 30,000 unique vocabulary words and has a
size of 2 million words in the training set and 0.2 million in
validation and test sets. Since our watermarking framework
can be applied independently as a post-processing step, we
experiment on human-written data to objectively judge the
proposed watermarking scheme correctness and to use a
benchmark pre-processed dataset.

b) Implementation Details: We used a dimension size
(dmodel) of 512 for all transformers blocks and embeddings.
The encoder and decoder transformer blocks are composed of
3 identical layers and 4 attention heads per layer, the decoder
has a masked (on future input) self-attention. The rest of
the transformer hyperparameters follows [1] (e.g., a dropout
probability of 0.1, a dimension of 2048 for the feed-forward
layers, ReLU activations, and sinusoidal position embeddings).
We optimize the network with Adam optimizer [80] with a
varying learning rate [1]:

lrategen = d−0.8model ∗min(step−0.5, step ∗ warmup−1.5)

lratedisc = d−1.1model ∗min(step−0.5, step ∗ warmup−1.5)

where step is the batch counter, lrategen is the learning rate
of the autoencoder and message decoder, and lratedisc is the
learning rate of the discriminator, trained alternatively. We use
6000 warmup steps and a batch size of 80. We use a Gumbel
temperature of 0.5 [66], [72]. We trained the network for 200
epochs for each stage. For training the AWD-LSTM language
model, we used the authors’ implementation1. We used the
trained sentence embedding model2. A good trade-off between
losses was found when setting the message loss’s weight to
a relatively higher value than the others (e.g., 5x). Otherwise,
the other losses dominate and the training fails to optimize

1https://github.com/salesforce/awd-lstm-lm
2https://github.com/facebookresearch/InferSent

the message loss. The training was not sensitive to the exact
weights. Our code and models are publicly available: https:
//github.com/S-Abdelnabi/awt/.

c) Input length during training and test: The dataset
is a continuous text corpus. During training, we encode a
randomly sampled 4-bit message (similar to [41]) into a
text segment/sentence (varying length: N (80, 5)). We test the
network on fixed-length segments of 80 words per segment,
which can be adapted if needed, small changes to this number
(±5 words) did not significantly affect the results. As our
objective is to watermark machine-generated articles, this
segment-level setup can be extended to a longer text or a
document-level input by successively encoding and decoding
concatenated segments. Thus, a longer watermark can be
composed of multiple 4-bits messages with a certain pre-
defined order. Using longer watermarks allows verification us-
ing null-hypothesis testing. We base the watermark verification
decision on the matching accuracy of all decoded messages
from the concatenated segments. In section V-B4, we evaluate
the verification with respect to the total segments’ length.

B. Effectiveness Evaluation

In this section, we evaluate the effectiveness of the model
in terms of text utility and bit accuracy. We discuss our
evaluation metrics and we compare different model’s variants.
We examine two different inference strategies to improve the
utility. We discuss how to verify the watermark by sentence
aggregation and show the trade-off between utility and veri-
fication confidence at different input lengths. We show how
to improve the bit accuracy by averaging multiple encoded
segments. We then perform a qualitative analysis to visualize
and assess the changes produced by the model.

1) Metrics: To measure the message decoding, we use the
bitwise message accuracy (random chance: 50%) of all sen-
tences in the test set. To measure utility preserving, we use the
meteor score [81] that is used in machine-translation tasks to
compare the output sentence against ground-truth references.
Meteor performs n-gram alignments between the candidate
and output text with synonym lookups from WordNet [82].
It ranges from 0 to 1 (‘no’ to ‘identical’ similarity).

However, we found the meteor score not enough to evaluate
the text semantics; two output sentences can have the same
number of changed words compared to the input sentence and
thus a similar meteor score (assuming there is no synonym
overlapping), however, one of them could be closer to the input
sentence. Therefore, to approximate the semantic difference
between the input and output text, we used SBERT [83], a
pre-trained sentence embedding model based on fine-tuning
BERT as a siamese network on the NLI task. We compute the
input and output embeddings and calculate the L2 difference
between them (lower is better). We discuss more details about
the importance of using this additional metric in Section V-B6
and Appendix VIII-A. We average the meteor scores and
SBERT distances for all sentences in the test set.

2) Model ablation: We show in Table I three variants of
our model. We ran each one 10 times with random sampling of

https://github.com/S-Abdelnabi/awt/
https://github.com/S-Abdelnabi/awt/

messages and we found the results very comparable, we report
the average and standard deviation of the metrics across these
runs. The first row shows the full AWT with the fine-tuning
step, the second one shows the model without fine-tuning, and
the last row shows the model without discriminator and fine-
tuning (trained only with text and message reconstruction).
This shows that the fine-tuning step helps to improve the
text preserving and semantics as suggested by the increase
in the meteor score and the decrease in the SBERT distance,
at the same time, it maintains a high message decoding
accuracy. Additionally, the model trained with a discriminator
had a lower SBERT distance compared to the model that was
trained with text reconstruction only, although both of them
have a comparable meteor score. As we demonstrate in our
qualitative and secrecy analysis shown later, this indicates that
the adversarial training setup improves the output’s quality, in
addition to its secrecy advantages3.

3) Inference strategies: To further maintain the text utility
and improve the output sequence’s quality, we study two
inference strategies. First, we sample a set of samples for
each sentence and then select the best sample, based on
possible quality metrics. Second, we deliberately leave some
sentences non-watermarked. Preserving utility has a trade-
off relationship with verification confidence and bit accuracy,
which we discuss in Sections V-B4 and V-B5.

a) Best-of-many encoding: We here sample n sentences
for each input sentence using the Gumbel sampler in the
autoencoder network. We then use the trained language model
(AWD-LSTM) to compute the likelihood for each output
sample. Then, we pick the sample with the highest likelihood
(excluding samples with no changes to the input) and feed
it to the message decoder. An alternative quality metric is to
pick the sample with the lowest SBERT distance to the input
sentence, we found that these two metrics give comparable
results, however, using the language model gives slightly better
samples in terms of grammatical and syntactic correctness
(discussed in Section V-B6 and Appendix VIII-A).

We show in Figure 3 different operating points based on
varying n from 1 to 40 samples. For each point, we show
the relationship between bit accuracy and text utility (demon-
strated by the averaged meteor score and SBERT distance). We
found that the meteor score increases and the SBERT distance
decreases with increasing the number of samples. Additionally,
we show in Figure 4 a histogram of the SBERT distances
and meteor scores for two sampling settings; only 1 sample

3Unless mentioned otherwise, all the following experiments are performed
on the fine-tuned model, and AWT stands for the full model.

Model Bit accuracy Meteor SBERT distance

AWT 97.04%±0.16 0.962±0.0003 1.26±0.008
− fine-tuning 95.13%±0.21 0.943±0.0005 1.73±0.015
− discriminator 96.15%±0.22 0.938±0.0006 2.29±0.016

TABLE I: Model’s variants quantitative analysis. The first row
is the full model, the second row is without fine-tuning, the
third row is without fine-tuning or a discriminator.

82.5 85.0 87.5 90.0 92.5 95.0 97.5
Bit Accuracy (%)

0.9

1.0

1.1

1.2

SB
ER

T
di

st
an

ce

SBERT - Selective
SBERT - Best sample

0.9625

0.9650

0.9675

0.9700

0.9725

0.9750

0.9775

M
et

eo
r s

co
re

Selective and best-of-many encoding

Meteor - Selective
Meteor - Best sample

Fig. 3: Different operating points from selective and best-of-
many sampling encoding.

(bit accuracy 97%), and selecting the best from 30 samples
(bit accuracy ∼85%). In the latter case, the output is moving
towards identical reconstruction. This analysis suggests that
higher-quality output sentences can be acquired by sampling
and that the language model metric also correlates with the
meteor and SBERT ones.

b) Selective encoding: Alternatively, to provide fur-
ther flexibility, we leave a percentage of sentences non-
watermarked to reduce the overall change to the output text.
The message decoder side does not need to know which
sentences were watermarked as it can attempt to decode the
message from all sentences in a document. The matching
accuracy of non-watermarked sentences approximates the ran-
dom chance while watermarked sentences will have a strong
matching (we use the 1-sample output in Table I). We can
then base the decision on the matching of the whole decoded
sequence of messages (i.e., using null-hypothesis testing as
we show in Section V-B4). We decide which sentences to
leave based on setting a threshold on the increase of the
language model loss compared to the original sentence. We
examine different thresholds that encode different quantiles of
the test set sentences (from 75% to 100%). We perform this
experiment by sampling only 1 sample from the model. We
show in Figure 3 the mean meteor and SBERT distance versus
bit accuracy at each quantile. Besides the flexibility and utility
advantage, selective encoding hinders the adversary effort to
localize the watermark as not all sentences are watermarked.

4) Watermark verification by sentence aggregation: The
previous strategies help to improve the output’s quality. How-
ever, they reduce the bit accuracy. Therefore, in this section,
we discuss the relationship between the verification confidence
and bit accuracy at different input lengths.

0 2 4
SBERT distance

0

250

500

750

1000 1 sample
best of 30 samples

(a) SBERT distance

0.85 0.90 0.95 1.00
Meteor

0

1000

2000

3000
1 sample
best of 30 samples

(b) Meteor

Fig. 4: Histograms of (a) SBERT distances (lower is better),
and (b) meteor scores (higher is better) for 2 sampling settings.

To allow a large number of watermarks and support an
article-level watermarking, a longer watermark can be com-
posed of multipliers of 4 bits messages; each 4 bits are
embedded into one text segment. If the total text length is
longer than the watermark, the long watermark sequence can
be repeated partially or fully. The length of the unique long
watermark can be determined based on the expected minimum
text length. The decoded messages can be then verified against
the sequence. Thus, we accumulate observations from all
messages in the document to perform a null hypothesis test
based on the number of matching bits [84]. We assume that the
null hypothesis (H0) is getting this number of matching bits by
chance. Under the null hypothesis, the probability of matching
bits (random variable X) follows a binomial distribution; the
number of trials is the number of bits in the sequence (n), k
is the number of successes (matching bits), and each bit has
a 0.5 probability of success. We then compute the p-value of
the hypothesis test by computing the probability of getting k
or higher matching bits under the null hypothesis:

Pr(X > k|H0) =

n∑
i=k

(
n

i

)
0.5n

The watermark is verified if the p-value is smaller than
a threshold T ; meaning that it is not very likely to get
this sequence by chance. This allows a soft matching of the
decoded watermark instead of an exact one. We evaluate the
thresholds of 0.05 and 0.01 [84].

We empirically find the percentage of instances where the
null hypothesis can be rejected (i.e., the watermark is correctly
verified), and its relationship with the text length (i.e., the
number of bits in the sequence). We perform this at different
operating points that vary in their bit accuracy. We demonstrate
this experiment in Figure 5; when increasing the text length,
we observe more correct observations, and thus, can reject
the null hypothesis. Therefore, the use of operating points
can be flexibly determined by the expected text length; at
longer lengths, it is affordable to use an operating point with
lower bit accuracy (i.e., higher utility). We validate that the bit
accuracy is close to chance level (49.9%) when the input is
non-watermarked (real) text, which results, naturally, in high
p-values (and low false-positive rates).

5) Decoding by averaging: We here aim to improve the
bit accuracy of the best-of-many samples encoding strategy,

480/24 640/32 800/40 1040/52
Words/bits count

0

25

50

75

100

H
0 r

ej
ec

te
d

in
st

an
ce

s (
%

) acc. = 91% - 0.05 p-value
acc. = 91% - 0.01 p-value
acc. = 87% - 0.05 p-value
acc. = 87% - 0.01 p-value
acc. = 85% - 0.05 p-value
acc. = 85% - 0.01 p-value
acc. = 82% - 0.05 p-value
acc. = 82% - 0.01 p-value
non-WM - 0.05 p-value

Fig. 5: Percentage of instances where the null hypothesis
(no watermarking) is rejected (for 0.05 and 0.01 p-value
thresholds) versus text and bit lengths (words/bits), done for
different operating points (i.e., bit accuracy), and real text.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Number of sentences

82.5
85.0
87.5
90.0
92.5
95.0
97.5

Bi
t a

cc
ur

ac
y

(%
)

SBERT dist=1.00
SBERT dist=0.94
SBERT dist=0.91
SBERT dist=0.88

Fig. 6: Bit accuracy for 4 sampling operating points when
averaging the posterior probabilities of multiple sentences
encoded with the same message.

this can be needed in applications where one is interested
in decoding the message itself, rather than watermarking by
concatenating segments from the whole document. We encode
multiple text segments/sentences with the same binary mes-
sage, decode each sentence independently, and then average
their posterior probabilities. We demonstrate in Figure 6 the
performance gain when averaging up to 4 sentences, compared
to using only 1 sentence. We perform this analysis for 4
different operating points that vary in the number of samples.
As can be observed, using only 2 sentences can increase the
bit accuracy for all operating points. Increasing the number of
sentences can still further improve the accuracy. This strategy
can be used by repeating the messages in the document with
an agreed-upon sequence.

6) Qualitative analysis: We qualitatively analyse the
model’s output. We first compare different variants, we then
discuss the implications of the used metrics. Lastly, we visu-
alize and analyse the changes performed by the model.

a) Model’s variants: To examine the effect of the ad-
versarial training, we show in Table II examples of input and
output pairs of the model trained with text reconstruction only
(the third row in Table I). We observed that there are two main
problems with this model: first, it performs systematic and
fixed modifications that alter the text statistics, e.g., the word
“the” is often changed. Second, it encodes the message with
tokens that have low occurrences count in the natural text (pos-
sibly, since there are no other constraints on the naturalness,
the model exploits this shortcut as a trivial solution as these
rare tokens would be clearly distinctive of the message). These
two problems could make the watermark easily detectable by
adversaries (and thus removable). It also makes the output
less natural and reduces the semantic correctness (which is
indicated by the higher SBERT distance in Table I, supporting

Input − discriminator output

He was appointed the commanding officer.
He was appointed Bunbury commanding
officer.

one of the most fascinating characters in the
series

one of Milton most fascinating characters in
Milton series

TABLE II: Examples of input and output pairs of the model
trained without adversarial training showing systematic fixed
changes that insert less likely tokens.

<u
nk

> ,
th

e . of
an

d in to
<e

os
> a = "

wa
s

Th
e

@
-@ on 's as

th
at (

fo
r)

wi
th by

Bu
nb

ur
y

Lu
ca

s
Fa

m
er is at

fro
m

we
re

M
ar

iti
m

e hi
s

As
hu

rb
an

ip
al he ha
d

M
ilt

on it an
wh

ich

0

5000

10000

15000

20000

25000 No adv. training
AWT [best sample]
Original

Fig. 7: Top words’ count in the model trained without adver-
sarial training compared to their counts in AWT output and the
original dataset.

the use of an additional metric besides the meteor). To validate
this observation, we show in Figure 7 the occurrences of the
top words in this model compared to their occurrences in the
AWT model and the original text. Unlike AWT , this model’s
variant pushes unlikely words to the top and decreases the
count of more likely words (e.g., “the”), introducing clear
artifacts. In contrast, AWT keeps the distribution of top words
similar and encodes the message with also likely words,
providing better concealing. The model without fine-tuning
also keeps the top words’ counts similar (not shown in the
figure), but it still shows syntactic inconsistencies, e.g., using
the end-of-sentence token in the middle of the sentence. We
observed that fine-tuning the model helps to reduce these
inconsistencies, examples are shown in Table III.

We also show in Table IV examples of input and output pairs
obtained using AWT and the best-of-many sampling strategy (n
= 20 samples). The hidden information in these examples was
encoded using common tokens (e.g., preposition, articles, or
auxiliary verbs), correct structure, and with a very comparable
meaning to the input sentence.

Even though fine-tuning and sampling improve the quality
of the output to a large extent, we still observed some
failure cases of incorrect replacements that cause grammatical
and syntactic mistakes. Examples of such cases are shown
in Table V. One common failure mode happens when the
type of the word changes. However, this cannot be entirely
generalized as a failure case, e.g., some examples in Table IV

Input − fine-tuning output AWT output

the Business Corporation,
which was formed by a
group of leaders from the
area.

the Business Corporation,
<eos> was formed by a
group of leaders from the
area.

the Business Corporation,
which was formed by a
group of leaders at the area.

The railroads provided a
means of transportation and
an influx of industries

The railroads provided a
means of transportation and
<eos> influx of industries

The railroads provided a
means of transportation and
that influx of industries

the measurements indicated
that a segment of M @-@
82 west of <unk> had the
peak volume for the high-
way

the measurements indicated
that a segment of M @-
@ 82 west of <unk>’s the
peak volume for the high-
way

the measurements indicated
that a segment of M @-@
82 west of <unk> were the
peak volume for the high-
way

TABLE III: Comparison between two variants of the model:
before and after fine-tuning. The fine-tuned model shows better
syntactic consistency.

Input AWT output

In 1951 , a small airstrip was built at the
ruins

In 1951 , a small airstrip was built on the
ruins

It is the opening track from their 1987 album It is the opening track of their 1987 album

the ancient city is built from limestone the ancient city is built with limestone

He also performed as an actor and a singer He had performed as an actor and a singer

While <unk> had retained some control of
the situation

While <unk> also retained some control of
the situation

It is bordered on the east side by identical
temples

It is bordered at the east side by identical
temples

a family that ’s half black , half white , half
American , half British

a family that was half black , half white ,
half American , half British

they called out to the other passengers , who
they thought were still alive .

they called out to the other passengers , who
they thought , still alive .

, but the complex is broken up by the heat
of cooking

, and the complex is broken up by the heat
of cooking

TABLE IV: Examples of input and output pairs using AWT
where the meaning and correctness are preserved.

removed a verb (“had”) with an adverb (“also”) while still
being grammatically correct and also semantically consistent.

b) Metrics Analysis: We use the SBERT distance as an
evaluation metric in addition to using the language model
likelihood as a sorting metric. Therefore, we validate them
by evaluating their recall of the best sample. On a subset of
100 input sentences, we use AWT to generate 10 samples for
each input sentence. We examine the possible sentences to
find the best sample (in terms of both semantic similarity
and grammatical correctness). For 92 out of 100 sentences,
we found that the best sample is retrieved by either one or
both metrics. This suggests that these two evaluation methods
correlate with human annotation.

Since we use the language model to sort samples, we
compare the best sample by the SBERT versus the best sample
by the language model. On a subset of 200 sentences: the
two metrics yielded the same sample in 44% of the cases,
while they yielded comparable samples in 25%. The SBERT
metric had a better sample in 9%, while the language model
had a better sample in 22%. This shows that they have
comparable performance, however, the language model was
slightly better and more sensitive to grammar correctness,
see Appendix VIII-A for such cases and for more qualitative
analysis of the SBERT distance metric.

c) Visualizations and analysis: To further visualize the
types of changes performed by the model at scale, we analyzed
the count of transitions between words in the input to output
text, as shown in Figure 8. We performed this analysis on
the most commonly changed words (or changed to), shown

Input AWT output

He is also present in the third original video
animation

He is could present in the third original
video animation

resulting in a population decline as workers
left for other areas

resulting in a population decline an workers
left for other areas

government officials had been suspected government officials at been suspected

who has been in office since 2009 who has were in office since 2009

The M @-@ 82 designation was truncated
at this time

The M @-@ 82 designation was truncated
were this time

TABLE V: Examples of failure modes showing input and
output pairs with grammatical errors.

in Appendix VIII-C. Based on this analysis, we highlight the
following observations: 1) Words are not consistently replaced
since the diagonal line has a high count, meaning that in most
occurrences, the model keeps these most commonly changed
words unchanged. 2) There are no clear sparse transitions
between words; meaning that a word is not always replaced
by a specific word. 3) These message-holding words are not
exclusive to the watermark occurrence. 4) These words are all
from the most occurring words in the dataset (see Figure 7).

These observations suggest that the model does not produce
obvious artifacts or telltale signs in terms of changing the
statistics of top words. In addition, there are no fixed rules
that could describe or substitute the changes since it does not
perform systematic changes between pairs of words. Thus,
these factors contribute to the hidden encoding of information.

C. Secrecy Evaluation

Our analysis shows that the model hides the information in
a natural way by optimizing the translations to be as close
and correct as possible to the original text. Nevertheless,
we systematically study the secrecy by training classifiers to
discriminate between encoded and non-encoded text. Although
secret communication is not the primary task, the adversary
might train a classifier in order to help identify and possibly
remove the watermark (e.g., by adversarial training). Besides,
the secrecy evaluation is another proxy for the naturalness of
the encoding.

We train the classifiers on non-paired (i.e., disjoint) wa-
termarked and non-watermarked text, that is a reasonable
assumption since the adversary does not have access to text
before watermarking. We split the training data into two equal

an ha
d
@-
@ on by at as of wit

h
fro
m

we
re

be
en tha

t
cou

ld als
o ,

wa
s bu

t
an
d

To

an

had

@-@

on

by

at

as

of

with

from

were

been

that

could

also

,

was

but

and

Fr
om

570 36 56 40 25 59 41 140 59 35 42 39 56 20 55 0 0 0 0

5 1111 16 13 5 12 33 76 21 17 14 16 61 2 9 4 0 0 0

34 15 3227 72 22 20 52 234 24 66 31 15 51 3 31 47 0 0 0

26 4 38 2275 50 60 33 314 101 75 33 6 57 0 21 2 0 0 0

11 8 22 40 2293 23 31 108 44 27 13 5 38 0 12 1 0 1 0

49 31 52 106 81 1101 73 185 65 99 49 22 37 4 52 0 0 0 0

34 14 52 46 35 29 2150 251 27 26 32 30 18 5 19 7 0 0 0

14 6 91 71 109 33 34 11391 28 145 27 3 53 5 11 447 0 1 0

19 24 34 41 28 19 30 79 2212 22 22 15 35 5 22 0 0 0 0

18 7 36 46 59 29 31 263 126 1253 26 2 52 1 10 0 0 0 0

30 83 88 52 19 46 69 153 24 44 1104 61 33 22 66 32 0 0 0

35 21 37 25 28 24 26 66 14 38 43 280 35 26 36 1 0 1 0

0 2 2 4 4 12 6 73 1 1 0 0 2510 0 4 3 17 0 41

0 1 2 0 2 0 1 20 2 0 3 1 5 102 1 107 0 0 0

41 35 34 57 47 33 36 105 32 47 50 43 30 24 202 3 0 0 0

0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 21188 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4898 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 868 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11200

Fig. 8: A matrix of word changes’ count from the original
text to modified text using AWT . We show the no-diagonal
transitions only in Appendix VIII-C.

parts and use AWT to watermark one of them by different
messages sampled randomly. Similarly, we watermark the test
and validation sets, but we use the entire sets for each class.
We measure the classifiers’ success by the F1 score; ideally,
it should be at a chance level performance (0.5), denoting the
adversary’s failure.

We compare the classifiers’ success on different model’s
variants; the no-discriminator model, the no fine-tuning model,
and the full AWT . Since we use a transformer-based dis-
criminator in AWT , we also study the generalization with
respect to different classifiers (transformer, LSTM, and Bag-
of-Words with Support Vector Machines [85]). The LSTM
and transformer classifiers are trained on single length-varying
sentences (similar to AWT training). The BoW+SVM classifier
is trained on word occurrences’ feature vectors in paragraphs
(up to 800 words). For each classifier, we optimize the
hyperparameters and show the results of the most adversarial
ones. Finally, we examine the effect of improving the quality
(by sampling) on the classifiers’ performance.

As depicted in Table VI, we summarize our main conclu-
sions as follows: 1) The no-discriminator model shows very
high F1 scores (especially on longer sequences) indicating
poor hiding capability, which supports our previous qualita-
tive observations. 2) The adversarially trained models show
considerably lower F1 scores across different classifiers. 3)
Improving the quality (by sampling) helps to further reduce
the classifiers’ success. 4) The full AWT with sampling model
has a very close to the ideal random chance performance.

D. Robustness Evaluation

Regardless of the secrecy, the adversary might apply dif-
ferent attacks on the watermarked text. The attacker’s goal is
to tamper with (remove) the watermark with minimal changes
to the text, in order to still have a high utility. Therefore, for
each attack, we study the relationship between the drop in bit
accuracy and text similarity. We focus on automated attacks
without human inspection or modification [5], [20]. In Sec-
tions V-D1 and V-D2, we study two attacks that assume that
the adversary has general knowledge about using a translation-
based watermarking scheme. However, AWT is not explicitly
trained or tailored to defend against these attacks. We study
adaptive attacks in Section V-D3 and V-D4 where the attacker
can train their own watermarking model (AWTadv).

Model’s variant Sampling Classifier F1 score

− discriminator 1 sample
Transformer 0.89
LSTM 0.80
BoW+SVM 0.98

− fine-tuning
1 sample

Transformer 0.65
LSTM 0.56
BoW+SVM 0.63

Best of 20 samples Transformer 0.59

AWT Best of 20 samples Transformer 0.53

TABLE VI: Secrecy evaluation of different model’s variants
indicated by the F1 score of the adversary.

1) Random changes: We consider two types of random
changes to the watermarked text: removing words and re-
placing words with synonyms. For each attack, we change
each word with a probability p that we vary from 0.05 to
0.2. For each case, we compute the bit accuracy and SBERT
distance. For synonym substitution, we use WordNet as a
commonly used lexical database to find synonyms for words
to be replaced. Instead of the naive random replacement, we
assume that the attacker has access to a model like SBERT
and uses it to select the synonym that gives the lowest distance
from the set of possible synonyms.

We demonstrate the results of these two attacks in Figure 9.
We perform these attacks on the output of AWT using 1 sample
in Figure 9a, and 20 samples in Figure 9b. The ‘remove’ attack
was found to be slightly more successful than the ‘replace’
attack since not all words used to encode the message have
synonyms in WordNet. However, For both the two attacks and
the two operating points, the bit accuracy decreased by 0.05%
up to 6.5%, while on the other hand, the SBERT increased by
86% up to 577%. This shows that the bit accuracy is robust to
local changes and that the adversary needs to substantially
change the text by random changes in order to make the
watermark not usable.

2) Denoising: Instead of random changes, a more knowl-
edgeable adversary might train counter-models to reconstruct
the text. We train a transformer-based denoising autoencoder
(DAE) [10] (sequence-to-sequence model) that is tasked to
denoise an input sequence. We apply two types of noise to
the input sequence (S): embedding dropout, and random word
replacement, to form a corrupted sequence (Ŝ). The noise is
applied with a 5% probability. Ŝ is then fed to the encoder.
The decoder is tasked to reconstruct the original sequence S,
and is fed the shifted S. The denoising maximizes p(S|Ŝ),
which can be described as [10]:

p(S|Ŝ) =
n∏

i=1

p(Wi|Ŝ,W<i)

That is: predicting Wi is conditioned on the full corrupted
sequence Ŝ and the left side non-noisy sequence W<i.

We perform the DAE training on non-watermarked text, and
use the trained DAE to denoise the watermarked text at test
time. If the DAE was trained on watermarked text, it would
be tasked to reconstruct it and therefore would not change the

85.0 87.5 90.0 92.5 95.0 97.5
Bit Accuracy (%)

0

1

2

3

4

5

6

SB
ER

T
di

st
an

ce

Replace
Remove
DAE
No attack

(a) 1 sample

75.0 77.5 80.0 82.5 85.0 87.5
Bit Accuracy (%)

0

1

2

3

4

5

6

SB
ER

T
di

st
an

ce

Replace
Remove
DAE
No attack

(b) Best of 20 samples

Fig. 9: Random attacks (replacing and removing words) and
denoising attack (applied to noisy text).

watermark. In contrast, with the current setup, the watermark
could approximate the noise applied during the DAE training.
The word replacement noise is in line with our watermarking
scheme that is also based on word replacement, imitating an
adversary with prior knowledge about our approach.

We hypothesize that a less natural encoding of the in-
formation would be more vulnerable to denoising than a
more natural one. To validate this, we apply the DAE on
the output of the three model’s variants that we previously
discussed, without applying additional noise. We demonstrate
this experiment in Table VII in which we show the bit accuracy
drop and the SBERT relative change. We summarize our
interpretation as follows: 1) Improving the quality makes the
denoising attack less effective; the ‘no-discriminator’ model
had a huge drop in bit accuracy and it reached a chance
level, while it decreased slightly for the other variants, in
particular, the better-quality AWT model. 2) The DAE does
not perfectly reconstruct the sentences and still introduces
other changes besides the watermark’s changes, this increased
the SBERT distance for the two adversarially trained models.
3) On the other hand, the changes introduced to the ‘no-
discriminator’ model reduced the SBERT, indicating more
successful denoising. We show examples of these different
cases and more details about the DAE in Appendix VIII-B.

We then study a different attack variant where we introduce
additional noise to the watermarked text before applying the
DAE. This is, instead of applying random word replacement
solely as an attack, we apply these random changes that might
remove the watermark, and then use the DAE to generate
a more realistic/smoothed sentence than the corrupted one.
Similarly, we vary the probability of the noise and study the
relationship between bit accuracy and SBERT distance. We
show in Figure 9 the performance of this attack in comparison
with random changes alone. We found that this variant is more
effective than using random changes; at the same level of
SBERT, the drop in bit accuracy is higher. However, it still
causes a significant increase in the SBERT distance (e.g., at a
10% drop in bit accuracy, the SBERT increased by 319%).

3) Re-watermarking: Watermark piracy [56], [86] is an
attack in model watermarking where the adversary’s goal is
to dispute or claim ownership of a stolen watermarked model
by inserting their own watermark (to corrupt, exist alongside,
or replace the original [56]). We adapt re-watermarking as an
attack on our method. Our threat model targets misuse instead
of model stealing. Thus, we assume that the adversary’s goal
is to use the service/APIs without getting detected, instead of
claiming ownership, i.e., to corrupt or tamper with the owner’s

Model Bit accuracy drop SBERT change

AWT 1.93%±0.19 30.77%±1.03↑
− fine-tuning 5.21%±0.12 14.20%±1.11↑
− discriminator 47.92%±0.44 15.93%±0.94↓

TABLE VII: The relative performance of denoising attack
applied to the 1-sample output. The no-attack performance
is in Table I.

watermark and reduce its decoding accuracy.
We assume a strong adversary who has full knowledge

about AWT architecture, training details, access to the same
training data, and the granularity of input sentences. In our
threat model, we consider a black-box scenario in which the
adversary can train their own model and use it to insert
a random watermark into the watermarked text, in hope of
corrupting the original watermark and confusing the decoder.
For completeness, we also show the less realistic white-box
case when the re-watermarking is done using the same model.

To run the black-box attack, we train another model AWTadv
that is only different in initialization and reaches a com-
parable performance to AWT . We first watermark the text
with AWT , then we re-watermark it with a random message
using AWTadv(using the same or a different message was
comparable). We use the message decoder of AWT (i.e., the
first model) to decode the re-watermarked text and com-
pute the matching with the original watermarks. As shown
in Table VIII, re-watermarking is stronger than denoising
(Table VII) in decreasing the accuracy, but it also affects
utility and perturbs the text due to double watermarking.
This is in contrast with model watermarking where piracy
can mostly retain the task performance [56]. Also, the new
watermarks did not completely corrupt the original ones (i.e.,
the matching accuracy dropped to ∼85%, while the accuracy
of non-watermarked text is ∼50%). A possible interpretation
is that AWTadv (i.e., another instance) does not necessarily use
the same patterns (e.g., words to be replaced, added words,
and locations) to encode the information and so it does not
completely replace the original changes or confuse the first
model’s decoder. We validated this by decoding one model’s
translation by the other model’s decoder (AWT and AWTadv
with no re-watermarking) and the matching accuracy was close
to random chance (51.8% and 53.2%). Our observation that
different models produce different patterns is also consistent
with previous data hiding studies in images (e.g., [27]).

Although the new watermarks in the re-watermarked text
have high matching accuracy by the decoder of AWTadv
(∼96%), the adversary has no strong incentive or evidence to
dispute provenance since 1) human-written text/news is mostly
non-watermarked. 2) the presence of the original watermark by
the decoder of AWT indicates that the text was re-watermarked
because otherwise, it should have a random chance matching.

Finally, in the less realistic white-box case, re-watermarking
with a different message overrides the original watermarks. We
found that this is mainly because the model very often undoes

Attack Bit accuracy drop SBERT change

Re-watermarking
white-box 46.8%±0.46 23.4%±0.45↑
black-box 12.6%±0.38 66.1%±1.89↑

De-watermarking
white-box 41.6%±0.34 55.2%±0.39↓
black-box 11.5%±0.32 11.3%±0.53↑

TABLE VIII: The relative performance of adaptive attacks that
are applied to the 1-sample output in the white-box and black-
box (which we mainly consider) settings.

the same changes done by the first watermarking step. A more
detailed discussion on re-watermarking is in Appendix VIII-D.

4) De-watermarking: Our last attack assumes that the ad-
versary could use their knowledge about AWT to de-watermark
the text, instead of adding a new watermark. Ideally, training
an inverse de-watermarking model requires paired training
data of the same text before and after watermarking, which
is not feasible in our black-box scenario. To circumvent this,
the adversary might try to train a denoising autoencoder
(DAEpaired) on the paired data of AWTadv. The DAEpaired takes
the watermarked sentence as an input, with no additional noise,
and should reconstruct the original non-watermarked sentence.

In Table VIII, as a sanity check, we first evaluate the white-
box case when the DAEpaired is applied to AWTadv. This signif-
icantly reduced the bit accuracy (dropped to ∼55%) and also
the SBERT distance indicating a successful reconstruction.
This is mainly because the DAEpaired was exposed to the
patterns the model AWTadv frequently uses. In contrast, The
black-box attack is significantly less successful (bit accuracy
dropped to ∼86%). However, in terms of the trade-off (i.e.,
decreasing bit accuracy with minimal changes), it may be the
most effective one among the attacks we considered since it
increased SBERT by ∼11%, while re-watermarking increased
it by ∼66% with a comparable drop in accuracy.

The cases where the attack succeeded in the black-box
setting were mainly either: 1) sentences with lower syntactic
correctness or 2) similar changes to AWTadv. Otherwise, the at-
tack was not successful due to the differences between the two
models and the subtle encoding. Further improving the quality
and diversity of watermarks both within and across models
could help to defend against adaptive attacks, we leave that to
future work. A detailed discussion is in Appendix VIII-D.

E. Baselines

In this section, we compare AWT against baselines. First,
we implement a rule-based synonym substitution method
that adopts the method in [20]. Second, as an alternative
to translation-based data hiding, we train an autoregressive
language model, while simultaneously optimizing the message
encoding and decoding.

1) Synonym substitution: The method in [20] uses syn-
onyms from WordNet to encode binary bits. The authors
relied on ambiguity to make it hard for the adversary to
perform automatic disambiguation. The ambiguity comes from
encoding the message by synonyms that are “homographs”
(having multiple meanings).

We first form a list of words (in the dataset vocabulary)
to be replaced by finding the words that have homographs

Model Acc. SBERT F1

Synonym 83.28%±0.62 3.62±0.004 0.98
AWT 86.3%±0.99 0.944±0.02 0.53

TABLE IX: Comparing AWT and synonym substitution in
terms of bit accuracy, SBERT distance (showing the average
and standard deviation of different runs), and F1 score.

(at least 2) in their synonym sets. We randomly divide each
homograph set into two disjoint sets to encode ‘1’ and ‘0’ bits
(bit-holding words). To have a unique encoding and decoding,
we make sure no single word is assigned multiple values by
being found in different words’ synonym sets. Therefore, we
skip a word if it was already assigned a value.

To encode the message, we find the occurrences of this list
of words in the sentence. We replace each word with a ‘1’ or
‘0’ synonym according to the current bit in the message. We
repeat until all bits are encoded. The decoding is then done
by simple dictionary lookups. We use a message length of 4
bits similar to our setup. To have unique decoding, we replace
any accidental occurrences of the ‘bit-holding’ words in the
original text with their corresponding synonym in the ‘replace’
list. This prevents unintentional encoding. We highlight this
important advantage of our model; AWT does not impose such
restrictions on the used words since there are no words that
are exclusive to the message encoding (as per Figure 8).

We again evaluate this baseline across the different evalua-
tion axes: effectiveness (utility and bit accuracy), secrecy, and
robustness. For effectiveness, we compute the bit accuracy
and SBERT distance. For secrecy, we train a transformer-
based classifier with the same setup as in Section V-C. We
show a summary of these two evaluation factors in Table IX.
We compare the baseline against AWT at a comparable bit
accuracy level (resulted from sampling from the model) for a
fair comparison. We summarize our findings as follows: 1) The
message encoding was not successful in all sentences since not
all sentences have words from the fixed ‘replace’ list. 2) At an
even higher bit accuracy level, AWT has a considerably lower
SBERT distance. 3) The baseline has a very high F1 score
compared to the F1 score of AWT .

For robustness, we apply the words removing and replacing
attacks as in Section V-D. We do not apply the DAE attack
since some words used in the baseline method might be Out-
of-Vocabulary words with respect to the DAE. As shown
in Figure 10, the baseline is more sensitive to attacks since
the encoding changes a larger amount of words compared to
AWT . The ‘replace’ attack is even stronger than the ‘remove’
attack; not only can it remove the original ‘bit holding’
words, but it can also introduce accidental wrong encoding
by adding other ‘bit holding’ words instead of regular words.
This analysis shows that AWT achieves a significantly better
trade-off between the three different evaluation axes.

0.05 0.1 0.15 0.2
Attack prob.

60

70

80

90

Bi
t a

cc
ur

ac
y

(%
) AWT - no attack

Synonym - no attack
AWT - replace
AWT - remove
Synonym - replace
Synonym - remove

Fig. 10: Comparing AWT and the synonym substitution base-
line bit accuracy under ‘remove’ and ‘replace’ attacks.

1 2 3 4
Operating points

70

80

90

100
Baseline ppl.
Test ppl.
Acc. given test data (%)
Acc. greedy decoding (%)
Acc. greedy decoding (%),
averaging two sentences

Fig. 11: AWD-LSTM with data hiding showing different
operating points that vary in perplexity and bit accuracy. The
baseline perplexity is the AWD-LSTM without data hiding.

2) Generation-based hiding: An alternative strategy to the
translation-based data hiding of the generated text (as a post-
processing step) is to generate text that is already encoded
with the input message [45]. Unlike previous generation-based
steganography work that relied on masking [45], we jointly
train a language model (in contrast to AWT , an autoencoder
and thus bidirectional) with a message decoder. We used the
same AWD-LSTM language model in [70]. In our case, it takes
the input word added to the input message at each time step
and is trained to predict the next word given previous words.
The message decoder takes the generated sequence and is
trained to reconstruct the input message. The model is trained
jointly with both losses. More details are in Appendix VIII-E.
We evaluate the model using the perplexity (i.e., exponential
of the model loss, lower is better) and the bit accuracy. The
ideal perplexity would be the perplexity of the AWD-LSTM
without data hiding. As shown in Figure 11, a very high bit
accuracy can be achieved with around 12 points increase in
perplexity (second operating point). The perplexity could be
further reduced by tuning the weights between the two losses,
which also decreases the bit accuracy.

However, the main limitation is that message accuracy fur-
ther drops during inference using recursive greedy decoding.
Although it improves with averaging 2 sentences, it indicates
that it would be even harder to retain high accuracy using
other decoding strategies that introduce more variation in
generations, such as top-k or top-p sampling [5], [8], [13],
[87]. These strategies are typically used in open-ended gen-
erations due to having higher quality output [87]. In contrast,
AWT does not suffer from these discrepancies since it can be
applied agnostically on the generated sequence regardless of
the decoding strategies and the language model.

F. Human Evaluation

It is common for machine translation and generation tasks
to use human evaluation as an auxiliary evaluation besides the
other metrics [5], [72]. Therefore, we conducted a user study in
order to evaluate the naturalness and correctness of our model,
as a proxy to measure the stealthiness of the watermark.

The study is conducted on the best variant of the model
(with fine-tuning) with the best-of-20 samples strategy (bit ac-
curacy: ∼86%) and on the synonym baseline in Section V-E1
(bit accuracy: ∼83%). It was performed by 6 judges who were
asked to rate sentences with a Likert scale from 0 (lowest) to 5

AWT Synonym-baseline Non-wm Dataset

4.5±0.76 3.42±1.16 4.65±0.62

TABLE X: The results of a user study to rate (0 to 5) sentences
from AWT , the baseline, and non-watermarked text.

(highest). The ratings are described with instructions that range
from: ‘This sentence is completely understandable, natural,
and grammatically correct’, to: ‘This sentence is completely
not understandable, unnatural, and you cannot get its main
idea’. We included different random sentences from AWT , the
synonym-based baseline, and the original non-watermarked
text, displayed in a randomized order. The non-watermarked
text works as a reference to the two approaches as the rating of
the original text might not always be ‘5’, since the dataset has
processing tokens that might make it ambiguous. We show the
average rating for each case in Table X. AWT had both higher
ratings and less variance than the baseline. The high variance
in the case of the baseline can be attributed to the observation
that not all sentences were successfully encoded with the full
4 bits, and therefore, some of the sentences did not have a lot
of changes. In the case of successful encoding, the sentence
generally undergoes a lot of changes compared to AWT , where
usually not all of them are consistent. More details about the
study are in Appendix VIII-F.

VI. DISCUSSION

We here discuss other several aspects of our work, other
assumptions, scope, and limitations.

a) Granularity: We focus on the threat scenario of news
articles that have a large number of tokens [5]. While other
threats such as misinformation on Twitter are important [88],
they are less relevant for machine-generated text that requires
longer context for generation or detection (e.g., up to 1024
tokens in [5] or at least 192 tokens in [13]). Although it is
possible to encode 4 bits in a short text using our approach,
this short message is not enough for confidence calculation.
Verification on short text would require a longer watermark
and thus, severely affect the text, as the task of data hiding in
text is inherently more difficult than its counterpart in images.

b) False positives: When concatenating several 4 bits
messages, the false positives can be directly controlled by the
p-value threshold [84], since the accuracy of non-watermarked
text is at the chance level. We evaluated the thresholds of
0.05 and 0.01 (Figure 5). One possible way to improve false
positives is to use multiple confidence thresholds with an
increasing alarm for false positives. Then, if the watermark
verification is in the low-confidence range, our solution could
potentially be combined with other previously introduced fake
news defenses (e.g., discriminators [5], [13], [89], automated
fact-checking and stance detection [90]). On the other hand,
human fact-checking is still a standard solution for news
verification [91], while automated solutions aim to reduce
these human efforts, humans can still be kept in-the-loop for
verifying low-confidence instances, reducing the otherwise full
effort to verify all articles.

c) Human editing: The black-box APIs might be used
legitimately for partial text completion or suggestions to some
of the sentences with further interactive human editing. How-
ever, the main threat we consider is misusing these models in
an unintended way to generate entire articles at scale, possibly
conditioned on a headline or a context. Although the threat of
combining the generation with human editing is conceivable,
it is a limited use-case for the adversary since it reduces the
scalability and adds manual time-consuming efforts, largely
reducing the advantages of using machine-generated text.

d) Possible release of models: We assume black-box
access to the language model, however, it is still an important
step towards defending against misuse. While GPT-2 was
released after a staged release, this might not be the case
for future models. By the time of writing this paper, OpenAI
is not open-sourcing GPT-3, and it is only available through
commercial APIs [15], where one of the announced reasons
is to prevent or limit misuse. Additionally, our solution is also
helpful for scenarios where a general language model like
GPT-2 is fine-tuned by a service for specific tasks or domains.

e) Training in-house language models: Another option
for the adversary to circumvent defenses is to train their
own language model. However, training modern state-of-the-
art language models, including massive datasets collection, is
a very expensive and time-consuming process that requires
significant technical expertise, and the cost is progressively
increasing. Training Grover [5] requires around $35k using
AWS. Training a 1.5 billion parameter model is estimated at
$1.6m [92]. The 175B GPT-3 training cost is estimated at
$4.6m [93]. Final actual costs could be even higher due to
multiple runs of hyperparameters tuning.

f) Watermarks regulation: Since we use a multi-bit wa-
termarking scheme, our scenario can be extended to water-
marking multiple models offered by different owners. How-
ever, this would require further cooperation of models’ owners
or a potential regulation by a trusted regulatory third party that
handles the distribution of watermarks, and sharing the wa-
termarks’ encoder and decoder. We hope that our work opens
follow-up future research and discussions on the regulation and
proactive protective release strategies of such technologies.

VII. CONCLUSION

In this paper, we present AWT , a new framework for lan-
guage watermarking as a potential solution towards marking
and tracing the provenance of machine-generated text. AWT
is the first end-to-end data hiding solution for natural text
and is optimized to unobstructively encode the cover text by
adversarial training and other smoothing auxiliary losses.

AWT achieves more flexibility and a significantly better
trade-off between the different evaluation axes (effectiveness,
secrecy, and robustness), in terms of quantitative, qualitative,
and human evaluations, compared to a rule-based synonym
substitution baseline. Our work offers a new research area
towards improving and robustifying automatic data hiding in
natural language, similar to its precedent in images.

REFERENCES

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, 2017.

[2] A. Conneau and G. Lample, “Cross-lingual language model pretraining,”
in Advances in Neural Information Processing Systems, 2019.

[3] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and
Q. V. Le, “Xlnet: Generalized autoregressive pretraining for language
understanding,” in Advances in Neural Information Processing Systems,
2019.

[4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” in North
American Chapter of the Association for Computational Linguistics
(NAACL), 2019.

[5] R. Zellers, A. Holtzman, H. Rashkin, Y. Bisk, A. Farhadi, F. Roesner,
and Y. Choi, “Defending against neural fake news,” in Advances in
Neural Information Processing Systems, 2019.

[6] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer, “Deep contextualized word representations,” in North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies (NAACL-HLT), 2018.

[7] J. Howard and S. Ruder, “Universal language model fine-tuning for
text classification,” in the 56th Annual Meeting of the Association for
Computational Linguistics (ACL), 2018.

[8] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” OpenAI, Tech.
Rep., 2019.

[9] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving
language understanding by generative pre-training,” OpenAI, Tech. Rep.,
2018.

[10] L. Wang, W. Zhao, R. Jia, S. Li, and J. Liu, “Denoising based sequence-
to-sequence pre-training for text generation,” in Empirical Methods in
Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), 2019.

[11] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models
are few-shot learners,” arXiv preprint arXiv:2005.14165, 2020.

[12] I. Solaiman, M. Brundage, J. Clark, A. Askell, A. Herbert-Voss, J. Wu,
A. Radford, and J. Wang, “Release strategies and the social impacts of
language models,” arXiv preprint arXiv:1908.09203, 2019.

[13] D. Ippolito, D. Duckworth, C. Callison-Burch, and D. Eck, “Automatic
detection of generated text is easiest when humans are fooled,” in the
58th Annual Meeting of the Association for Computational Linguistics
(ACL), 2020.

[14] D. I. Adelani, H. Mai, F. Fang, H. H. Nguyen, J. Yamagishi, and
I. Echizen, “Generating sentiment-preserving fake online reviews using
neural language models and their human-and machine-based detection,”
in International Conference on Advanced Information Networking and
Applications. Springer, 2020.

[15] OpenAI, “Openai api.” [Online]. Available: https://openai.com/blog/
openai-api/

[16] K. Krishna, G. S. Tomar, A. P. Parikh, N. Papernot, and M. Iyyer,
“Thieves on sesame street! model extraction of bert-based apis,” in
International Conference on Learning Representations (ICLR), 2020.

[17] T. Orekondy, B. Schiele, and M. Fritz, “Knockoff nets: Stealing func-
tionality of black-box models,” in the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

[18] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction apis,” in 25th USENIX Security
Symposium (USENIX Security 16), 2016.

[19] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,” in
the ACM Asia Conference on Computer and Communications Security
(AsiaCCS), 2017.

[20] U. Topkara, M. Topkara, and M. J. Atallah, “The hiding virtues of
ambiguity: quantifiably resilient watermarking of natural language text
through synonym substitutions,” in the 8th Workshop on Multimedia and
Security, 2006.

[21] C. Y. Chang and S. Clark, “Practical linguistic steganography using
contextual synonym substitution and vertex colour coding,” in Empirical
Methods in Natural Language Processing (EMNLP), 2010.

[22] M. Topkara, U. Topkara, and M. J. Atallah, “Words are not enough:
sentence level natural language watermarking,” in the 4th ACM Inter-
national Workshop on Contents Protection and Security, 2006.

[23] H. M. Meral, E. Sevinc, E. Ünkar, B. Sankur, A. S. Özsoy, and
T. Güngör, “Syntactic tools for text watermarking,” in Security,
Steganography, and Watermarking of Multimedia Contents IX. Inter-
national Society for Optics and Photonics, 2007.

[24] Y.-L. Chiang, L.-P. Chang, W.-T. Hsieh, and W.-C. Chen, “Natural
language watermarking using semantic substitution for chinese text,”
in International Workshop on Digital Watermarking. Springer, 2003.

[25] O. Halvani, M. Steinebach, P. Wolf, and R. Zimmermann, “Natural
language watermarking for german texts,” in the first ACM Workshop
on Information Hiding and Multimedia Security, 2013.

[26] I. Cox, M. Miller, J. Bloom, J. Fridrich, and T. Kalker, Digital Water-
marking and Steganography, 2nd ed. Morgan Kaufmann Publishers
Inc., 2007.

[27] J. Zhu, R. Kaplan, J. Johnson, and L. Fei-Fei, “Hidden: Hiding data with
deep networks,” in European Conference on Computer Vision (ECCV),
2018.

[28] S. Baluja, “Hiding images in plain sight: Deep steganography,” in
Advances in Neural Information Processing Systems, 2017.

[29] J. Hayes and G. Danezis, “Generating steganographic images via adver-
sarial training,” in Advances in Neural Information Processing Systems,
2017.

[30] V. Vukotić, V. Chappelier, and T. Furon, “Are deep neural networks good
for blind image watermarking?” in the IEEE International Workshop on
Information Forensics and Security (WIFS), 2018.

[31] R. Zhang, S. Dong, and J. Liu, “Invisible steganography via generative
adversarial networks,” Multimedia Tools and Applications, vol. 78, no. 7,
pp. 8559–8575, 2019.

[32] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in Neural Information Processing
Systems, 2014.

[33] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in Neural Information Processing Systems, 2014.

[34] N. S. Kamaruddin, A. Kamsin, L. Y. Por, and H. Rahman, “A review
of text watermarking: theory, methods, and applications,” IEEE Access,
vol. 6, pp. 8011–8028, 2018.

[35] C. I. Podilchuk and E. J. Delp, “Digital watermarking: algorithms and
applications,” IEEE Signal Processing Magazine, vol. 18, no. 4, pp. 33–
46, 2001.

[36] N. Singh, M. Jain, and S. Sharma, “A survey of digital watermarking
techniques,” International Journal of Modern Communication Technolo-
gies and Research, vol. 1, no. 6, p. 265852, 2013.

[37] J. T. Brassil, S. Low, N. F. Maxemchuk, and L. O’Gorman, “Electronic
marking and identification techniques to discourage document copying,”
IEEE Journal on Selected Areas in Communications, vol. 13, no. 8, pp.
1495–1504, 1995.

[38] M. Topkara, C. M. Taskiran, and E. J. Delp III, “Natural language water-
marking,” in Security, Steganography, and Watermarking of Multimedia
Contents VII. International Society for Optics and Photonics, 2005.

[39] M. Topkara, G. Riccardi, D. Hakkani-Tür, and M. J. Atallah, “Natural
language watermarking: Challenges in building a practical system,”
in Security, Steganography, and Watermarking of Multimedia Contents
VIII. International Society for Optics and Photonics, 2006.

[40] H. M. Meral, B. Sankur, A. S. Özsoy, T. Güngör, and E. Sevinç, “Natu-
ral language watermarking via morphosyntactic alterations,” Computer
Speech & Language, vol. 23, no. 1, pp. 107–125, 2009.

[41] A. Wilson, P. Blunsom, and A. D. Ker, “Linguistic steganography on
twitter: hierarchical language modeling with manual interaction,” in
Media Watermarking, Security, and Forensics. International Society
for Optics and Photonics, 2014.

[42] A. Wilson, P. Blunsom, and A. Ker, “Detection of steganographic
techniques on twitter,” in Empirical Methods in Natural Language
Processing (EMNLP), 2015.

[43] A. Wilson and A. D. Ker, “Avoiding detection on twitter: embedding
strategies for linguistic steganography,” Electronic Imaging, vol. 2016,
no. 8, pp. 1–9, 2016.

[44] M. H. Shirali-Shahreza and M. Shirali-Shahreza, “A new synonym text
steganography,” in the IEEE International Conference on Intelligent
Information Hiding and Multimedia Signal Processing, 2008.

https://openai.com/blog/openai-api/
https://openai.com/blog/openai-api/

[45] T. Fang, M. Jaggi, and K. Argyraki, “Generating steganographic text
with lstms,” in the 55th Annual Meeting of the Association for Compu-
tational Linguistics-Student Research Workshop, 2017.

[46] Z. Li, C. Hu, Y. Zhang, and S. Guo, “How to prove your model belongs
to you: a blind-watermark based framework to protect intellectual
property of dnn,” in the 35th Annual Computer Security Applications
Conference (ACSAC), 2019.

[47] N. Lukas, Y. Zhang, and F. Kerschbaum, “Deep neural network
fingerprinting by conferrable adversarial examples,” arXiv preprint
arXiv:1912.00888, 2019.

[48] Y. Adi, C. Baum, M. Cisse, B. Pinkas, and J. Keshet, “Turning
your weakness into a strength: Watermarking deep neural networks by
backdooring,” in 27th USENIX Security Symposium (USENIX Security
18), 2018.

[49] E. Le Merrer, P. Perez, and G. Trédan, “Adversarial frontier stitching
for remote neural network watermarking,” Neural Computing and Ap-
plications, vol. 32, no. 13, pp. 9233–9244, 2020.

[50] Y. Uchida, Y. Nagai, S. Sakazawa, and S. Satoh, “Embedding wa-
termarks into deep neural networks,” in International Conference on
Multimedia Retrieval (ICMR), 2017.

[51] H. Chen, B. D. Rouhani, C. Fu, J. Zhao, and F. Koushanfar, “Deepmarks:
A secure fingerprinting framework for digital rights management of deep
learning models,” in International Conference on Multimedia Retrieval
(ICMR), 2019.

[52] B. Darvish Rouhani, H. Chen, and F. Koushanfar, “Deepsigns: an end-
to-end watermarking framework for ownership protection of deep neural
networks,” in the 24th International Conference on Architectural Support
for Programming Languages and Operating Systems, 2019.

[53] T. Gu, B. Dolan-Gavitt, and S. Garg, “Badnets: Identifying vulnera-
bilities in the machine learning model supply chain,” arXiv preprint
arXiv:1708.06733, 2017.

[54] J. Zhang, Z. Gu, J. Jang, H. Wu, M. P. Stoecklin, H. Huang, and
I. Molloy, “Protecting intellectual property of deep neural networks
with watermarking,” in the ACM Asia Conference on Computer and
Communications Security (AsiaCCS), 2018.

[55] H. Jia, C. A. Choquette-Choo, and N. Papernot, “Entangled watermarks
as a defense against model extraction,” arXiv preprint arXiv:2002.12200,
2020.

[56] H. Li, E. Wenger, B. Y. Zhao, and H. Zheng, “Piracy resistant wa-
termarks for deep neural networks,” arXiv preprint arXiv:1910.01226,
2019.

[57] N. Yu, L. S. Davis, and M. Fritz, “Attributing fake images to gans:
Learning and analyzing gan fingerprints,” in the IEEE International
Conference on Computer Vision (ICCV), 2019.

[58] S.-Y. Wang, O. Wang, R. Zhang, A. Owens, and A. A. Efros, “Cnn-
generated images are surprisingly easy to spot... for now,” in the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

[59] N. Carlini and H. Farid, “Evading deepfake-image detectors with white-
and black-box attacks,” in the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, 2020.

[60] B. Zhang, J. P. Zhou, I. Shumailov, and N. Papernot, “Not my deep-
fake: Towards plausible deniability for machine-generated media,” arXiv
preprint arXiv:2008.09194, 2020.

[61] M. Stern, W. Chan, J. Kiros, and J. Uszkoreit, “Insertion transformer:
Flexible sequence generation via insertion operations,” in International
Conference on Machine Learning (ICML), 2019.

[62] M. Caccia, L. Caccia, W. Fedus, H. Larochelle, J. Pineau, and L. Charlin,
“Language gans falling short,” in International Conference on Learning
Representations (ICLR), 2020.

[63] H. Hosseini, B. Xiao, A. Clark, and R. Poovendran, “Attacking auto-
matic video analysis algorithms: A case study of google cloud video
intelligence api,” in Multimedia Privacy and Security, 2017.

[64] E. Mariconti, G. Suarez-Tangil, J. Blackburn, E. De Cristofaro,
N. Kourtellis, I. Leontiadis, J. L. Serrano, and G. Stringhini, “”you
know what to do” proactive detection of youtube videos targeted by
coordinated hate attacks,” Human-Computer Interaction, vol. 3, no.
CSCW, pp. 1–21, 2019.

[65] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” in International Conference on
Learning Representations (ICLR), 2015.

[66] R. Shetty, M. Rohrbach, L. Anne Hendricks, M. Fritz, and B. Schiele,
“Speaking the same language: Matching machine to human captions by
adversarial training,” in the IEEE International Conference on Computer
Vision (ICCV), 2017.

[67] K. Choi, C. Hawthorne, I. Simon, M. Dinculescu, and J. Engel,
“Encoding musical style with transformer autoencoders,” arXiv preprint
arXiv:1912.05537, 2019.

[68] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
gumbel-softmax,” in International Conference on Learning Represen-
tations (ICLR), 2017.

[69] M. J. Kusner and J. M. Hernández-Lobato, “Gans for sequences of
discrete elements with the gumbel-softmax distribution,” arXiv preprint
arXiv:1611.04051, 2016.

[70] S. Merity, N. S. Keskar, and R. Socher, “Regularizing and optimizing
lstm language models,” in International Conference on Learning Rep-
resentations (ICLR), 2018.

[71] H. Inan, K. Khosravi, and R. Socher, “Tying word vectors and word
classifiers: A loss framework for language modeling,” in International
Conference on Learning Representations (ICLR), 2017.

[72] R. Shetty, B. Schiele, and M. Fritz, “A4nt: author attribute anonymity
by adversarial training of neural machine translation,” in 27th USENIX
Security Symposium (USENIX Security 18), 2018.

[73] A. Conneau, D. Kiela, H. Schwenk, L. Barrault, and A. Bordes,
“Supervised learning of universal sentence representations from natural
language inference data,” in Empirical Methods in Natural Language
Processing (EMNLP), 2017.

[74] S. Bowman, G. Angeli, C. Potts, and C. D. Manning, “A large annotated
corpus for learning natural language inference,” in Empirical Methods
in Natural Language Processing (EMNLP), 2015.

[75] Z. Dai, Z. Yang, Y. Yang, J. G. Carbonell, Q. Le, and R. Salakhutdinov,
“Transformer-xl: Attentive language models beyond a fixed-length con-
text,” in the 57th Annual Meeting of the Association for Computational
Linguistics (ACL), 2019.

[76] N. Carlini, C. Liu, Ú. Erlingsson, J. Kos, and D. Song, “The secret
sharer: Evaluating and testing unintended memorization in neural net-
works,” in 28th USENIX Security Symposium (USENIX Security 19),
2019.

[77] S. Merity, C. Xiong, J. Bradbury, and R. Socher, “Pointer sentinel mix-
ture models,” in International Conference on Learning Representations
(ICLR), 2017.

[78] S. Merity, N. S. Keskar, and R. Socher, “An analysis of neural language
modeling at multiple scales,” arXiv preprint arXiv:1803.08240, 2018.

[79] M. Marcus, B. Santorini, and M. A. Marcinkiewicz, “Building a large
annotated corpus of english: The penn treebank,” Computational Lin-
guistics, vol. 19, no. 2, pp. 313–330, 1993.

[80] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in International Conference on Learning Representations (ICLR), 2015.

[81] M. Denkowski and A. Lavie, “Meteor universal: Language specific
translation evaluation for any target language,” in the 9th Workshop on
Statistical Machine Translation, 2014.

[82] G. A. Miller, WordNet: An electronic lexical database. MIT press,
1998.

[83] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using
siamese bert-networks,” in Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), 2019.

[84] A. Venugopal, J. Uszkoreit, D. Talbot, F. J. Och, and J. Ganitkevitch,
“Watermarking the outputs of structured prediction with an application
in statistical machine translation,” in Empirical Methods in Natural
Language Processing (EMNLP), 2011.

[85] J. A. Suykens and J. Vandewalle, “Least squares support vector machine
classifiers,” Neural Processing Letters, vol. 9, no. 3, pp. 293–300, 1999.

[86] L. Fan, K. W. Ng, and C. S. Chan, “Rethinking deep neural network
ownership verification: Embedding passports to defeat ambiguity at-
tacks,” in Advances in Neural Information Processing Systems, 2019.

[87] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi, “The curious case
of neural text degeneration,” in International Conference on Learning
Representations (ICLR), 2020.

[88] C. Castillo, M. Mendoza, and B. Poblete, “Information credibility on
twitter,” in the 20th international conference on World Wide Web, 2011.

[89] R. Tan, B. Plummer, and K. Saenko, “Detecting cross-modal inconsis-
tency to defend against neural fake news,” in Empirical Methods in
Natural Language Processing (EMNLP), 2020.

[90] J. Thorne, M. Chen, G. Myrianthous, J. Pu, X. Wang, and A. Vlachos,
“Fake news stance detection using stacked ensemble of classifiers,” in
the EMNLP Workshop: Natural Language Processing meets Journalism,
2017.

[91] N. Hassan, F. Arslan, C. Li, and M. Tremayne, “Toward automated fact-
checking: Detecting check-worthy factual claims by claimbuster,” in the
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD), 2017.

[92] O. Sharir, B. Peleg, and Y. Shoham, “The cost of training nlp models:
A concise overview,” arXiv preprint arXiv:2004.08900, 2020.

[93] Lambda, “Openai’s gpt-3 language model: A technical overview.”
[Online]. Available: https://lambdalabs.com/blog/demystifying-gpt-3/

VIII. APPENDIX

A. Metrics Analysis
We show more examples to examine and validate the metrics

we use to evaluate or sort the output of the model.
1) Sampling: In Section V-B6, we discussed that the lan-

guage model loss gives slightly better sentences in terms
of syntactic correctness than SBERT, therefore, we used it
to sort and select the best sample. In Table XI, we show
examples of such cases. Nevertheless, we still measure the
semantic similarity using SBERT as a metric due to the
benefits discussed below.

2) SBERT and Meteor: In our analysis, we use the SBERT
distance between the input and output sentences’ embeddings
as an auxiliary metric besides using the meteor score. We here
demonstrate examples of sentences with high SBERT distance
and the advantages of using it over meteor only.

One of the cases that yields a high SBERT distance is
when the output text has a changed sentiment (e.g., by using
a negation), such as the two examples in Table XII. These
examples do not have an extremely low meteor score since
not a lot of words were changed. The first example also
is grammatically correct (using “are ’t”). Despite that, they
undesirably change the semantics of the input sentence, which
is detected by the SBERT since it was trained on the NLI
task. Additionally, we show in Table XIII two samples for the
same input sentence and comparable meteor scores, however,
the one with the lower SBERT distance has more coherency.

Given these observations, and the qualitative analysis we
performed in Section V-B6 (e.g., on the ‘no-discriminator’
model), we found that using SBERT is an effective metric to
approximate semantic similarity and adds more information
than using meteor alone.

B. Denoising
For the denoising autoencoder (DAE), we used 6 encoding

and decoding transformer layers in the encoder and decoder,
respectively. We also share the embeddings of the encoder,
decoder, and the pre-softmax layer (dimension: 512). The
decoder has a masked self-attention and it attends to the output
of the encoder.

Input SBERT sample LM sample

The new M @-@ 120 designa-
tion replaced M @-@ 20 south
of <unk> . M @-@ 82 now ran
from <unk> to <unk> only.

The new M @-@ 120 designa-
tion replaced M @-@ 20 south
of <unk> . M @-@ 82 now ran
were <unk> to <unk> only.

The new M @-@ 120 designa-
tion replaced M @-@ 20 south
that <unk> . M @-@ 82 now
ran from <unk> to <unk> only.

The city continued to grow
thanks to a commission govern-
ment’s efforts to bring in a boom-
ing automobile industry in the
1920s.

The city continued to grow
thanks to a commission govern-
ment’s could to bring in a boom-
ing automobile industry in the
1920s.

The city continued to grow
thanks to a commission govern-
ment’s efforts to bring in a boom-
ing of industry in the 1920s.

TABLE XI: Examples of input sentences, the best SBERT
sample, and the best language model sample (slightly better).

Input Output SBERT Meteor

there are also many species of
<unk>. There are three main
routes which ascend the mountain ,
all of which gain over 4 @,@ 100
feet (1 @,@ 200 m) of elevation.

there are ’t many species of
<unk>. There are three main
routes which ascend the mountain
, all of which gain over 4 by 100
feet (1 by 200 m) of elevation.

7.5 0.93

Her family had originally come
from Poland and Russia . <unk>
’s parents had both acted as chil-
dren . <eos> In a 2012 interview
, <unk> stated : ” There was never
[religious] faith in the house

Her family as originally come with
Poland and Russia . <unk> ’s
parents had both acted by children
. <eos> In a 2012 interview ,
<unk> stated : ” There was with
[religious] faith in the house

7.19 0.93

TABLE XII: Examples in which introducing negation resulted
in a relatively high SBERT distance.

Input Output SBERT Meteor

This allegation became more
widely known when <unk>
Alexander was featured in the
documentary The Search for
<unk> , which has been cited by
several authors including Gerald
<unk> , an expert on <unk> .
Towards the end of the song , there
is a line ” Feeding off the screams
of the <unk> he ’s creating ”
, which was taken from the film
The Boys from Brazil in which
Dr. <unk> was the villain.

This allegation became more
widely known when <unk>
Alexander was featured in the
documentary of Search for
<unk> , which has was cited by
several authors including Gerald
<unk> , from expert on <unk> .
Towards the end of the song , there
is a line ” Feeding off the screams
of the <unk> he ’s creating ”
, which was taken from the film
from Boys from Brazil in which
Dr. <unk> was the villain .

1.55 0.941

This allegation became more
widely known when <unk>
Alexander was featured in the
documentary The Search for
<unk> , which has been cited by
several authors including Gerald
<unk> , an expert on <unk> .
<eos> Towards the end of the
song , there is a line ” Feeding off
the screams of the <unk> he ’s
creating ” , which was taken from
the film The Boys from Brazil in
which Dr. <unk> was the villain
.

This allegation became more
widely known when <unk>
Alexander was featured in the
documentary of Search for
<unk> , which has been cited by
several authors including Gerald
<unk> , an expert on <unk> .
Towards the end of the song , there
is a line ” Feeding off the screams
of the <unk> he ’s creating ” ,
which was taken from the film of
Boys from Brazil <unk> which
Dr. <unk> was the villain .

1.17 0.939

TABLE XIII: Two samples for the same input text segment.
Although they have comparable meteor scores, the sample
with the lower SBERT distance shows better coherence.

a) Denoising non-watermarked text: We evaluate the
DAE, regardless of the watermark, by applying the noise to
the non-watermarked test set. We compare the similarity to
the original text before and after denoising using the meteor
and SBERT scores as shown in Table XIV. We observed
that denoising partially reconstructs the original sentence,
but, it can introduce additional changes. We illustrate by the
examples in Table XV that we categorize into three parts. In
the first one, we show examples where the denoised sequence
matches the original sequence; this was mainly for sentences
with syntactic inconsistencies that removed common/likely
words. In the second part, the DAE removed the added noise
with more likely sequences, yet, it did not restore the original
one which might cause semantic differences. In the third
part, the noise words were not changed in the denoised text.
This analysis suggests that the DAE is more likely to change
sequences with clear flaws, but it is also likely to cause other
changes that were not corrupted. We validate this observation

Text Meteor SBERT

Corrupted 0.947 2.7
Denoised 0.956 2.25

TABLE XIV: The similarity to the original sequence in the
case of the corrupted and denoised text.

https://lambdalabs.com/blog/demystifying-gpt-3/

Input Corrupted Denoised

pair of claws pair 1941 claws pair of claws

when you don ’t when you tendencies ’t when you don ’t

his earliest surviving poem , his earliest surviving poem bill his earliest surviving poem ,

he was arrested He demolition arrested He was arrested

attempted to join the court attempted to Desiree the court attempted to take the court

He next spent around six weeks Dreamers next Punch around six
weeks The next day around six weeks

He appeared to be a <unk> son police appeared to be a <unk> son police appeared to be a <unk> son

Like many other poems in the Tang Like many other poems in roof
Tang Like many other poems in roof ,

The tenor of his work changed The luck of his work changed The luck of his work changed

TABLE XV: DAE output when applying word replacement
noise to the non-watermarked test set.

Input Watermarked Denoised

The eggs hatch at night The eggs hatch with night The eggs hatch with night

and a mass of 6 kilograms and a mass as 6 kilograms and a mass as 6 kilograms

several years writing for the televi-
sion sitcoms Grace Under Fire

several years writing for the televi-
sion of Grace Under Fire

several years writing for the televi-
sion of Grace Under Fire

He also performed as an actor and
a singer

He had performed as an actor and
a singer

He had performed as an actor and
a singer

he took the civil service exam he an the civil service exam he was the civil service exam

The first RAAF helicopters were
committed to

. with first RAAF helicopters were
committed to

. The first RAAF helicopters were
committed to

consisting of an infantry battalion
consisting of been infantry battal-
ion

consisting of two infantry battalion

, but the species is also widely
known as

Bunbury but the species is also
widely known as

, but the species is also widely
known as

This occurs because , in life , the
red pigment

This occurs because , in life , the
red pigment

This occurs because , in particular
, the small pigment

and adopts a <unk> lifestyle and adopts a <unk> lifestyle and has a <unk> lifestyle

The last distinct population The last distinct population The last major population

TABLE XVI: DAE output when applied to the watermarked
text (from different model’s variants).

by examining the denoising output of the watermarked text.
b) Denoising watermarked text: In Table XVI, we show

examples when applying the DAE to watermarked text without
additional noise (the results in Table VII). We categorize these
examples into three parts; the first is the examples where
the watermarking changes were not changed by the DAE.
Second, we show examples where they were changed; these
examples are from different variants of the model, and they
generally cause clear flaws, this explains the large drop in
the ‘no-discriminator’ model since this variant generally had
lower quality output. Third, we show examples where the
DAE introduced additional changes to sequences that were not
originally changed by the watermarking model, this increased
the SBERT distance in the first two rows in Table VII.

We observed other cases where the watermarking changes
were not altered by the DAE even when having other grammat-
ical mistakes, these changes might be removed by training a
stronger DAE (e.g., larger model or larger dataset), however,
this requires an even more experienced attacker with more
technical knowledge and powerful computational resources.

C. Visualizations

We show, in Figure 12a, a word cloud for the most frequent
words that were changed in the original text when watermark-
ing, and in Figure 12b, the most frequent words that were
changed to in the watermarked text. As can be observed, the
words in both figures are highly overlapping, therefore, we

(a) (b)

Fig. 12: (a) Words that were replaced in the original text. (b)
Words that the model changed to in the watermarked text.
Bigger fonts indicate higher frequencies.

analysed the pairwise transitions between them in Figure 8.
As we showed in Figure 7 and Figure 8, the model keeps
the count of these top words similar, and it does not perform
fixed substitutions between them. These factors support the
encoding secrecy with no telltale words. Besides, there are no
words that are particularly exclusive for bit holding, which has
a flexibility advantage over the rule-based substitution baseline
discussed in Section V-E1. For better visualization, we show
in Figure 13 the words’ transitions as in Figure 8, but without
the diagonal elements where the words were not changed.

D. Different AWT Models and Adaptive Attacks

In sections V-D3 and V-D4, we discussed that attacks
crafted using another trained model (AWTadv) are less effective
in the black-box case (when applied to the first AWT model).
In this section, we first compare two independently trained
models in terms of words’ transitions and qualitative examples.
We then show examples of adaptive attacks.

a) Comparing different models: A message decoder of
one model gives an almost random chance accuracy when used
to decode another model’s sentences. Thus, it is sensitive to the
paired watermarking model mostly. A possible explanation is
that different instances produce different patterns or mappings
(as previously reported in data hiding studies in images [27]).
To investigate that, we first study whether AWTadv uses the
same commonly changed words to encode the information.
In Figure 14, we show the transitions produced by AWTadv
among the commonly used words by the first AWT model.
When comparing this to Figure 13, we notice that these words
have relatively fewer transitions.

Furthermore, we show in Table XVII, examples of sentences
that were watermarked individually (but, using the same binary
message) by AWT and AWTadv producing different wording
changes (for the replaced, added words, or their positions).

b) Re-watermarking: For further investigation, we show
in Table XVIII examples of re-watermarked sentences in the
white-box and the black-box cases.

In the white-box case, we observed that the model often
replaces the same word that was previously replaced in the
first watermarking process. This caused the first watermark
matching accuracy to drop to nearly random chance. In the
black-box case, we can observe that: 1) the re-watermarking
does not necessarily override the first changes (i.e., both
changes can be present in the re-watermarked sentences). 2)
the newly added words might not be from the most sensitive

an ha
d
@-
@ on by at as of wit

h
fro
m

we
re

be
en tha

t
cou

ld als
o ,

wa
s bu

t
an
d

To

an

had

@-@

on

by

at

as

of

with

from

were

been

that

could

also

,

was

but

and

Fr
om

- 36 56 40 25 59 41 140 59 35 42 39 56 20 55 0 0 0 0

5 - 16 13 5 12 33 76 21 17 14 16 61 2 9 4 0 0 0

34 15 - 72 22 20 52 234 24 66 31 15 51 3 31 47 0 0 0

26 4 38 - 50 60 33 314 101 75 33 6 57 0 21 2 0 0 0

11 8 22 40 - 23 31 108 44 27 13 5 38 0 12 1 0 1 0

49 31 52 106 81 - 73 185 65 99 49 22 37 4 52 0 0 0 0

34 14 52 46 35 29 - 251 27 26 32 30 18 5 19 7 0 0 0

14 6 91 71 109 33 34 - 28 145 27 3 53 5 11 447 0 1 0

19 24 34 41 28 19 30 79 - 22 22 15 35 5 22 0 0 0 0

18 7 36 46 59 29 31 263 126 - 26 2 52 1 10 0 0 0 0

30 83 88 52 19 46 69 153 24 44 - 61 33 22 66 32 0 0 0

35 21 37 25 28 24 26 66 14 38 43 - 35 26 36 1 0 1 0

0 2 2 4 4 12 6 73 1 1 0 0 - 0 4 3 17 0 41

0 1 2 0 2 0 1 20 2 0 3 1 5 - 1 107 0 0 0

41 35 34 57 47 33 36 105 32 47 50 43 30 24 - 3 0 0 0

0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 - 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -

Fig. 13: A matrix of word changes’ count from the original text
to modified text using AWT (same as Figure 8 but excluding
the diagonal elements where words were not changed).

an ha
d
@-
@ on by at as of wit

h
fro
m

we
re

be
en tha

t
cou

ld als
o ,

wa
s bu

t
an
d

To

an

had

@-@

on

by

at

as

of

with

from

were

been

that

could

also

,

was

but

and

Fr
om

- 25 0 0 2 26 3 0 0 1 64 8 13 0 0 1 7 0 0

68 - 0 0 0 21 2 0 0 2 81 42 1 0 0 2 25 0 0

0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 - 0 369 0 8 0 0 3 0 0 326 47 0 0

0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0

74 98 0 0 0 25 2 0 0 0 - 24 11 0 0 1 49 0 0

20 23 0 0 0 25 0 10 0 3 22 - 47 0 0 5 52 0 0

1 0 0 0 0 2 0 382 0 0 0 0 - 0 0 23 4 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0

15 24 1 0 0 10 0 90 1 0 46 7 28 0 1 16 - 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -

Fig. 14: The words’ transitions produced by AWTadv for the
most commonly changed words by AWT (in Figure 13).

Input AWT AWTadv

As is often the case with huge an-
cient ruins , knowledge of the site
was never completely lost in the
region . It seems that local people
never <unk> about <unk> and
they guided <unk> expeditions
to the ruins in the 1850s .

As is often the case with huge an-
cient ruins , knowledge by the site
was never completely lost in the
region . It seems that local people
never <unk> about <unk> and
they guided <unk> expeditions
to the ruins in the 1850s .

As is often the case with huge an-
cient ruins , knowledge of the site
was never completely lost in the
region . It seems that local people
never <unk> about <unk> and
three guided <unk> expeditions
to the ruins in the 1850s .

Jon <unk> of the professional
wrestling section of the Canadian
Online Explorer rated the show a
7 out of 10 , which was lower
than the 8 out of 10 given to the
2007 edition by Jason <unk> .

Jon <unk> @-@ the profes-
sional wrestling section of the
Canadian Online Explorer rated
the show a 7 out of 10 , which
was lower than the 8 out of 10
given to the 2007 edition by Ja-
son <unk> .

Jon <unk> of the professional
wrestling section of the Canadian
Online Explorer rated the show a
7 out of 10 , that was lower than
the 8 out of 10 given to the 2007
edition by Jason <unk> .

TABLE XVII: Examples of input and watermarked sentences
(using the same message) by the two models.

words to the first AWT model (based on Figure 13). These
observations and the previous analysis potentially explain why

re-watermarking was less effective in the black-box case.
c) De-watermarking: In section V-D4, we evaluated an

adaptive attack that tries to de-watermark the sentences rather
than re-watermark them. We perform this attack by training a
denoising autoencoder (DAEpaired, with a similar architecture
to the DAE used in subsubsection V-D2) on the paired training
data of AWTadv (without adding further noise). In Table XIX,
we show examples of applying this attack in the white-box
and black-box cases.

In the white-box, DAEpaired successfully recovered the sen-
tences where the watermarking model caused clear syntactic
flaws (such as the first example). Moreover, since DAEpaired
was exposed to the most frequent changes’ patterns during
training, it was able to reconstruct sentences with either no
or less obvious artifacts (e.g., replacing ‘which’ with ‘that’, or
‘which’ with ‘before’ in the table). These changes might not be
easy to detect without paired training. The second category of
examples includes pairs where the watermarking changes were
not reversed but were nevertheless replaced with perhaps more
correct tokens. The last category shows very subtle examples
that were not changed even in the white-box case.

In the black-box, DAEpaired also recovers the sentences with
clear mistakes. This is similar to the DAE model that was
trained on noisy data in section V-D2, however, DAEpaired was
more successful since different models could still have some
similarities (e.g., both replacing ‘been’). Since DAEpaired was
sensitive to the patterns that it was trained on, it often replaced
words that were not changed originally by AWT but are often
changed by AWTadv (e.g., removing ‘which’, ‘three’, and ‘they’
in the third black-box category). Finally, the last black-box
category shows examples where DAEpaired did not perform any
changes. This can be due to two reasons: 1) the changes are
more subtle. 2) they were not frequently seen in the paired
training data of AWTadv.

E. Generation-based hiding

We present more details about the baseline of generation-
based hiding in Section V-E2.

Input Watermarked Re-watermarked

W
hi

te
-b

ox

landed a role as ” Craig ” in
the episode ” Teddy ’s Story
” of the television series The
Long Firm

landed a role as ” Craig ” in
the episode ” Teddy ’s Story ”
from the television series The
Long Firm

landed a role as ” Craig ” in
the episode ” Teddy ’s Story
” at the television series The
Long Firm

<unk> made a guest appear-
ance on a two @-@ part
episode arc of the television
series Waking the Dead

<unk> made a guest appear-
ance on a two @-@ part
episode arc from the televi-
sion series Waking the Dead

<unk> made a guest appear-
ance on a two @-@ part
episode arc with the television
series Waking the Dead

B
la

ck
-b

ox

Female H. gammarus reach
sexual maturity when they
have grown to a carapace
length of 80 – 85 millimetres
, whereas males mature at a
slightly smaller size .

Female H. gammarus reach
sexual maturity when they
have grown to a carapace
length of 80 – 85 millimetres
, whereas males mature on a
slightly smaller size .

Female H. gammarus reach
sexual maturity when to have
grown to a carapace length of
80 – 85 millimetres , whereas
males mature on a slightly
smaller size .

<unk> ’s other positions at
the Department of Air in-
cluded Air Commodore Plans
from October 1957 to January
1959 , and Director General
Plans and Policy from Jan-
uary to August 1959 . The
latter assignment put him in
charge of the RAAF ’s Direc-
torate of Intelligence .

<unk> ’s other positions on
the Department of Air in-
cluded Air Commodore Plans
from October 1957 to January
1959 , and Director General
Plans and Policy from Jan-
uary to August 1959 . The
latter assignment put him in
charge of the RAAF ’s Direc-
torate on Intelligence .

<unk> ’s other positions on
the Department of Air in-
cluded Air Commodore Plans
from October 1957 to January
1959 , and Director General
Plans and Policy from Jan-
uary to August 1959 . The
latter assignment put was in
charge of the RAAF ’s Direc-
torate on Intelligence .

TABLE XVIII: Examples of re-watermarking in the white-box
and black-box cases.

Input Watermarked De-watermarked

with a body length up to 60
centimetres (24 in)

with a body length up to 60
centimetres of 24 in)

with a body length up to 60
centimetres (24 in)

which they must shed in order
to grow

which three must shed in or-
der to grow

which they must shed in order
to grow

W
hi

te
-b

ox

<unk> is remembered for ... <unk> been remembered for
... <unk> is remembered for ...

, which was lower than the 8
out of 10 given to the 2007
edition by Jason <unk> .

, that was lower than the 8
out of 10 given to the 2007
edition by Jason <unk> .

, which was lower than the 8
out of 10 given to the 2007
edition by Jason <unk> .

, which he was granted by
<unk> on the May 29
episode of Impact !

, before he was granted
by <unk> on the May 29
episode of Impact !

, which he was granted by
<unk> on the May 29
episode of Impact !

Today the fort is open
throughout the year

Today the fort not open
throughout the year

Today the fort was open
throughout the year

On the night before such
an event neither <unk> or
<unk> Gale could get those
minutes

On the night of such an event
neither <unk> or <unk>
Gale could get those minutes

On the night of such an event
neither <unk> or <unk>
Gale could get those minutes

which have been referred to
as the ” midnight @-@ sun
lobster ” .

which have from referred to
as the ” midnight @-@ sun
lobster ” .

which have been referred to
as the ” midnight @-@ sun
lobster ” .

several research @-@
<unk> allegations that were
brought against him

several research @-@
<unk> allegations that from
brought against him

several research @-@
<unk> allegations that were
brought against him

B
la

ck
-b

ox

the United <unk> Band had
voted to stop <unk> asso-
ciate <unk>

the United <unk> Band that
voted to stop <unk> asso-
ciate <unk>

the United <unk> Band was
voted to stop <unk> asso-
ciate <unk>

This stage involves three
<unk> and lasts for 15 – 35
days .

This stage involves three
<unk> and lasts for 15 – 35
days .

This stage involves an
<unk> and lasts for 15 – 35
days .

and three which have di-
verged due to small effective
population sizes

and three which have di-
verged due to small effective
population sizes

and which they have diverged
due to small effective popula-
tion sizes

The first pair of <unk> is
armed with a large , asymmet-
rical pair of claws .

The first pair of <unk> is
armed by a large , asymmet-
rical pair of claws .

The first pair of <unk> is
armed by a large , asymmet-
rical pair of claws .

Churchill has argued that
blood quantum laws have an
inherent <unk> purpose .

Churchill has argued that
blood quantum laws have
been inherent <unk> pur-
pose .

Churchill has argued that
blood quantum laws have
been inherent <unk> pur-
pose .

Homarus gammarus is found
across the north @-@ eastern
Atlantic Ocean

Homarus gammarus is found
across the north of eastern
Atlantic Ocean

Homarus gammarus is found
across the north of eastern
Atlantic Ocean

TABLE XIX: Examples of de-watermarking in the white-box
and black-box cases.

1) Architecture: We add a ‘data hiding’ component to the
AWD-LSTM [70] by feeding the message to the language
model LSTM and simultaneously train a message decoder
that is optimized to reconstruct the message from the output
sequence. The input message is passed to a linear layer
to match the embeddings’ dimension, it is then repeated
and added to the word embeddings at each time step. The
language model is then trained with the cross-entropy loss:
L1 = Epdata(S)[− log pmodel(S)].

To allow end-to-end training, we use Gumbel-Softmax. The
message decoder has a similar architecture to the AWD-
LSTM and it takes the one-hot samples projected back into
the embedding space. To reconstruct the message, the hidden
states from the last layer are average-pooled and fed to a linear
layer. We tie the embeddings and the pre-Softmax weights.
The message reconstruction loss is the binary cross-entropy:
L2 = −

∑q
i=1 bi log(b

′

i) + (1− bi) log(1− b
′

i).
The model is trained with a weighted average of both losses:

L = w1 ∗ L1 + w2 ∗ L2.
2) Training details: We mainly used the same hyperpa-

rameters and setup of [70], however, we found it essential
to decrease the learning rate of ASGD than the one used;
we use an initial learning rate of 2.5 instead of 30 for the
language modelling LSTM and a smaller learning rate of 0.5
for the message decoding LSTM. We also found it helpful
for a successful message encoding to pre-train the AWD-

LSTM of the message decoder as a language model. Following
the original implementation, we fine-tune the model after the
initial training by restarting the training, to allow the ASGD
optimizer to restart the averaging. Similar to AWT , we use a
message length of 4 bits. To allow multiple operating points
of text utility vs. bit accuracy, we fine-tune the model again
by assigning lower weight to the message loss. We start the
training by w1 = 1, w2 = 2, and decrease w2 for each fine-
tuning step to reach a new operating point.

F. User Study

We demonstrate in Table XX the ratings’ descriptions given
in the instructions of the user study. In Figure 15, we show
a histogram of ratings given to the three types of sentences
included. We show in Table XXI, the per-judge averaged
ratings where we can observe that all judges gave AWT higher
ratings than the baseline. We show examples of the baseline
sentences in Table XXII along with the corresponding original
sentences (paired sentences were not included in the study).

Rating Description

5 The text is understandable, natural, and grammatically and structurally
correct.

4 The text is understandable, but it contains minor mistakes.
3 The text is generally understandable, but some parts are ambiguous.
2 The text is roughly understandable, but most parts are ambiguous.
1 The text is mainly not understandable, but you can get the main ideas.

0 The text is completely not understandable, unnatural, and you cannot
get the main ideas.

TABLE XX: Ratings explanations given in the user study.

5 4 3 2 1 0
Ratings

0

20

40

60

Pe
rc

en
ta

ge
 (%

)

Non-watermarked text
AWT text
Baseline text

Fig. 15: Histograms of ratings given to the three types of
sentences in the user study.

Judge 1 Judge 2 Judge 3 Judge 4 Judge 5 Judge 6

Non-wm 4.86±0.4 3.98±0.96 4.47±0.62 4.77±0.48 4.84±0.44 4.8±0.52
Wm 4.76±0.47 3.98±1.09 4.13±0.64 4.58±0.61 4.71±0.49 4.63±0.6
Baseline 3.4±1.28 3.57±1.21 3.37±0.81 3.32±1.02 3.4±1.09 4.03±1.19

TABLE XXI: Per-judge averaged ratings for the three types
of sentences.

Input Synonym-baseline

Caldwell said it was easy to obtain guns in New
Mexico : ” we found it was pretty easy to buy guns
.

Caldwell said it was soft to obtain artillery In
New Mexico : ” we rule it was pretty soft to
purchase accelerator .

Caldwell said she and <unk> went to a university
library to find the identity ” of someone dying
very young ” , next went to public records and
asked for a copy of a birth certificate

Caldwell said she and <unk> went to a university
library to found the identity ” of someone dying
real new ” , adjacent went to public records and
asked for a replicate of a parentage certification

TABLE XXII: Examples of the synonym substitution baseline
sentences that were included in the user study.

	I Introduction
	II Related Work
	II-A Language Watermarking
	II-B Linguistic Steganography
	II-C Model Watermarking
	II-D Neural Text Detection

	III Problem Statement and Threat Model
	IV Adversarial Watermarking Transformer
	IV-A Hiding Network (Message Encoder)
	IV-B Revealing Network (Message Decoder)
	IV-C Discriminator
	IV-D Training and Fine-tuning

	V Experimental Results
	V-A Setup
	V-B Effectiveness Evaluation
	V-B1 Metrics
	V-B2 Model ablation
	V-B3 Inference strategies
	V-B4 Watermark verification by sentence aggregation
	V-B5 Decoding by averaging
	V-B6 Qualitative analysis

	V-C Secrecy Evaluation
	V-D Robustness Evaluation
	V-D1 Random changes
	V-D2 Denoising
	V-D3 Re-watermarking
	V-D4 De-watermarking

	V-E Baselines
	V-E1 Synonym substitution
	V-E2 Generation-based hiding

	V-F Human Evaluation

	VI Discussion
	VII Conclusion
	References
	VIII Appendix
	VIII-A Metrics Analysis
	VIII-A1 Sampling
	VIII-A2 SBERT and Meteor

	VIII-B Denoising
	VIII-C Visualizations
	VIII-D Different AWT Models and Adaptive Attacks
	VIII-E Generation-based hiding
	VIII-E1 Architecture
	VIII-E2 Training details

	VIII-F User Study

