
Clockwork Finance: Automated Analysis of Economic Security in

Smart Contracts

Kushal Babel∗ Philip Daian∗ Mahimna Kelkar∗ Ari Juels

Cornell Tech, Cornell University, and IC3

Abstract

We introduce the Clockwork Finance Framework (CFF), a general purpose, formal verifica-
tion framework for mechanized reasoning about the economic security properties of composed
decentralized-finance (DeFi) smart contracts.

CFF features three key properties. It is contract complete, meaning that it can model any
smart contract platform and all its contracts—Turing complete or otherwise. It does so with
asymptotically constant model overhead. It is also attack-exhaustive by construction, mean-
ing that it can automatically and mechanically extract all possible economic attacks on users’
cryptocurrency across modeled contracts.

Thanks to these properties, CFF can support multiple goals: economic security analysis of
contracts by developers, analysis of DeFi trading risks by users, fees UX, and optimization of
arbitrage opportunities by bots or miners. Because CFF offers composability, it can support
these goals with reasoning over any desired set of potentially interacting smart contract models.

We instantiate CFF as an executable model for Ethereum contracts that incorporates a
state-of-the-art deductive verifier. Building on previous work, we introduce extractable value
(EV), a new formal notion of economic security in composed DeFi contracts that is both a basis
for CFF and of general interest.

We construct modular, human-readable, composable CFF models of four popular, deployed
DeFi protocols in Ethereum: Uniswap, Uniswap V2, Sushiswap, and MakerDAO, representing a
combined 24 billion USD in value as of March 2022. We use these models along with some other
common models such as flash loans, airdrops and voting to show experimentally that CFF is
practical and can drive useful, data-based EV-based insights from real world transaction activity.
Without any explicitly programmed attack strategies, CFF uncovers on average an expected $56
million of EV per month in the recent past.

A preliminary version of this paper appears in the proceedings of IEEE S&P 2023. This is the full version.

∗The first three authors contributed equally to this work.

1

ar
X

iv
:2

10
9.

04
34

7v
2

 [
cs

.C
R

]
 1

8
M

ay
 2

02
3

Contents

1 Introduction 4

2 Background and Related Work 7
2.1 Blockchain and Smart Contracts . 7
2.2 Decentralized Finance . 7
2.3 Formal Verification Tools . 8

3 Clockwork Finance Formalism 9
3.1 Decentralized Finance Instruments . 12

4 DeFi Composability 15
4.1 Characteristics of Contract Composition . 16
4.2 Uniswap as a Price Oracle . 17
4.3 Composition of multiple AMMs . 18
4.4 MEV Bribery Contracts . 19
4.5 Remarks on Composability . 20

5 Clockwork Exploration in K 20
5.1 Scaling Formal Verification for CFF . 21
5.2 Design and Implementation . 22
5.3 Equivalence and Over-Approximation in CFF models 23
5.4 CFF Uniswap Model . 26

6 Experimental Evaluation 27
6.1 Execution Validation and Performance Experiments 28
6.2 Mechanized Proofs and Symbolic Invariants . 29
6.3 AMM Experiments . 30
6.4 Composability Experiments . 34
6.5 Other Notable Attacks . 35

7 Conclusion 36

A DeFi Exploits Background 39
A.1 Case Study on bZx attacks . 40

B Generalized MEV and Composability Definitions 41

C CFF Details 42
C.1 Why K? . 42
C.2 Writing a CFF Model . 42
C.3 Refinements to the Abstract Model . 43

C.3.1 AMM Refinements . 43
C.3.2 MakerDAO Refinements and Liquidation Auction 43

C.4 Mechanized Proofs . 44
C.5 Bounding the MEV for AMMs . 44

2

C.6 MEV Deep Dive . 45

3

1 Introduction

The innovation of smart contracts has resulted in an explosion of decentralized applications on
blockchains. Abstractly, smart contracts are pieces of code that run on blockchain platforms, such
as Ethereum. They support rich (even Turing-complete) semantics, can trade in the underlying
cryptocurrency, and can directly manipulate blockchain state. While early blockchains were built
primarily to support currency transfer, newer ones with smart contracts have enabled a wide range
of sophisticated and novel decentralized applications.

One particularly exciting area where smart contracts have been influential is decentralized fi-
nance (or DeFi), a general term for financial instruments built on top of public decentralized
blockchains. DeFi contracts have realized a number of financial mechanisms and instruments (e.g.,
automated market makers [14], atomic swaps [34], and flash loans [41]) that cannot be replicated
with fiat or real world assets, and have no analog in traditional financial systems. These innova-
tions usually take advantage of two distinctive properties of smart contracts. These are atomicity,
which means (potential) execution of multi-step transactions in an all-or-nothing manner, and
determinism, meaning execution of state transitions without randomness and thus a unique trans-
action outcome for a given blockchain state. Smart contracts can also intercommunicate on-chain,
which has led to DeFi instruments that can interoperate and compose to achieve functionality that
transcends their independent functionalities.

Recent years, however, have seen a plethora of high-profile attacks on DeFi contracts (see,
e.g., [16] for a recent survey), with attackers stealing billions in the aggregate. These attacks
are primarily financial in nature and not pure software exploits; they leverage complex financial
interactions among multiple DeFi contracts whose composition is poorly understood. Existing
notions of software security and traditional bug-finding tools are insufficient to reason about or
discover such attacks.

A range of literature [22, 23], has attempted to apply formal verification techniques to the study
of DeFi security. These works, though, have typically been used to check for attack heuristics [50]
that represent conventional software bugs in smart contracts or to validate formal security prop-
erties [28, 37] akin to those in standard software verification tools. More recently, some work [51]
has applied formal verification tools to the economic security of DeFi contracts, quantifying such
security by identifying optimum arbitrage strategies. While an important initial step, this work
has focused on predetermined, known attack strategies, and lacks the generality to discover new
economic attacks, rule out classes of attacks, or provide upper bounds on the exploitable value of
DeFi contracts.

Clockwork Finance. Motivated by the limited formal exploration of the question of DeFi con-
tracts’ economic security, in this paper we present Clockwork Finance1 (CF), an approach to un-
derstanding the economic security properties of DeFi smart contracts and their composition. CF
addresses the inherently economic nature of DeFi security properties by codifying the use of formal
verification techniques to reason about the profit extractable from the system by a participant,
rather than in terms of more traditional descriptions of software bugs as error states. CF relies

1Our name comes from the Enlightenment notion of the cosmos as a clock, i.e., a fully deterministic and predictable
machine, like the smart contract systems we consider. The Wikipedia definition of clockwork universe [1] notes: “In
the history of science, the clockwork universe compares the universe to a mechanical clock ... making every aspect of
the machine predictable.”

4

on, and we introduce in this paper, the first formal definition for the economic security of com-
posed smart contracts, which we call extractable value (EV). EV generalizes miner-extractable value
(MEV)—a metric defined in [19] to study DeFi protocol impact on consensus security.2

Clockwork Finance Framework (CFF). We realize CF in the form of a powerful mechanized
tool that we call the Clockwork Finance Framework (CFF). To use CFF, a user wishing to analyze
the economic security of a contract creates or reuses an existing formal model of the contract, as
well as models for potentially composed contracts. CFF, together with the models we provide,
offers three key functional properties:

• Contract completeness: CFF is contract complete in the sense that it can model DeFi (and
other) contracts, such as those in Ethereum, with equivalent execution complexity to the
native platform. That is, for all possible transactions (inputs), executing the formal CFF
model of a contract requires time O(1) overhead over EVM/native execution time. CFF
introduces no execution blow-up or time penalty for the execution of any transaction sequence,
even for complex compositions of contracts. CFF also has equal expressive power as the
contract platform to which it’s applied—again, such as Ethereum.

• Constant model overhead: The models we provide feature at most a (small) constant-size
increase in the size (number of distinct semantic paths) of the model compared to the target
contract. Oftentimes, with path pruning, our specialized models are even substantially smaller
than the smart contract code being modeled. We provide a general approach for achieving this
property for new CFF models. We discuss this approach and property in detail in Section 5.3.

• Attack-exhaustive by construction: CFF can mechanically reason about the full space of pos-
sible state transitions for the given set of transactions and models. CFF can in principle—
given sufficient computation—identify any attack expressible in our definitions as a condition
of mempool transaction activity and target contract models. We ensure this by making sure
our provided models are over-approximations of the studied contracts, yielding false positives
in the attack search as a trade-off for efficiency, but not false negatives. We then prune these
false positives through concrete validation. We discuss this property in detail along with
sources of unsoundness in Section 5.2.

CFF also offers two important usability features:

• Modularity: CFF models are modular, meaning that once a model is realized for a particular
contract, it can be used for any CFF execution involving that contract. Modularity also
means that models are arbitrarily composable in CFF: any and all models in a library can be
invoked for a CFF analysis without customization.

• Human-readability: Although we do not show this experimentally, we show by example that
CFF models are typically easier for human users to read, understand, and reason about than
contract source code.

2CF can be extended to other metrics of economic security, e.g., arbitrageurs’ profits, profits of permissioned
actors, etc., but we leave extensions to future work.

5

Taken together, these properties and features make CFF highly versatile and able to support
a range of different uses. Designers of DeFi contracts can use CFF to reason about the economic
security of their contracts and do so, critically, while reasoning about interactions with other
contracts. Arbitrage bots and miners can use the same contract models to find profitable strategies
in real-time. Users can use CFF to reason about guarantees provided by the transactions they
execute in the network, including the value at risk of exploits by miners, bots, and other network
participants—which today is considerable in practice [19, 50]. With the rise of frontrunning-as-a-
service [8], users can also use CFF to set the right fees for their transactions, which taken together
with the value extractable from their transactions determines inclusion in the block. We explore
these various use cases in the paper.

CFF achieves more than mere measurement of economic security: It can prove bounds on the
economic security of contracts, i.e., the maximum amount adversaries can extract from them.
Furthermore, it can do so using only the formally specified models of interacting contracts. CFF
does not require manual coding of adversarial strategies.

Notably, this means that CFF can illuminate potential adversarial strategies even when they
were not previously exploited in the wild. This stands in contrast to existing work, where the focus
has often been on specific predefined strategies encoded manually [50], or which has required error-
prone effort to define an action-space manually beyond the mere contract code executing on the
system [51]. We believe that use of CFF would be a helpful part of the standard security assessment
process for smart contracts, alongside bug finding, auditing, and conventional formal verification.

Contributions. We summarize three concrete contributions and insights from our paper below:

• Security Definitions (Sections 3 and 4). We provide the first formal definitions for the
economic security of smart contracts and their composition and thus the first principled basis
for DeFi contract designers to reason about the economic security of their protocols. Our
definitions are general enough to model different types of players with different capabilities
(e.g., transaction reordering, censorship, inserting malicious transactions) for influencing the
system state.

• Clockwork Finance Framework (CFF) and Concrete Models (Sections 3 and 5). We
instantiate our definitions in our CFF tool in order to find arbitrage strategies and prove
bounds on the economic security of smart contracts. We model within CFF and analyze four
popular real-world contracts: Uniswap V1, Uniswap V2, SushiSwap, and MakerDAO. We
compare our results again direct on-chain Ethereum Virtual Machine execution, showing that
CFF execution of our models yields high-fidelity results.

• Practical Attacks and Formal Proofs (Section 6). Our CFF tool automatically discovers
the main attack patterns seen in practice, uncovering highly profitable attacks in an auto-
mated way for the four contracts we model. These attacks exploit the price slippage or the
lack of secure financial composition of DeFi contracts, and can be used by malicious miners (or
others) to profit at the expense of ordinary users. Our tool also yields formal mathematical
proofs for the upper bound on the value extractable from these attacks. By our conservative
estimate, the potential impact of these attacks frequently exceeds the Ethereum block reward
by two orders of magnitude (i.e., 10,000%). We also validate our attacks by simulating them

6

on an archive node and have contributed the implementation of our simulation method into
the latest public release of the Erigon client software.

CFF is the first smart-contract analytics tool to achieve contract completeness, constant model
overhead, and attack-exhaustiveness by construction, enabling it to bring new capabilities to ecosys-
tem participants. Complete CFF code is available at https://github.com/defi-formal/cff/.

2 Background and Related Work

Our work intersects with several well-studied areas which we briefly introduce here as background.

2.1 Blockchain and Smart Contracts

Smart contracts are executed in transactions, which, like ACID-style database transactions [46],
modify the state of a cryptocurrency system atomically (that is, either the entire transaction
executes or no component of the transaction executes). A transaction’s output and validity depends
on both the system’s state and the code being executed, which can read and respond to this state.
The state may also include user balances of tokens representing assets or of cryptocurrencies in the
underlying system. In the smart contract setting, the primary purpose of the underlying blockchain
is to order transactions. The execution of a transaction sequence is then deterministic, and can be
computed by all parties. The sequencing of transactions is done by actors known as miners (or
validators or sequencers, terms we use interchangeably).

A unique attribute of smart contract transactions that proves critical to decentralized finance
is their ability to throw an unrecoverable error, reverting any side-effects of a transaction until that
point and converting the transaction into a no-op. This allows actors to execute transactions in
smart contracts that are reverted if some operation fails to complete as expected or yield desired
profit.

2.2 Decentralized Finance

Decentralized Finance, or DeFi, is a general term for the ecosystem of financial products and pro-
tocols defined by smart contracts running on a blockchain. As of August 2021, the Ethereum DeFi
space contains roughly 80bn USD of locked capital in smart contracts [2]. DeFi protocols or instru-
ments have already been deployed for a wide range of use cases, and allow users to borrow, lend,
exchange, or trade assets on a blockchain. Abstractly, a key goal of DeFi is to create composable
and modular financial instruments that do not rely on a centralized issuing party. DeFi instruments
can thus interoperate programatically without human intervention or complex cooperation among
issuing entities. We provide a brief background on the two specific classes of DeFi instruments
featured in this work.

Lending contracts. Some DeFi contracts lend a certain cryptocurrency (such as DAI in the
Maker protocol [32]) to a user, with another user-supplied cryptocurrency (such as ETH) held by
the contract as collateral. If the value of the collateral falls below a system-defined threshold, the
financial instrument can automatically foreclose on the collateral to repay the loan without the
cooperation of the borrower. This automated loan guarantee mitigates risk in a way attractive to

7

https://github.com/defi-formal/cff/

lenders. Lending contracts can also underlie “stablecoin” protocols, which support tokens pegged
to real-world currencies such as the U.S. dollar (e.g., as in the Maker protocol).

Decentralized exchanges. Another example of a DeFi instrument is a decentralized exchange
(“DEX”). In a DEX, users can trade between different assets that have a digital representation
(e.g., on a blockchain). A DEX facilitates the exchange of assets without the risk that one party
in the exchange defaults or fails to execute their end of the asset swap. This guarantee protects
users from counterparty risk present in traditional exchanges, especially cryptocurrency exchanges,
which have often violated users’ trust assumptions by absconding with funds [33, 35] or incorrectly
executing user orders through technical errors and even fraud [45]. A special class of DEX called
Automated Market Maker (“AMM”) eliminates the need for a counterparty to execute a swap.
An AMM (like Uniswap or Sushiswap) maintains reserves of liquidity providers’ assets and allows
swaps with a user’s assets at programatically self adjusting prices.

Miner extractable value. A notion called MEV, or miner-extractable value, introduced in [19],
measures the extent to which miners can capture value from users through strategic placement
and/or ordering of transactions. Miners have the power to dictate the inclusion and ordering of
mempool transaction in blocks. (Thus MEV is a superset of the front-running/arbitrage profits
capturable by ordinary users or bots, because miners have strictly more power.) Previous studies
of MEV have performed transaction-level measurements of the outcome of specific strategies (e.g.,
sandwiching attacks in [50] and pure revenue trade composition in [19]). Other work has abstracted
away transaction-level dynamics, analyzing DeFi protocols such as AMMs using statistical modeling
and economic agent-based simulation [7].

2.3 Formal Verification Tools

Formal verification is the study of computer programs through mathematical models in well-defined
logics. It supports the proof of mathematical claims over the execution of programs, traditionally
to reason about program safety and correctness. Formal verification has been applied to traditional
financial systems in the past (like [38]) but as noted in Section 1, DeFi systems have novel properties
not present in these older systems. Most formal verification works for smart contracts (such as [6, 9,
23, 37, 50]) do not reason about economic security and hence cannot characterize financial exploits
in DeFi (i.e., they are not attack-exhaustive by construction). Recent work [51] has attempted to
apply formal verification to find profitable arbitrage strategies but does not provide formal proofs of
economic security. Moreover, the tool covers only certain types of manually encoded smart contract
actions, so that the tool lacks contract completeness and optimal model sizes.

Our work aims to establish a clear translation interface between existing program verification
tools and the unique security requirements of DeFi. We develop our models in the K Framework [43],
which provides a formal semantics engine for analyzing and proving properties of programs. K
allows developers to define models that are mathematically formal, machine-executable, and human-
readable.

By mathematically formal, we mean that K uses an underlying theory called “matching logic”
that allows claims expressed about programs in programming languages defined by K to be proven
formally. Such proofs have been used in industry to verify the practical security properties of smart
contracts that hold billions of dollars [25].

8

Figure 1: K Framework: In this figure from [43], the yellow box is a user-specified language model
(like that in Section 5); blue boxes are tools generated automatically by the framework.

By executable, we mean that K provides concurrent and non-deterministic rewrite semantics [18]
that allow for efficient execution of large programs in the developer-specified programming language
model. Figure 1 shows the high-level goals of the K Framework, which include deriving an inter-
preter and compiler for a specified language semantics, as well as model-checking tools.

By human-readable, we mean that K provides output in a form that can serve as a reference
for other mathematical models, as it uses only abstract and human-readable mathematical opera-
tions. Examples of human-readable K semantics include the Jello Paper for the Ethereum VM.3

Because DeFi contracts today lack standardized abstract models, we believe K’s abstract models
are especially suitable to DeFi and hope they can ease security analysis and specification.

K is one of a number of formal verification tools; other common tools include Coq, Isabelle,
etc. Indeed, several have been applied to model Ethereum-based systems in the past [6, 9, 23]. We
refer the reader to [17, 18, 43] for details on the mathematical and formal foundations of K. We
emphasize that our MEV-based secure composability definitions and general results are not specific
to K.

3 Clockwork Finance Formalism

We introduce our formalism for Clockwork Finance in this section. It underpins the definition of ex-
tractable value (EV) we introduce in this paper. Our contract composability definitions in Section 4
are based in turn on that of EV. We let λ throughout denote the system security parameter.

Accounts and balances. We use A to denote the space of all possible accounts. For example,
in Ethereum, accounts represent public key identifiers and are 160-bit strings (in other words,
A = {0, 1}160). We define two functions, balance: A × T → Z and data: A → {0, 1}d (where d is
poly(λ)), that map an account to its current balance (for a given token T) and its associated data
(e.g., storage trie in Ethereum) respectively. For a ∈ A, as shorthand, we let balance(a) denote the

3The “Jello Paper” (https://jellopaper.org/), based on [22], reimplements the original Ethereum yellow pa-
per [47] in a machine executable, mathematically formal manner and can generate an Ethereum interpreter and
contract proofs.

9

https://jellopaper.org/

balance of all tokens held in a and balance(a)[T] denote the account balance of token T. We use
balance(a)[0] denote the balance of the primary token (e.g., ETH in Ethereum4).

We define the current system state mapping (or simply state) s as a combination of the account
balance and data; that is, for an account a, s(a) = (balance(a), data(a)). We use S to denote the
space of all state mappings.

Smart contracts. As smart contracts in the system are globally accessible, we model them
within the global state through the special 0 account. We let C(s) denote the set of contracts in
state s of the system, which may change as new contracts are added. We use balance(C, s) and
data(C, s) to denote the balance of tokens and the data (e.g., contract state and code) associated
with a contract C in state s respectively.

Transactions. Transactions are polynomial-sized (in the security parameter) strings constructed
by some player that are executed by the system and can change the system state. Abstractly, a
transaction tx can be represented by its action: a function from S to S∪{⊥} transforms the current
state mapping into a new state mapping. We denote this action function by action(tx). We say
that a transaction tx is valid in state s if action(tx)(s) 6= ⊥ and use Ts to denote the set of all valid
transactions for state s. Our formalism is general enough to also allow transactions that add smart
contracts to the system or interact with existing ones.

Blocks. We define a block B = [tx1, . . . , txl] to be an ordered list of transactions. We disregard
block contents regarding consensus mechanics, e.g., nonce, blockhash, Merkle root which are not
relevant for our framework. Of the block metadata, we only model the block number, denoted by
num(B). The action of a block can now be defined as the result of the action of the sequence of
transactions it contains. We use action(B)(s) to denote the state resulting from the action of B on
starting state s. That is, action(B)(s) = action(txl)(sl−1) where s0 = s and si = action(txi)(si−1).
A block is said to be valid if all of its transactions are valid w.r.t. their input state (i.e., the state
resulting from executing prior transactions sequentially).

We can analogously define the action of any sequence of transactions (even spanning multiple
blocks)—a concept useful for analyzing reordering across blocks.

Network actors and mempools. Let P denote the (unbounded) set of players in our system,
and P ∈ P denote a specific player. We use Ts to denote the global set of all valid transactions for
state s, but note that not all transactions can be validly generated by all players. For a player P ∈ P,
we define a set TP,s ⊆ Ts as the transactions that can be validly created by P when the system is in
state s. Transactions created by players are included in a mempool for the current state. A player
P working as a miner to create a block may include any transactions currently in the mempool (i.e.,
transactions generated by other players) as well as any transactions in TP,s that P generates itself.
Note however, that the miner cannot change the contents of other players’ transactions, as they
are digitally signed. Abstractly, a “valid block” for a miner is any sequence of transactions that
the miner has the ability to include. We use validBlocks(P, s) to denote the set of all valid blocks

4We note that our usage of token to denote ETH is non-standard. While the ETH balance is stored differently
than the balance of other tokens in Ethereum, we choose to model them using the same balance function for a cleaner
(although equivalent) formalism.

10

that can be created by player P in state s if it could work as a miner. We use validBlocksk(P, s) to
denote the set of valid k length block sequences (B1, · · · , Bk) such that B1 ∈ validBlocks(P, s) and
the other Bi ∈ validBlocks(P, si−1) where s0 = s and sj = action(Bj , sj−1).

Extractable value. Equipped with our basic formalism, we now define extractable value (EV),
which intuitively represents the maximum value, expressed in terms of the primary token, that
can be extracted by a given player from a valid sequence of blocks that extends the current chain.
Formally, for a state s, and a set B of valid block sequences of length k, the EV for a player P with
a set of accounts AP is given by:

EV(P,B, s) = max
(B1,...,Bk)∈B

 ∑
a∈AP

balancek(a)[0]
−balance0(a)[0]

 .

where s0 = s = (balance0, data0), si = action(Bi)(si−1), and sk = (balancek, datak).
We also define miner-extractable value, which computes the maximum value that a miner can

extract in a state s. Consider a player P working as a miner. The k-MEV of P in state s can now
be defined as:

k-MEV(P, s) = EV(P, validBlocksk(P, s), s).

Note that the parameter k is the length by which the chain at state s is extended (including through
a chain-reorg) by P . The most common scenario will be extension by a single block for which we
use will simply use MEV as shorthand henceforth. k-MEV does not account for how difficult it is
for P to mine the k consecutive blocks, but it is sufficient for our purpose to understand the value
that can be extracted if a single miner could append multiple consecutive blocks. In Appendix B,
we define a weighted notion of miner-extractable-value that takes the probability of appending
multiple blocks into account. We call this “weighted MEV” or WMEV.

Remark 1 (Local vs global maximization). The astute reader may notice that our definitions (along
with our concrete CFF instantiation in Section 5) only considers the maximum value extractable in
some given state s. This can be considered analogous to finding a “local maximum” in the search
space, leaving open the possibility that a non-optimal EV computation in the current state may
lead to a higher combined EV when future states are also considered.

As a simple example, consider a transaction tx that gives a specific miner P a profit of 1 ETH
if it is mined when a contract C has state c1 and 10 ETH when the contract has state c2. Assume
that the state change from c1 to c2 can only be caused (irreversibly) by a different player P ′. Now,
if P mines a block when C has state c1, local MEV maximization would say that it should include
tx within its block. But if P ′ later causes the state change to c2 in a new transaction, then P would
have made 9 ETH more if it waited to include tx.

While it is theoretically possible to define a “global maximum” for EV, computing it requires
knowing the probability distribution of future transactions, i.e., how new transactions will be
created and ordered within blocks (including by other players). In other words, it requires perfect
knowledge of the strategy of all other players in the system, which is unrealistic.

We therefore focus in this work only on the maximum EV for a particular state. We emphasize
however, that our definition is exact w.r.t. this local value.

11

Remark 2 (MEV subsumes other attacks). We highlight that our notion of MEV subsumes not
only arbitrage but all attacks that can be carried out based on the current state of the system by
a profit-seeking player. Notably, this includes not only common strategies such as frontrunning,
backrunning, and sandwich attacks [50], but also attacks with significant complexity observed in
the wild, such as [12, 39].

A common theme within these complex attacks in particular has been to use flash loans to
borrow a significant amount of some token(s) and use this capital to extract profit by violating an
implicit assumption in another contract (e.g., the valuation of a pool or token), before returning
the loan. Such attacks can be explored from the current state without requiring additional state
changes from other players, thereby allowing for our local computation of extractable value. We
further note that since a miner is in a strictly more privileged position than any other permissionless
player in the system, these strategies are exploitable by a miner. Moreover, in any competitive race
to extract these opportunities, the miner will ultimately have the option to capture the resulting
revenue. This provides intuition for why MEV is more general than arbitrage or attacks.

We include a concrete example of such a flash-loan based attack within CFF in Section 6.5.
Since we focus on economic security, we consider only profit-seeking players and our definition

of MEV therefore does not capture attacks that exploit a vulnerability but do not necessarily result
in financial gain. Such attacks are considered traditional exploits, not economic ones.

3.1 Decentralized Finance Instruments

DeFi instruments. We define DeFi instruments quite broadly, as smart contracts that interact
with tokens in some way other than through transaction fees. We provide three concrete examples
of DeFi instruments, which we use in running examples throughout the paper and as building
blocks to discuss properties at higher levels of abstraction.

In particular, we specify here: (1) A simplified Uniswap contract; (2) A simplified Maker
contract; and (3) A simple betting contract. We note that while we use simplified versions of
the original contracts, they are still useful as didactic tools and for analyzing the core semantic
properties underlying contract composition. Note, however, that our instantiations of the contracts
in the CFF (see Section 5) include the missing details, i.e., are complete and usable for real-world
data.

Uniswap contract. The Uniswap automated market maker contract [4] allows a player to exe-
cute exchanges between two tokens (usually ETH and another token), according to a market-driven
exchange rate. The contract assumes the role of the counterparty for such an exchange. Uniswap
uses an automated market maker formula, called the x × y = k formula or the constant product
formula. We discuss a simplified version here that does not deal with liquidity provisions, trans-
action fees, and rounding. Abstractly, for tokens X and Y, the number of coins x and y for these
tokens in the contract always satisfies the invariant x×y = k, where k is a constant. This equation
can be used to determine the exchange rate between X and Y. If ∆x coins of X are sold (to the
contract), ∆y coins of Y will be received (by the user) so as to satisfy:

x× y = (x+ ∆x)× (y −∆y).

Figure 2 shows the pseudocode for our simplified Uniswap contract C
(X,Y)
uniswap for the tokens X and

Y. It contains a function exchange() which allows a user to sell InAmount tokens of InToken

12

Contract C
(X,Y)
uniswap

function exchange(InToken, OutToken, InAmount):

if balance(acccaller)[InToken] ≥ InAmount then

x = balance(Cuniswap)[InToken]

y = balance(Cuniswap)[OutToken]

OutAmount = y − xy/(x + InAmount)

balance(acccaller)[InToken] −= InAmount

balance(acccaller)[OutToken] += OutAmount

balance(Cuniswap)[InToken] += InAmount

balance(Cuniswap)[OutToken] −= OutAmount

else Output ⊥

Figure 2: Simplified abstract Uniswap contract

to the contract in exchange for OutToken tokens where (InToken,OutToken) ∈ {(X,Y), (Y,X)}.
The number of OutToken tokens received by the user is given by the x × y = k market maker
formula.

Maker contract. The Maker protocol allows users to generate and redeem the collateral-backed
“stablecoin” Dai through Collateralized Debt Positions (CDPs). Users can take out a loan in Dai
by depositing the required amount of an approved cryptocurrency (e.g., ETH) as collateral, and
can pay back the loan in Dai to free up their collateral. If a user’s collateral value relative to their
debt falls below a certain threshold called the “Liquidation Ratio” (> 1), then their collateral is
auctioned off to other users in order to close the debt position. Maker uses a set of external feeds
as price oracles to determine the value of the collateral. A separate governance mechanism is used
to determine parameters like the Liquidation Ratio, stability fees (interest charged for the loan),
etc., and also to approve external price oracle feeds and valid collateral types. We consider here a
simplified version of Maker’s single-collateral CDP contract that does not model stability fees, or

liquidation penalties. The contract C
(X,Y)
maker allows users to take out (or pay back) loans denominated

in token X by depositing (or withdrawing) the appropriate collateral in token Y, and allows for
liquidation as soon as the debt-to-collateral ratio drops below the Liquidation Ratio. The contract
is detailed in Figure 3.

It should be noted that the amount of collateral liquidated and received by the liquidator as
well as the debt (in Dai) paid off by the liquidator in exchange for the collateral depends on the
outcome of a 2-phase auction. If the auction is perfectly efficient, the winning bidder pays off an
equivalent amount of debt for receiving the offered collateral. On the other hand, when the auction
is inefficient due to system congestion, collusion, transaction censoring, etc., the winning bidder
can receive the entire collateral on offer without paying off an equivalent amount of debt. In our

simplified Contract C
(X,Y)
maker , we assume that liquidation is perfectly efficient.

Betting contract. To better understand composition failures, we introduce a simple betting
contract and study its interaction with the previous contracts. Abstractly, the betting contract
allows a user to place a bet against the contract on a future token exchange rate as determined by

13

Contract C
(X,Y)
maker

threshold = 1.5; collateral = {}; debt = {};

function deposit collateral(qty) :

if balance(acccaller)[Y] ≥ qty then

balance(acccaller)[Y] −= qty

balance(Cmaker)[Y] += qty

collateral[caller] += qty

function deposit loan(qty) :

if balance(acccaller)[X] ≥ qty and debt[caller] ≥ qty then

balance(acccaller)[X] −= qty

debt[caller] −= qty

function withdraw collateral(qty) :

if collateral[caller] ≥ qty and getprice(Y,X) ∗ (collateral[caller] − qty) − threshold ∗ debt[caller] ≥ 0

then

balance(acccaller)[Y] += qty

balance(Cmaker)[Y] −= qty

collateral[caller] −= qty

function withdraw loan(qty) :

if getprice(Y,X) ∗ collateral[caller]− threshold ∗ (debt[caller] + qty) ≥ 0 then

balance(acccaller)[X] += qty

debt[caller] += qty

function liquidate(acc) :

if getprice(Y,X) ∗ collateral[acc]− threshold ∗ debt[acc] < 0 then

balance(acccaller)[X] −= debt[acc]

balance(acccaller)[Y] += debt[acc]/getprice(Y,X)

balance(Cmaker)[Y] −= debt[acc]/getprice(Y,X)

debt(acc) = 0

collateral[acc] −= debt[acc]/getprice(Y,X)

function getprice(Y,X) :

return
balance(Cuniswap)[X]

balance(Cuniswap)[Y]

Figure 3: Maker contract

using Uniswap as a price oracle. By price oracle, we mean that the exchange rate between tokens
as determined by the Uniswap contract is used to drive decisions in another contract.

In Figure 4, we specify the contract CX
pricebet that takes bets on the relative future price of token

X to ETH. Specifically, suppose that CX
pricebet is initialized with a deposit of 100 ETH tokens. A

14

Contract CX
pricebet

hasBet = false; player = ⊥
// Contract also initialized with 100 ETH tokens when created.

function bet():

if (hasBet = false) and balance(acccaller)[ETH] ≥ 100 then

balance(acccaller)[ETH] −= 100

balance(Cpricebet)[ETH] += 100

hasBet = true; player = caller

else Output ⊥

function getreward():

if (hasBet = true) and
balance(C

(X,ETH)
uniswap)[ETH]

balance(C
(X,ETH)
uniswap)[X]

> 1 and (player = caller) and (current time is at most t)

then

balance(acccaller)[ETH] += 200

balance(Cpricebet)[ETH] −= 200

else Output ⊥

Figure 4: Betting Contract Cpricebet

user Alice can now call bet() and deposit 100 of her own ETH tokens to take a position against

the contract. If at some point before the expiration time t, the Uniswap contract C
(X,ETH)
uniswap contains

more ETH tokens than X tokens, (i.e., the Uniswap contract values X more than ETH), Alice can
call getreward() to claim 200 ETH from the contract, which includes her initial 100 ETH bet,
along with her 100 ETH reward. Otherwise, Alice loses her initial bet.

For simplicity, our contract only contains a single bet, but it is straightforward to design similar
contracts with more restrictions and/or functionalities (e.g., allowing another user to play the
counterparty in the bet).

4 DeFi Composability

Smart contracts don’t exist in isolation. A natural question, therefore, is when contracts “compose
securely.” Abstractly, for a particular notion of security, does the security of a contract C1 change
when another contract C2 is added to the system? In this paper, since our primary motivation is to
analyze DeFi instruments, we focus on an economic notion of composable security. In particular,
we look at how the extractable value of the system changes when new contracts are added to it.
The economic composability of an existing DeFi instrument C1 w.r.t. C2 now pertains to the added
monetary value that can be extracted if C2 is introduced into the system. That is, C1 is composable
w.r.t. C2 if adding C2 to the system does not give an adversary significantly higher extraction gains.
For brevity, throughout this paper, we let composability refer to this specific notion, but note that
it is orthogonal to previously considered notions (in, e.g., [27, 31]).

Ideally, we want contracts to be “robust” enough to compose securely with all other contracts.

15

Unfortunately, this may be too strong a notion in practice. We thus parameterize our definitions
to allow restricted or partial composability. Definition 1 defines the simplest notion of contract
composability.

Definition 1 (Defi Composability). Consider state s and player P . A DeFi instrument C ′ is
ε-composable under (P, s) if

MEV(P, s′) ≤ (1 + ε) MEV(P, s).

Here s′ is the state resulting from executing a transaction that adds the contract C ′ to s (no-op
if C ′ already exists). Although the composability of C ′ pertains to all contracts in C(s), when
looking at the specific interaction with a C ∈ C(s), we may also write that C ′ is ε-composable with
(C,P, s).

In other words, allowing a player to interact with contract C ′ in a limited capacity (using at
most the tokens that the player controls in s) does not significantly increase the profit the player
can extract form the system. Note that Definition 1 can easily be extended to consider several
states and or players.

4.1 Characteristics of Contract Composition

We find that DeFi instruments that are secure under composition according to Definition 1 are
surprisingly uncommon, especially when two instruments depend on each other (e.g., one contract
using the other as a price oracle). Intuitively, manipulating one contract can change the execution
path of the other contract. In this section, we analyze the composition among the contracts
(Cuniswap, Cpricebet, and Cmaker) introduced in Section 3.1 to highlight interesting characteristics
that can arise from smart contract composition. Note that for this simplified, didactic analysis, we
do not make use of our CFF tool. We summarize our observed characteristics below.

Characteristic 1. Composability is state dependent—contracts may be ε-composable in state s
but not in another state s′.

Characteristic 2. Composability depends on the actions allowed for a player. For instance,
contracts may be composable if only transaction reordering is allowed but not if the creation of
new transactions is allowed as well.

Characteristic 3. A contract may not be composable with another instance of itself.

Characteristic 4. It is often possible to introduce adversarial contracts that break composabil-
ity with minimal resources. Thus it is important to consider composability not just of existing
contracts, but also over such adversarial contracts.

To provide intuition for these properties, we will analyze the following contract compositions.
Section 4.2 considers the use of Cuniswap as a price oracle for either Cpricebet or Cmaker. Section 4.3
analyzes the composition between multiple independent instances of Cuniswap. Section 4.4introduces
a new bribery contract that can be used to inject non-composability into the system.

16

4.2 Uniswap as a Price Oracle

Example 1 (Cuniswap as a price oracle for Cpricebet). Consider a simplified Uniswap contract
(Cuniswap) that exchanges the tokens BBT and ETH, and a betting contract (Cpricebet) that uses it
as a price oracle.

In particular, consider a system state s such that C(s) = {Cuniswap} (or alternatively C(s)
contains other contracts that do not affect the composability). Suppose that in state s, Cuniswap

contains b BBT tokens and e ETH tokens such that b > e. To denote the Uniswap transactions
contained in the mempool in state s:

• Let TB→E be the set of transactions that sell BBT tokens to the contract in exchange for
ETH tokens. Suppose the total number of BBT tokens transacted is b′.

• Let TE→B be the set of transactions that sell ETH to the contract in exchange for BBT
tokens. Suppose that the total number of ETH transacted is e′.

For a player P , let pe and pb be the number of ETH and BBT tokens held by P in the state s
that are not within pending transactions in the mempool. Note that P can use transactions from
other accounts within the mempool as well as any transactions it can create with its own capital
to create a block. Note that even if P does not have the hash power to mine blocks, it can pay
some other miner to order transactions according to its preference. Let s′ be the state resulting
from adding Cpricebet to state s.

Composability is state dependent. It is easy to see that contracts that are independent of each
other and provide orthogonal functionalities should compose securely in all states. In most real-
world cases, however, we want to analyze the composability of contracts that are not independent
and may in fact depend on each other’s state. In such situations, whether two contracts compose
securely will almost always depend on the characteristics of the current system state.

We use Example 1 to provide intuition to this observation. Specifically, we show that Cuniswap

and Cpricebet are composable in states with a small number of available tokens, while in other states,
an adversary can extract more MEV from the composition. Suppose that we define the number of
liquid tokens in the Uniswap contract as follows: For player P and state s, we say that there are
lb = lb(P, s) = b′ + pb liquid BBT tokens and le = le(P, s) = e′ + pe liquid ETH tokens. We will
now show how composability can be affected by the number of liquid tokens in the current state.

a) Composability in states with a small number of liquid tokens. When le ≤ b − e, i.e., the
number of liquid tokens is sufficiently small, Cuniswap and Cpricebet do in fact compose securely.
This is because regardless of what transactions P creates or how it orders existing transactions in
the transaction pool, at no point in the execution of a created block can the number of ETH tokens
in Cuniswap exceed the number of BBT tokens in it. In other words, P cannot maliciously create
a short term fluctuation in the exchange rate in order to claim a reward from Cpricebet. Note that
while P can still cause the exchange rate to be manipulated even if it cannot cause the number
of ETH tokens to exceed the number of BBT tokens, since we are focusing only on composability
with Cpricebet here specifically, P will not be able to claim the reward from Cpricebet.

Consequently, any value that P can extract in state s′ (obtained by adding Cpricebet to state
s) can also be extracted in state s. Equivalently, MEV(P, s′) = MEV(P, s). We conclude that
Cuniswap is 0-composable under (Cpricebet, P, s).

17

b) Non-composability in other states. Suppose now that our low liquidity assumption was no
longer valid. In particular, we will consider states s such that e′ > b−e, and pe ≥ 100. At least 100
ETH is necessary in our example to actually take a bet against the betting contract. To extract
more value in state s, a malicious miner P can proceed as follows:

1) Insert a transaction that takes a bet against the contract Cpricebet by depositing 100 ETH.

2) Order all transactions in the set TE→B . This raises the amount of ETH in Cuniswap temporarily.

3) Insert a transaction (a call to getreward()) to claim the reward of 100 ETH (in addition to its
original bet) from Cpricebet due to the short term price fluctuation in Cuniswap.

4) Order the transactions in TB→E to buy ETH from Cuniswap.

Abstractly, by ordering all transactions that sell ETH to Cuniswap first, P can create a short-
term volatility in the exchange rate between ETH and BBT, allowing P to claim the reward from
Cpricebet. When the block created by P executes, since all transactions that add ETH to Cuniswap

are ordered first, there will be more ETH tokens than BBT tokens by the time the P ’s transaction
to claim the reward from Cpricebet executes. This sudden change in the amount of ETH is only
temporary as the remaining transactions in the block will reduce the number of ETH tokens.
Note that this reordering attack is still possible in the case that b′ ≈ e′ and the natural or “fair”
transaction order would not cause such a large change in the exchange rate during normal execution.
Yet, the malicious miner P was able to profit simply by reordering user transactions.

Composability depends on the allowed actions. In the context of Example 1, if P cannot
insert its own transactions for Cuniswap, then composability holds even if pe + e′ − 100 > b− e > e′

and pe ≥ 100, since P cannot create a large enough price fluctuation simply from the transactions in
the mempool. However, if P has the ability to insert its own transactions, it can use the previously
mentioned procedure to extract the reward from Cpricebet. P can also insert its transactions before
and after user transactions to take advantage of the short term slippage in the Uniswap price.
This strategy resembles the sandwiching attack described in [50], which combines frontrunning and
backrunning. It also allows P to capitalize on the price differential between limit orders and market
orders.

Uniswap as a price oracle for Maker. Similar problems would arise if Uniswap is used as a
price oracle in the Maker contract. By reordering Uniswap transactions, and thereby manipulating
the exchange rate, a miner can cause the value of a user’s collateral to fall below the acceptable
threshold, and trigger a liquidation event. Furthermore, the miner can buy the user’s collateral
tokens in the liquidation event, and later sell them for a profit when the exchange price returns to
normal.

4.3 Composition of multiple AMMs

Perhaps surprisingly, we find that even multiple contracts deployed with the same code need not
be composable with each other. An interesting example of this non-composability is seen when
two automated market makers (AMM) contracts co-exist in a system. Example 2 highlights this
observation.

18

Example 2. Consider state s containing two instances, Cuniswap and C∗uniswap, of the Uniswap
contract that exchange between the same two tokens (BBT and ETH). Let b, e be the number
of BBT and ETH tokens respectively in Cuniswap, and let b∗, e∗ be the number of BBT and ETH
tokens respectively in C∗uniswap.

Lemma 2. If be∗ 6= b∗e, then there exists a δ > 0 such that for any 0 < α < δ, a miner with at
least α ETH (equiv. BBT) tokens can achieve an end balance of more than α ETH (equiv. BBT)
tokens by only interacting with Cuniswap and C∗uniswap.

Proof. We prove for ETH tokens but note that the proof is exactly the same for BBT tokens. Let
U = {Cuniswap, C

∗
uniswap}. Consider the following sequence of transactions: (1) Deposit ETH in

contract A ∈ U to retrieve tokens of BBT; (2) Deposit the BBT tokens in A′ ∈ U \A to get tokens
of ETH. We will show that when be∗ 6= b∗e, there exists a δ > 0 such that depositing α (0 < α < δ)
tokens in step (1) results in more than α tokens in step (2).

First, suppose that α0 ETH tokens are deposited in Cuniswap in the first step. This results in
bα0
e+α0

BBT tokens, which when deposited in C∗uniswap gives back be∗α0
b∗e+b∗α0+bα0

ETH tokens. Similarly,

if α0 ETH tokens were first deposited in C ′uniswap, then the user would end up with b∗eα0
be∗+bα0+b∗α0

ETH tokens. Now, we consider the following cases:
Case (1) be∗ − b∗e > 0. Let δ = be∗−b∗e

b+b∗ . Therefore, b∗e + bα + b∗α < be∗ which gives

α < be∗α
b∗e+bα+b∗α . In other words, depositing first in Cuniswap and then in C∗uniswap yields more ETH

tokens than the initial deposit.
Case (2) be∗ − b∗e < 0. This is analogous to the first case. Let δ = b∗e−be∗

b+b∗ . Therefore,

be∗ + bα + b∗α < b∗e which gives α < b∗eα
be∗+bα+b∗α . In other words, depositing first in C∗uniswap and

then in Cuniswap yields more ETH than the initial deposit.

4.4 MEV Bribery Contracts

New contracts can be introduced into the system specifically with the goal of breaking composability.
One such example is that of bribery contracts. The existence of MEV in a system can give rise to
new bribery-based incentives for miners to choose the final transaction ordering. For instance, a
user could bribe a miner to give her transactions preferential treatment (e.g., a better exchange
rate for Uniswap transactions). Such bribes can be carried out securely through bribery contracts.
Consider the following simple example.

Example 3. A user U and a miner P enter into a bribery smart contract with a payout as follows:
P submits two valid transaction orderings, O1 and O2, such that O1 is preferred by U ; if O1 is the
finalized order, P receives a payout proportional to the difference to the user U in value of O1 and
O2.

Intuitively, U is “bribing” the miner to provide U with a more profitable transaction ordering.
To maximize its profit, a miner may potentially enter into multiple such bribery contracts with
other users, and pick the best one to complete. Bribery contracts could also pose a threat to
the long term stability of the system; given enough incentive, it could be worthwhile to mine a
consensus block on a stale chain, thereby attempting to rewrite blockchain history. This is similar
to time-bandit attacks, which as observed in [19] can be highly detrimental for current blockchain
consensus protocols.

19

Smart Contract Code

Smart Contract Model(s)

 (Deductive Verifier)

Input --

(Symbolic) state

and transactions

Composability proof Counterexample
Strategies

Validation by
simulating on Erigon

Automatic

Manual

Codified

CF Formalism EVM Semantics

CFF Language Model

kprove

Figure 5: CFF architecture

4.5 Remarks on Composability

We end with some remarks on our composition examples.

Takeaways for smart contract developers. Unfortunately, as our composition examples show,
the security of a DeFi smart contract may not always depend solely on the contract’s code; design
flaws in other contracts—even those deployed much later—may cause composability failures. This
is problematic for contract developers since it implies that security of their contracts may in fact
be out of their hands.

Remark on capital requirements. Several of our DeFi composability attacks in this section
require the miner to possess some initial capital to carry out malicious transaction reorderings
and extract MEV. Despite this, we note that in the real world, capital requirements will rarely be
barriers to exploiting the system, even for smaller players, particularly due to the availability of
flash loans.Flash loans are essentially risk-free loans that can be offered any time arbitrage or other
profitable system behavior can be executed atomically, which is often the case. Flash loans also
do not compose with contracts that were designed without flash loans; the attacks in [41] are an
example of this. Consequently, adding flash loans to any of our non-composability examples will
only exacerbate the impact of malicious transaction reordering.

5 Clockwork Exploration in K

Equipped with our formalism for reasoning about the security of DeFi instruments, we now discuss
how best to apply it to real-world contracts. To establish a formal methodology for DeFi security,
we instantiate our Clockwork Finance Framework (CFF) in the K framework for mechanized proofs.
Appendix C.1 elaborates on why we chose K.

20

We first describe challenges with formal verification and how we overcome them for CFF (Sec-
tion 5.1). We describe the design and implementation of CFF, with an emphasis on the soundness
and completeness properties in Section 5.2. We then discuss how our CFF executable models are
obtained and their properties in Section 5.3. Finally, we use the Uniswap contract (Figure 2) as an
example to describe our CFF executable models (Section 5.4).

5.1 Scaling Formal Verification for CFF

Unfortunately, simply applying formal verification tools out-of-the-box to our models turns out to
be impractical. To understand why, we need to step back and consider the number of paths from the
start of model execution to termination of execution that must be explored by any formal verification
tool, in an attempt to exhaustively prove a specific property holds in all possible executions. While
general sound formal verification techniques are known to be undecidable, in practice they usually
suffice for typical programs, where execution semantics are primarily linear. Branching conditions
(e.g., control-flow branches) generally cause an increase in the number of paths to explore. Here,
the number of paths that must be explored could be exponential in the number of branches in the
program.

However, in our setting, miners can choose any ordering of transactions (others’ transactions
plus their inserted transactions) when creating a block. This means that the number of unique
paths needed to fully explore the search space is O(t!) where t is the number of transactions to
which we apply our CFF. This is asymptotically and concretely more expensive than usual program
verification proofs, and consequently impractical for even a modest number of transactions. One
existing parallel in the literature is to semantics of concurrency (see e.g., [24]), in which many
possible interleavings must be reasoned about. Nonetheless, most such tools either work with a
small concurrency parameter, or do not attempt to exhaustively analyze the full state space of
interleavings. They attempt only to find plausible bugs based on observed behavior.

Search-space reduction. To make formal verification practical, we must first reduce the search
space to a tractable set of paths. We found that reasoning about all possible transaction orders in
the formal model directly results in a large amount of repeated computation as equivalent states
are explored (e.g., by re-ordering non-dependent transactions).

Therefore, we apply the following optimizations (both general and DeFi instrument specific)
to our analysis to reduce the number of paths by excluding semantically equivalent orderings.
First, transactions carry a per user serialization number (“nonce”) such that transactions that
are mined out of order are considered invalid. Thus, we consider orderings equivalent if for each
non-miner player, the longest consecutive (by nonce) subsequence of transactions is the same (since
transactions not belonging to these subsequences are invalid). Second, transactions that interact
with different contracts (such as swaps on different Uniswap pairs) are independent of each other.
They produce equivalent orderings if reordered relative to one another. Third, we allow for models
to incorporate application-specific optimizations. We do so, for example, for our AMM models.
The constant-product AMM function is provably path independent [14]. For example, if the miner
makes multiple sequential trades selling an asset, exploring their reorderings will have no effect.
This optimization cuts the work required by our tool by orders of magnitude, and allows CFF to
explore problem instances with larger number of transactions. Note that the above optimizations5

5We encode our optimizations in the run uniswapv2 experiments & the run mcd experiments files provided in

21

are all sound. While we would ideally like to avoid application-specific optimizations even if sound,
and our tool does support this, we found that they substantially improved performance. Similar
optimizations will likely be helpful for any MEV analysis.

5.2 Design and Implementation

Figure 5 shows the CFF architecture. The core of CFF is the language model whose syntax and
semantics are fed to the K framework to automatically generate the deductive verifier kprove along
with other tools for parsing, compiling, and symbolic execution of transactions. Note that because
of gas limits on the size of a block and computation done in a transaction, the semantics of our
language model are decidable. Due to [44], this implies that the deductive verifier we obtain is
sound and complete for any reachability property of our language model. Since we model the
problem of economic security as a reachability problem (of a state with certain MEV), CFF is
attack exhaustive for the transactions and contracts it is given. Any sources of unsoudness in our
verification come from our language model, which we now describe.

The first component of our language model defines the specific parameters for the MEV compu-
tation as per in the CF model (Section 3). It starts with defining a transaction type, block type, and
player types. A player of type “miner” can produce a block by deciding the order of the mempool
transactions and any inserted new transactions. Note that the miner cannot manipulate others’
transaction contents, as transactions are digitally signed by their creators. While our formalism
from Section 3 allows for arbitrary transaction insertions (including inserting transactions that
create new contracts!), our implementation, for tractability, only handles user-specified templates
of inserted transactions. These are template transactions because their calldata is allowed to have
symbolic parameters rather than concrete values. The lack of arbitrary transaction insertions in
our implementation is one source of unsoundness when CFF proves upper bounds on MEV as a
measure of economic security. Fortunately, this is not a theoretical limitation since limits on block
sizes in Ethereum and other blockchains also constrain the number and type of permissible inser-
tions. (e.g., a transaction cannot exceed the block size). Moreover, arbitrary transaction insertions
are observed only rarely in the wild, and incur high gas fees. Barring transaction insertions that
create a contract, given enough computing resources, CFF can be extended to reason about all
types of insertions by enumerating all possible interactions with the given contracts.

The second component of our language model defines the semantics of the smart contract code
and specific smart contract models. The K Framework has built-in semantics of basic arithmatic
and logical operations. We enrich it with definitions of currency transfers and smart contract stor-
age. These limited semantics are sufficient to express our smart contract models, and make the
verification much faster than incorporating full EVM semantics. We then manually translate the
smart contract code into CFF models written in K; we give details in Section 5.3. This needs to
be done only once for each contract. Note that our limited semantics of EVM and the way we
obtain our CFF models mean that any successful trace obtained in the actual smart contract can
be obtained in our CFF models (but not vice-versa). We elaborate on this in Section 5.3. As a
result, the proofs of economic security found by CFF on the smart contract models for the given
transactions also hold for the actual smart contracts (i.e., there are no false positives introduced
here). However, this over-approximation introduces false negatives, i.e., the counterexample strate-
gies (sequence of transaction) found by kprove may not all be valid on the actual smart contracts.

our Github repository.

22

1 Status: SUCCESS

2 Returns: msg.value * 997 * token_reserve / ((self.balance - msg.value) * 1000 + msg.value * 997)

3 Path condition: deadline >= block.timestamp /\ eth_sold > 0 /\ min_tokens > 0 /\ not(#status(130)

↪→ == 0) /\ self.balance - msg.value > 0 /\ token_reserve > 0 /\ (msg.value *Word 997) /Int

↪→ msg.value == 997 /\ (input_amount_with_fee *Word output_reserve) /Int input_amount_with_fee

↪→ == output_reserve /\ (input_reserve *Word 1000) /Int input_reserve == 1000 /\

↪→ not((input_reserve * 1000) + input_amount_with_fee < (input_reserve * 1000)) /\

↪→ not(tokens_bought < min_tokens) /\ not(#status(133) == 0) /\ not(#transferReturn(133) == 0)

1 Status: REVERT

2 Path condition: not(deadline >= block.timestamp and eth_sold > 0 and min_tokens > 0)

1 Address in TokenOut gets (997 *Int TradeAmount *Int USwapBalanceOut) /Int (1000 *Int

↪→ USwapBalanceIn +Int 997 *Int TradeAmount)

Figure 6: Two example paths from Uniswap EVM contract verification through symbolic execution
(above line, prior work [49]), and corresponding CFF model return value formula (below line,
uniswap.k).

To validate potential counterexample strategies, CFF simulates the sequence of transactions in
these strategies on an archive node at the appropriate block height. This validation step is fully
automatic and takes on average 39 milliseconds per counterexample with a standard deviation of
22 milliseconds.

We have contributed our implementation for simulating transactions at a given block height into
the latest public release of the Erigon (popular Ethereum client) software and is now accessible via
the eth callBundle JSON-RPC API.

The gap between our smart contract models and the actual corresponding smart contracts can
be closed by substituting the second component of our language model with KEVM [22]. There is a
tradeoff, however: the performance of CFF would degrade with use of KEVM. We leave exploration
of KEVM integration to future work. We also believe there is room for a wide range of hybrid
approaches, including randomized testing / fuzzing, symbolic execution, concolic testing [48], and
machine learning, to attempt to learn and optimize for this state transition model.

5.3 Equivalence and Over-Approximation in CFF models

We now discuss a general approach we used for creating our models. This is not the only way
to create CFF models, but is the most formal possible approach, allowing for a clear equivalence
between the EVM executing on-chain and the CFF model. The approach proceeds in three steps:

1. Path decomposition/verification (before CFF): Perform a path decomposition of the
target smart contract, a standard technique required for formal verification of smart contracts
in KEVM [22] (outside of CFF). For the highest possible assurance, developing a fully vali-
dated model requires some developer effort beyond developing the EVM code, but minimal
effort beyond developing a formal proof. Developing unvalidated models is possible, but in
our development of CFF we have instead started with a formal proof about the target EVM
code (see [49]) and built a CFF model from there.

23

2. Pruning/selection and refinement: Select all relevant paths in (1), prune reverting or
non-MEV-relevant paths (e.g., utility functions), and import these remaining paths into a
CFF model. This process can mainly be automated from (1), but some minimal developer
judgment on which paths to include can improve analysis speed.

3. Argument of equivalence: If any changes to the obtained path formulas are desired, e.g.,
variable renaming for readability, argue equivalence of the CFF model in (2) to the path
decomposition/formal EVM proof in (1) (see our example code for Uniswap equivalence).

We expand on each on these three steps below.

(1) Path decomposition. The first step is simply performing a standard complete symbolic
exploration of the EVM bytecode of the smart contract. This is a general pattern of smart contract
development that is not specific to our work. To prove a contract correct in the K framework,
K executes the EVM code against the KEVM semantics [22] on fully symbolic input and EVM
state, and decomposes all possible return values of the contract into a mathematical formula over
all possible inputs. This involves many possible paths, which represent symbolic branches through
the EVM contract code. A contract is said to be verified in K if desired security properties hold as
invariants on every such path. A formal specification of a contract’s behavior in K is equivalent to
a specification of its behavior on each possible path.

This path decomposition step is not mandatory (one can simply directly give a mathematical
specification as on the bottom of Figure 6 without decomposing EVM code), but it leads to high
assurance models by construction, and requires little developer effort beyond a formal proof (which
has independent value), so it is the technique we choose to describe.

This approach is standard for verifying high-assurance smart contracts. An ideal case study is
provided specifically for Uniswap in a report commissioned by Uniswap to demonstrate the security
of their contracts, described in [49]. We directly use the results published for the Uniswap EVM
contract by Runtime Verification Inc. of the process above to generate our CFF model of Uniswap.
We execute their proofs of correctness for Uniswap to extract all paths in the EVM code. One
such example path is shown in the upper box of Figure 6, for the tokenToEthInput function, which
swaps a token for ETH.

This generated path states that, if the listed path condition (Line 3) is met across input and
world state (where the variable names have been manually labeled in some cases by the author of
the formal proof, in this case Runtime Verification, Inc.), the return value of the EVM call (Line
2) will be successful and will output the formula listed. This formula contains variables that can
be sourced from the input or world state.

The box just above the horizontal line in Figure 6 is another path in which EVM execution
reverts when the input and world state meet different conditions.

(2) Pruning/selection and refinement. In our CFF model, we include a simplified variant of
the top path, shown below the line in Figure 6. We do not include the reverting bottom path, and
can simplify the resulting path conditions (our model has no concept of e.g. deadlines).

By choosing to omit all reverting paths, we are able to study the properties of interactions
between the compositions of non-reverting paths without reasoning about the complex branching
and path conditions that may lead to these reverts, simplifying our underlying queries to K (the

24

size of the Z3 [36] formula kprove queries on the backend is proportional to the complexity of the
models [44]).

Omitting reverts will never reduce the amount of MEV found by our search. The only conse-
quence will be that some attack we explore would revert in an actual execution, but will not in our
analysis. This can only add, not remove, MEV to each execution. We allow for initial discovery of
such executions through our automated tool, and filter them out through our automated validation
described in 5.2.

(3) Argument of equivalence. The final step is to argue that each path in our CFF model is
equivalent to a successful path generated by contract verification. There are two possibilities. One
can manually algebraically inspect the formulas, reasoning about equivalence on-paper. There is a
very direct argument in this case that the formulas are structurally the same by inspection, modulo
variable renaming.

For automatic equivalence, one can turn to unification, a standard technique for creating a map
of variable renamings in syntactically equivalent formulas, to create a substitution of variable names.
This can be automated to verify a large number of paths against automatically performed path de-
composition. We provide an example argument using unification [3] in the cff model equivalence

directory. This example shows that our Uniswap CFF model is equivalent to the deconstructed
paths from the Uniswap EVM code listed above it (arguing that the bottom and top of Figure 6
are equivalent).

Using the above three-step approach, as we have demonstrated for Uniswap, yields several
convenient properties of the resulting CFF models, which hold for all models we provide:

Over-approximation. Following this technique for model construction, any resulting model is
an over-approximation of the EVM bytecode: it models exactly all non-reverting paths on which
the underlying contract successfully executes a transaction, and avoids modeling code paths in
the contract bytecode or EVM-related semantic rules/details that do not affect relevant state or
balances.

Such a model will over-approximate attacks, yielding some attacks that do not actually work
on-chain because they may trigger an unmodeled reverting path (which we call false positives).
Because weeding out false positives is cheap and easily parallelizable, while reasoning about attacks
is expensive and scales with underlying code complexity, the less literal approach of simplifying our
model and filtering out reverting paths as needed allows us to explore a wider space of attacks than
use of an exact but more complex model.

Our techniques do not generate false negatives, or non-reverting paths that could have occurred
in practice but are not explorable by our search. This is because we maintain all non-reverting
paths in our models, and strictly relax the relevant path conditions, as we show by example for
Uniswap.

We say that under this relaxation—which allows for false positives but not false negatives—our
models are over-approximations of the underlying contracts.

Development overhead. Note that constructing the models according to the three-step strategy
we’ve described requires virtually no developer effort/overhead for a developer who has already
created a formal proof of contract correctness. Because formal verification is a popular technique

25

1 <k> exec(Address:ETHAddress in TokenIn:ETHAddress swaps TradeAmount:Int input for

↪→ TokenOut:ETHAddress) =>

2 AmountToSend = (TradeAmount *Int USwapBalanceOut) /Int (USwapBalanceIn +Int TradeAmount);

3 Address in TokenIn gets 0 -Int TradeAmount;

4 Address in TokenOut gets USwapBalanceOut -Int var(AmountToSend);

5 Uniswap in TokenIn gets TradeAmount;

6 Uniswap in TokenOut gets 0 -Int var(AmountToSend);

7 ...

8 </k>

9 <S> ... (Uniswap in TokenOut) |-> USwapBalanceOut (Uniswap in TokenIn) |-> USwapBalanceIn ... </S>

10 List => ListItem(Address in TokenIn swaps TradeAmount input for TokenOut)

Figure 7: Simplified Uniswap contract implemented in CFF. Ellipses match the rest of the program
state in each cell.

for high-assurance contracts, in many cases, robust CFF models can be extracted from existing
formal models with minimal additional developer effort. If developers do not want to formally
verify their contracts, their CFF models must be coded manually and may prove less secure, as
they will need to manually reason about or concretely validate the models’ correctness against an
EVM deployment (Section 6.1). Note that this practice is still supported by our framework: we
allow for reasoning about models that are not created using our three-step approach, or may be
different than the EVM code they represent, as this may be useful for creating new contracts,
perhaps before EVM code is even developed. Our intent is here instead to showcase the possibility
and process for developing high-assurance, useful models such as our Uniswap model.

Constant model overhead. If models are developed using the above technique of symbolic path
decomposition, we argue that our model size has a constant overhead compared to the corresponding
smart contracts. In our work, the model used for verification is only the set of paths we deem
relevant. Because we strictly remove paths and conditions from the verified EVM to create an over-
approximation, our models are by definition smaller in both number and complexity of semantic
rules than a complete contract model (the two relevant scaling metrics for formal language models).
While the exact number of paths removed depends on the target contract, this puts our approach
in contrast to approaches such as [51], which require, e.g., a path definition for each token pair,
and thus scales poorly in size compared to the EVM contract itself.

5.4 CFF Uniswap Model

Figure 7 shows an implementation (in K) of a snippet of our abstract Uniswap contract from
Figure 2, the same contract we developed above using path decomposition. This refines our pre-
sented abstract contract and formalism and transforms it into a computer-readable executable
model, capable of being symbolically and concretely reasoned about by the symbolic execution
engine and deductive verifier bundled with K.

A few key differences exist between our abstract contract and executable CFF models. The
first is that our executable CFF models contain an XML-like configuration consisting of cells, or
mathematical objects in the K Framework. The k, S, and B cells of our executable model are featured
in Figure 7. Recall that our model represents a state machine executing Uniswap transactions. The

26

k cell specifies the transactions left to execute in the model and not yet included in a block, and can
be viewed similarly to a program tape in a Turing-style execution machine. Note that execution of
these transactions by CFF takes different paths corresponding to different orderings (including the
original order in k cell) and censoring combinations of these transactions. The S cell represents the
space of state mapping S in CFF (Section 3), and stores a mapping of addresses to balances (state
entries). The B cell represents the prefix of the block that has been constructed thus far by CFF.
The model is consistent with our formalism by maintaining the invariant : S = action(B)(s0) where
s0 is the initial state. When no instructions are left to execute by CFF (empty k cell), the B cell
will represent a valid block. The final state and the contents of the valid block potentially vary for
different execution paths.

Another key difference is that our abstract contract has imperative semantics while K is fun-
damentally rewrite-based [18] using “A => B” as a special operator meaning “A rewrites to B”.
Lines 1-6 in Figure 7 correspond to one of the rewrite operators in our CFF Uniswap model. Line
1 in Figure 2 then corresponds to “A”, or the initial configuration of our model when this semantic
rule applies. This semantic rule describes execution when the next instruction to execute (first
transaction in the k cell, wrapped in an “exec” keyword) is a token swap on Uniswap for swapping
a symbolic amount TradeAmount of the input token denoted by symbol TokenIn for an output
token denoted by symbol TokenOut. This swap rewrites to (“=>”) a series of statements (Lines
2-6) that will execute one at a time with separate operational semantic rules in CFF. The ellipsis
in the k cell signifies the remaining transactions, in S cell signifies the rest of the state mapping,
and in the B cell signifies the prefix of the block constructed so far.

We leave further exploration of our executable models to the interested reader, and provide
more notes on K-specific keywords in the above model in Appendix C.2. We also describe some
refinements necessary for a model that behaves the same as deployed DeFi contracts and discuss
subtleties of modeling MakerDAO liquidations in Appendix C.3 .

6 Experimental Evaluation

Using our full CFF models (not the simplified ones from above), we ran several experiments on
data from Uniswap V1, Uniswap V2, SushiSwap, and MakerDAO, which we detail here. We aim
to experimentally address several key questions:

1. Are our CFF models accurate in reproducing the on-chain behavior of corresponding contracts?
How efficient is this execution?

2. Can our models yield mechanized proofs about the extent of security of DeFi contracts and
their composition while handling transaction reorderings and generic transaction insertions by
miners?

3. Is use of our CFF models economically sensible in uncovering DeFi exploits on-chain?

Experimental setup. We ran most of our experiments on a mid-range server, equipped with
an AMD EPYC 7401P 24-core server processor, 128GB of system memory, and a solid-state drive.
For our computations, only the result is written to disk, and therefore our code is primarily CPU-
intensive. We did not observe substantial memory overhead. For our parallelism experiments only,
we used an AWS cluster of c5 instances with 256 vCPUs unless specified otherwise.

27

Dataset collection. We used Google’s BigQuery Ethereum to download every swap and liquidity
event generated (until May 16, 2021) by Uniswap V1, Uniswap V2, and SushiSwap. These are
three Uniswap-like AMMs that see substantial volume and are relevant to our analyses. In total,
we collected 50,038,981 swaps, 2,317,917 liquidity addition events, and 844,709 liquidity removal
events traded for 39,329 token pairs. For each token pair, we created a chronological log of events.

For MakerDAO, we used BigQuery to download all the log events generated (until May 16,
2021) by its core smart contract6 which manipulates CDPs (“vaults”) and updates stability fees
and oracle prices. This data includes 322,771 CDP manipulation events (including 284 liquidations)
across 18,642 CDPs and 25 collateral types. For each collateral type, we created a chronological
log of all relevant events.

6.1 Execution Validation and Performance Experiments

We start with experiments to validate our CFF models with on-chain data and show the perfor-
mance of our CFF tool.

CFF model validation. We executed our CFF models on the collected data to ensure that our
framework computes the correct final state, i.e., actual on-chain state. For the data from the three
AMMs, we ran our executable semantics and inspected the resulting chain. We found that the
resulting chain state from our CFF models matches exactly the on-chain state.

We evaluated our CFF Maker model similarly. We found that the stability fees and final debt
and collateral values for each CDP before liquidation exactly match the chain state. Since we do
not model the liquidation auction mechanism, we do not expect the Maker model to accurately
derive the state after liquidation events. MEV reported in our experiments only depends on the
state before the first liquidation. The state after liquidation does not affect our results.

We provide scripts to download, process, and validate data for each protocol in the all-data sub-
folder of our repository. This validation mechanism highlights the importance of executable formal
semantics: execution is a key requirement for validating abstract formal models against real-world
data.

CFF performance and parallelism. We evaluate the performance for two types of functionali-
ties. First, for different UniswapV2 token pairs, we execute all corresponding on-chain transactions
that manipulate the state in the same order as they happened. This measures the execution time
of our model, or the time to derive the full on-chain state from the list of transactions. Figure 8
shows the time taken for our CFF to derive the state for different pairs as a function of the number
of transactions executed for the pair. K’s internal execution engine intrinsically gives roughly a
4x parallel speedup, which can be seen in the figure as a speedup of real/wall execution time over
the amount of total CPU time required to compute model state. These results, combined with
our model validation, answer our first experimental question. Our modeling execution engine is
sufficiently performant to ensure that our models’ output matches the full chain state on Ethereum
for all relevant transactions using only commodity hardware. For instance, the most active pairs
traded on any AMM contained about 100k transactions in our data, and it took under 2 hours of
CPU time to parse this data and perform end-to-end model validation.

6https://github.com/makerdao/dss/blob/master/src/vat.sol

28

0 20000 40000 60000 80000 100000
Transaction Count

0

1000

2000

3000

4000

5000

Ti
m

e
(in

 se
co

nd
s)

CPU Time
Wall Time

Figure 8: CFF execution time to evaluate and validate resultant state for a transaction sequence.

Second, we evaluate the performance for exploring all possible reorderings available to a miner as
part of their extraction of MEV, and analyze how the computation of optimal miner orderings can
be efficiently parallelized. This will allow us to use our models to also find transaction orderings not
exploited by past miners. For these experiments, we use an AWS c5.metal instance optimized for
computation. This machine features 96 3.9 GHz cores running on Intel’s Second Generation Xeon
Cascade Lake processors, with 192GiB of available memory. In Figure 9, we report the average
execution times for attacks with 7, 8 and 9 transactions to be reordered using different number
of CPU cores. As discussed in Section 6.3, blocks with 10 or more relevant transactions (i.e.,
transactions interacting with our models) are rare. Transactions chosen for this particular figure
are UniswapV2 transactions and MakerDAO transactions explored using a composition of our
UniswapV2 and MakerDAO models, so as to be representative of our MEV extraction experiments
described in Section 6.4 ; changing to a different transaction type that deals with our other models
does not have any material impact on the reported numbers. Since we used a 96-core machine for
our experiments, and given that K provides a 4x parallel speedup, we find that the real wall clock
time converges to the fastest execution speed at around 24 worker threads before CPU limitations
are reached. Given that our parallel exploration of possible state spaces has no synchronization
between parallel workers, the embarrassingly parallel nature of this problem suggests future scaling
across machines to be a natural direction for handling larger problem instances. Before the scale
ceiling of 24 parallel workers is hit, approximately linear scaling is visible in Figure 9, with some
overhead associated with scheduling threads and managing shared system resources.

6.2 Mechanized Proofs and Symbolic Invariants

We now use the deductive program verifier (kprove) from the K framework along with our refined
CFF models to assess the security of the composition of Sushiswap and UniswapV2. To achieve
this, we have to specify the initial state of the two contracts along with the set of transactions
interacting with these particular contracts. These transactions include the user transactions as
well any given symbolic transactions inserted by the miner. We also specify a reachability claim
that MEV is no greater than 0. If the two contracts compose securely as per our definition in
Section 3, then running kprove generates a deductive proof for the specified claim. On the other
hand, when the composition under the specified initial state is insecure, kprove automatically
generates a counterexample strategy (i.e. sequence of transactions) and a symbolic invariant for

29

0 20 40 60 80 100
Number of Worker Threads

0

5000

10000

15000

20000

25000

Ti
m

e
(in

 S
ec

on
ds

)

CFF Parallelism using Multiple Threads
7 Transactions
8 Transactions
9 Transactions

Figure 9: CFF Parallelism: Time taken to explore all reorderings with varying number of transac-
tions (7,8,9) as a function of the number of threads used.

MEV in terms of the symbols appearing in the initial state or inserted transaction template. More
precisely, the symbolic invariant is a set of (satisfiable) formulae representing the amount of MEV
in terms of the variables appearing in the specified initial state and the transactions applied to it.

While our CFF can reason about the security of any specification of initial state and set of
transactions, we describe an example detailed specification in Appendix C.4 capturing one of the
biggest arbitrage opportunities7 observed on-chain involving two AMMs as reported in [40]. To
capture this arbitrage opportunity, we specify the AMM states at blocknumber 10854887, the user
transactions interacting with the AMMs, and swap transactions inserted by miner with symbolic
parameters (representing the size of miner’s trade). We plot the MEV formula output by our CFF
representing the available MEV opportunity as a function of the size of the trades inserted by the
miner in Appendix C.4. The arbitrageur in this arbitrage made a profit of 76 ETH, while our CFF
reports a higher MEV of 123 ETH not captured by miners.

This example illustrates the power of CFF in finding opportunities left on the table by arbi-
trageurs currently. Note that our refined mechanized models account for fees, slippage, and integer
rounding and hence, the size of the opportunity available to the miner is slightly less than the
theoretical value derived in Section 4. We provide the full specification in proofs sub-folder of
our repository. CFF can also mechanically reason about the security of many AMMs composed
together, as well as more complex composed smart contracts, but we leave this to future work.

6.3 AMM Experiments

We ran a series of experiments on our CFF models for the three AMMs to quantify the MEV
extractable from them, and prove the utility of our models further by furnishing real-world insights
into available MEV. Our experiments are intended to validate the ability of our tool to uncover
profit-seeking miner strategies, and can easily be used for other DeFi contracts.

Reordering to lower-bound MEV. We consider all possible transaction reorderings that can
be performed by a miner. For this, we do not consider transaction insertion by miners, and

70x2c79cdd1a16767e90d55a1598c833f77c609e972ea0fa7622b70a67646a681a5

30

https://etherscan.io/tx/0x2c79cdd1a16767e90d55a1598c833f77c609e972ea0fa7622b70a67646a681a5

Apr Jul Oct Jan
2020

Apr Jul Oct Jan
2021

Apr

0.0

0.2

0.4

0.6

0.8

1.0
M

EV
 (i

n
ET

H)

UniswapV1 to UniswapV2
 migration

Sushiswap
UniswapV2
UniswapV1

Figure 10: 7-day moving average of MEV per block in a random sample of 1000 random blocks in
each month. 1 ETH ∼ 3200 USD at the time of writing.

therefore we will find a lower bound on the MEV by computing the difference between the most
and least profitable transaction ordering with respect to a user who colludes with the miner to get
the most profitable ordering. Otherwise stated, we define MEV in this setting as the amount a
miner could make with a composed ordering bribery contract. We expand on this subtle difference
in Appendix C.5. In certain cases of restrictions imposed by other (wrapper) contracts involved in
the transaction, not all reorderings might be valid. We automatically validate the optimal ordering
in the last phase of CFF as described in Section 5.2. Note that providing our CFF tool with the
models of the other (wrapper) contracts interacting with the AMM contracts would ensure that
this validation is unncessary, however we defer this to future work.

For each AMM that we support, we conduct two kinds of analysis: First, we analyse the average
MEV in a randomly sampled block (having transactions for any token pair) obtained by sampling
1000 blocks per month that have at least 2 transactions interacting with it. We report the 7-day
moving average of MEV found per block as a time series plot in Figure 10. For the year 2021,
total MEV across all the AMMs in our random sample is 1.5 million USD, which by extrapolation
comes to about 56 million USD per month in 2021. Second, we examine the token pairs with the
top 10 highest number of transactions, and randomly sample 30 blocks involving these token pairs.
Our tool can fully explore the state space for blocks with 9 or fewer AMM transactions; we call
these blocks “tractable”. We report the average MEV found per block (for each token pair) in our
random sample in Figure 11.

31

ETH/BAT
ETH/DAI

ETH/SAI
ETH/SNX

ETH/USDC
ETH/LINK

ETH/HEX
ETH/MKR

ETH/UBT
ETH/CNCC

pair_name

0

25

50

75

100

125

150

175

M
EV

 (i
n

ET
H)

UniswapV1 MEV
Intractable Blocks
Tractable Blocks

(a) Uniswap V1 MEV

ETH/DAI
ETH/USDC

ETH/YFI
ETH/LINK

ETH/SUSHI
ETH/AMPL

ETH/WBTC
ETH/UNI

ETH/USDT
USDC/USDT

pair_name

0

10

20

30

40

50

60

70

M
EV

 (i
n

ET
H)

UniswapV2 MEV
Intractable Blocks
Tractable Blocks

(b) Uniswap V2 MEV

ETH/YFI
ETH/DAI

ETH/COMP
ETH/UNI

ETH/USDT
ETH/USDC

ETH/LINK
ETH/SNX

ETH/CRV
ETH/SUSHI

pair_name

0

20

40

60

80

100

120

M
EV

 (i
n

ET
H)

Sushiswap MEV
Intractable Blocks
Tractable Blocks

(c) Sushiswap MEV

Figure 11: Highest observed MEV blocks for the top 10 most active token pairs in our dataset.
Intractable blocks have 10 or more transactions involving the pair, and are partially explored by
our tool through a random search.

Intractable-block exploration. For blocks with 10 or more relevant AMM transactions (i.e.,
transactions that interact with the AMM), we do not explore the full search space. Instead, for
these “intractable blocks,” we compute the MEV through a randomized search. We explore 400,000
paths, but randomize which paths are explored. The average MEV values for intractable blocks
in our random sample are also reported in Figure 11. Because our primary aim was developing
and validating our models’ ability to find attacks, we did not optimize this search for performance
further. Using further optimization or more parallel computation could likely yield more accurate
estimates for intractable blocks, but we defer this to future work. We found that “intractable”
blocks are rare in our dataset. Figure 13 shows a histogram of the number of blocks containing a
particular number of AMM transactions.

Approximate convergence. To support our exploration of intractable blocks, a natural question
is to what extent a random search on a sample of orderings approximates the MEV for a given
block. For this, we look at how the MEV converges for tractable blocks as more paths are explored

32

10 3 10 2 10 1 100 101 102

Percentage of Paths Explored

0

20

40

60

80

100

M
EV

 C
on

ve
rg

en
ce

 P
er

ce
nt

ile
Uniswap V1 MEV Convergence

Min
Q1
Median
Q3
Max

(a) Uniswap V1 Convergence

10 3 10 2 10 1 100 101 102

Percentage of Paths Explored

0

20

40

60

80

100

M
EV

 C
on

ve
rg

en
ce

 P
er

ce
nt

ile

Uniswap v2 MEV Convergence

Min
Q1
Median
Q3
Max

(b) Uniswap V2 Convergence

10 3 10 2 10 1 100 101 102

Percentage of Paths Explored

0

20

40

60

80

100

M
EV

 C
on

ve
rg

en
ce

 P
er

ce
nt

ile

Sushiswap MEV Convergence

Min
Q1
Median
Q3
Max

(c) Sushiswap Convergence

Figure 12: Convergence towards the optimal MEV for a random sample vs percentage of total
paths explored for tractable blocks.

iteratively. For each AMM, we randomly explore the same tractable blocks in our random sample,
and report the quartiles for MEV convergence in Figure 12. On average, we uncover 70% of MEV in
more than 90% of the instances by exploring just 1% of total paths. Since we explore 400,000 paths
for intractable blocks, we explore roughly 11% of the total paths for blocks with 10 transactions,
and roughly 1% of the total paths for blocks with 11 transactions. As evident from Figure 13,
blocks with more than 11 transactions are even more rare.

Reordering insights. Our results show that UniswapV2 exposes significantly less MEV com-
pared to UniswapV1 and Sushiswap, thanks to the huge liquidity on UniswapV2. It is interesting
to note that some of the token pairs have negligible MEV compared to the rest. It turns out that
all of these pairs include a stablecoin (or are both stablecoins, e.g., USDC/USDT), which exposes
only small price fluctuations for users across reorderings. On the other hand, pairs with unstable
prices (UNI, YFI, BAT) expose the highest MEV (75-175 ETH). On manual examination, we find
that the blocks exposing huge MEV (∼100 ETH) often involve a user making a big purchase of
token X with token Y and being either frontrun or backrun by a bot. In Appendix C.6 , we provide

33

2 3 4 5 6 7 8 9 10 11 12 13
Number of transactions

104

105

106

Nu
m

be
r o

f B
lo

ck
s

Figure 13: Distribution of AMM transactions in blocks

a deep dive into a backrunning example—one of the highest MEV instances uncovered by our tool.

6.4 Composability Experiments

To highlight the capability of our tool in finding MEV in the composition over multiple contracts,
we consider our running example of the composition between MakerDAO and Uniswap. Here,
we use the price from Uniswap V2 instead of the one from Maker’s oracle module. Although
MakerDAO does not currently use Uniswap as a price oracle, making the attacks in this section
purely theoretical, this change reflects similar proposals from over 60 projects (enumerated at
https://debank.com/ranking/oracle), as well as academic results suggesting a possible security
argument for such a change [7]. Using our tool, we can compute the MEV exposed as a result of
MakerDAO adopting this potential composition.

Oracle attacks. We extend the AMM reordering experiments from Section 6.3 to allow for an
additional miner action, where the miner can liquidate under-collateralized CDPs. Formally, if
CDPs with index 1, ..., n are open in the system, the set of transactions s is extended to include
a liquidation of all n CDPs by a miner account M . We then compute the total amount of profit
earned by M from any successful liquidations as a lower-bound metric for MEV.

To quantify this, we examine on-chain data for the top 100 CDPs and blocks in MakerDAO
when the CDPs are at the highest risk of liquidation (i.e., CDPs with the least collateral-to-debt
ratio). For a given block, we consider possible reorderings over all Uniswap V2 and MakerDAO
transactions, and then compute the MEV as a result of a miner inserting a CDP liquidation trans-
action. We report this in Figure 14 for the top 20 blocks with the largest liquidations (calculated

34

https://debank.com/ranking/oracle

10
90

67
44

10
83

88
35

10
80

10
16

10
78

87
47

10
90

53
47

10
97

19
63

10
80

37
79

10
80

35
05

11
00

23
83

10
80

35
21

10
80

32
17

10
80

34
94

10
80

18
26

10
80

35
13

10
80

37
81

11
00

44
89

10
78

87
40

10
94

23
70

10
80

15
81

10
87

48
87

Block Number

0

20000

40000

60000

80000

100000

M
EV

 (i
n

US
D)

Highest Observed MEV Blocks

Figure 14: MEV for Maker composed with Uniswap V2

using the collateral value at the time of liquidation). We found a total MEV of 542,827 USD—
orders of magnitude larger than the block rewards and transaction fees for these blocks. These
experiments can be reproduced using the run mcd experiments script in our Github repository.

6.5 Other Notable Attacks

Airdrops. Airdrops are a recent DeFi phenomenon where users who have taken a specific action
on the blockchain (e.g., interacted with some contract function, held an NFT etc.) can claim a
proportionate share of a newly released token. If the airdrop contract checks only the ownership in
the current state and not the historical record, then it can be exploited using flash loans. One such
exploit was observed recently where an attacker was able to exploit the much anticipated ApeCoin
airdrop for BAYC NFT holders for approximately $1,100,000 [29] 8. We reproduce this attack using
CFF. To this end, we implement 3 new CFF models. First, a flash loans model that has a rewrite
rule (with appropriate state updates) for allowing any player to borrow desired amount of a certain
fungible token, call another contract, and then deposit back certain amount of the same fungible
token. The rule requires that the deposited amount be greater than the borrowed amount along
with some fees. The second model is for a “vault” contract that allows for minting and redeeming
of fungible tokens (“BAYC tokens” here, which function as a fungible wrapper to the BAYC NFTs)
against NFTs pooled together in a vault. The third model is for the näıve aidrop contract that
allows any player to claim a fixed amount of ApeCoin tokens against their NFT for which a claim
has not been passed before. We compose these models along with our Sushiswap model in CFF in
order to obtain a strategy (counterexample to composability proof) that yields the same amount

80xeb8c3bebed11e2e4fcd30cbfc2fb3c55c4ca166003c7f7d319e78eaab9747098

35

https://etherscan.io/tx/0xeb8c3bebed11e2e4fcd30cbfc2fb3c55c4ca166003c7f7d319e78eaab9747098

of profits in ETH as observed in the attack [29]. The strategy first borrows BAYC tokens through
the flash loans model, calls into the vault model to redeem them for other players’ NFTs found in
the vault, claims the ApeCoin airdrop for these NFTs, then returns the NFTs back to the vault
for the BAYC tokens which it pays back to the flash loans model with fees. Finally, the ApeCoin
tokens are swapped on Sushiswap for ETH.

Governance. We use CFF to illustrate how flash loans can be used to exploit governance mech-
anisms. To this end, we model a simple governance contract that finalizes the vote at a certain
blocknumber based on the capital staked for or against the vote in the current state. As a proxy
for the economic incentives from the governance vote, we model a simple betting contract (concep-
tually similar to Cpricebet) that awards any player a certain amount of ETH if the vote passes. We
use CFF to study the composability of the flash loans contract, the governance contract, and the
betting contract. The current state supplied to CFF has symbolic variables x for the flash loans
reserves, y for the capital staked in favor of the vote and z for the capital staked against the vote.
CFF outputs a strategy (counterexample to the composability proof) with the MEV equal to the
betting contract reward less the flash loans fees, along with the condition:

(x > z - y) and (x > 0) and (y >= 0) and (z >= 0)

We provide the models for the flash loans, vault, airdrop, governance and betting contracts used
above in the cff models directory, and provide the modules for reproducing the Airdrops attack
and Governance attack in the proofs directory of our Github repository.

7 Conclusion

We have introduced a powerful and novel approach—that adopts the lens of miner-extractable
value (MEV)—for reasoning about and quantifying security guarantees for DeFi contracts and
their interaction. We have instantiated a number of semantic models in a new computational
framework, the Clockwork Finance Framework (CFF)—an executable proof system that allows us
to reason about the financial security of smart contracts. We have provided open-source models,
both abstract and executable, that represent key MEV-exposing deployed smart contracts. We
have shown how our definitions enable powerful proofs of composition for popular smart contract
protocols, a missing ingredient in the current deployment of DeFi contracts. We believe that
MEV, smart contract composition, and formal verification can serve as viable key ingredients for
empirically and rigorously measuring and improving DeFi contract security.

Acknowledgments

We thank Alexander Frolov for contributing to the AWS infrastructure needed to scale our experi-
ments. This work was funded by NSF grants CNS-1564102, CNS-1704615, and CNS-1933655 as well
as generous support from IC3 industry partners. Philip Daian is a co-founder of Flashbots, a re-
search and product organization developing solutions related to MEV, and has financial interests in
several decentralized exchange protocols. Any opinions, findings, conclusions, or recommendations
expressed here are those of the authors and may not reflect those of these sponsors.

36

References

[1] http://wikipedia.org/wiki/Clockwork_universe.

[2] https://defipulse.com/.

[3] https://en.wikipedia.org/wiki/Unification_(computer_science).

[4] Hayden Adams. Uniswap. https://uniswap.org/docs. 2019.

[5] Musab Alturki and Brandon Moore. K vs. Coq as Language Verification Frameworks (Part 1
of 3). https://runtimeverification.com/blog/k-vs-coq-as-language-verification-
frameworks-part-1-of-3/. 2019.

[6] Sidney Amani et al. “Towards verifying Ethereum smart contract bytecode in Isabelle/HOL”.
In: CPP. 2018, pp. 66–77.

[7] Guillermo Angeris and Tarun Chitra. “Improved Price Oracles: Constant Function Market
Makers”. In: AFT. 2020, pp. 80–91.

[8] Guillermo Angeris, Alex Evans, and Tarun Chitra. A Note on Bundle Profit Maximization.
https://angeris.github.io/papers/flashbots-mev.pdf. 2021.

[9] Andrei Arusoaie. A Formal Semantics of Findel in Coq (Short Paper). arXiv:1909.05464.
2019. arXiv: 1909.05464.

[10] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. “A survey of attacks on Ethereum
smart contracts (sok)”. In: POST. 2017, pp. 164–186.

[11] Osato Avan-Nomayo. “$100M Liquidated From Compound Following Flash Loan Exploit”.
In: beincrypto. March 3 (2020).

[12] BlockSecTeam. The Analysis of the Array Finance Security Incident. https://blocksecteam.
medium.com/the-analysis-of-the-array-finance-security-incident-bcab555326c1.
2021.

[13] Lorenz Breidenbach et al. “Enter the hydra: Towards principled bug bounties and exploit-
resistant smart contracts”. In: USENIX Security. 2018, pp. 1335–1352.

[14] Vitalik Buterin. On Path Independence. https://vitalik.ca/general/2017/06/22/

marketmakers.html. 2017.

[15] Vitalik Buterin. Thinking about smart contract security. https://blog.ethereum.org/

2016/06/19/thinking-smartcontract-security. 2016.

[16] Huashan Chen et al. “A Survey on Ethereum Systems Security: Vulnerabilities, Attacks, and
Defenses”. In: ACM Computing Surveys (CSUR) 53.3 (2020), pp. 1–43.

[17] Xiaohong Chen, Dorel Lucanu, and Grigore Roşu. Matching Logic Explained. Tech. rep. http:
//hdl.handle.net/2142/107794. 2020.

[18] Xiaohong Chen and Grigore Roşu. “A Language-Independent Program Verification Frame-
work”. In: ISoLA. 2018, pp. 92–102.

[19] Philip Daian et al. “Flash Boys 2.0: Frontrunning, Transaction Reordering, and Consensus
Instability in Decentralized Exchanges”. In: IEEE S&P. 2020.

37

http://wikipedia.org/wiki/Clockwork_universe
https://defipulse.com/
https://en.wikipedia.org/wiki/Unification_(computer_science)
https://uniswap.org/docs
https://runtimeverification.com/blog/k-vs-coq-as-language-verification-frameworks-part-1-of-3/
https://runtimeverification.com/blog/k-vs-coq-as-language-verification-frameworks-part-1-of-3/
https://angeris.github.io/papers/flashbots-mev.pdf
http://arxiv.org/abs/1909.05464
https://arxiv.org/abs/1909.05464
https://blocksecteam.medium.com/the-analysis-of-the-array-finance-security-incident-bcab555326c1
https://blocksecteam.medium.com/the-analysis-of-the-array-finance-security-incident-bcab555326c1
https://vitalik.ca/general/2017/06/22/marketmakers.html
https://vitalik.ca/general/2017/06/22/marketmakers.html
https://blog.ethereum.org/2016/06/19/thinking-smartcontract-security
https://blog.ethereum.org/2016/06/19/thinking-smartcontract-security
http://hdl.handle.net/2142/107794
http://hdl.handle.net/2142/107794

[20] Brady Dale. DeFi Insurance Firm Nexus Mutual Makes Its First Payout Following bZx At-
tacks. https://www.coindesk.com/defi-insurance-firm-nexus-mutual-makes-its-
first-payout-following-bzx-attacks.

[21] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. “A semantic framework for the
security analysis of Ethereum smart contracts”. In: POST. 2018, pp. 243–269.

[22] Everett Hildenbrandt et al. “KEVM: A complete formal semantics of the Ethereum virtual
machine”. In: CSF. 2018, pp. 204–217.

[23] Yoichi Hirai. “Defining the Ethereum virtual machine for interactive theorem provers”. In:
FC. 2017, pp. 520–535.

[24] Jeff Huang, Patrick O’Neil Meredith, and Grigore Rosu. “Maximal sound predictive race
detection with control flow abstraction”. In: PLDI. 2014, pp. 337–348.

[25] Runtime Verification Inc. Verified Smart Contracts. https://github.com/runtimeverification/
verified-smart-contracts. 2020.

[26] Kyle J Kistner. Post-Mortem [of the bZx Attack]. https://bzx.network/blog/postmortem-
ethdenver. 2020.

[27] Ahmed Kosba et al. “Hawk: The Blockchain Model of Cryptography and Privacy-Preserving
Smart Contracts”. In: IEEE S&P. 2016, pp. 839–858.

[28] Johannes Krupp and Christian Rossow. “Teether: Gnawing at Ethereum to automatically
exploit smart contracts”. In: USENIX Security. 2018, pp. 1317–1333.

[29] Ritu Lavania. Someone Claims $1.1M from Ape Tokens Airdrop via Flash Loan. https:

//www.cryptotimes.io/someone-claims-1-1m-from-ape-tokens-airdrop-via-flash-

loan/. 2022.

[30] Xavier Leroy. “Formal verification of a realistic compiler”. In: Communications of the ACM
52.7 (2009), pp. 107–115.

[31] Kevin Liao, Matthew A. Hammer, and Andrew Miller. “ILC: A Calculus for Composable,
Computational Cryptography”. In: PLDI. 2019, 640–654.

[32] MakerDAO. The Maker Protocol: MakerDAO’s Multi-Collateral Dai (MCD) System. https:
//makerdao.com/en/whitepaper/. 2020.

[33] Robert McMillan. “The inside story of Mt. Gox, Bitcoin’s $460 million disaster”. In: Wired.
March 3 (2014).

[34] Ron van der Meyden. “On the specification and verification of atomic swap smart contracts”.
In: ICBC. 2019, pp. 176–179.

[35] Tyler Moore and Nicolas Christin. “Beware the middleman: Empirical analysis of Bitcoin-
exchange risk”. In: FC. 2013, pp. 25–33.

[36] Leonardo de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”. In: TACAS. 2008,
pp. 337–340.

[37] Daejun Park, Yi Zhang, and Grigore Rosu. “End-to-End Formal Verification of Ethereum 2.0
Deposit Smart Contract”. In: CAV. 2020, pp. 151–164.

[38] Grant Olney Passmore and Denis Ignatovich. “Formal Verification of Financial Algorithms”.
In: CADE. 2017, pp. 26–41.

38

https://www.coindesk.com/defi-insurance-firm-nexus-mutual-makes-its-first-payout-following-bzx-attacks
https://www.coindesk.com/defi-insurance-firm-nexus-mutual-makes-its-first-payout-following-bzx-attacks
https://github.com/runtimeverification/verified-smart-contracts
https://github.com/runtimeverification/verified-smart-contracts
https://bzx.network/blog/postmortem-ethdenver
https://bzx.network/blog/postmortem-ethdenver
https://www.cryptotimes.io/someone-claims-1-1m-from-ape-tokens-airdrop-via-flash-loan/
https://www.cryptotimes.io/someone-claims-1-1m-from-ape-tokens-airdrop-via-flash-loan/
https://www.cryptotimes.io/someone-claims-1-1m-from-ape-tokens-airdrop-via-flash-loan/
https://makerdao.com/en/whitepaper/
https://makerdao.com/en/whitepaper/

[39] PeckShield. PancakeBunny Incident: Root Cause Analysis. https://peckshield.medium.
com/pancakebunny-incident-root-cause-analysis-7099f413cc9b. 2021.

[40] Kaihua Qin, Liyi Zhou, and Arthur Gervais. “Quantifying Blockchain Extractable Value: How
dark is the forest?” In: IEEE S&P. 2022, pp. 198–214.

[41] Kaihua Qin et al. “Attacking the DeFi Ecosystem with Flash Loans for Fun and Profit”. In:
FC. 2021, pp. 3–31.

[42] Haseeb Qureshi. “A hacker stole $31M of Ether—how it happened, and what it means for
Ethereum”. In: Freecodecamp.org, Jul 20, 2017 (2017).

[43] Grigore Rosu. “K: A semantic framework for programming languages and formal analysis
tools”. In: Dependable Software Systems Engineering 50 (2017), p. 186.

[44] Andrei Stefănescu et al. “Semantics-Based Program Verifiers for All Languages”. In: OOP-
SLA. 2016, 74–91.

[45] David Twomey and Andrew Mann. “Fraud and manipulation within cryptocurrency mar-
kets”. In: Corruption and Fraud in Financial Markets: Malpractice, Misconduct and Manip-
ulation. 2019. Chap. 8, pp. 205–250.

[46] Gottfried Vossen. “Database transaction models”. In: Computer Science Today. 1995, pp. 560–
574.

[47] Gavin Wood. Ethereum yellow paper. https://github.com/ethereum/yellowpaper. 2014.

[48] Insu Yun et al. “QSYM: A practical concolic execution engine tailored for hybrid fuzzing”.
In: USENIX Security. 2018, pp. 745–761.

[49] Yi Zhang, Xiaohong Chen, and Grigore Rosu. Formal Specification of Constant Product (x×
y = k) Market Maker Model and Implementation. https://github.com/runtimeverification/
verified-smart-contracts/blob/master/uniswap/x-y-k.pdf. 2018.

[50] Liyi Zhou et al. “High-Frequency Trading on Decentralized On-Chain Exchanges”. In: IEEE
S&P. 2021, pp. 428–445.

[51] Liyi Zhou et al. “On the Just-In-Time Discovery of Profit-Generating Transactions in DeFi
Protocols”. In: IEEE S&P. 2021, pp. 919–936.

A DeFi Exploits Background

Attacks and arbitrage. A number of practical issues arise in the deployment of secure DeFi
systems. The first carries over from traditional software systems, since the guarantees upheld by any
financial instruments are only as good as the software that underlies them. Both smart contracts
in general and DeFi instruments have seen a wide number of software failures that eroded their
security guarantees (e.g., [10, 41, 42]), as well as corresponding academic and practical interest in
rectifying these failures (e.g., [13, 16, 21, 22, 28]).

Further security concerns occur when the intended design and functional guarantees provided
by DeFi systems do not align with the financial guarantees desired by users. For instance, in
decentralized exchanges, while some users may assume that “secure” exchange implies fair execution
of their submitted orders, recent work [19] finds that the core system design itself could prove unfair
to its users, detailing how inefficiency can be exploited by arbitrageurs to introduce systematic

39

https://peckshield.medium.com/pancakebunny-incident-root-cause-analysis-7099f413cc9b
https://peckshield.medium.com/pancakebunny-incident-root-cause-analysis-7099f413cc9b
https://github.com/ethereum/yellowpaper
https://github.com/runtimeverification/verified-smart-contracts/blob/master/uniswap/x-y-k.pdf
https://github.com/runtimeverification/verified-smart-contracts/blob/master/uniswap/x-y-k.pdf

security failures. In many instances, because “attacks” involve exploiting inefficiencies in DeFi
systems in unexpected ways to profit financially, it makes sense to express security properties from
an economic standpoint. Consequently, for DeFi systems, the distinction between profit-seeking
techniques like arbitrage, and security failures can become difficult to draw.

Sometimes, the distinction is obvious. A typographical error in the program of a smart contract
(as described in [15]) is one common source of funds-loss that can be clearly categorized as a “code
bug.” Similarly, a decentralized exchange that is designed to allow arbitrage by programmatic
actors analogous to those in traditional financial exchanges can be clearly classified as “financial
arbitrage” [19], and therefore not a security vulnerability.

Unfortunately, many DeFi exploits fall less clearly into either category. A noteworthy example
is the string of recent high-profile attacks on the bZx DeFi protocol, which relied on data from
several external DeFi instruments. An attacker was able to break the invariants of the external
contracts and use them to profit from the bZx protocol. Now, invariant checks could easily have
been done within the bZx protocol code, in which case the root cause would be a software failure
of the bZx contract. At the same time, the exploit could also be viewed as a design flaw since it is
impossible to determine during the execution of a DeFi transaction, whether the external feed has
been manipulated through arbitrage. In Appendix A.1, we use the bZx attacks as a case study to
understand how the distinction between software exploits and fundamental design failures manifests
in the real world.

A.1 Case Study on bZx attacks

In this section, we use the attacks on the bZx protocol to understand the nuances between security
vulnerabilities in smart contracts, and arbitrage-like design choices. The bZx protocol was originally
designed to allow decentralized margin trading and lending, and was the target of recent high-profile
attacks. The core of one of these attacks was the ability of a malicious attacker to use flash loans to
perform a massive short in the bZx protocol. The bZx contract relied on Uniswap, a decentralized
exchange, to sell coins at what it assumed was market price. But, because the size of the attacker’s
flash-loan-based short order exceeded the amount that could be safely traded using the liquidity
in the Uniswap exchange, the short increased the price of wBTC (wrapped Bitcoin) tokens on the
Uniswap platform for this transaction. The attacker was then able to use this false rate to borrow
wBTC against ETH (Ethereum, the native currency of the Ethereum blockchain), selling the newly
borrowed wBTC into this falsely inflated price and obtaining ETH profit. A comprehensive post-
mortem exposé summarizing the attack is available in [26].

The bZx attack blurs the line between arbitrage and code vulnerabilities. One can easily view the
failure of the bZx protocol to check that the Kyber/Uniswap order routing had sufficient liquidity
to complete its order as a code failure in the bZx protocol, in which case the attack represents
a software exploit against bZx. But, one can also view this failure as a fatal design flaw, as it is
impossible to determine during the execution of a DeFi transaction whether a given price represents
the true market price outside the system in which the transaction is executing, in which case the
attack represents financial arbitrage that more closely resembles the activity in traditional financial
markets when inefficient financial products operate as intended.

This debate is not purely theoretical. One DeFi insurance product, Nexus Mutual, insured users
of the bZx protocol against losses stemming from failures in the correct operation of the underlying
smart contracts. Nexus Mutual however did not cover issues in design, and would not need to pay

40

out to its users if the smart contracts were deemed to be operating as intended. After some debate,
the Nexus Mutual fund decided to pay out to users who lost money in the bZx attack, as they
reasoned that the bZx smart contract designers intended to check the slippage the attacker took
advantage of, and the attacker bypassed this check due to a coding error [20]. While in this case
the Nexus Mutual operators were able to come to a determination, we expect that future DeFi
attacks will continue blurring the line between design and implementation issues, especially at the
interfaces between various composable interoperable financial components. In a DeFi context, both
types of attacks can be viewed as a programmatic search for a reachable final state in the system
in which the attacker profits. The attack is far from unique; for example, just a few months later,
$100M was drained from a similar protocol in a similar exploit pattern [11].

B Generalized MEV and Composability Definitions

In Section 3, we defined k-MEV which computes the MEV for a miner if it appends k consecutive
blocks to the chain and can change the transaction ordering across those k blocks. In this section,
we define weighted miner-extractable value, or WMEV, which is weighted by the probability that
a miner can mine k consecutive blocks.

Formally, for a miner P , let pk be the probability that it mines exactly k consecutive blocks.
We assume that pk is not state dependent (at least in the short term). pk may be a function of the
mining difficulty or the fraction of hash power owned by the miner. We can now define weighted
MEV as:

Definition 3 (Weighted MEV).

WMEV(P, s) =
∞∑
k=1

pk · k-MEV(P, s)

As a simple example, consider a miner P who controls a fraction f of the total hash power. If we
assume that mining is modeled as a random oracle and that there is no selfish mining, then the
probability pk that P mines exactly k consecutive blocks is pk = fk(1 − f). Suppose further that
the extra MEV obtained per extra mined block is a constant m. For this simplified example, we
can compute the WMEV as:

WMEV(P, s) =
∞∑
k=1

fk(1− f)(km) =
fm

(1− f)

Equipped with this, we can also generalize the definition of Defi composability to include
WMEV. For this, MEV in Definition 1 will be replaced by WMEV.

Miner cost. All of our notions of extractable value abstract out the actual cost incurred by
the miner (e.g., the cost of equipment, electricity). We do this to make our definitions more
broadly applicable. We note that the cost of a specific miner can be calculated independently, and
subtracted from the extractable value to obtain the profit a miner could make from transaction
reordering.

41

C CFF Details

C.1 Why K?

A natural question is why we chose the K framework for our implementation of the CFF. While
CFF can be instantiated using any good formal verification tool, we found K code to be especially
human readable and intuitive (mainly because of its concurrent semantics) for developers who may
not be experts in formal verification. Prior work [22] has already implemented full EVM semantics
using K. We also chose K for qualitative reasons, detailed in Section 2.3. We emphasize that our
results are not tool-specific, and should be straightforward to replicate.

K vs. Coq. As a specific comparison point, we explain our choice of K over Coq [30], another
popular formal verification tool. A comparison in [5] found similar performance numbers for the
proving engines of both K and Coq; simple proofs took approximately the same amount of real
time on test hardware. We posit (though defer detailed study) that performance differences would
be minor. As [5] points out, however, models in K are always executable, and allow for concrete
inputs to be evaluated. On the other hand, in Coq, execution must be defined separately as its own
function and proved equivalent to the relational definition of the corresponding models. We believe
that this additional step would impose substantial overhead on model development our framework.

C.2 Writing a CFF Model

We now provide additional description of the operations executed by our model in Figure 7, which
may prove helpful when defining your own CFF model.

Line 2 is the first such operation, and creates a local variable in the model state which binds the
amount to send according to the AMM formula in a variable called AmountToSend. USwapBalan-
ceIn and USwapBalanceOut, the balance of the Uniswap contract in the input and output tokens,
are used in this calculation. These variables are sourced from Line 9, where they are matched in
the global Ethereum state S.

Lines 3-6 use the special “gets” operator, which we give operational semantics to separately, to
change the system state by debiting and crediting the appropriate balances from Uniswap and the
user in the traded asset; the user here receives AmountToSend tokens for TradeAmount tokens sent
as input. The var function is a built-in function indicating that a variable bound in the current
scope (rather than the Ethereum state) should be used.

Note some special K keywords are required for our semantic rule. Firstly, the ... keyword
specifies that anything can successfully match in this location when applying the rule. We do not
care what operations after the first execution are pending in the model when applying the rule, for
example (Line 7). The rule also applies regardless of the contents of S outside of USwapBalance
(Line 9), and regardless of what transactions the miner has already included in their block B in
the model (Line 10).

Further such details on K can be found at the K tutorial at http://kframework.org/, or by
reading our modeling code and documentation on Github.

42

http://kframework.org/

1 claim <k>

2 On UniswapV2 697323163401596485410334513241460920685086001293 swaps for ETH by providing

↪→ 1300000000000000000000 COMP and 0 ETH with change 0 fee 1767957155464 ;

3 On Sushiswap Miner swaps for ETH by providing Alpha:Int COMP and 0 ETH with change 0 fee 0

↪→ ;

4 On UniswapV2 Miner swaps for Alpha COMP by providing ETH fee 0 ;

5
6 => .K

7 </k>

8 <S> (Sushiswap in COMP) |-> 107495485843438764484770 (Sushiswap in ETH) |->

↪→ 49835502094518088853633 (UniswapV2 in COMP) |-> 5945498629669852264883 (UniswapV2

↪→ in ETH) |-> 2615599823603823616442 => ?S:Map </S>

9 .List => ?_

10 requires (Alpha >Int 0) andBool (Alpha <Int 10000000000000000000000) //10**22

11 ensures ({?S[Miner in COMP]}:>Int <=Int 0) andBool ({?S[Miner in ETH]}:>Int <=Int 0)

Figure 15: Specification for Composition of Sushiswap and UniswapV2

C.3 Refinements to the Abstract Model

C.3.1 AMM Refinements

We now refine the abstract model, intended to illustrate the core functionality of a Uniswap-like
AMM, to be fully faithful to the deployed Uniswap contract. To do so, we must refine our trade
rule to take into account the rounding used in the real-world Uniswap trade functions, which come
with some degree of error/imprecision. This imprecision is described and formalized in the model
in [25], a superset of the formal semantics in our work that was used to verify the Uniswap protocol
before deployment.

We must also add semantic rules for liquidity provision and removal transactions, which further
affect the Uniswap contract and drive relevant state updates. Lastly, we must take into account
all code paths in the Uniswap deployed Solidity contract. Our fully refined model that accurately
reflects real-world Uniswap arithmetic is available in models/uniswap on our Github repository.

C.3.2 MakerDAO Refinements and Liquidation Auction

We refine our abstract MakerDAO model by adding a rule to update stability fees and account for
this stability fees to calculate the CDP debt accurately. We also combine the CDP manipulation
actions into one single rule, to accurately reflect the deployed contract. Next, we add rules for CDP
fungibility, i.e. transferring debt and collateral between CDPs. We now discuss the subtleties of
MEV extraction in a liquidation auction and replace the efficient auction outcome in our abstract
model accordingly.

We analyze the optimum MEV assuming that all network miners are behaving to maximize total
MEV – a rational decision from a miner standpoint. Optimum MEV is achieved when the miner
is able to censor competing bids, and win the entire collateral on offer in the second phase of the
auction. We thus refine the liquidation auction outcome in our abstract model to receive the entire
collateral on offer. Note that if some miners defect to reduce the efficiency of MEV extraction, it
is possible that only some constant percentage of the optimum MEV will remain extractable.

43

500 0 500 1000 1500 2000 2500 3000 3500
Alpha * 1e-18

50

25

0

25

50

75

100

125

150

M
EV

(in
 E

TH
)

Figure 16: The region boundary represents MEV extractable by the miner as a function of the
input variable (size of its trade). The maximum value is 123 ETH.

C.4 Mechanized Proofs

We now provide the details of an example specification used to check the security of the composition
of Sushiswap and UniswapV2 in Figure 15. This example captures one of the biggest arbitrage
captures9 observed on-chain involving two AMMs as reported in [40]. The hex addresses for users
are converted to base 10 integers. The initial state for Sushiswap and UniswapV2 is specified in
the S cell. The last two transactions in the k cell represent the transactions inserted by the Miner
according to the strategy described in Section 4. Note that the Miner transaction can be symbolic,
Alpha being the symbol representing the size of the swap Miner does denominated in Wei (1 ETH =
1e18 Wei). The requires clause specifies the constraints on Alpha, essentially denoting the Miner
budget. Finally, the ensures clause represents the claim that the Miner is not able to extract any
value regardless of the way specified transactions are reordered.

Our tool derives a counterexample to the claim with the MEV formula given by (plotted in
Figure 16):

-1 - 2147460244936306246609000 * Alpha / (997 *

(7245498629669852264883 - Alpha)) + 997 * Alpha

* 49835502094518088853633 / (997 * Alpha +

107495485843438764484770000)

C.5 Bounding the MEV for AMMs

Although the price offered by the AMMs we study at the end of a given set of transactions is
independent of the order of the transactions [14], individual users’ transactions get different prices
depending on the order of the transactions. A miner can thus influence the value individual users
get for their trades by choosing a different order for the transactions. For each user, there is an
optimal and a worst case ordering.

Let bh be the highest ETH-value of a trader’s account after a block has elapsed, assuming
access to a price oracle for pricing a user’s tokens at an invariant market price for the time of trade

9https://etherscan.io/tx/0x2c79cdd1a16767e90d55a1598c833f77c609e97
2ea0fa7622b70a67646a681a5

44

https://etherscan.io/tx/0x2c79cdd1a16767e90d55a1598c833f77c609e972ea0fa7622b70a67646a681a5
https://etherscan.io/tx/0x2c79cdd1a16767e90d55a1598c833f77c609e972ea0fa7622b70a67646a681a5

execution. Let bl be the lowest such value. It is therefore rational for the trader to pay bh−bl− ε to
miners as a bribe. For miners to elicit this bribe, they would deploy a contract allowing each user of
an AMM to deposit ETH. They would then credibly commit to mining the order resulting in bl if no
funds were available. Otherwise, they would submit both bl and bh, along with associated proofs,
to the smart contract, which would enforce the order resulting in bh, pay the miner bh − bl − ε,
and pay the trader ε. Note that paying such a contract is a strictly dominant from a trader point
of view, as the trader profits ε more than without paying into such a contract. Introducing this
new contract increases MEV by exactly bh − bl − ε through a direct payment by inspection; in our
experiments, we assume ε is negligible when compared to bh−bl: since being paid this ε is a strictly
dominant strategy, miners need only compensate users for the low cost of locking capital (which
can be removed freely) in the bribery contract.

When analyzing attacks like this on DeFi protocols, a natural question becomes how to efficiently
and thoroughly uncover reordering-based differences that would allow for an accurate measurement
of bh and bl, and therefore the MEV in the presence of such contract composition. It is this
measurement on which we focus in our AMM experiments.

C.6 MEV Deep Dive

In this section, we will explore in more detail our top MEV example, which occurred in Ethereum
block 10968577 in the YFI-WETH pair on Sushiswap, primarily surrounding MEV-creating trans-
action 0x8a9d88084eb3a451fcd1c28f1851d0-ced03e7665499a362942978ff13d5c19d4.

In this transaction, a user sold 40 YFI tokens, a popular and extremely valuable Ethereum token
that was in the middle of an upwards price rally, on an automated decentralized exchange liquidity
aggregator called 1inch.exchange. As part of this aggregation, 1inch chose to execute a sale of 22
YFI tokens on SushiSwap, worth USD$550,000 at the then-price of USD$25,000 per token.

User Swap Performed Amount of Input Token

A YFI→ WETH 22000000000000000000

B WETH→ YFI 53788258395569781028

B WETH→ YFI 6784028349336991312

C WETH→ YFI 103266050000000000000

D WETH→ YFI 300000000000000000000

D WETH→ YFI 4970140364366149478

D WETH→ YFI 6984067876806377830

D WETH→ YFI 300000000000000000000

D WETH→ YFI 150000000000000000000

Figure 17: Mined actual transaction ordering of the top MEV block in our sample

Because the user placed a large market order on a set of automated market makers, this naturally
created an arbitrage opportunity to buy YFI at this newly-depressed price, selling it into more liquid
off-chain and on-chain markets which still reflected the real market valuation. Figure 17 shows the

45

ordering of transactions on the network, with user “A” being the user selling YFI tokens on 1inch,
and users B-D representing a set of arbitrage bots that programatically bought and re-sold tokens
from SushiSwap when user A created an arbitrage opportunity.

The MEV here is obvious, as the ability for a miner to essentially take the trades performed by
the bots furnishes a more profitable opportunity for the miner than the bots, who can also execute
the bots’ failed transactions.

The optimal ordering found by our tool for user A is D → D → D → C → B → B → D → D
→ A, where the user’s trade is executed after the trade of the arbitrage bots. This makes sense,
as the arbitrage bots cannot take advantage of the user’s price movement to re-arbitrage Uniswap
back to market parity. Conversely, the worst order for user A is A → D → D → D → C → B →
D → B → D, which is very similar to the order actually mined by the miner.

Note that the arbitrage on the network are already somewhat effective at extracting MEV
from Uniswap, a result that is expected given the conclusions of [19]. However, the miner can
still increase profit even further over these bots, due to the fine-grained control it can exercise in
ordering that is likely hard to achieve through the public priority gas auctions described in [19]. We
thus posit that this example shows not only the existence of MEV that can be exploited through
generic tooling, but also the relative inefficiencies of current arbitrage bots on the network, who
are unable to achieve the maximally optimal order even when opportunity sizes are large.

46

	1 Introduction
	2 Background and Related Work
	2.1 Blockchain and Smart Contracts
	2.2 Decentralized Finance
	2.3 Formal Verification Tools

	3 Clockwork Finance Formalism
	3.1 Decentralized Finance Instruments

	4 DeFi Composability
	4.1 Characteristics of Contract Composition
	4.2 Uniswap as a Price Oracle
	4.3 Composition of multiple AMMs
	4.4 MEV Bribery Contracts
	4.5 Remarks on Composability

	5 Clockwork Exploration in K
	5.1 Scaling Formal Verification for CFF
	5.2 Design and Implementation
	5.3 Equivalence and Over-Approximation in CFF models
	5.4 CFF Uniswap Model

	6 Experimental Evaluation
	6.1 Execution Validation and Performance Experiments
	6.2 Mechanized Proofs and Symbolic Invariants
	6.3 AMM Experiments
	6.4 Composability Experiments
	6.5 Other Notable Attacks

	7 Conclusion
	A DeFi Exploits Background
	A.1 Case Study on bZx attacks

	B Generalized MEV and Composability Definitions
	C CFF Details
	C.1 Why K?
	C.2 Writing a CFF Model
	C.3 Refinements to the Abstract Model
	C.3.1 AMM Refinements
	C.3.2 MakerDAO Refinements and Liquidation Auction

	C.4 Mechanized Proofs
	C.5 Bounding the MEV for AMMs
	C.6 MEV Deep Dive

