
ETH Library

Rethinking Searchable Symmetric
Encryption

Conference Paper

Author(s):
Gui, Zichen; Paterson, Kenneth G.; Patranabis, Sikhar

Publication date:
2023

Permanent link:
https://doi.org/10.3929/ethz-b-000564585

Rights / license:
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

Originally published in:
https://doi.org/10.1109/SP46215.2023.10179460

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000564585
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1109/SP46215.2023.10179460
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Rethinking Searchable Symmetric Encryption
Zichen Gui
ETH Zürich

zichen.gui@inf.ethz.ch

Kenneth G. Paterson
ETH Zürich

kenny.paterson@inf.ethz.ch

Sikhar Patranabis
IBM Research India

sikhar.patranabis@ibm.com

Abstract—Symmetric Searchable Encryption (SSE) schemes
enable keyword searches over encrypted documents. To obtain
efficiency, SSE schemes incur a certain amount of leakage. The
vast majority of the literature on SSE considers only leakage from
one component of the overall SSE system, the encrypted search
index. This component is used to identify which documents to
return in response to a keyword query. The actual fetching of the
documents is left to another component, usually left unspecified
in the literature, but generally envisioned as a simple storage
system matching document identifiers to encrypted documents.

This raises the question: do SSE schemes actually protect the
security of data and queries when considered from a system-wide
viewpoint? We answer this question in the negative. We do this
by introducing a new inference attack that achieves practically
efficient, highly scalable, accurate query reconstruction against
end-to-end SSE systems. In particular, our attack works even
when the SSE schemes are built in the natural way using the state-
of-the-art techniques (namely, volume-hiding encrypted multi-
maps) designed to suppress leakage and protect against previous
generations of attack.

A second question is whether the state-of-the-art leakage
suppression techniques can instead be applied on a system-
wide basis, to protect both the encrypted search index and the
encrypted document store, to produce efficient SSE systems. We
also answer this question in the negative. To do so, we implement
SSE systems using those state-of-the-art leakage suppression
methods, and evaluate their performance. We show that storage
overheads range from 100× to 800× while bandwidth overheads
range from 20× to 100×, as compared to a naı̈ve baseline system.

Our results motivate the design of new SSE systems that are
designed with system-wide security in mind from the outset. In
this regard, we show that one such SSE system due to Chen et
al. (IEEE INFOCOM 2018), with provable security guarantees
based on differential privacy, is also vulnerable to our new attack.

In totality, our results force a re-evaluation of how to build
end-to-end SSE systems that offer both security and efficiency.

I. INTRODUCTION

Searchable Symmetric Encryption. Database encryption is
a key enabler for secure storage-as-a-service, wherein clients
can securely outsource the storage and processing of large
databases to (potentially untrusted) third party servers. Search-
able symmetric encryption (SSE) [1]–[4] is a special sub-
class of database encryption that aims to efficiently support
search queries over symmetrically encrypted databases. The
core functionality enabled by SSE is the following: given an
encrypted document collection in which each document is
tagged with keywords, find the set of all documents tagged
with a given keyword w. In this paper, we focus primarily
on SSE for static document collections. This has historically
received the most attention.

Leakage. The term “leakage” is popularly used in the SSE
literature to denote any information that the server learns about
either the database itself or the queries made by the client.
For any SSE scheme, leakage is of two kinds: setup leakage –
information learnt by the server from the encrypted database
at setup (i.e., prior to any query execution), and query leakage
– information learnt by the server from the query token and
the interaction between the token and the encrypted database.

Leakage Cryptanalysis. A natural question to ask is: how
should we assess the impact of leakage on the real-world
security of SSE? The practice commonly adopted in the SSE
literature is to perform leakage cryptanalysis. This involves de-
veloping concrete cryptanalytic attacks that exploit the leakage
to subvert some security guarantee (such as data/query privacy)
of the SSE scheme. Starting with the seminal work of Islam
et al. [5], leakage cryptanalysis has been studied extensively
in the context of SSE for document collections [6]–[13]. The
commonly studied leakage profiles for SSE are:

• Response Length. For a given query on a keyword w,
the response length (or volume) leakage reveals the size
of the query response set, i.e., number of documents
containing w.

• Access Pattern. For a given query on a keyword w,
the access pattern leakage reveals the set of (potentially
randomized) identifiers for documents containing w.

• Co-occurrence Pattern. For a pair of queries over key-
words wi and wj , the co-occurrence leakage reveals the
number of documents containing both wi and wj .

• Search Pattern. For a pair of queries over keywords wi

and wj , the search pattern leakage reveals whether wi

and wj are identical.

Structure-Only SSE vs End-to-End SSE. The structure-
only approach to designing SSE schemes was introduced and
formalized by Chase and Kamara in [3]. In this approach,
a search query is broken down into two phases. The first
phase, called the index retrieval phase, uses a specially de-
signed encrypted search index to efficiently recover the set of
(encrypted) document identifiers corresponding to documents
matching the query. The second phase is the document retrieval
phase, in which the client actually fetches the encrypted
documents matching the query.

We illustrate the structure-only approach to SSE in Figure 1.
The inner dotted box in Figure 1 depicts a structure-only SSE
sub-system, while the outer box depicts the SSE system-as-a-
whole. In the rest of the paper, we use the term structure-

Figure 1: A “system-wide” view of structure-only SSE schemes (e.g., [2]–[4], [14]–[25]). While structure-only SSE design focuses only on
leakage from the encrypted search index (depicted by the inner dotted box), end-to-end SSE design focuses on system-wide leakage (depicted
by the outer solid box).

only SSE to refer to the sub-system depicted by the inner
dotted box, and end-to-end SSE to refer to the system-as-a-
whole depicted by the outer box. As is standard in the SSE
literature [2]–[4], [14]–[23], we assume that in a structure-
only SSE scheme, upon issuing a single keyword query, the
client retrieves the document identifiers corresponding to every
document that contains the keyword.

As an example of an end-to-end SSE system where it
is essential to retrieve every document matching a queried
keyword (rather than a subset of those documents), consider
a medical database where each document contains all health
information of an in-patient (e.g. blood pressure over his/her
stay) and the user is interested in the relationship between
patterns in blood pressure and mortality risks for a certain
patient group. The best way to perform this analysis is to use
the patient group as a keyword to search over the database
and retrieve all relevant documents. The documents can then
be analyzed locally together.

Existing SSE Schemes. The vast majority of SSE schemes
follow the structure-only approach. Examples include [2]–
[4], [14]–[23]. These all focus only on designing a secure
encrypted search index (i.e. the inner dotted box in Figure 1).
None of them concretely specify how the document retrieval
phase is to be executed. And, in each case, their security
analysis considers only leakage from the index retrieval phase,
ignoring any leakage from the document retrieval phase.
However, structure-only SSE schemes are not useful on their
own unless they are used in conjunction with secure, efficient
mechanisms for document retrieval.

Unfortunately, the research community’s focus on the
structure-only approach has yielded little progress on the
question of how to build secure, efficient, end-to-end SSE
systems. There exist only a handful of alternative design
approaches that target end-to-end SSE with in-built leakage
suppression for both index and document retrieval. These
include SSE with differentially private access-patterns [26] and
SWiSSSE [8].

Leakage Suppression in SSE. Motivated by the need to
counter leakage cryptanalysis, recently proposed SSE schemes
have started to use dedicated techniques to suppress setup and
search leakage. The state-of-the-art is represented by volume-

hiding encrypted multi-maps (EMMs) [24], [25]. These follow
the same structure-only approach described above. In partic-
ular, while it is clear how to apply volume-hiding EMMs
to search indices to obtain low-leakage, structure-only SSE
schemes, the authors of [24], [25] do not specify how to design
end-to-end SSE systems based on volume-hiding EMMs.

System-Wide Leakage in SSE. In this paper, we revisit the
current dominant approach to leakage analysis for SSE by
taking an alternative “system-wide” perspective. Consider two
kinds of adversaries – one that observes the leakage from the
encrypted search index (e.g., by passively corrupting the server
that stores this index), and one that observes the leakage from
the final query processing step on the encrypted documents
themselves (e.g., by passively corrupting the server that stores
the encrypted documents, potentially different from one stor-
ing the index). In terms of real-world security, any realization
of end-to-end SSE should be secure against cryptanalysis of
system-wide leakage.1

Since the vast majority of SSE schemes, including state-of-
the-art schemes based on volume-hiding EMMs, are structure-
only schemes, they only focus on security against the first
kind of adversary. Consequently, it is unclear what kind of
system-wide leakage is incurred when these schemes are used
to build end-to-end SSE systems, and whether such leakage
potentially leads to attacks. It is also unclear whether volume-
hiding EMMs can be used to mitigate this leakage without
compromising on efficiency.

A. Our Contributions

System-Wide Security of Structure-Only SSE. In this paper,
we analyze the system-wide leakage that arises when state-
of-the-art structure-only SSE schemes are used in the natural
way to build end-to-end SSE systems. In particular, we focus
on the simple construction where only the leakage from the
index is mitigated using techniques such as volume-hiding
EMMs, while the document retrieval is implemented using

1A widely used assumption in the SSE literature is that these two adver-
saries are non-colluding. Our analysis also extends to this setting since the
attack we develop targets leakage from document retrieval only (in fact, for
all of our target schemes, the leakage from document retrieval subsumes the
leakage from index retrieval).

2

a straightforward look-up table of encrypted documents. In
the absence of any statements to the contrary in the extensive
literature, this seems to be the generally assumed mechanism.
In this context, we ask the following:
Do structure-only SSE schemes result in secure end-to-end SSE
systems when system-wide leakage is taken into account?
We answer this question in the negative. Concretely, We show
that all the structure-only SSE schemes [2]–[4], [14]–[23],
including those built from volume-hiding EMMs [24], [25],
incur damaging system-wide leakage when used to construct
end-to-end SSE systems in the natural way. In more detail, we
show an efficient and highly scalable query recovery attack
mechanism targeting the vast majority of existing end-to-
end SSE schemes (including those using dedicated leakage-
suppression techniques such as padding for the search index).
Our attacks establish that given the (noisy) system-wide leak-
age from a sequence of keyword search results (with random
non-results added) over a target database, and some additional
information about the real results over an independently sam-
pled auxiliary database, one can do query recovery for the
target database despite the presence of leakage-suppression
due to padding-like techniques.
Attack Target. For our proposed query-recovery attack, the
target is an end-to-end SSE system (as depicted in the outer
box in Figure 1). We note here that our attack does not target
the original constructions of volume-hiding EMMs as they
are described in [24], [25], since the authors of these papers
only described how to use volume-hiding EMMs to design
structure-only SSE schemes. Instead, we target natural and
efficient extensions of these structure-only schemes to end-to-
end SSE systems, and show that such extensions are rendered
insecure by our proposed attack based on system-wide leakage.
One might be concerned that, since [24], [25] did not propose
end-to-end SSE systems, it is misleading to target specific
end-to-end SSE systems built from their EMMs. We argue
that the authors of [24], [25] are clear that SSE is the main
application domain for their volume-hiding EMMs, and that
the constructions of end-to-end SSE that we target are the
natural, efficient ones based on the structure-only SSE schemes
built from such EMMs.
System-Wide Access Pattern Leakage. We also point out that
even though our target end-to-end SSE systems use a docu-
ment retrieval phase that is implemented straightforwardly, the
leakage from this phase is not necessarily the trivial (unper-
turbed) access pattern leakage. In particular, since document
retrieval is performed based on the encrypted document iden-
tifiers from index retrieval, any leakage mitigation techniques
used in index retrieval may perturb the leakage arising in
document retrieval. Exploiting this leakage for query-recovery
is non-trivial, and is a novel aspect of our attack.
Key Takeaway. Our attack establishes that using structure-
only SSE schemes in the natural way leads to end-to-end
SSE systems that are insecure in practice. Fundamentally, this
is because the careful leakage mitigation for the encrypted
search index, obtained using techniques such as volume-hiding

EMMs, is undermined by the system-wide leakage that arises
from the document retrieval phase. The main message of our
paper is not the attack itself, but the need for new security
definitions that carefully model system-wide leakage in end-
to-end SSE systems as well as the need for efficient techniques
to mitigate such leakage. Our attack is primarily a means to an
end that concretely establishes the adverse impact of system-
wide leakage on the security of a vast majority of SSE schemes
in the literature, all of which have overlooked the importance
of building a secure and efficient document retrieval protocol
in addition to index retrieval. We note here that there do exist
prior works such as [8] that have also noted the importance
of system-wide leakage and designed end-to-end SSE systems
to prevent such leakage. However, their treatment is limited to
very specific schemes, while our analysis applies to any end-
to-end SSE system built in a natural way from any index-only
SSE scheme (we expand more on this subsequently).

System-Wide Leakage Mitigation. A natural approach to
mitigating system-wide leakage in end-to-end-SSE systems
would be to apply existing leakage suppression techniques
such as volume-hiding EMMs [24], [25] to both the encrypted
index and the final document retrieval step. Intuitively, this
enhances resistance to system-wide attackers, but potentially
degrades efficiency. In this context, we now ask the following
question:

Can existing leakage suppression techniques efficiently miti-
gate system-wide leakage?

We also answer this question in the negative. We demon-
strate that it is practically infeasible to use volume-hiding
EMMs [24], [25] to hide system-wide leakage in structure-only
SSE schemes. We validate this observation by experimentally
evaluating the storage and query processing overheads incurred
when applying EMMs to encrypt the whole database, and not
just the search index. We also experiment with using structure-
only SSE in conjunction with state-of-the-art ORAM and PIR
schemes to protect the document retrieval, with similar results.

To summarize, we concretely establish that, with currently
available techniques, we can have either efficient and scalable
structure-only SSE schemes that suffer from damaging system-
wide leakage (as illustrated by our attack), or we can have
end-to-end leakage-protected SSE systems that are inefficient
in practice and do not scale to large databases.

Differentially Private Access Patterns. As a final con-
tribution, we show that the end-to-end SSE system based
on differentially private access patterns in [26], which we
henceforth call DPAP-SE, is also vulnerable to our new query
recovery attack. Our attack breaks DPAP-SE for the same
parameter set that the authors of [26] advocated using to
counter leakage-abuse attacks. While it is possible to degrade
our attack’s efficiency by altering the parameter set, this also
greatly reduces the practical efficiency of the resulting scheme.
Our attack does not invalidate the original security properties
proven by the authors of [26], but instead indicates that these
security properties (and the corresponding usage of differential

3

privacy techniques) are, in fact, insufficient in practice. In fact,
the scheme in [26] does resist naı̈ve adaptations of existing
cryptanalytic attacks [5], [6], [9], [27] that work only for
unperturbed leakage such as co-occurrence patterns and access
patterns, as was claimed in [26]. However, we demonstrate
the possibility of a stronger attack that is not restricted to
unperturbed leakage and, hence, bypasses the limitations of
existing attacks.

Putting everything together, we see that, while significant
progress has been made over the last decade in designing
secure structure-only SSE schemes, none of these schemes
actually yield practically efficient end-to-end SSE systems
with resistance to system-wide leakage attacks. At the same
time, we show that one alternative design approach for end-
to-end SSE design also suffers from damaging system-wide
leakage. Indeed, the only candidate end-to-end SSE scheme
that we do not break is SWiSSSE [8]. This is perhaps not
surprising since, aside from [26], it is (as far as we are aware)
the only scheme that was designed with system-wide leakage
in mind.

We expand further on our main contributions below.

B. Attack on System-Wide Leakage
We show that the vast majority of structure-only SSE

schemes, including state-of-the-art schemes built from volume-
hiding EMMs [24], [25], incur damaging system-wide leakage
when used in the natural way to build end-to-end SSE systems.
We show that such system-wide leakage can be exploited to
launch a query recovery attack. We experimentally validate
the practical efficiency of our attack using the Enron email
corpus,2 which is widely regarded as the standard choice of
experimental database in the SSE literature [5], [9], [10].

Modeling and Attacking System-Wide Leakage. In a prior
work, Gui et al. [8] discussed system-wide leakage in SSE
schemes, and its impact on the security guarantees of SSE
schemes. However, they only presented a system-wide analysis
of their own construction, SWiSSSE and did not address
the impact of system-wide leakage for SSE schemes more
generally. In this paper, we refine and extend the analysis
of [8] to develop a full-fledged query reconstruction attack.
We apply the attack against end-to-end SSE schemes built
in the natural way from different variants of volume-hiding
EMMs, including PRT-EMM [24], as well as FP-EMM and
DP-EMM [25]. Our attack works for volume-hiding EMM
implementations using the same parameters and the same
design/implementation choices advocated in [24] and [25].

Attack Overview. The core principle of our attack is as
follows: we show how to statistically model the noisy co-
occurrence leakage pattern arising in SSE schemes using the
different volume-hiding EMMs as a function of the keyword
queries, the system-wide leakage, and auxiliary data in the
form of an approximate version of the original database. We
then use the resulting models to develop a new inference-style
leakage-abuse attack that targets query reconstruction.

2https://www.cs.cmu.edu/∼enron/

Note that for our attacks, the target database and the
auxiliary database are sampled independently from the same
distribution. This makes our attack “inference-style”, and con-
stitutes a weaker attack assumption as compared to “known-
data attacks” (e.g. [9,15,17,27]), where the auxiliary and target
databases are identical. The precise sampling strategy may be
summarized as follows: given a fixed target dataset for the
attack (Enron for our attack experiments), we set aside half of
this dataset for use as the attack target, i.e. for generating
the leakage, while using sub-samples of the other half to
define auxiliary distributions. In this way, we effectively use
independent samples from the same empirical distribution to
define the target and auxiliary data distributions. This is stated
formally in Section V-D (with additional details in the full
version of our paper [28]).

The core idea of our attack is to solve an optimization
problem, where the objective function is the formal likelihood
of observing a given assignment of keywords to queries, given
the observed leakage and auxiliary data as prior information.
We then maximise the objective function using simulated
annealing; this corresponds to maximising the likelihood of
the solution. Thus the simulated annealing, if it works, will
produce “good” solutions in which many keywords in the
solution are correctly assigned to queries. This approach
requires careful mathematical analysis to derive the likelihood
functions for each targeted scheme and to efficiently imple-
ment their evaluation on large sets of queries and leakage.
Of course, one could also use any performant optimization
technique in place of simulated annealing.

Using experiments, we show that our attacks are effective
even if: (a) aggressive security parameters are used by the
underlying schemes; (b) the keyword universe of the auxiliary
information is a lot bigger than the set of queried keywords;
and (c) the auxiliary information (independent from the testing
dataset) is very noisy. We apply computational optimization
and approximation techniques to make our attacks highly
scalable with respect to the number of queried keywords,
number of keywords in the auxiliary information, and the size
of our target dataset.

Experimental Evaluation. In Section V, we present exten-
sive experimental evaluations to validate the practicality of
our proposed attack. Our experiments show that our attacks
achieve high success rate with reasonable practical efficiency
even if: (a) the target SSE scheme uses aggressive secu-
rity parameters (beyond those advocated for the employed
EMMs); (b) the keyword universe of the auxiliary information
is significantly larger than the set of queried keywords (in
contrast to existing attacks); and (c) the auxiliary information
available to the adversary is very “noisy”. Our attacks achieve
over 60% query reconstruction rate in most of the settings
we have tested. These include settings where the target SSE
schemes use aggressive security parameters even beyond those
originally proposed, as well as settings where the auxiliary
information available to the adversary is significantly per-
turbed. With accurate auxiliary information, our attacks can

4

https://www.cs.cmu.edu/~enron/

achieve over 80% query reconstruction rate. Beyond query
reconstruction, our attacks are also capable of (approximate)
database reconstruction in certain cases (see Section IV-C for
more details).

Ethics Discussion. We believe that it is justifiable to use the
Enron dataset for our attack experiments given: (a) the lack
of alternative realistic datasets for conducting experiments for
our attack, (b) the extensive usage of this dataset for attack
experiments in prior works [5], [9], [10], (c) the fact that the
data has long already been public, and (d) there has been an
effort by the researchers curating the version of the dataset
used in this paper to remove users upon request.3

Comparison with Existing Attacks. We note that most well-
known leakage-abuse attacks (e.g. [5], [6], [9], [12], [27])
rely on stronger models of auxiliary data: they are essentially
known-data attacks, where the adversary knows a subset of
the entries in the original database. On the other hand, our
attack is an inference attack, where the auxiliary data about
the database that is available to the adversary is not sampled
directly from the target database (as was done in prior known-
data attacks [5], [6], [9], [12], [27]), but from an auxiliary
distribution that is statistically “close” to the distribution of
the target database. Having independent training and testing
datasets is a weaker (and more realistic) assumption in prac-
tice. We also note that the IKK attack [5] and the Count
attack [6], [9], [27] are practically infeasible in inference
mode, while the attacks due to Blackstone et al. [9] are known-
data attacks by design and do not work (even theoretically) in
inference mode.

Nearly all of these existing leakage-abuse attacks [5], [6],
[9], [27] on SSE also do not scale efficiently when attempting
query-recovery over large query histories. As an illustration,
the IKK attack [5] (with a serial implementation) takes up to
14 hours to finish one run in the setting where there are only
150 queried keywords and 2500 keywords in the auxiliary
information. Similarly, the state-of-the-art analysis due to
Blackstone et al. in [9] are based on the Enron dataset [34]
for only 150 queries. Recently, Kamara et al. [35] introduced
LEAKER – an open-source framework for evaluating the
impact of leakage-abuse attacks on a variety of real-world
datasets. Using this framework, the authors of [35] showed
that, when additionally provided with real query logs for
certain datasets, the attack of [9] achieves improved query
recovery rates than those originally reported by the authors
of [9], while the attacks in [5], [6], [27] achieved lower query
recovery rates than originally reported. However, it was open
to design leakage-abuse attacks that efficiently scale to large
query histories prior to our work. We solve this open question;
for a comparison, our attack against the full-padding EMMs
[25] averages 8.7 minutes per run when there are 750 queried
keywords and 4000 keywords in auxiliary information.

Pouliot and Wright [7] proposed an inference-style graph
matching attack, which is essentially an improved version

3See https://www.cs.cmu.edu/∼enron/ for detailed documentation.

of the IKK attack [5] that exploits co-occurrence pattern
leakage, albeit under the strong assumption that the auxiliary
and target datasets are highly correlated, i.e. the leakage is
only weakly perturbed. As shown by Oya and Kerschbaum
in [10], the attack efficiency degrades significantly when the
leakage perturbation is high (which is expected to be the case
in practice). Our attacks, on the other hand, achieve highly
efficient query recovery even when the leakage perturbation
is high (captured by the usage of highly noisy auxiliary
information in our attack experiments).

Oya and Kerschbaum [10] proposed maximum likelihood
estimation-based inference-style leakage-abuse attacks against
SSE that simultaneously exploit the exact search pattern
leakage and (a sub-component of) noisy access pattern leak-
age. Our attacks exploit a strictly weaker leakage profile as
compared to their attacks (noisy access pattern leakage as
opposed to search pattern+noisy access pattern leakage); in
particular, our attacks would work even if our target end-
to-end SSE schemes used mechanisms to additionally hide
the search pattern leakage. Similarly, other existing inference-
style leakage-abuse attacks against SSE [11], [13] rely on
additional requirements such as auxiliary information about
the target leakage and/or known queries, which our attacks
avoid entirely (and thus work in a weaker attack setting).

Gui et al. [8] recently presented an inference-style system-
wide leakage based attack; however, their attack techniques are
specifically designed for cryptanalyzing their own construction
called SWiSSSE and cannot directly be applied to other SSE
schemes. They require significantly stronger assumptions on
the auxiliary leakage available to the adversary compared to
our attack. Our attack extends and refines the attack approach
in [8] by: (a) encompassing a more realistic system-wide
leakage profile that is typically encountered in all end-to-end
SSE systems built in a natural way from structure-only SSE
schemes, and (b) making less ideal assumptions about the
attack setting and availability of auxiliary data. The “core” idea
of our attack is essentially the same as that of [8], and in fact,
is based on well-known principles that have been extensively
used before by cryptanalysts and in statistics: try to find an
assignment (in this case, keywords to query tokens, but in
general, a parameter of a distribution that one is trying to op-
timize) that maximizes the likelihood of the assignment (where
the likelihood is a formal probabilistic measure expressed as
a conditional probability). The main technical novelty of our
analysis lies in the capability to perform query-recovery given
significantly noisier system-wide leakage from a wider class
of state-of-the-art SSE-systems (as opposed to a particular
scheme in [8]), and the ability to scale efficiently to larger
query-histories with superior query-recovery rates.

Table I compares our attack to the existing ones.

C. On Using EMMs to Hide System-Wide Leakage

We also address the question of whether existing leakage
suppression techniques can be efficiently applied to both the
encrypted index and the final document retrieval step in order
to mitigate system-wide leakage in end-to-end SSE systems.

5

https://www.cs.cmu.edu/~enron/

Attack Attack Target Attack Setting Leakage Exploited Additional Requirements
IKK [5] Naı̈ve Known-data Co-occurrence pattern Known queries
Count* [6] Naı̈ve Known-data Co-occurrence pattern Known queries
BKM20 [9] Naı̈ve Known-data Co-occurrence/access pattern –
LEAP [12] Naı̈ve Known-data Co-occurrence pattern –
Graph Matching Attacks [7] [29], [30] Inference Co-occurrence pattern –
SAP [10] [25], [26], [31] Inference Search and volume pattern Auxiliary info on query frequency pattern
GPPW20** [8] [8] Inference Co-occurrence pattern –
IHOP [11] [26], [32], [33] Inference Search/volume/co-occurrence pattern Auxiliary info on the target leakage(s)
DHP21 [13] Naı̈ve Inference Co-occurrence pattern Known queries
This work [24]–[26] Inference Co-occurrence pattern –

Table I: Comparison of existing leakage-abuse attacks achieving query reconstruction based on co-occurrence and/or access pattern leakage. Naı̈ve attack
target refers to a scheme that leaks the full access-pattern (see Section VI for a more formal treatment). All cited attack targets have some form of leakage
perturbation. *Count attack does not need known queries if the entire database is known by the attacker; known queries are only helpful when only part of
the database is known by the attacker. **Gui et al. [8] also presented a system-wide leakage based attack; however, their attack techniques are specifically
designed for cryptanalyzing their own construction called SWiSSSE (unlike our attacks, their attack cannot be generically used to break the vast majority of
SSE schemes in the literature), and require significantly stronger assumptions on the auxiliary leakage available to the adversary compared to our attacks.

We demonstrate that it is practically infeasible to use volume-
hiding EMMs, including the PRT-EMM scheme of [24], as
well as the FP-EMM and DP-EMM schemes of [25], to hide
system-wide leakage. We validate this observation by experi-
mentally evaluating the concrete storage overheads and query
processing overheads incurred when applying these state-of-
the-art EMM techniques to encrypt the whole database, and
not just the search index. We also study the overheads when
using state-of-the-art ORAM and PIR schemes to do this.

Our experiments show that applying the volume-hiding
EMM schemes from [24], [25] to encrypt the whole database
incurs prohibitively expensive storage overheads, ranging from
100 to 800 times the size of a naı̈ve encrypted document
store. Our experiments also establish that the volume hiding
EMM schemes in [24], [25] incur additional computational
and communication overheads during query execution due
to their usage of padding techniques. While this cost is
manageable when querying the search index alone, it blows
up to impractical proportions if applied directly to encrypted
document retrieval, ranging from 20 to 100 times the com-
munication costs for the naı̈ve solution. Our volume-hiding
EMM implementations use the same parameters and the same
design/implementation choices advocated in [24] and [25].

II. PRELIMINARIES

A. Syntax of Searchable Symmetric Encryption (SSE)

Let T be an abstract data type supporting query operation
Query. Then, an SSE scheme Σ for T is a tuple Σ =
(Setup,Querye) where:

• Setup is the setup algorithm (locally executed by the
client) which takes as input a plaintext database D of
structure T , and outputs a secret key sk and an encrypted
database ED.

• Querye is the query execution protocol between the client
and server. The client takes as input a secret key sk and
a query q (this could be a single keyword or a Boolean
formula over multiple keywords), and the server takes
as input the encrypted database ED; after the interaction
between the client and server, the client obtains a final
result rsp, which is the set of (encrypted) documents
matching the query q.

Correctness. We say that Σ is correct if for any database D
and any query q, an execution of the query protocol Query
on the query q and the encrypted data ED ← Setup(sk,D)
yields the same response as a direct execution of the query q
on the plaintext database D.

Security. The security of an SSE scheme is defined formally
with respect to a leakage profile, which is an upper bound
on the information about the plaintext data and queries that
an attacker can learn from the encrypted database ED and
subsequent executions of Querye. We refer the reader to [2],
[4] for the formal security definition.

B. Notations
For the rest of our paper, we model a database in a

searchable encryption scheme as target abstract data type. A
database DB consists of a set of documents di, each associated
to a set of keywords kw(di), so DB = {(di, kw(di))}. It
supports keyword search queries. For a keyword search query
q on the keyword kw(q), the set of documents containing this
keyword, denoted as DB(kw(q)) = {di | kw(q) ∈ kw(di)}, is
returned. To emphasize that we are only considering keyword
search queries, we denote the query protocol as Srch.

III. FORMAL DESCRIPTION OF QUERY RECONSTRUCTION
ATTACKS USING CO-OCCURRENCE LEAKAGE

This section formally establishes the leakage profile for SSE
systems that we are targeting in the paper. We also formally
describe our attack setting.

Access-pattern Leakage. Access-pattern leakage refers to the
information leakage associated to document retrieval. If a
naı̈ve searchable encryption scheme Σ leaks the “exact” access
pattern and nothing else, we can write the leakage of a query
q on document collection DB as:

LSrch(q,DB) = {i | kw(q) ∈ kw(di), (di, kw(di)) ∈ DB} ,

where kw(q) denotes the keyword associated to query q.

Co-Occurrence Leakage. Access-pattern leakage from dif-
ferent queries can be represented equivalently as a matrix,
known as co-occurrence pattern. Consider a small document
collection DB where

DB = {(d1, {kw1, kw2, kw3}), (d2, {kw1, kw2}), (d3, {kw3})}.

6

Let qi be a query on keyword kwi. If the original access
pattern is leaked, we know that

LSrch(qℓ,DB) = {1, 2} for ℓ ∈ {1, 2},LSrch(q3,DB) = {1, 3} .

This allows us to take intersections between the leakages as:

LSrch(q1,DB) ∩ LSrch(q2,DB) = {1, 2} ,
LSrch(qℓ,DB) ∩ LSrch(q3,DB) = {1} for ℓ ∈ {1, 2}.

The cardinality of the intersections can be very useful in an
attack. For example, the co-occurrence pattern of the document
collection above can be represented as a co-occurrence matrix
M̄ defined as follows:

M̄(q1,q2,q3;DB) =

2 2 1
2 2 1
1 1 2

 ,

where the (i, j)-th entry of the matrix is∣∣LSrch(qi,DB) ∩ LSrch(qj ,DB)
∣∣ .

If we know the underlying document collection perfectly, we
can re-identify q3 as a query on kw3 as it is the only keyword
that only shares one document with other keywords. This
qualifies as a query reconstruction attack.

We note that a co-occurrence matrix contains strictly less
information than the original access-pattern leakage as the
information on intersections of more than two queries are
removed. However, the co-occurrence matrix is often sufficient
in attacks so it is used instead of the full leakage. We refer to
the co-occurrence matrix as the co-occurrence leakage.

There are three complications to the representation of co-
occurrence leakage in practice. Firstly, the schemes we con-
sider in practice usually leak query equality pattern too. That
is, if kw(qi) = kw(qj), the attacker knows that the two
queries are for the same keyword. In terms of co-occurrence
leakage, we use only one of the queries in the representation
to simplify the problem. Secondly, the queries are unordered
in practice. That means there is no standard representation
of the leakage in terms of the known keywords. We use the
convention that the i-th row and column of the co-occurrence
matrix corresponds to the i-th non-repeating query in our
representation. Finally, not all schemes leak the original access
pattern and some schemes may even be randomised. In those
cases, we need to use a suitable representation of the co-
occurrence information, which may differ from what we have
described above.

Auxiliary Information. Similar to a co-occurrence matrix, the
auxiliary information the attacker receives can be represented
as a co-occurrence matrix M . The co-occurrence matrix is
indexed by the known keywords and typically contains full in-
formation on all keywords. In stronger attacks, M is assumed
to be noisy in the sense that it is not generated directly from
the target document collection. Instead, an auxiliary dataset is
used for the purpose.

Let DBaux =
{
(d′

i, kw(d′
i))

}
be an auxiliary document

collection with keywords
{

kw′
1, . . . , kw′

n

}
. In our attack,

the (i, j)-th entry of M represents the empirical probability
(derived from the auxiliary data DBaux) of seeing kw′

i and
kw′

j together in a document, computed as:

Mi,j =
∣∣{d′

i | kw′
i ∈ kw(d′

i) ∧ kw′
j ∈ kw(d′

i)
}∣∣/|DBaux|,

where |DBaux| is the total number of auxiliary documents.

Attack Settings. There are two attack settings we consider
in this paper. In the first attack setting, we consider natural
end-to-end SSE schemes built from structure-only schemes
(see Section IV-A). We exploit the co-occurrence leakage from
retrieval of actual documents to achieve query reconstruction.
Alternatively, if the target SSE scheme is already an end-to-
end one, we target the co-occurrence leakage from retrieval of
actual documents directly to achieve query reconstruction.

We can describe a query reconstruction attack formally as
follows. Let queries q1, . . . ,ql be a sequence of queries on the
document collection, so the attacker observes co-occurrence
leakage M̄(q1, . . . , ql;DB). Suppose that the attacker has
access to some auxiliary information M . The goal of the
attacker is to recover kw(qi) after observing the co-occurrence
leakage M̄ and knowing auxiliary information M .

IV. NEW QUERY RECONSTRUCTION ATTACKS USING
CO-OCCURRENCE LEAKAGE

In this section, we show that all the structure-only SSE
schemes [2]–[4], [14]–[23], including those built in a natural
way from volume-hiding EMMs [24], [25], incur damaging
system-wide leakage when used to construct end-to-end SSE
systems in the natural way. In particular, we propose new
inference-style query recovery attacks that completely break
the query privacy guarantees of these systems. We additionally
show a new query recovery attack on the end-to-end SSE sys-
tem DPAP-SE (based on differentially private access patterns)
proposed in [26].

Attack Overview. We develop an inference-style leakage-
abuse attack using a combination of statistical modeling and
simulated annealing. We assume that the attacker has access to
noisy co-occurrence leakage from observed queries and auxil-
iary data that is independent of but statistically “close” to the
target database. We model the attack as an optimization prob-
lem, where the objective function is the statistical likelihood of
observing a given assignment of keywords to queries, given the
observed leakage and auxiliary data as prior information. Then
maximizing the objective function corresponds to maximising
the statistical likelihood of the solution. In this way, we
obtain optimal assignments of keywords to queries, given
the available leakage and auxiliary data. We use simulated
annealing for the maximization step because it is relatively
easy to implement and performs well in practice, although
one could use any other suitable optimization technique.

A. Attack Targets
As mentioned earlier, we target system-wide leakage from

end-to-end SSE systems constructed in a natural way from

7

structure-only SSE schemes, which are in turn built from
volume-hiding EMMs [24], [25]. We begin by recalling the
natural way to design end-to-end SSE from EMMs.

End-to-End SSE from EMMs. At a high level, a multi-
map is a set of key-value pairs, i.e.

{
(keyi,

−→vi)
}

, where
keyi’s are the keys which are assumed to be non-repeating
and −→vi ’s are the tuples of values associated to their keys.
The natural way to design a structure-only SSE scheme from
an EMM is to realize an encrypted search index as follows:
let each key of the EMM be a deterministic function of a
keyword in the database, and let the corresponding value
be the set of encrypted document identifiers pertaining to
the documents matching this keyword. This is precisely the
approach taken by all of the structure-only SSE schemes [2]–
[4], [14]–[23] (while the exact specification/implementation
of the EMM might vary from scheme-to-scheme depending
on the nature of queries supported by the scheme, the overall
approach is the same). Finally, the natural and widely accepted
approach to transition from structure-only SSE to end-to-end
SSE is to additionally realize document retrieval using a simple
storage system matching document identifiers to encrypted
documents. We refer the reader to [2]–[4] for a more formal
exposition of the overall approach.

Our Targets. We target system-wide leakage from end-to-
end SSE built in the aforementioned natural way from state-
of-the-art volume-hiding EMMs [24], [25], which are spe-
cially designed EMMs equipped with additional cryptographic
mechanisms for leakage suppression. Our attacks rely on the
leakage from the document retrieval phase, which subsumes
the leakage from the index-retrieval phase. It is important
to note that even though the document retrieval phase is
implemented as a simple storage system, the leakage from this
phase is not the trivial (unperturbed) access pattern leakage.
In particular, since document retrieval is performed based on
the encrypted document identifiers from index retrieval, the
leakage mitigation from the volume-hiding EMM also induces
noise/perturbation in the leakage from document retrieval.
Hence, we specifically design our attacks to be robust against
such noisy leakage. Since the exact nature of the leakage
depends on the specific realization of volume-hiding EMM
used, we recall the schemes from [24], [25].

PRT-EMM. Our first target is an end-to-end SSE scheme
realized naturally from the first construction of volume-hiding
EMM via pseudorandom transform (abbreviated as PRT-
EMM throughout) due to Kamara and Moataz [24]. We note
here that our attack does not target the original construction
of PRT-EMM in [24], but the natural and efficient extension
of PRT-EMM into end-to-end SSE system. At a high level,
the idea behind PRT-EMM is to pad or truncate the query
response lengths of queries on any EMM with a pseudorandom
function (PRF) as follows. Let key be a key for the multi-
map and Fsk(·) be a PRF with key sk. The client computes:
n′

key = λ+Fsk(key||nkey), as the new query response length,
where λ is a free parameter which the client can choose and

nkey is the original query response length. These new query
response lengths are used to build a multi-map on as follows:

• If nkey ≤ n′
key, add ⊥ symbols in the multi-map on key

key before encryption.
• If nkey > n′

key, truncate the multi-map on keyword key
to the first n′

key entries.
We note here that the original construction in [24] pads query
responses with ⊥ symbols if the real query response length
is shorter. If the ⊥ symbols are ignored in actual document
retrieval, the attacker will be able to learn the true query
response lengths when there is padding. In our attack, we
assume the ⊥ symbols are replaced by randomly picked
indices, so the true query response lengths are not leaked. Due
to lack of space, the detailed formal derivation of the precise
leakage distribution for our target SSE scheme is deferred to
Appendix A.

FP-EMM and DP-EMM. We next target end-to-end SSE
scheme realized naturally from two constructions of volume-
hiding EMM based on hash-tables presented in [25]. Once
again, we note here that our attack does not target the
original constructions of volume-hiding EMMs in [25], but
the natural and efficient extension of these EMMs into end-to-
end SSE systems. The first scheme (abbreviated as FP-EMM
throughout) uses full padding, meaning that all query response
lengths are padded to the maximum query response length.
This is done by querying additional addresses in the hash-
table deterministically (generated by a PRF) for each key.

The second scheme (abbreviated as DP-EMM throughout)
uses differentially-private volume hiding as opposed to full
padding. Let 2nkey be the true query response length of a query
on key key (where the factor of 2 arises from the usage of
two hash tables in Cuckoo hashing). Then the scheme pads the
query response length to 2nkey+n∗+Lapsk(2/ϵ), where n∗ is
a parameter set by the client to offset the query response length
in case the latter random variable is negative, and Lapsk(·) is
a Laplace distribution with secret key sk as the seed.

As in the case of PRT-EMM, we design attacks targeting
“noisy” co-occurrence leakage during document retrieval in
end-to-end SSE schemes realized naturally from FP-EMM
and DP-EMM, respectively. The formal derivation of the
precise leakage distribution for each of these SSE schemes
is again deferred to Appendix A.

DPAP-SE. Finally, we also target the end-to-end SSE system
DPAP-SE (based on differentially private access patterns)
proposed in [26]. At a high level, this scheme uses a dif-
ferential privacy mechanism is to “obfuscate” the plaintext
database prior to encryption, such that a slight change in
the real access pattern does not affect the obfuscated access
pattern significantly. There are two key ingredients in their
construction. First, an erasure code [36] is used to split every
document into m shards, each with size 1

k of the original
document. The erasure code has the property that any k
shards of a document can be used to reconstruct the original
document. The client then picks two probabilities p and q, and
does the following to each shard:

8

1) For any keyword that is originally in the shard, remove
the keyword with probability 1− p.

2) For any keyword that is originally not in the shard, add
it to the shard with probability q.

For our attack, we rely on the observation that the resulting
leakage from this scheme can be interpreted as follows: since
the scheme effectively transforms query response into “noisy”
keyword response lengths on the shards, the observed co-
occurrence counts are actually “noisy” co-occurrence counts
on the shards, rather than the actual documents. We then
design an attack procedure that takes this noisy leakage on
the shards into account. As in our earlier attacks, we again
rely on precisely modeling this noisy co-occurrence leakage,
albeit on the shards. Details can be found in Appendix A.

B. Attack Technique

We now detail our attack technique. For all of our attacks,
we assume that the precise leakage modeling steps outlined
above (and described formally in Appendix A) yield an
observed co-occurrence matrix M̄ , which is the leakage from
the observed queries on the actual target database. To simulate
the auxiliary information available to the attacker, we build an
auxiliary co-occurrence matrix M from an auxiliary database.
This auxiliary database consists of a subset of uniformly
randomly sampled documents from a second database (inde-
pendent of the target database). To simulate different noise
levels, we vary the number of such sampled documents – fewer
documents means more noise. The level of noise determines
how “close” the auxiliary co-occurrence matrix M is to the
observed matrix M̄ .

Maximum Likelihood Estimation. Our attack is based on
maximum likelihood estimation [37]. The attacker is given the
observed co-occurrence matrix M̄ as the leakage and auxiliary
co-occurrence matrix M as prior information. He makes a
choice of the assignment P that maximises the of likelihood
of P given M̄ and M .

We use maximum likelihood estimation as it is an optimal
statistical approach – if the observed co-occurrence matrix is
really drawn from the distribution associated to the auxiliary
co-occurrence matrix, then the assignment which maximises
the likelihood is, in a strict sense, the best possible guess which
any adversary can make.

The derivations of the likelihood functions L
[
P | M̄,M

]
are given in Appendix B.

Simulated Annealing. We use simulated annealing [38] as
the algorithm to compute the assignment. At a high level,
simulated annealing is a probabilistic technique for searching
for the global optimum of a given function. It is very similar
to a greedy search algorithm – randomize the input of the
function, in our case, that is the assignment P , recompute the
score, and if the score is larger than before, the assignment
is kept as the new solution, and it is discarded otherwise –
except that a worse solution is accepted in simulated annealing
if it is not too bad. This is to prevent the algorithm from
getting stuck in a local optimum. More concretely, simulated

Algorithm 1 Simulated Annealing

1: procedure ATTACK(M̄,M, T0, imax)
2: P ← InitPerm(M̄,M)
3: T ← T0

4: s← Score(M̄,M,P)
5: for i← 1, . . . , imax do
6: T ← Cooling(T, i)
7: P ′ ← Neighbour(P, M̄,M)
8: s′ ← Score(M̄,M,P ′)
9: if AccptProb(T, s, s′) > rand(0, 1) then

10: P ← P ′

11: s← s′

12: return P

annealing uses a temperature T which decreases per iteration
and the differences between the current score of the target
function and the previous best score maintained by the al-
gorithm to compute an acceptance probability p, and with
probability p the new solution is accepted. This probability
is 1 if the new score is higher than the previous best, and
less than 1 otherwise. For the same difference in the scores, a
lower temperature T leads to a lower acceptance probability,
which means simulated annealing behaves as a greedy search
algorithm progressively.

Formally, simulated annealing consists of five subroutines,
namely a function InitPerm to generate an initial assign-
ment, a cooling scheme Cooling, a neighbourhood genera-
tion algorithm Neighbour, a function Score to compute the
score and a function AccptProb to compute the acceptance
probability. The syntax of the subroutines are defined below:

• InitPerm: takes as input an observed co-occurrence
matrix M̄ and an auxiliary co-occurrence matrix M , and
outputs an assignment P .

• Cooling: takes as input a temperature T and the current
iteration number i and outputs a new temperature T ′.

• Neighbour: takes as input an assignment P , an ob-
served co-occurrence matrix M̄ and an auxiliary co-
occurrence matrix M , and outputs a new assignment P ′.

• Score: takes as input an observed co-occurrence matrix
M̄ , a auxiliary co-occurrence matrix M and an assign-
ment P , and outputs a score.

• AccptProb: takes a temperature T , a previous best
score s and the new score s′, and outputs a probability.

The algorithm begins with an initial temperature T0 and a
random assignment P . An initial score s is computed on this
assignment P . Then, the algorithm computes a new tempera-
ture T ← Cooling(T0, 1), find a new assignment P ′ using
the neighbourhood function Neighbour(·), and compute a
new score s′ with the score function Score(·). An acceptance
probability is computed as p← AccptProb(T, s, s′). A ran-
dom number between 0 and 1 is generated and if the random
number is less or equal to p, the new solution s′ is accepted
by the algorithm and kept as the new optimum solution. This
process is repeated until the maximum number of iteration is
reached. See Algorithm 1 for the formal description.

Our Query Reconstruction Attacks. Our proposed query

9

reconstruction attacks on all of the attack targets described
earlier use the aforementioned simulated annealing procedure
for maximum likelihood estimation. In all our attacks, we
use T ′ ← 0.995T as our cooling scheme Cooling(·)
and p ← exp(− s−s′

T) as our function AccptProb(·) to
compute the acceptance probability. The precise score function
Score(·) that we aim to maximise is the likelihood function
L
[
P | M̄,M

]
. We defer the formal description of how this

function is derived for each target scheme to Appendix B.
We next describe our choices of the initial assignment find-

ing subroutine InitPerm(·) and neighbourhood generation
subroutine Neighbour(·) which have a significant impact on
the performance and effectiveness of our attacks. The choices
we make are tuned for maximizing the attack recovery rate.

InitPerm(·). An initial assignment finding subroutine
InitPerm(·) is an efficient algorithm for guessing key-
words/keys of the queries, so as to provide a starting point
for the more expensive iterative steps later. For our attacks,
only the query response lengths are used to avoid expensive
computations. We observe that although the observed query
response lengths are different from the true query response
lengths for all of the schemes we target, these two are related.
In particular, for DP-EMM [25] and DPAP-SE [26], we
can compute the expected observed query response lengths
from the query response lengths in the auxiliary co-occurrence
matrix, and match the queries to the keywords in the auxiliary
co-occurrence matrix as well as we can. For PRT-EMM [24]
and FP-EMM [25], the observed keyword frequencies are
independent from the true keyword frequencies, .

Neighbour(·). A neighbourhood generation subroutine gen-
erates new assignments for the attacks. Although a uniformly
randomly picked assignment works all the time, it may not
be the most efficient choice. In particular, for DP-EMM [25]
and DPAP-EMM [26], we know that if an observed query
response length is too far from the expectation, the assignment
is very unlikely, and can be safely discarded. This means the
neighbourhood generation subroutines for the attacks on these
two schemes can make use of this, and output a new assign-
ment only if it is sound. We note that these neighbourhood
generation subroutines may prevent some correct assignments
in the output of the attacks if their observed query response
lengths are too far from the expected query response lengths.
By relaxing the bounds, we can make the chance of that
happening arbitrarily small. However, the algorithm would
then be less efficient as more iterations are required for a
convergence. Hence, we see our choice of bounds as a trade-
off between query recovery rate and attack efficiency.

For PRT-EMM [24] and FP-EMM [25], we have to use
uniformly randomly picked assignments, since the observed
query response lengths are independent from the true query
response lengths.

C. From Query Reconstruction to Database Reconstruction

It turns out that for some of the targeted schemes, our
query reconstruction attacks can be extended to database

reconstruction attacks (by which we mean recovering the
keywords associated with the encrypted documents).

DP-EMM. Our query reconstruction attack on the end-to-end
SSE system built naturally from DP-EMM [25] implies a
database reconstruction attack for practical security param-
eters; we rely on the noisy access pattern leakage during
document retrieval to recovers the actual keywords occurring
in the encrypted documents retrieved across various queries.

Recall that in DP-EMM, the response length to a query
on some key is padded to (2nkey + n∗ + Lapsk(2/ϵ)), where
nkey is the real response length, and n∗ is a fixed constant
that depends solely on the choice of ϵ. For example, the
authors of [25] suggest using ϵ = 0.2, which yields n∗ = 567.
Our attack stems from the observation that the leakage per-
turbation is rather small for more frequent keywords, since
the corresponding response length nkey is much larger than
n∗. Hence, for the choice of parameters suggested in [25],
our query reconstruction attack also allows us to progres-
sively recover the set of keywords associated with a given
document as more and more queries are observed, leading
to a database reconstruction attack. The reconstruction rate is
somewhat close to 50% due to the padding-factor of 2× in
DP-EMM, which causes half of the recovered keywords to
be “fake”. While this attack can be prevented by altering the
parameter ϵ for increased leakage perturbation, such alteration
also significantly degrades the practical performance of the
scheme. In other words, all practically efficient realizations of
the natural end-to-end SSE from DP-EMM are broken by our
database reconstruction attack.

Our attack does not immediately extend to the end-to-end
SSE systems built naturally from PRT-EMM [24] and FP-
EMM [25] due to the inherently different and somewhat larger
perturbation to the access pattern leakage in these schemes,
and we leave it as an open question to investigate database
reconstruction attacks on such schemes.

DPAP-SE. For implementations of DPAP-SE [26] with rea-
sonably practical parameters (e.g. p = 0.89999 and q =
6.997 × 10−6, where p and q are the parameters described
earlier), our query reconstruction attack allows guessing the
real keywords in the shards (obtained as part of the document
retrieval process) with high probability (more concretely, prob-
ability p; recall that p needs to be large for the scheme to sat-
isfy correctness in practice). As in the case of DP-EMM-based
end-to-end SSE, we rely on the noisy access pattern leakage
for this database reconstruction attack. Again, while this attack
can be prevented by altering the parameters p and q, such
alteration also significantly degrades the practical performance
of the scheme. Hence, all practically efficient realizations of
DPAP-SE are broken by our database reconstruction attack.

V. EXPERIMENTAL EVALUATION

A. Overview of Experimental Setup

Experimental Data and Auxiliary Information. We use
the Enron email corpus as the target dataset for all of our

10

attacks. A description of the dataset and our pre-processing
step can be found in the full version of our paper [28]. A
major challenge for inference-style leakage-abuse attacks is
deciding an appropriate model for evaluating their effective-
ness in practice. Such a model should take into account both
the distribution of queries as well as the distribution of the
auxiliary information available to the adversary. Unfortunately,
there do not exist concrete guidelines in the literature for how
to construct such models; given this lack of precedence, we
make certain assumptions that we believe are reasonable in
practice.

Query Distribution. We use uniformly distributed keyword
queries to evaluate our attacks. This is exactly as in previous
attacks [5], [6], [9]. We note here that our attacks do not
explicitly depend on the distribution of queries; hence a
uniform distribution appears to be a reasonable choice.

Auxiliary Data Distribution. For the IKK attack, Islam et
al. [5] proposed a method to model auxiliary information
in an inference-style attack setting; their suggestion was to
use an auxiliary co-occurrence pattern leakage obtained by
adding Gaussian noise to the original co-occurrence pattern.
However, this implicitly assumes a homogeneous distribution
of keywords amongst the documents, which may not always
be the case in practice. Instead, we opt to split the overall
dataset into two halves: out of the 480,000 documents in
the dataset, half of the documents are used as the attack
target and a fraction of the other half of the documents
is used to generate auxiliary information about the dataset.
Measurements of ‘noisiness’ of our auxiliary data can be found
in the full version of our paper [28]. In total, we generate
10 different splits of the documents. For each split, we run
10 independent attacks with freshly generated observed co-
occurrence matrices. We measure the fraction of correctly
guessed keywords and report the average over the 100 runs
as the query recovery rate.

Keyword Extraction. We extract keywords using the Natural
language toolkit [39] in Python. Keywords with frequency
higher than 5% are removed. We do not apply stemming as
that does not affect query recovery rate in our experiments.

Keyword and Query Selection. We use the 1,000, 2,000,
3,000 and 4,000 most frequent keywords to build auxiliary co-
occurrence matrices, and sample uniformly randomly without
replacement from these most frequent keywords subsets of
250, 500, 750 keywords as queried keywords. These queried
keywords are used to build observed co-occurrence matrices.
These observed and auxiliary co-occurrence matrices are then
used as the inputs to our attacks.

Security Parameter Selection for the Target Constructions.
We use the security parameters suggested in the original papers
to run our attacks. We also investigate how changes in the
security parameters affect query reconstruction rates.

a) PRT-EMM: Recall that PRT-EMM from [24] allows
the client to pick a public parameter λ which controls the
padded query response lengths as: n′

key = λ+Fsk(key||nkey).

The authors suggested to set λ between 0 and 0.25nmax. We
used λ = 0 and 0.25nmax in our experiments. In addition, we
used λ = 0.5nmax to see the effect of additional padding on
query reconstruction rate.

b) FP-EMM and DP-EMM: FP-EMM from [25] does
not have any tunable parameters and so we run our attacks on
the FP-EMM as it is. DP-EMM from [25] uses parameter ϵ
to set query response volumes to (2nkey + n∗ + Lapsk(2/ϵ)).
The authors suggested ϵ = 0.2 and we use the same value. We
also run experiments where ϵ is significantly smaller, ranging
from 0.1 to 0.01.

c) DPAP-SE: For DPAP-SE [26], the authors suggested
m = 6 (the number of shards per document), k = 2 (a
parameter of the erasure code which does not affect our
attack), p = 0.88703 (the probability for which a keyword
is kept in a shard) and q = 0.04416 as the parameters
to use for the Enron dataset. We used similar parameters
(m = 6, k = 2, p = 0.89 and q = 0.045) in our experiments.
A smaller p or a bigger q significantly reduces the efficiency
of the construction so we opt to not run additional experiments
with those parameters. Instead, we investigate how a smaller q
affects query reconstruction rate. We use q = 0.0045, 0.00045
and 0.000045 as additional choices of parameters. These
additional parameters for all of the schemes are supposed to
lead to more secure instances of the schemes. We investigate
their effects in our experiments below.

Implementation. We implemented our attacks in C using
GNU Scientific Library [40] for randomness generation and
probability calculations. We used our own custom code for
simulated annealing for best performance. We parallelized our
implementation using OpenMP [41]. Our implementation is
highly scalable. It takes less than one minute per run on the
differentially-private schemes (DPAP-SE and DP-EMM) and
no more than 6 minutes per run on the other schemes (PRT-
EMM and FP-EMM) for all of our experimental settings,
on a machine with an 8-core (16-thread) Sandy Bridge CPU
clocked at 2.6 GHz 4.

Experiments. We present three sets of experimental results
on the target constructions discussed above. In Section V-B,
we present the experimental results in basic settings, where the
auxiliary co-occurrence matrix is built from 48,000 documents
(20% of the available auxiliary data) using the 1,000 most
frequent keywords. We set the number of queried keywords
to 250, 500 or 750, and the security parameters are allowed to
vary. In Section V-C, we set the number of queried keywords to
250, 500 or 750, and the security parameters to those suggested
in the original papers, and vary the number of keywords used
to build auxiliary information between 1,000 and 4,000. Just as
before, 48,000 documents are used in building auxiliary infor-
mation. Finally, in Section V-D, we use anywhere from 12,000
to 96,000 documents to build the auxiliary co-occurrence
matrix, as a means to simulate auxiliary information with

4The code is publicly available at https://github.com/RethinkingSSE/
Attacks-on-SSE

11

https://github.com/RethinkingSSE/Attacks-on-SSE
https://github.com/RethinkingSSE/Attacks-on-SSE

(a) PRT-EMM [24]. nmax is
the maximum query response
length.

(b) FP-EMM [25].

(c) DP-EMM [25]. (d) DPAP-SE [26].

Figure 2: Experimental results with varying security param-
eters. The 1,000 most frequent keywords are used in the
auxiliary information.

different levels of noise. The number of keywords used is
set to 1,000, and the number of queries is allowed to vary
from 250 to 750. The security parameters are set to the ones
recommended in the original papers.

B. Varying the Security Parameters of the Constructions

PRT-EMM. The experimental results on PRT-EMM are
shown in Figure 2a. We observe an increasing query recovery
rate with more queried keywords and larger λ. The attack
performs significantly worse when λ = 0.

The worse performance of our attack on small λ is caused
by truncations of query response volumes (see Section IV-A)
which lead to loss of co-occurrence information. It should be
noted that although a smaller λ leads to better query privacy, it
results in more truncations and less complete query responses.

FP-EMM. The experimental results of our attack on FP-
EMM are shown in Figure 2b. As expected, the attack
performs better with more queried keywords. The attack is
able to recover over 70% of the queried keywords if over 500
keywords have been queried, suggesting that full padding is
ineffective at adding noise to the co-occurrence leakage.

DP-EMM. The experimental results on DP-EMM are shown
in 2c. The attack performs slightly better with a smaller ϵ,
suggesting that our attack is over-fitting the auxiliary data.

DPAP-SE. The results of our attacks are shown in Figure 2d.
The attack is able recover between 50% and 80% of the queries
in all cases we have considered.

As opposed to what one might expect, the attack performs
better with a larger q. It is certainly true that a larger q masks
the true co-occurrences better as there are more fake keywords
introduced to each document, but it also reduces the effective-
ness of perturbation with respect to keyword frequencies. For
simplicity, consider a database with N documents, of which

(a) PRT-EMM [24]. λ is set to
0.25nmax.

(b) FP-EMM [25].

(c) DP-EMM [25]. ϵ = 0.2. (d) DPAP-SE [26]. (m, k, p, q) =
(6, 2, 0.89, 0.045).

Figure 3: Experimental results with varying number of key-
words in auxiliary information.

n documents contain keyword kw. With parameters k, m, p
and q, the frequency of keyword kw in the resultant database
processed by DPAP-SE is k(np + (N − n)q). A larger q
increases the separation of frequencies for different keywords,
and we believe that is the main reason why our attack performs
better with larger q.

C. Varying the Number of Keywords in Auxiliary Information

Our experimental results on varying the number of key-
words in the auxiliary information are shown in Figure 3. The
security parameters we used can be found in the captions.

As the keywords are uniformly randomly picked, the attacks
with more auxiliary keywords are necessarily less successful.
There are two main reasons for this. Firstly, since we have
fixed the number of queried keywords, the search space for
the attacks with more auxiliary keywords are larger, and
there is naturally more uncertainty associated to those attacks.
Secondly, as we have picked the queried keywords uniformly,
it is more likely for the attacks with more auxiliary keywords
to hit low frequency keywords, which naturally contain less co-
occurrence information to begin with. Nevertheless, the con-
structions behave very differently with respect to the number
of keywords in the auxiliary information.

Our attacks on PRT-EMM and DP-EMM work reasonably
well for up to 2,000 auxiliary keywords. More queries are
required for the attack to succeed with 3,000 and 4,000
auxiliary keywords. Our attack is less successful on FP-
EMM when the number of auxiliary keywords is large. This
shows that full padding is effective at masking co-occurrence
information if there is enough uncertainty within the queries.

For DPAP-SE, the attacks with more auxiliary keywords
do not perform well when only 250 keywords are queried.
However, the query recovery rate increases significantly as
more keywords are queried. The attack is able to recover over
50% of the queries even if only 750 out of 4,000 keywords
have been queried.

12

Interestingly, the success rate of the attacks do not monoton-
ically increase with respect to the number of queried keywords.
We believe that there are three main reasons for this. Firstly,
the distribution of keywords in the auxiliary database can be
different from that of the target database. So over-fitting can
happen. Secondly, the auxiliary and target databases are freshly
generated each time so the attack may just perform worse on
more auxiliary data by chance. Finally, simulated annealing is
a randomised approach and there is no guarantee that it will
converge to the global optimum within the given time. Since
the search space grows as the number of auxiliary keywords
increases, it becomes harder for simulated annealing to reach
the global optimum. So the lower success rates could be due
to the optimization algorithm getting stuck in a local but non-
global optimum.

D. Varying the Level of Noise in Auxiliary Information

Given that there is no widely accepted way of modelling
noise in auxiliary information, we opt to use different numbers
of documents in auxiliary information as a way to simulate
different levels of noise – fewer documents means more
noise. We use absolute distance and modified probability
score to measure the level of noise introduced in each set
of experiments we run (see the full version of our paper [28]
for details).

Our experimental results on varying auxiliary information
are shown in Figure 4. The security parameters we used
can be found in the captions. The attacks do not perform
well when only 12,000 documents are used to construct the
auxiliary information. However, the query reconstruction rate
increases as the number of auxiliary documents increases.
Interestingly, the query reconstruction rates using 48,000 and
96,000 auxiliary documents are comparable, suggesting that
using 48,000 documents (10% of the total in the Enron dataset)
is sufficient as auxiliary information and that our attacks are
robust in a noisy setting. This aligns with our observation that
the level of noise stabilises at 48,000 documents (more details
are available in the full version of our paper [28]).

VI. DOCUMENT RETRIEVAL WITH EMMS AND OTHER
PRIMITIVES

In this section, we explore the alternative possibility of
building end-to-end SSE systems where leakage-suppression
techniques (such as volume-hiding EMMs) are applied to the
whole system (i.e. to both the encrypted index and the en-
crypted document collection). In such a system, the document
retrieval step is only allowed to leak ‘trivial’ information such
as the number of documents and the number of keyword-
document pairs, but not potentially sensitive information such
as the access pattern. We will show that, with currently
available techniques, no end-to-end SSE system using volume-
hiding EMMs (or similar leakage-suppression techniques) can
achieve this without incurring significant storage, computation
and/or bandwidth overheads.

(a) PRT-EMM [24]. λ is set to
0.25nmax.

(b) FP-EMM [25].

(c) DP-EMM [25]. ϵ is set to 0.2. (d) DPAP-SE [26]. (m, k, p, q) =
(6, 2, 0.89, 0.045).

Figure 4: Experimental results with varying auxiliary informa-
tion.

A. Primitives for Index and Document Retrieval

In the rest of this section, we assume the SSE system follows
the two-phase approach illustrated in Figure 1. We also assume
that the index retrieval phase (where the client recovers the
set of (encrypted) document identifiers corresponding to doc-
uments matching the query) is implemented using one of the
state-of-the-art schemes PRT-EMM [24] or FP-EMM [25],
so the leakage from this phase consists of at most: (a) the
number of documents |DB|, (b) search pattern (query equality),
and (c) the maximum response length maxkw |DB(kw)|. This
leakage profile is a consequence of the properties of the
aforementioned volume-hiding EMMs. We demand that the
leakage from the second document retrieval phase should be no
more than that in the first phase, in order to achieve effective
system-wide leakage-suppression. This naturally leads us to
consider a variety of different cryptographic primitives for
realizing the document retrieval step, namely EMMs (again),
Private Information Retrieval, and Oblivious RAM.

Using EMMs for Document Retrieval. We transform state-
of-the-art EMMs [24], [25] into end-to-end SSE systems
supporting actual document retrieval by replacing the values
stored in the EMMs with the encrypted documents themselves.

Using Private Information Retrieval. A Private Information
Retrieval (PIR) scheme can be used to retrieve the documents.
Here, we focus on computational PIR schemes [42], [44] for
which there is provably no leakage (per retrieval). As we are
only permitted to leak the maximum response length in the
document retrieval phase (in order to match the leakage profile
of the first phase), we need to call the underlying PIR scheme
maxkw |DB(kw)| times per query (padding with dummy re-
trievals if necessary) in order to hide the true response length.
We use SealPIR [42] in our evaluation below. This is a state-
of-the-art PIR scheme using Fully Homomorphic Encryption
(FHE) as a subcomponent.

13

Scheme Storage (Server) Query (Client) Query (Server)
Computation Communication Computation Communication

Naı̈ve* 470 MB f prf
f dec 32 B f acc f KB

Duplication 17 GB (36x) 24K prf
24K dec 750 KB (46x) 24K acc 23 MB (46x)

PRT-EMM [24] 390 GB (860x) 12K prf
12K dec 370 KB (23x) 12K acc 12 MB (23x)

FP-EMM [25] 43 GB (94x) 48K prf
48K dec 1.5 MB (92x) 48K acc 47 MB (92x)

SealPIR [42] 120 GB (260x) 1 henc
1 hdec 1.46 GB (94,000x)

23B hmul
11B hsub
11B hadd

5.9 GB (12,000x)

Non-recursive Path
ORAM [43]

1.8 GB (4x)
3.4M acc
1.7M dec
1.7M enc

1.65 GB (110,000x) 3.4M acc 1.7 GB (3,300x)

Table II: Evaluation of different document retrieval primitives with minimal leakage. The numbers in the brackets indicate overheads beyond
the baseline provided by the Naı̈ve scheme. We assume 522 documents (mean keyword frequency) are retrieved by the Naı̈ve scheme in the
computations of the overheads. *: f is the real query response volume (since there is no padding).

Using Oblivious RAM. Oblivious RAM (ORAM) [43], [45]–
[47] is another primitive that achieves zero-leakage per access.
We use it to protect the entire document collection. Similarly
to PIR, the number of data accesses for ORAM has to be
padded to the maximum response length in order to hide true
response lengths. We use the non-recursive version of Path
ORAM [43] in our evaluation below. This specific choice is
amongst the most efficient ORAM schemes available.

For our experiments, we assumed that all documents are
of equal size, which allowed us to directly use the array-like
interface offered by ORAM to design the encrypted document-
array. Note that in end-to-end SSE systems, leaking the length
of retrieved documents is undesirable. The standard practice
is to either pad each document to the same length or to divide
each document into equal-sized chunks/sub-documents associ-
ated with separate identifiers. Unfortunately, the SSE literature
does not offer any concrete guidelines on the appropriate
choice of padding/splitting-strategy and its impact on security
(in particular, on the access pattern leakage). Hence, we picked
a fixed document-size, which could be viewed as either all
documents being padded to the same length, or all documents
split into equal-sized chunks.

B. Performance Evaluation

Additional Schemes. In addition to the end-to-end SSE
systems targeted by our attacks, we also add the following
two schemes in our comparison as a baseline:

• Naı̈ve: The scheme simply encrypts the documents and
stores them in an array. To retrieve documents, the user
sends the array locations (used as document identifiers)
to the server and the server returns all documents in those
locations. This scheme is insecure in a system-wide attack
setting, e.g. it is vulnerable to our inference attack5.

• Duplication: The scheme is identical to Naı̈ve except that
the encrypted documents are duplicated for each keyword
in the same way as the encrypted document identifiers are
duplicated in the search index of a traditional structure-
only SSE scheme, e.g. [2]–[4]. This represents a baseline
method for using an EMM to build an end-to-end SSE
scheme.

5The naı̈ve scheme in Table I refers to the same scheme as described here.

Experimental Data. A concrete dataset is necessary for the
evaluation as the duplication techniques used in Duplication,
PRT-EMM and FP-EMM are data-dependent. We again pick
the Enron email corpus (a detailed description of the dataset is
available in the full version of our paper [28]). We used 480K
documents in the evaluation below. To simplify the evaluation,
we assume that all documents have size 1 KB even if some of
them are larger than that in reality. If we were to use document
splitting into fixed-size chunks instead, this would result in a
10× larger storage overhead because of increased duplication
of the chunks compared to the original files.

Parameters. The following parameters are used in our evalua-
tion. We use PRFs with 256-bit output. We use the most space-
efficient parameters for PRT-EMM proposed in the original
papers [24], namely α = 0.5. For SealPIR, we assume that the
degree of ciphertext is N = 2048, the size of the coefficients
are 60 bits and the database is represented in d = 2 dimensions
as per the original paper [42]. For Path ORAM [43], we
assume each block has size 1 KB and there are 4 blocks per
bucket.

Evaluation. We report communication volume, storage cost,
and the number of core cryptographic operations needed for
each option described above in Table II. We split computation
and communication costs into client and server costs, and
report only server storage costs (client storage costs are low).

Storage and communication costs are measured in total
volumes. Additional overheads arising from how the data is
structured and packaged for communication are ignored.

Computation costs are measured by the number of core
cryptographic operations. The operations that we consider
include: prf for PRF computation; enc and dec for encryption
and decryption with a symmetric primitive; acc for disk/RAM
access (read or write); henc and hdec for encryption and
decryption with FHE; hmul, hsub, hadd for multiplication,
substitution and addition for FHE ciphertexts. Reporting oper-
ation counts in place of running times makes our comparison
independent of implementation details.

We opt to not include latency as this depends on several
factors such as data access speed and network delay, and these
are hard to compare concretely and fairly.

14

Discussion. It is clear that all of the options suffer significant
storage overheads. For Duplication, PRT-EMM and FP-
EMM, this is caused by duplication. The expansion factor
grows linearly with the number of keywords per document.
For PIR, the expansion factor comes from the use of ho-
momorphic encryption. It is not clear how the ciphertexts
can be compressed to reduce the overhead. It is conceivable
that alternative PIR schemes might avoid such expansion. For
ORAM, the overhead comes from the use of multiple blocks
per bucket. This is necessary to prevent overflowing buckets,
meaning the storage overhead cannot be reduced significantly.

With regard to queries, Duplication, PRT-EMM and FP-
EMM have reasonable computational costs, but the communi-
cation costs from the server to the client are high in each case.
The server needs to send 2.5% to 10% of the entire document
collection to the client per query, which is a lot more than
the average keyword frequency might suggest (0.109% for the
Enron corpus). The PIR and ORAM options naturally suffer
from high computation and/or communication overheads since
they are not designed for large-scale document retrieval. In
fact, with bad choice of parameters, as shown in [48], the
communication volume produced and ORAM can be several
orders of magnitude larger than the database itself.

Of course, the state-of-the-art implementations of various
cryptographic primitives that we have chosen for our experi-
ments could very well be improved upon in terms of concrete
efficiency in future work. Nonetheless, the concrete numbers
that we provide are indicative of what is possible by employing
state-of-the-art approaches for realizing these primitives.

VII. DISCUSSION

On System-Wide leakage. Our attacks on end-to-end SSE
schemes built from volume-hiding EMMs in the natural way
highlight the threats posed by system-wide leakage and the
need to revisit existing security definitions that ignore such
leakage. Note that many SSE constructions were designed
prior to the proposal of volume-hiding EMMs; in their orig-
inal form, these constructions effectively used EMMs that
themselves leak the exact access-pattern. In this case, the
leakage from the encrypted search index subsumes the leakage
from encrypted document retrieval and so the latter leakage
can be ignored in security analysis (see [2], [4] for relevant
discussions). However, this approach to analysis is no longer
valid when such access pattern-revealing EMMs are replaced
by volume-hiding EMMs. In this case, the leakage arising from
encrypted document retrieval is no longer covered by security
definitions that focus purely on the encrypted search index.

On Differentially Private Access Patterns. Our attack ap-
plied to DPAP-SE [26] does not negate the core idea of [26],
which is to design end-to-end SSE schemes that take into
account leakage from the document retrieval phase. Rather,
our attack serves as a warning about the potential pitfalls
of applying differential privacy to SSE without appropriately
modeling and analyzing the resulting leakage. As pointed out
in [26], differentially private access patterns provide provable

guarantees of the form: an adversary cannot distinguish be-
tween queries over keywords such that their access pattern
leakage is within a small statistical distance of each other. As
demonstrated by our attack, the provable guarantees provided
by differential privacy do not necessarily translate into security
guarantees against leakage-abuse attacks in general.

On the Practicality of Our Attack. Our attack is an inference
attack in that it assumes the adversary has access to auxiliary
data that is independent of but statistically “close” to the target
database. We believe that this a weaker (and more realistic)
attack setting compared to existing known-data attacks [5],
[6], [9]. Our attack achieves high keyword recovery rates even
when the target schemes use aggressive security parameters, or
when the auxiliary data available to the adversary is relatively
noisy (which is the case when we sample the auxiliary data
from a small portion of the database). These observations
further reinforce the practicality of our attack.

A drawback of our attack is that it assumes auxiliary infor-
mation involving high-frequency keywords. This is a relatively
strong assumption in practice (although one also made by
all previous leakage-abuse attacks). One can of course filter
out leakage from low-frequency keywords based on response
volume before running our attack. We leave it as an open
problem to extend our attack to low-frequency keywords.

Future Research on SSE. We argue that, if the goal of
the research community is to develop SSE towards practice,
then a fundamental shift in approach is needed. In particular,
researchers need to take a system-wide view of SSE and its
security. This requires considering all components of an end-
to-end SSE system when analyzing security, and investigating
techniques that reduce leakage and maintain efficiency of the
whole SSE system. In this context, our view is that end-to-end
SSE schemes should be designed from scratch, with dedicated
leakage suppression for both index and document retrieval.

REFERENCES

[1] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in 2000 IEEE Symposium on Security and Privacy.
Oakland, CA, USA: IEEE Computer Society Press, May 2000, pp. 44–
55.

[2] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: improved definitions and efficient constructions,”
in ACM CCS 2006: 13th Conference on Computer and Communications
Security, A. Juels, R. N. Wright, and S. De Capitani di Vimercati, Eds.
Alexandria, Virginia, USA: ACM Press, Oct. 30 – Nov. 3, 2006, pp.
79–88.

[3] M. Chase and S. Kamara, “Structured encryption and controlled disclo-
sure,” in Advances in Cryptology – ASIACRYPT 2010, ser. Lecture Notes
in Computer Science, M. Abe, Ed., vol. 6477. Singapore: Springer,
Heidelberg, Germany, Dec. 5–9, 2010, pp. 577–594.

[4] D. Cash, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu, and
M. Steiner, “Highly-scalable searchable symmetric encryption with sup-
port for Boolean queries,” in Advances in Cryptology – CRYPTO 2013,
Part I, ser. Lecture Notes in Computer Science, R. Canetti and J. A.
Garay, Eds., vol. 8042. Santa Barbara, CA, USA: Springer, Heidelberg,
Germany, Aug. 18–22, 2013, pp. 353–373.

[5] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclosure
on searchable encryption: Ramification, attack and mitigation,” in ISOC
Network and Distributed System Security Symposium – NDSS 2012. San
Diego, CA, USA: The Internet Society, Feb. 5–8, 2012.

15

[6] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse attacks
against searchable encryption,” in ACM CCS 2015: 22nd Conference on
Computer and Communications Security, I. Ray, N. Li, and C. Kruegel,
Eds. Denver, CO, USA: ACM Press, Oct. 12–16, 2015, pp. 668–679.

[7] D. Pouliot and C. V. Wright, “The shadow nemesis: Inference attacks on
efficiently deployable, efficiently searchable encryption,” in ACM CCS
2016: 23rd Conference on Computer and Communications Security,
E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and S. Halevi,
Eds. Vienna, Austria: ACM Press, Oct. 24–28, 2016, pp. 1341–1352.

[8] Z. Gui, K. G. Paterson, S. Patranabis, and B. Warinschi, “SWiSSSE:
System-wide security for searchable symmetric encryption,” Cryptology
ePrint Archive, Report 2020/1328, 2020, https://eprint.iacr.org/2020/
1328.

[9] L. Blackstone, S. Kamara, and T. Moataz, “Revisiting leakage abuse
attacks,” in ISOC Network and Distributed System Security Symposium
– NDSS 2020. San Diego, CA, USA: The Internet Society, Feb. 23-26,
2020.

[10] S. Oya and F. Kerschbaum, “Hiding the access pattern is not enough:
Exploiting search pattern leakage in searchable encryption,” in 30th
USENIX Security Symposium, USENIX Security 2021, August 11-13,
2021, M. Bailey and R. Greenstadt, Eds. USENIX Association, 2021,
pp. 127–142. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity21/presentation/oya

[11] ——, “IHOP: Improved statistical query recovery against searchable
symmetric encryption through quadratic optimization,” 2021.

[12] J. Ning, X. Huang, G. S. Poh, J. Yuan, Y. Li, J. Weng,
and R. H. Deng, “LEAP: leakage-abuse attack on efficiently
deployable, efficiently searchable encryption with partially known
dataset,” ser. CCS ’21. New York, NY, USA: Association for
Computing Machinery, 2021, p. 2307–2320. [Online]. Available:
https://doi.org/10.1145/3460120.3484540

[13] M. Damie, F. Hahn, and A. Peter, “A highly accurate query-
recovery attack against searchable encryption using non-indexed
documents,” in 30th USENIX Security Symposium, USENIX Security
2021, August 11-13, 2021, M. Bailey and R. Greenstadt, Eds.
USENIX Association, 2021, pp. 143–160. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity21/presentation/damie

[14] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable sym-
metric encryption,” in ACM CCS 2012: 19th Conference on Computer
and Communications Security, T. Yu, G. Danezis, and V. D. Gligor, Eds.
Raleigh, NC, USA: ACM Press, Oct. 16–18, 2012, pp. 965–976.

[15] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu,
and M. Steiner, “Dynamic searchable encryption in very-large databases:
Data structures and implementation,” in ISOC Network and Distributed
System Security Symposium – NDSS 2014. San Diego, CA, USA: The
Internet Society, Feb. 23–26, 2014.

[16] E. Stefanov, C. Papamanthou, and E. Shi, “Practical dynamic searchable
encryption with small leakage,” in ISOC Network and Distributed System
Security Symposium – NDSS 2014. San Diego, CA, USA: The Internet
Society, Feb. 23–26, 2014.

[17] M. Naveed, M. Prabhakaran, and C. A. Gunter, “Dynamic searchable
encryption via blind storage,” in 2014 IEEE Symposium on Security and
Privacy. Berkeley, CA, USA: IEEE Computer Society Press, May 18–
21, 2014, pp. 639–654.

[18] S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M.-C. Rosu, and
M. Steiner, “Rich queries on encrypted data: Beyond exact matches,” in
ESORICS 2015: 20th European Symposium on Research in Computer
Security, Part II, ser. Lecture Notes in Computer Science, G. Pernul,
P. Y. A. Ryan, and E. R. Weippl, Eds., vol. 9327. Vienna, Austria:
Springer, Heidelberg, Germany, Sep. 21–25, 2015, pp. 123–145.

[19] R. Bost, “Σoϕoς: Forward secure searchable encryption,” in ACM CCS
2016: 23rd Conference on Computer and Communications Security,
E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and S. Halevi,
Eds. Vienna, Austria: ACM Press, Oct. 24–28, 2016, pp. 1143–1154.

[20] R. Bost, B. Minaud, and O. Ohrimenko, “Forward and backward private
searchable encryption from constrained cryptographic primitives,” in
ACM CCS 2017: 24th Conference on Computer and Communications
Security, B. M. Thuraisingham, D. Evans, T. Malkin, and D. Xu, Eds.
Dallas, TX, USA: ACM Press, Oct. 31 – Nov. 2, 2017, pp. 1465–1482.

[21] S. Kamara and T. Moataz, “Boolean searchable symmetric encryption
with worst-case sub-linear complexity,” in Advances in Cryptology –
EUROCRYPT 2017, Part III, ser. Lecture Notes in Computer Science,
J.-S. Coron and J. B. Nielsen, Eds., vol. 10212. Paris, France: Springer,
Heidelberg, Germany, Apr. 30 – May 4, 2017, pp. 94–124.

[22] ——, “SQL on structurally-encrypted databases,” in Advances in Cryp-
tology – ASIACRYPT 2018, Part I, ser. Lecture Notes in Computer
Science, T. Peyrin and S. Galbraith, Eds., vol. 11272. Brisbane,
Queensland, Australia: Springer, Heidelberg, Germany, Dec. 2–6, 2018,
pp. 149–180.

[23] J. G. Chamani, D. Papadopoulos, C. Papamanthou, and R. Jalili, “New
constructions for forward and backward private symmetric searchable
encryption,” in ACM CCS 2018: 25th Conference on Computer and
Communications Security, D. Lie, M. Mannan, M. Backes, and X. Wang,
Eds. Toronto, ON, Canada: ACM Press, Oct. 15–19, 2018, pp. 1038–
1055.

[24] S. Kamara and T. Moataz, “Computationally volume-hiding structured
encryption,” in Advances in Cryptology – EUROCRYPT 2019, Part II,
ser. Lecture Notes in Computer Science, Y. Ishai and V. Rijmen, Eds.,
vol. 11477. Darmstadt, Germany: Springer, Heidelberg, Germany,
May 19–23, 2019, pp. 183–213.

[25] S. Patel, G. Persiano, K. Yeo, and M. Yung, “Mitigating leakage
in secure cloud-hosted data structures: Volume-hiding for multi-maps
via hashing,” in ACM CCS 2019: 26th Conference on Computer and
Communications Security, L. Cavallaro, J. Kinder, X. Wang, and J. Katz,
Eds. ACM Press, Nov. 11–15, 2019, pp. 79–93.

[26] G. Chen, T. Lai, M. K. Reiter, and Y. Zhang, “Differentially private
access patterns for searchable symmetric encryption,” in IEEE INFO-
COM 2018 - IEEE Conference on Computer Communications, 2018,
pp. 810–818.

[27] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse at-
tacks against searchable encryption,” Cryptology ePrint Archive, Report
2016/718, 2016, https://eprint.iacr.org/2016/718.

[28] Z. Gui, K. G. Paterson, and S. Patranabis, “Rethinking searchable
symmetric encryption,” Cryptology ePrint Archive, Report 2021/879,
2021, https://eprint.iacr.org/2021/879.

[29] W. He, D. Akhawe, S. Jain, E. Shi, and D. X. Song, “ShadowCrypt:
Encrypted web applications for everyone,” in ACM CCS 2014: 21st
Conference on Computer and Communications Security, G.-J. Ahn,
M. Yung, and N. Li, Eds. Scottsdale, AZ, USA: ACM Press, Nov. 3–7,
2014, pp. 1028–1039.

[30] B. Lau, S. P. Chung, C. Song, Y. Jang, W. Lee, and A. Boldyreva,
“Mimesis aegis: A mimicry privacy shield-A system’s approach to data
privacy on public cloud,” in USENIX Security 2014: 23rd USENIX
Security Symposium, K. Fu and J. Jung, Eds. San Diego, CA, USA:
USENIX Association, Aug. 20–22, 2014, pp. 33–48.

[31] I. Demertzis, D. Papadopoulos, C. Papamanthou, and S. Shintre, “SEAL:
Attack mitigation for encrypted databases via adjustable leakage,” in
USENIX Security 2020: 29th USENIX Security Symposium, S. Capkun
and F. Roesner, Eds. USENIX Association, Aug. 12–14, 2020, pp.
2433–2450.

[32] P. Grubbs, A. Khandelwal, M.-S. Lacharité, L. Brown, L. Li, R. Agarwal,
and T. Ristenpart, “Pancake: Frequency smoothing for encrypted data
stores,” in USENIX Security 2020: 29th USENIX Security Symposium,
S. Capkun and F. Roesner, Eds. USENIX Association, Aug. 12–14,
2020, pp. 2451–2468.

[33] Z. Shang, S. Oya, A. Peter, and F. Kerschbaum, “Obfuscated access and
search patterns in searchable encryption,” 2021. [Online]. Available:
https://arxiv.org/abs/2102.09651

[34] C. William W. Cohen, MLD, “Enron email dataset.” [Online]. Available:
https://www.cs.cmu.edu/∼./enron/

[35] S. Kamara, A. Kati, T. Moataz, T. Schneider, A. Treiber, and M. Yonli,
“SoK: Cryptanalysis of encrypted search with LEAKER - a framework
for LEakage AttacK Evaluation on Real-world data,” Cryptology ePrint
Archive, Report 2021/1035, 2021, https://ia.cr/2021/1035.

[36] A. G. Dimakis, B. Godfrey, M. J. Wainwright, and K. Ramchan-
dran, “Network coding for distributed storage systems,” CoRR, vol.
abs/cs/0702015, 2007.

[37] R. Rossi and R. Rossi, Mathematical statistics: An introduction to
likelihood based inference. John Wiley & Sons, Inc., 2018.

[38] P. J. van Laarhoven, Simulated annealing theory and applications.
Kluwer, 1987.

[39] NLTK Project, Natural Language Toolkit, https://www.nltk.org/.
[40] B. Gough, GNU Scientific Library Reference Manual - Third Edition,

3rd ed. Network Theory Ltd., 2009.
[41] OpenMP Architecture Review Board, “OpenMP application program

interface version 5.0,” November 2018. [Online]. Available: https://www.
openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf

16

https://eprint.iacr.org/2020/1328
https://eprint.iacr.org/2020/1328
https://www.usenix.org/conference/usenixsecurity21/presentation/oya
https://www.usenix.org/conference/usenixsecurity21/presentation/oya
https://doi.org/10.1145/3460120.3484540
https://www.usenix.org/conference/usenixsecurity21/presentation/damie
https://eprint.iacr.org/2016/718
https://eprint.iacr.org/2021/879
https://arxiv.org/abs/2102.09651
https://www.cs.cmu.edu/~./enron/
https://ia.cr/2021/1035
https://www.nltk.org/
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf

[42] S. Angel, H. Chen, K. Laine, and S. T. V. Setty, “PIR with compressed
queries and amortized query processing,” in 2018 IEEE Symposium
on Security and Privacy. San Francisco, CA, USA: IEEE Computer
Society Press, May 21–23, 2018, pp. 962–979.

[43] E. Stefanov, M. van Dijk, E. Shi, C. W. Fletcher, L. Ren, X. Yu,
and S. Devadas, “Path ORAM: an extremely simple oblivious RAM
protocol,” in ACM CCS 2013: 20th Conference on Computer and
Communications Security, A.-R. Sadeghi, V. D. Gligor, and M. Yung,
Eds. Berlin, Germany: ACM Press, Nov. 4–8, 2013, pp. 299–310.

[44] C. Aguilar Melchor, J. Barrier, L. Fousse, and M.-O. Killijian, “XPIR:
Private information retrieval for everyone,” Proceedings on Privacy
Enhancing Technologies, vol. 2016, no. 2, pp. 155–174, Apr. 2016.

[45] O. Goldreich, “Towards a theory of software protection and simulation
by oblivious RAMs,” in 19th Annual ACM Symposium on Theory of
Computing, A. Aho, Ed. New York City, NY, USA: ACM Press,
May 25–27, 1987, pp. 182–194.

[46] I. Damgård, S. Meldgaard, and J. B. Nielsen, “Perfectly secure oblivious
RAM without random oracles,” in TCC 2011: 8th Theory of Cryptog-
raphy Conference, ser. Lecture Notes in Computer Science, Y. Ishai,
Ed., vol. 6597. Providence, RI, USA: Springer, Heidelberg, Germany,
Mar. 28–30, 2011, pp. 144–163.

[47] T.-H. H. Chan, K. Nayak, and E. Shi, “Perfectly secure oblivious parallel
RAM,” in TCC 2018: 16th Theory of Cryptography Conference, Part II,
ser. Lecture Notes in Computer Science, A. Beimel and S. Dziembowski,
Eds., vol. 11240. Panaji, India: Springer, Heidelberg, Germany,
Nov. 11–14, 2018, pp. 636–668.

[48] M. George, S. Kamara, and T. Moataz, “Structured encryption and
dynamic leakage suppression,” in Advances in Cryptology – EURO-
CRYPT 2021, Part III, ser. Lecture Notes in Computer Science, A. Can-
teaut and F.-X. Standaert, Eds., vol. 12698. Zagreb, Croatia: Springer,
Heidelberg, Germany, Oct. 17–21, 2021, pp. 370–396.

APPENDIX A
MATHEMATICAL DERIVATIONS OF THE CO-OCCURRENCE

MATRICES

Derivation for PRT-EMM [24]. Recall that in PRT-EMM,
the query response lengths are padded or truncated as:

n′
key = λ+ Fsk(key||nkey).

Let DB be a multi-map and q1, . . . ,ql be non-repeating
search queries with associated keys key1, . . . , keyl on DB
encrypted with PRT-EMM. We abuse the notation key(qi)
to mean the key associated to qi. By denoting the maximum
value of the PRF F as |F |, the diagonal entries of the co-
occurrence matrix can be expressed as:

M̄(q1, . . . ,ql;DB)i,i ∼ λ+ Uniform(0, |F |),

where Uniform(·) is a uniform distribution.
There are three cases to be considered for the off-diagonal

entries of the co-occurrence matrix. Without loss of generality,
let the keys in concern be keys keyi and keyj . In the first case,
both of the query response lengths associated to the keys are
larger than the true query response lengths. This corresponds to
n′

keyi
−|DB(keyi)| random document retrievals for queries on

key keyi and n′
keyj
−
∣∣DB(keyj)

∣∣ random document retrievals
for queries on key keyj . These random document retrievals
can create additional co-occurrence counts among themselves

or with the real document retrievals. The co-occurrence counts
in this case can be approximated by:

M̄(q1, . . . ,ql;DB)i,j
∼
∣∣DB(keyi, keyj)

∣∣
+HGeom

(
n′

keyi
− |DB(keyi)| , |DB| , n′

keyj

)
+HGeom

(
n′

keyj
−

∣∣DB(keyj)
∣∣ , |DB| , n′

keyi

)
,

where HGeom(n,N,K) denotes a hypergeometric distribu-
tion which makes n draws without replacement, from a
population of size N that contains exactly K objects with
the desired feature.

In the second case, one of the query response lengths
is truncated and the other one is padded. Without loss of
generality, let key keyi be the truncated key and key keyj
be the padded key. Then, the co-occurrence count associated
to keys keyi and keyj can be modelled as a process where
the co-occurrence count is first reduced by the truncation and
then increased by the padding. Its distribution is given below:

x ∼ HGeom
(
n′

keyi
, |DB(keyi)| ,

∣∣DB(keyi, keyj)
∣∣),

M̄(q1, . . . ,ql;DB)i,j ∼x+ HGeom
(
n′

keyj

−
∣∣DB(keyj)

∣∣ , |DB| , n′
keyi
− x

)
.

Finally, in the last case, both of the query response lengths
are truncated. Similar to above, the distribution of the co-
occurrence count associated to keys keyi and keyj can be
expressed as:

x ∼ HGeom
(
n′

keyi
, |DB(keyi)| ,

∣∣DB(keyi, keyj)
∣∣),

M̄(q1, . . . ,ql;DB)i,j ∼HGeom
(
n′

keyj
,
∣∣DB(keyj)

∣∣ , x).
Derivation for new volume-hiding multi-maps in [25].
The volume-hiding multi-maps in [25] are special cases of
PRT-EMM [24], where the query response lengths are either
padded to the maximum query response length or ones that
are larger than the true query response lengths. Specifically,
for the full padding version (PRT-EMM),

M̄(q1, . . . ,ql;DB)i,i ∼ 2max
key
|DB(key)| .

And for the differentially-private version (DP-EMM),

M̄(q1, . . . ,ql;DB)i,i ∼ 2 |DB(key)|+ n∗ + Lap(2/ϵ),

where n∗ is a fixed constant to offset the query response length
in case the latter random variable is negative. Finally, the co-
occurrence counts can be approximated exactly as done in the
case of PRT-EMM earlier.

Derivation for DPAP-SE [26]. Let DB be a database and
q1, . . . ,ql be non-repeating search queries with associated
keywords kw1, . . . , kwl on DB encrypted with the searchable

17

encryption scheme above [26]. The diagonal entries of the co-
occurrence matrix M̄(q1, . . . ,ql;DB), i.e. the query response
volumes, represent the numbers of shards retrieved by the
client. Formally, the diagonal entries of the co-occurrence
matrix can be expressed in terms of the true query response
lengths as:

M̄(q1, . . . ,ql;DB)i,i ∼ Bin(m · |DB(kwi)| , p)
+ Bin(m · |DB| −m · |DB(kwi)| , q),

where m comes from splitting the documents into shards,
DB(kwi) denotes the set of documents containing keyword
kwi associated to query qi, |DB| denotes the total number of
documents, and Bin(·) denotes a binomial distribution.

For the off-diagonal entries of the co-occurrence matrix,
assume without loss of generality that the keywords in concern
are kwi and kwj . The actual distribution of the off-diagonal
entries of the co-occurrence matrix is complicated due to
dependencies. However, if we ignore the fact that we already
know the query response lengths for keywords kwi and kwj ,
the off-diagonal entries of the co-occurrence matrix can be
approximated as:

M̄(q1, . . . , ql;DB)i,j ∼ Bin(m · |DB(kwi, kwj)| , p2)
+Bin

(
m · (|DB| − |DB(kwi)| − |DB(kwj)|+ |DB(kwi, kwj)|) , q2

)
+Bin(m · |DB(kwi)| − |DBkwi, kwj | , pq)
+Bin(m · |DB(kwj)| − |DBkwi, kwj | , pq).

APPENDIX B
MATHEMATICAL DERIVATIONS OF THE LIKELIHOOD

FUNCTIONS

Likelihood Function and its Decomposition. The likelihood
function L

[
P | M̄,M

]
can be written as follows:

L
[
P | M̄,M

]
=Pr

[
M̄,M | P

]
=

∑
M ′∈NN×N

Pr
[
M̄,M,M ′ | P

]
=

∑
M ′∈NN×N

Pr
[
M̄ |M ′, P

]
Pr [M ′ |M] ,

where N is the number of documents and NN×N is all N
by N natural number valued matrices. In the third line of
the equation, we used the law of total probability to turn
the likelihood into a summation over all possible real co-
occurrence matrices. The lines after break the probability into
a sum of products of two probabilities. The first probability
Pr

[
M̄,M ′ | P

]
is the probability that M̄ is the observed co-

occurrence matrix and M ′ is the real co-occurrence matrix
given P is the permutation. The second probability is the
probability of getting M ′ as the real observed co-occurrence
matrix knowing that M is the auxiliary co-occurrence matrix.

Derivation for PRT-EMMs. For PRT-EMMs [24], query
response lengths may be truncated by a random amount.
This means that based on the query response length in the
auxiliary co-occurrence matrix M ′ and that in the observed

co-occurrence matrix, an attacker can estimate how many
documents in the off-diagonal entries are expected to be
removed. For observed co-occurrence count between keywords
kwj and kwj where i ̸= j, the real process can be modelled
as a sequential application of two hypergeometric distributions
on the real co-occurrence count.∏

i<j

∑
k

Pr
[
HGeom

(
M ′

P (i),P (i),M
′
P (i),P (j), M̄i,i

)
= k

]
Pr

[
HGeom

(
M ′

P (j),P (j), k, M̄j,j) = M̄i,j

]
.

Derivation for FP-EMMs [25]. To simplify the first term
of the likelihood decomposition, we assume independence of
the entries in the observed co-occurrence matrix. Without loss
of generality, we assume that all query response lengths are
padded to m. This means we can express the probability as:∏

i<j

Pr
[
HGeom

(
2N, 2m− 2M ′

P (i),P (i),

2m− 2M ′
P (j),P (j)

)
= M̄i,j −M ′

P (i),P (j)

]
.

Derivation for DP-EMMs [25]. The first term of the like-
lihood decomposition for differentially private volume-hiding
EMMs [25] is similar to that of the full padding version, except
that the query response lengths are padded according to a
Laplacian distribution as opposed to padding to the maximum
query response length. Let n∗ be the constant to offset the
Laplacian random variable Lap(2/ϵ), the first term of the
likelihood decomposition can be expressed as:∑

i=j

Pr
[
M̄,M ′ | P

]
×

∑
i<j

Pr
[
M̄,M ′ | P

]
=
∑
i

Pr
[
2M ′

P (i),P (i) + n∗ + Lap(2/ϵ) = M̄i,i

]
×

∑
i<j

Pr
[
HGeom(2N, 2M̄i,i − 2M ′

P (i),P (i),

2M̄j,j − 2M ′
P (j),P (j)) = M̄i,j − 2M ′

P (i),P (j)

]
.

Derivation for DPAP-SE [26]. We refer the reader to the full
version of our paper [28] for the derivation of the likelihood
function and its decomposition for DPAP-SE [26], which
follows from similar principles as the derivations above.

Approximation Techniques. As it can be seen, it is com-
putationally infeasible to sum over all possible real co-
occurrence matrices. We propose to sum over all possible real
co-occurrence matrices such that Pr

[
M ′ | M̄

]
is significant.

Please see the full version of our paper [28] for more details
and additional optimizations.

Speeding up the Score function. A naı̈ve implementation
of the Score function would require l2 computations per
iteration, where l is the number of non-repeating queries
observed. We design an optimized implementation of the
Score function for our attacks which only requires O(l)
computation per iteration. Details are available in the full
version of our paper [28].

18

