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Abstract—Performing joint detection of activity and data is a
promising approach to reduce management overhead in Machine-
to-Machine communication. However, erroneous activity detec-
tion has severe impacts on the system performance. Estimating
an active node or user erroneously to be inactive results in a
loss of data. To optimally balance activity and data detection,
we derive a novel joint activity and data detector that bases
on the minimization of the Bayes Risk. The Bayes Risk detector
allows to control error rates with respect to the activity detection
dynamically by a parameter that can be controlled by higher
layers. In this paper we derive the Bayes Risk detector for a
general linear system and present exemplary results for a specific
Machine-to-Machine communication scenario.

I. INTRODUCTION

Machine-to-Machine (M2M) communication is expected to
grow tremendously in the next years, raising new challenges
for nowadays communication systems which are mainly de-
signed to meet the demands for human based communication.
In particular, M2M devices are often devices of reduced
complexity and require only low data-rates for communication.
A broad field of application for future M2M networks comes
from industrial approaches such as smart metering, surveil-
lance purposes or logistics [1]. For these applications, a huge
number of M2M devices are connected to a central aggregation
node and transmit only on occasion or event driven, making
communication sporadic. One major problem in state of the art
communication systems such as LTE is that control signaling
or sophisticated resource management is not well suited for
low-rate communication of sensor nodes. As an example, in
the current frame structure of LTE-A, at most a few tens of
M2M devices can be supported with control channel elements
(CCEs) allocated within a subframe [2]. This number is far
below of what future M2M applications will require.
One approach to reduce control signaling and management
overhead is to shift activity detection to the physical layer
by performing a joint activity and data detection. Thus, we
propose to extend common state of the art detectors to perform
activity and data detection jointly.
In this paper we consider a scenario where sensor nodes
sporadically transmit their data to a central aggregation node.
The aggregation node detects if a node is active or not. In this
setup, inactive nodes can simply be modeled as transmitting
zeros instead of modulation symbols. This means, the multi-

user signal that is composed of all sensor nodes no matter
if active or inactive is a sparse signal. In [3] the authors
derived the sparsity aware Maximum a posteriori detector for
this setup. One major drawback of this detector is that the
activity detection tends to decide in favor of inactivity. As a
consequence, it is very likely that active nodes are wrongly
estimated to be inactive, especially at low Signal-to-Noise
Ratio (SNR).
As the activity detection severly impacts the overall system
performance, we would like to stress that an active node that
is wrongly estimated to be inactive is generally worse than
the opposite. In the first case data is simply lost, whereas in
the latter case wrong transmissions can be identified by higher
layer error handling mechanisms such as check codes. Con-
sequently, from an intuitive point, the so called False Inactive
errors have a higher impact on the system performance than
the False Active errors.
In this paper we address optimal joint activity and data de-
tection by applying a Bayes Risk Sphere Detector that allows
to balance the activity detection by a tuning parameter. This
tuning parameter can be controlled by higher layer protocols,
resulting in a cross-layer design.

II. BAYES RISK MAXIMUM A POSTERIORI DETECTION

A. Sporadic Communication Model

In the following we consider an uplink system, where K
sensor nodes transmit data to a central aggregation node. We
assume that the nodes have a very low activity factor and
assume that each node is active with probability pa. We further
assume that the system is linear and can be described by the
canonical input-output relation

y = Tx + w. (1)

Here y ∈ RM is the received signal at the aggregation node.
The matrix T ∈ RM×K summarizes the channels between the
K nodes and the aggregation node. Without giving any further
specifications on the elements of T, we restrict to the case
where M ≥ K holds. Scenarios where M < K are strongly
related to the field of Compressed Sensing and are (in another
context) addressed in [4]. The noise vector w ∼ N

(
σ2
n, 0
)

obeys an uncorrelated zero mean Gaussian distribution with
variance σ2

n. The source vector x contains the modulated



symbols from the sensor nodes and the kth symbol is denoted
by xk. Inactive nodes are modeled as transmitting zeros and
we have xk = 0. Active nodes modulate their data using the
modulation alphabet A which can be any real alphabet such as
Amplitude Shift Keying (ASK) or Binary Phase Shift Keying
(BPSK) and we have xk ∈ A. To ease notation, we consider
the communication system to be a real valued system which
is not a general restriction. The scheme we propose can also
be applied to complex systems using a equivalent real valued
system description.

B. Generalized Likelihood Ratio Test

With the previously introduced sporadic communication
model, the goal of the detector is to detect symbols from
the augmented modulation alphabet A0 = A ∪ 0. In [3] the
authors derived the MAP detector for the system in (1) given
the knowledge about the a priori distribution of the source
vector x ∈ AK

0 . However, this approach simply minimizes
the total symbol errors on the augmented alphabet A0 and
activity errors and symbol errors are considered to have the
same impact on the system.
In the following we consider the activity detection in detail.
For each estimate x̂k the detector has to estimate whether
the node was active, i.e., x̂k ∈ A or inactive, i.e., x̂k = 0.
The possible outcomes for the activity detection task are
summarized as follows. Table I shows the so called Confusion

xk ∈ A xk = 0
x̂k ∈ A True Active False Active
x̂k = 0 False Inactive True Inactive

TABLE I
CONFUSION MATRIX FOR ACTIVITY DETECTION

Matrix of the possible mappings between the true classes (node
is active or inactive) and the hypothesized classes (node is
active or inactive) [5]. The two error events (False Active and
False Inactive) are of special interest. If a node is wrongly
estimated to be inactive, the data of this node is simply lost
and cannot be recovered. However, in the the opposite case,
when a node is wrongly estimated to be active, higher layer
error detection methods can sort out wrong packets. Thus, we
observe that these error events have different impact on the
overall system performance. This necessitates a detector that
can be controlled by an additional parameter to balance the
activity errors.
To include this balancing in the detector, we consider a binary
hypothesis testing problem to determine whether a node is
active or inactive.

H1 : xk ∈ A → Node is active
H2 : xk = 0→ Node is inactive

Following Table I we assign the following costs for wrong
activity detection.

• CFi : Cost for estimating false inactive
• CFa : Cost for estimating false active

Costs for correct decisions are implicitly set to zero. We cast
the problem as the minimization of the Bayes Risk defined as

R = CFaPr (xk = 0)

∫
ZA

p (ym|xk = 0) dym+

CFiPr (xk ∈ A)

∫
Z0

p (ym|xk ∈ A) dym. (2)

The Bayes Risk given in (2) expresses the overall risk of
wrong activity detection. p (ym|xk) denotes the density for
an observation ym under the hypothesis xk, Pr (·) is an event
probability and Z0 and ZA are the regions in the observation
space where the detector would estimate the node to be
inactive x̂k = 0 or active x̂k ∈ A. For the sake of clarity
we omit lengthy derivations and refer the reader to [6]. With
the results from [7] we cast (2) as a Generalized Likelihood
Ratio Test (GLRT) which has the following form

p (ym|xk = 0) Pr (xk = 0)CFa

maxx∈A p (ym|xk) Pr (xk)CFi

H2
≷
H1

1 (3)

The GLRT in (3) evaluates the weighted a posteriori prob-
abilities for both hypothesis and assigns the observation to
the hypothesis with higher probability. Moreover, hypothesis
H1 covers the set A and is therefore a so called composite
hypothesis. As (3) shows we compare the best model in H1
with H2. Instead of taking the best model in H2 one could
take the average model in H2 by replacing the max by a mean
operator. This would lead to the so called Bayes Factor which
is not investigated further in this paper. It can be seen that (3)
can be rewritten as

x̂k = argmax
xk∈A0

p (ym|xk) Pr (xk)C (xk) , (4)

with
C (xk) = C

1A(xk)
Fi C

1−1A(xk)
Fa . (5)

Here, 1A (·) is the indicator function which takes the value
1 if the argument is contained in the set A. The solution to
the optimization problem given in (4) is the optimal scalar
estimate for xk given a scalar observation ym. Assuming i.i.d.
variables xk and i.i.d. observations ym (4) can be extended
for vector observations and vector hypothesis and we have

x̂ = argmax
x∈A0

M∏
m=1

p (ym|x)

K∏
k=1

Pr (xk)C (xk)︸ ︷︷ ︸
a(x)

. (6)

In the following we consider the system given in (1). The noise
vector w is a vector of uncorrelated zero mean Gaussian dis-
tributed random variables having variance σ2

n. The a posteriori
probability for the element ym with vector hypothesis x can
now be expressed as

p (ym|x) =
1√

2πσn
exp

[
− 1

2σ2
n

|ym −Tmx|2
]
, (7)

and
M∏

m=1

p (ym|x) =
1

(2π)M/2σM
n

exp

[
− 1

2σ2
n

‖y −Tx‖22
]
. (8)



Here Tm is the mth row vector of the matrix T. The
elements of the source vector xk obey a Bernoulli / Uniform
distribution. In particular, we have

Pr (xk ∈ A) = 1− Pr (xk = 0) = pa (9)

p (xk|xk ∈ A) =
1

|A|
(10)

and we write the a priori probability of the source vector a(x)
weighted with the costs from (5) as

a(x) =

K∏
k=1

[CFa (1− pa)]
1−1A(xk)

(
CFi

pa
|A|

)1A(xk)

= [CFa (1− pa)]
K−

∑
k 1A(xk)

(
CFi

pa
|A|

)∑
k 1A(xk)

,

(11)

with (8) and (11) we can finally rewrite the optimization
problem given in (6) by taking logarithms and rearranging
we obtain

x̂ = argmin
x∈A0

‖y−Tx‖22+2σ2
n

K∑
k=1

1A (xk) log

(
CFa

CFi

1− pa
pa/|A|

)
.

(12)
Moreover, the indicator function 1A (xk) can be replaced
by the zero pseudo-norm defined as ‖x‖0 = #{xk : xk 6= 0}.
Thus we obtain the non-convex integer optimization problem

x̂ = argmin
x∈A0

‖y −Tx‖22 + 2σ2
n‖x‖0log

(
CFa

CFi

1− pa
pa/|A|

)
. (13)

To ease notation, we express the ratio of costs as Ω = CFa
CFi

.
Choosing Ω = 1 (13) leads to the MAP detector from [3].
This detector generalizes MAP detection by the additional
weighting parameter Ω. This parameter allows to adjust the
cost for the activity detection adaptively and system dependent.
The penalty term λ(Ω) = 2σ2

nlog
(

Ω 1−pa

pa/|A|

)
reflects the

a priori assumption about the source vector x, and scales
with the noise power. Additionally, Ω scales the a priori
assumption and can be interpreted as an additional parameter
that determines whether the detector is conservative Ω > 1 or
liberal Ω < 1. A conservative detector will decide in favor of
inactivity and will produce less False Active errors. In contrast
a liberal detector will decide in favor of activity and produce
less False Inactive errors than a conservative detector.

C. Bayes-Risk Sphere-Detector (BR-SD)

In this section we briefly show the possible realization of
the Bayes Risk detector as a Sphere Detector which we later
call Bayes Risk Sphere Detector (BR-SD). Thus, we rewrite
the non-convex optimization problem (13) as the application
of the QR-decomposition of T = QR with Q being an unitary
matrix, i.e., QTQ = QQT = IM , and R. We can rewrite (13)

as

argmin
x∈A0

‖y −QRx‖22 + ‖x‖0λ(Ω)

argmin
x∈A0

‖QTy −QTQRx‖22 + ‖x‖0λ(Ω)

argmin
x∈A0

‖ỹ −Rx‖22 + ‖x‖0λ(Ω). (14)

Note that implementation via Sphere Decoding [8] is only
valid if λ(Ω) ≥ 0 holds. If λ(Ω) < 0, the fundamental as-
sumption of an accumulating metric is violated [8]. Therefore,
if and only if λ(Ω) < 0 holds, we rewrite (14) as

argmin
x∈A0

‖ỹ −Rx‖22 − ‖x‖0|λ(Ω)|+K|λ(Ω)|

argmin
x∈A0

‖ỹ −Rx‖22 + |λ(Ω)| [K − ‖x‖0]

argmin
x∈A0

‖ỹ −Rx‖22 + |λ(Ω)|
K∑

k=1

10 (xk) . (15)

Note that with (14) and (15) implementation via Sphere
Decoding is possible for λ(Ω) ∈ R by selecting (14) if
λ(Ω) ≥ 0 and (15) if λ(Ω) < 0.

III. CDMA SYSTEM SETUP

In the following we apply the Bayes Risk Sphere Detector
to a specific M2M system setup. We assume an uplink scenario
where K sensor nodes are connected to a central aggre-
gation node. More specifically, we assume a star topology.
The sensor nodes access the medium via a Code Division
Multiple Access (CDMA) scheme with independent Pseudo
Noise (PN) sequences applied at the nodes. The application
of CDMA is not a general restriction, but allows for adaptive
and flexible support of different data rates, and flexible and
scalable number of supported devices which is very attractive
for M2M scenarios [9].
Furthermore, we assume the same sporadic communication
scenario where nodes are only active on occasion to transmit
their data to the central aggregation node. As CDMA is
employed, the data symbols are spread by a node specific
PN sequence of length N . After spreading, the symbols
are transmitted over a frequency selective Rayleigh fading
channel with impulse response length Lh,k chips. The channel
coefficients hk,n, 1 ≤ n ≤ Lh,k are assumed to obey a
zero mean uncorrelated Rayleigh Fading statistic with variance
1/Lh,k. Without loss of generality, we assume Lh,k = Lh ∀k.
CDMA allows for a certain degree of asynchronicity on the
chip level between the nodes. However, to simplify the system
description, we assume the nodes to transmit synchronously in
time. These assumptions allow to formulate the CDMA spe-
cific spreading and convolution with the underlying frequency
selective channel by the matrix A ∈ R(N+Lh−1)×K . This
eases the formulation of a matched filter by simply filtering
the received signal with AT . In this formulation we assume
perfect Channel State Information (CSI) at the receiver. This
could be obtained via training phases which are repeated
periodically.



To ensure white uncorrelated Gaussian noise at the output of
the matched filter, we apply the pre-whitening filter matrix [10]
P ∈ RK×K and obtain the canonical input-output relation at
symbol-rate as

y = PATAx + PATw

= Tx + w̃. (16)

Here y ∈ RK is the received signal at symbol-rate. We assume
that Lh < N which allows to neglect inter-symbol interference
in the symbol-rate model [11]. The system model with pre-
whitening (16) and the underlying model for the Bayes Risk
MAP from (1) are now equivalent.

IV. NUMERICAL EVALUATION

A. Classification of Error Events

Performing a joint data and activity detection necessitates
the distinction between activity errors and data-symbol errors.
To measure the performance of the joint activity and data
detection, we define the following classes of symbol errors:
• Net Symbol error (NSE) rate
• False Active (FA) rate
• False Inactive (FI) rate
• Gross Symbol error (GSE) rate

We term the case where a node transmits a data symbol from
A that is detected wrongly as a Net Symbol Error (NSE).
Additionally, activity error events are classified by the False
Active rate and the False Inactive rate. The wrong detection
of a symbol from the augmented alphabet A0 is counted as
a Gross Symbol Error (GSE). This class summarizes symbol
and activity errors [3].

B. Performance of the Bayes-Risk Sphere-Detector

To illustrate the behavior of the Bayes-Risk Sphere-Detector
for joint activity and data detection, we investigate the system
setup summarized in Table II, exemplary.

Simulation Parameters
Number of Nodes K = 10

Spreading Gain N = 16
Length of Channel Impulse Resp. Lh = 4 chips

Channel Type real valued Rayleigh Fading
Channel State Information full

Activity Probability pa = 0.2
Modulation Type BPSK

Pre-Whitening Cholesky Decomposition
Detector Bayes-Risk Sphere-Detector

TABLE II
SIMULATION PARAMETER

First, we investigate the performance and, especially, the
impact of the weighting parameter Ω on the activity detection.
Figure 1 shows the FA and the FI rates for three different
values for Ω. Analyzing the curves for setting Ω = 1 shows
that the FA rate is much lower than the FI rate resulting in a
conservative performance since the detector tends to estimate a
node to be inactive even if it is active. This behavior becomes
immediately clear by observing that in the low SNR region,
the FI rate goes to one while producing a low FA rate. Even
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Fig. 1. Performance comparison of the activity detection parametrized by
Ω. False Inactive rate (Solid), False Active rate (Dashed)

at higher SNR, the detector still tends to decide in favor
of inactivity. This setting correspond to the MAP detector
from [3]
Fig. 1 also shows the FA and FI rates exemplary for a more
conservative (Ω = 0.1) detector and for a liberal (Ω = 10)
detector. For Ω = 10 the imbalance between FA and FI
rate becomes even more severe compared to the preceding
example. Consequently, the FA rate is much lower than the FI
rate. In this setup, FA events occur rarely and the maximum
is below 10−2, contrary to FI events which occur often and
converge to one in the low SNR range.
Setting Ω = 0.1 leads to a more liberal detector and nodes
are more likely detected to be active. In this setup, the FI rate
is always lower than the FA rate. At low SNR, all nodes are
estimated to be active and the FA rate tends to one whereas
the FI rate is much lower.
As this example shows, choosing Ω too conservative will trim
the detector such that many active nodes are estimated to be
inactive. This setting will consequently lead to a loss of data.
In the opposite, choosing Ω too liberal makes it complicated
to decide if nodes are detected erroneously or if the detector is
simply too sensitive to noise. A too liberal detector is therefore
not very reliable and often detects signals that are only noise.
Besides the performance of the activity detection, we are also
investigating the performance of data detection. We start by
considering the NSE which gives us an indication for the
wrong estimation of data symbols that were transmitted by
the active nodes. Fig. 3 shows the NSE for the BR-SD for
different values of Ω. Starting again with the performance of
the detector parametrized by Ω = 1. We already noted that this
setup results in a conservative performance. Consequently, es-
pecially at low SNR the detector will tend to estimate all nodes
to be inactive and estimate the zero symbol. Accordingly, the
NSE goes up to 1. Increasing Ω makes the detector even more
conservative and the NSE is increased. In contrast, setting
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Fig. 2. Performance comparison of the Net Symbol Error rate parametrized
by Ω.

Ω = 0.1 nodes are more likely estimated to be active. At
first glance, this strategy seems to be favorable since the NSE
is much lower. However, one should note that with Ω = 0.1
the FA rate is increasing as well as Fig. 1 shows.
The increase of the FA rate can be observed by investigating
the Gross Symbol Errors (GSE) as shown in Fig. 3. The GSE
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Fig. 3. Performance comparison of the Gross Symbol Error rate parametrized
by Ω.

shows that choosing Ω = 1 results in the lowest overall error
rate. This is obvious as Ω = 1 results in the MAP detector on
the symbol alphabet A0. For low SNR, the detector estimates
all nodes to be inactive and, makes pa wrong decisions on
average. For Ω = 10, the detector is even more conservative
and the number of nodes that are correctly estimated to be
active is decreased. Additionally, the GSE is higher than for
Ω = 1. The liberal detector, finally, tends to detect nodes
erroneously to be active. At very low SNR, all nodes are
estimated to be active and 50 % of the symbols from the

active nodes are detected wrongly on average. This leads to
the asymptotic GSE of 1− pa/2 here and generally to a GSE
of 1− pa/|A|.

V. CONCLUSION

In this work, we introduced a novel Bayes Risk Sphere-
Detector that minimizes the risk of an erroneous decision
with respect to the activity detection. As a degree of freedom
the activity detection is controlled by an additional parameter.
This provides a system depended flexible management of the
False Active and False Inactive rate and can be adjusted by
higher layers such that certain system specific error rates are
met. We showed that this detector can easily be implemented
as Bayes Risk Sphere-Detector. Additionally, we have proved
the general concept exemplary on a CDMA uplink scenario.
However, our results can be applied to any system where
activity detection plays a fundamental role.
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[9] S. Verdú, Multiuser Detection. Cambridge, U.K.: Cambridge Univ.
Press, November 1998.

[10] F. Monsees, C. Bockelmann, D. Wübben, and A. Dekorsy, “Sparsity
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