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Abstract—Sharing the on-board high power amplifier among
different uplinked carriers (links) is attractive since it provides
for economical and sustainable satellite missions. However, the
non-linear characteristic of the satellite amplifier introduces
intermodulation products leading to Adjacent Channel Inter-
ference (ACI), thereby degrading performance, more so for the
spectrally efficient modulations. Towards supporting higher order
modulations, this work proposes a novel distortion mitigation
technique at the transmitter (predistortion) based on orthogonal
memory polynomials and highlights its salient features: perfor-
mance improvement, scalability and low complexity.

I. INTRODUCTION

The economical and efficient offerings from the terrestrial

networks have strongly motivated the satellite community

towards devising economical missions and use of waveforms

with improved spectrally efficiency. Sharing of satellite re-

sources among multiple services and advanced transceiver

techniques are being considered towards this goal. A typical

satellite resource sharing scenario is the joint amplification of

multiple channels/ carriers using a single wideband HPA (High

Power Amplifier) onboard a transparent satellite instead of

dedicated HPAs per channel. This allows for a relaxation of the

payload-critical requirements on mass/ power. However, signal

amplification, a key onboard operation, is inherently non-linear

due to the HPA characteristics and hence an efficient power

amplification introduces distortions limiting the use of spec-

trally efficient modulation schemes [1]. Typically, the combi-

nation of HPA non-linearity with the onboard channelizing

filters, introduces non-linear inter-symbol interference (ISI)

[1]. Multiple carrier power amplification introduces further

impairments in the form of severe non-linear adjacent channel

interference (ACI) due to the generated intermodulation terms.

Higher order modulations face severe distortion and a high

guard-band is usually applied when the amplifier is operated

in multicarrier mode. Additionally, the high peak to average

power ratios in multicarrier operation leads to increased back-

off causing a loss in power amplification efficiency. An

improvement in power and spectral efficiencies warrants the

development of on-ground mitigation techniques including

predistortion (PD) at transmitter and equalization at receiver.

This is because on-board processing increases mass/ power

consumption and is less amenable to enhancements.

Mitigation techniques based on Volterra series [2], [3] or

look-up tables (LUT) [1] have been proposed in satellite

literature and the resulting gains are promising [1], [4].

Further, literature on terrestrial systems describes a variety

of mitigation algorithms based on memory polynomials [5],

orthogonal polynomials [6], [7] and LUT [8] for single carrier

operations. However, these methods are not suited for the

multicarrier scenario since they do not cater to ACI reduction.

Volterra analysis for non-linear satellite channels is devel-

oped for two carriers in [9] and extended to multiple carriers

in [10]. Different joint data equalization schemes based on

Volterra series are then pursued. However, due to compatibility

issues, complexity considerations and access restrictions to

data on different carriers, the receiver can demodulate only

its intended carrier, thereby ruling out joint equalization. On

the contrary, the gateway has access to data on all carriers,

allowing the implementation of a joint predistortion technique

to pre-compensate for ACI and ISI. A dual carrier channel

signal predistortion based on memory polynomials (MP) [5]

is provided in [11] for terrestrial application. Multicarrier pre-

distortion for satellite channels has been only addressed in [12]

where joint data predistortion based on memory polynomials

(MP) is considered.

Orthogonal polynomials were developed to improve the

accuracy of kernel estimation in the single carrier case [7].

These polynomials are orthogonal in statistical sense when

restricted to the memoryless terms [7]. In this work, we

investigate the use of orthogonal memory polynomials for

multicarrier predistortion. Towards this end, we devise a sys-

tematic approach for generating orthogonal MP exploiting data

from all carriers. Our approach ensures the orthogonality of

polynomials in the statistical sense [7] without any restrictions.

The salient features of the new multicarrier orthogonal MP

are highlighted and their implications on system design are

described. Of particular interest are reduced complexity and

modularity: simpler estimation of polynomial co-efficients

reduces complexity and the ability to increase the degree/

memory of the predistorter without altering the already com-

puted coefficients imparts scalability.

The rest of the paper is described as follows: Section II

describes the multicarrier scenario with emphasis on data pre-

distortion, Section III introduces the novel predistorter whose

performance is then compared in Section IV with reported

techniques and some conclusions are drawn in Section V.

Notations : A denotes matrices, b represents column vec-

tors, ∗,T are complex conjugation (hermitian) and transposi-

tion operators respectively, † denotes the pseudo inversion and
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Fig. 1. Multicarrier Channel Model

E is the ensemble average.

II. JOINT MULTICARRIER AMPLIFICATION

A. Multicarrier Satellite System

1) Scenario: The considered multicarrier satellite system

involves broadcasting in Ku-band from a geostationary satellite

to fixed terminals. A single gateway transmitting independent

carriers is assumed and each carrier could correspond to a dif-

ferent service or an application. The user terminal is assumed

to be a legacy receiver (e.g. a commercial TV decoder) capable

of demodulating and decoding a single carrier, unlike in [9],

[10]. This requirement arises from compatibility constraints,

complexity considerations and access restrictions. Such single

carrier user-terminals cannot compensate for ACI [9], [12]. On

the other hand, the predistorter at the gateway is assumed to

have information about all the channels; this can be exploited

to mitigate ACI.

2) Channel: Figure 1 illustrates a baseband model for the

considered system. This model differs from [10] only in the

choice of the mitigation technique. The filters, {pi}, which

add memory effects, represent a cascade of pulse shaping

and on-board channelizing filters. TWTAs (Traveling Wave

Tube Amplifier) constitute the commercially used on-board

HPA; their characteristic is intrinsically non-linear and can

be assumed to be frequency independent. Such a memoryless

system is characterized by the AM/AM and AM/PM curves

[1] and the Saleh model [13] is widely used to parameterize

them. To focus on the HPA impairments, we assume an ideal

uplink and an AWGN channel for the downlink.

3) Data Predistortion: Unlike in terrestrial scenarios [5],

[11], the predistorter and HPA are not co-located due to

payload constraints and the need for flexibility. Hence, the

predistorter output has to adhere to strict regulations on out-of-

band emissions for the uplink. Since a traditional Signal level

predistorter [5], [14] causes spectral regrowth, we implement

a Data Predistorter (DPD) preceding the pulse shaping filter

and operating jointly on multiple carrier data. Clearly, such a

DPD does not cause spectral enlargement and is preferred for

satellite uplink [1].

B. Data Predistortion Techniques

Unlike the typical single carrier channels, the considered

system is characterized by strong ACI that dominates ISI

and the same is well documented in [10], [12]. Central to

developing a model based predistortion technique is the ability

to parameterize the channel. The channel, essentially a non-

linear system with memory can be completely described using

the discrete Volterra series as detailed in [10]. The Volterra

analysis then forms the basis for the predistorter design.

1) Volterra DPD: In [10], the derived Volterra series is

used towards devising an equalizer. Exploiting the fact that the

post-inverse and pre-inverse are ideally the same [15], such an

equalizer can also be used as a discrete Volterra multicarrier

DPD. In general, the Volterra DPD has infinite order and

memory; it is truncated to third or fifth degree for ease of

implementation resulting in the output, ym,V (n), with

ym,V (n) = y
(1)
m,V (n) + y

(3)
m,V (n) + y

(5)
m,V (n)

y(1)m (n) =

Mc
∑

m1=1

K(1)
m1

∑

k=−K
(1)
m1

g(1)m1,m
(k)am1(n− k) (1)

where y
(p)
m (n) denotes the pth degree Volterra term (the

general expression is given in (2), top of the next page).

Mc is the number of carriers, K
(p)
m denotes memory for the

pth degree term for carrier m, {g
(p)
∗ (·)} are the pth degree

Volterra kernel coefficients, am(n) and ηm(n), respectively,

are the data symbols and receiver noise on carrier m at

instance n. The simplified DPD of (2) uses only those non-

linear terms that produce in-band ISI and ACI. In this paper,

we define Ωm,D as the set of carriers (m1, . . . ,mD) causing

in-band distortions to carrier m due to the non-linear terms

of degree D. The sets Ωm,D for many significant scenarios

are summarized in [10]. Volterra predistortion of degree D

requires O(KD+1),K = maxm{K
(D)
m }.

2) Memory Polynomial DPD (MP-DPD): Volterra DPD

predistorter is highly complex due to a large number of cross

memory terms involved (even after confining the terms to Ω∗).

This invariably leads to estimation inaccuracies of {g
(p)
∗ (·)}

based on training . On the other hand, low complexity multi-

carrier MP-DPD has been derived in [12] developing on their

application to single carrier scenarios. The output of a MP-

DPD, ym(·), takes the form,

ym(n) =

W
∑

w=1

Kw
∑

k=−Kw

hw,m(k)Φm,w,k(a(n)) (3)

where {Φm,w,k(·)} constitutes the standard multicarrier mem-

ory polynomial bases described in [12], {hw,m(·)} are the

kernel coefficients and a(n) = [a1(n), . . . , aMc
(n)]. Table

I details Φm,w,k(·) for cross terms up to the fifth degree

and memory depth 2Kw. Complexity of MP-DPD of degree

D is O(KD),K = maxw{Kw} compared to O(KD+1)
of Volterra DPD. We now describe a novel DPD based on

multicarrier Orthogonal memory polynomials that allows for

faster kernel estimation.

III. ORTHOGONAL MEMORY POLYNOMIALS BASED DATA

PREDISTORTER

Orthogonal polynomials were introduced in [7] as a signal

predistortion mechanism to reduce inaccuracies in estimation



y
(p)
m,V (n) =

∑

(m1,...mp)∈Ωm,p

K(p)
m1

∑

k1=−K
(p)
m1

· · ·

K(p)
mp

∑

kp=−K
(p)
mp

gm1,m2,...,mp,m({kl}
p
l=1)

p+1
2
∏

s=1

ams
(n− ks)

p
∏

s= p+3
2

a∗ms
(n− ks) (2)

TABLE I
STANDARD MULTICARRIER MEMORY POLYNOMIAL BASIS

Φm,w,k(a(n)), k ∈ [−Kw, Kw]

Linear terms aw(n− k)

3rd degree terms

{

a∗m3
(n− k)

∏

2

i=1
ami

(n− k)

(m1,m2, m3) ∈ Ωm,3

5th degree terms

{

∏

3

i=1
ami

(n− k)
∏

5

i=4
a∗mi

(n− k)

(m1, m2,m3,m4, m5) ∈ Ωm,5

of kernel coefficients and hence improve out-of-band emis-

sions. While out-of-band emission is not an issue here, as will

be shown in the sequel, these polynomials exhibit interesting

properties that warrant their use in the multicarrier scenario.

A. Basis representation of the predistortion function

Let {ψm,w,k(·)},m ∈ [1,Mc], w ∈ [1,W ], k ∈ [−Kw,Kw]
denote the set of basis functions and denote, ψm,i,k(a(n)) =
ψm,i,k(a1(n−k), . . . , aMc

(n−k)). Motivated by their form in

[7], a novel multicarrier data predistorter based on orthogonal

polynomials is defined similar to (3) as,

ym(n) =
∑W

w=1

∑Kw

k=−Kw
hw,m(k)ψm,w,k(a(n))∀ m, (4)

where ym(n) is the predistorter output for the mth carrier at

the nth instance and {hw,m(k)} are the kernel coefficients.

Note that predistorted output for mth carrier depends on

symbols from other carriers and utilizes a memory depth of

2Kw for each polynomial term w. Similar to [7], these basis

functions are constrained to satisfy statistical orthonormality

as defined by below,

< ψm,i,k(r), ψm,j,l(r) >= E{ψm,i,k(r(n))[ψm,j,l(r(n))]
∗},

< ψm,i,k(r), ψm,j,l(r) >=

{

0 ∀j 6= i, k 6= l

1 i = j, k = l
(5)

where rm(n) is the received signal on carrier m at instance

n, ψm,i,k(r(n)) = ψm,i,k(r1(n− k), . . . , rMc
(n− k)) and the

averaging is performed over the statistics of {rm(·)}.

B. Basis Orthogonalization

We now proceed with the construction of {ψm,w,k(·)}
satisfying (5). The approach is two fold : (1) to choose a set

of standard bases functions and (2) obtain an orthonormal set

from these bases functions. With regards to the first require-

ment, motivated by [5], [12], we choose the standard bases

functions corresponding to the multicarrier MP as described in

Table I. With the standard basis defined, we use the Modified

Gram Schmidt method for orthogonalization [16]. For the ease

of comprehension, we present the procedure for Kw = 0, ∀w
and the same can be extended to any Kw. With Kw = 0,

dropping subscript k and the input arguments of the bases for

simplicity, the standard iterative Gram Schmidt [16] process

for the generation of an orthonormal basis ψm,w from a

general basis Φm,w is defined in (6),

Ψm,w = Φm,w −

w−1
∑

z=1

< Φm,w,Ψm,z >

< Ψm,z,Ψm,z >
Ψm,z,

ψm,w =
Ψm,w

|Ψm,w|
. (6)

However, this process suffers from numerical instability and

the Modified Gram Schmidt method overcomes this problem

by computing each basis Ψm,w as a sequence of recurrent

inner products rather than a summation of inner products,

Ψ(1)
m,w = Φm,w −

< Φm,w,Ψm,1 >

< Ψm,1,Ψm,1 >
Ψm,1 (7)

Ψ(2)
m,w = Ψ(1)

m,w −
< Ψ

(1)
m,w,Ψm,2 >

< Ψm,2,Ψm,2 >
Ψm,2

...

Ψm,w = Ψ(w−2)
m,w −

< Ψ
(w−2)
m,w ,Ψm,w−1 >

< Ψm,w−1,Ψm,w−1 >
Ψm,w−1.

In effect, the Modified Gram Schmidt procedure returns a

vector of coefficients cw,l such that each orthonormal basis

ψm,w, can be written as a linear combination of the standard

basis functions: ψm,w =
∑w

l=1 cw,lΦm,l.

Having defined the functional form of the bases and an

orthogonalization procedure, it remains to compute the various

correlation coefficients, denoted using < · , · > in (7), and

estimate the kernel coefficients towards implementing (4).

C. Computing the Correlation Coefficients

We now compute the correlation coefficients so that the

bases satisfy (5). In this work, no a priori assumption is

made on the distribution of the received symbols. Training

symbols are used and channel statistics are extracted from

the corresponding noisy received data. We approximate the

ensemble average by time average based on rm(n) as,

< Φm,i,k(r),Ψm,j,l(r) >≈
∑Ntr

n=1 Φm,i,k(r(n))[Ψm,j,l(r(n)]
∗

Ntr
(8)

Remark 1: In [7], a closed-form expression for polynomials

is obtained for a single carrier and for a specific distribu-

tion of {r1(n)}. Further, the orthogonality is satisfied for

the memoryless terms. However, the construction provided

above can be applied regardless of the polynomial degree,

distribution of received symbols and channel characteristics.

Further, the proposed construction imposes orthogonality both

on the polynomial terms w as well as on the memory k of the

orthogonal MP (kindly refer to (4)).



D. Kernel Estimation

It now remains to obtain the kernel coefficients {hw,m(k)}.

By virtue of being used for DPD, {hw,m(k)} model the inverse

of the channel function. Thus {hw,m(k)} can be estimated

using the received symbols by modeling predistortion as a

post-inverse [15]. Typically, {hw,m(k)} are computed prior to

launch by measuring the HPA characteristics and simulating

the satellite transmission [1]. However, aging and temperature

variations (diurnal variations as the satellite moves back and

forth from the shadow of earth) changes the channel charac-

teristics. These motivate a periodic, training based, estimation

of {hw,m(k)} when the satellite is in operation using operator

owned dedicated reference terminals capable of multicarrier

demodulation. These terminals compute {hw,m(k)} and feed

them back to the gateway.

Recalling the definition of ri(n), ai(m) from earlier Sec-

tions, the post-inverse takes a form similar to (4) with,

am(n) =

W
∑

w=1

Kw
∑

k=−Kw

hw,m(k)ψm,w,k(r(n)) + ǫm(n) (9)

where r(n) = [r1(n), . . . , rMc
(n)] and ǫm(n) is the

modeling error. Stacking Ntr number of training symbols

{am(n)} into a vector bm and letting hm = [h1,m(−K1),
. . . , h1,m(K1), h2,m(−K2), . . . , hW,m(KW )]T we can write

(9) as bm = Amhm + em. Here, em is the stacked error

vector, and Am is a matrix whose pth row corresponds

to the evaluation of {ψm,w,k()} for pth received symbol.

Based on this relation, {hw,m(k)} are obtained by minimizing,

[Amhm − bm]∗[Amhm − bm], as,

hm = A
†
mbm,m ∈ [1,Mc]. (10)

Equation (10) involves a complexity of O(NtrK
2W 2), K =

maxwKw and can be susceptible to ill conditioning of Am.

The reduction in complexity estimation is described next.

E. Properties of Orthogonal Bases

1) Low Complexity Kernel Estimation: The lth column of

Am corresponds to the evaluation of ψm,w0,k0(·) (for some

w0, k0) on the Ntr symbols. From (8), it can be therefore

deduced that the columns of Am are orthonormal. In fact, Am

is the orthogonal component (computed using QR decompo-

sition) of the regression matrix corresponding from MP. Due

to orthonormality, (10) can be simplified as,

hm = A
∗
mbm (11)

Equation (11) shows that estimation procedure is simplified to

a large extent by use of orthogonal MP with the complexity

being only O(NtrKW ). This simplification leads to cheaper

reference terminals.

2) Modularity: An important manifestation of (11) is mod-

ularity; additional basis functions (in terms of degree and/

or memory) could be included and the kernel coefficients

corresponding to these new functions can be found without

altering those estimated already. This arises from the fact

that adding a new basis appends a new column to Am.

Now, referring to (11), the corresponding kernel coefficient

can simply be found as the inner product of new column of

Am and bm. When reference receive terminals are used, this

scalability allows for a reduction in the amount of feedback.

Similarly, the number of basis functions can be reduced by

merely nulling the appropriate kernel coefficients. This feature

provides for a control of received signal quality by a simple

alteration of the memory or degree of the predistorter.

IV. SIMULATION RESULTS

A. Performance Metric

We now illustrate the performance of the proposed predis-

torter. The traditional measure of performance for non-linear

channels is the Total Degradation (TD) [1]. In this paper, we

instead use the Signal to Interference plus Noise Ratio (SINR)

as the performance metric since it (i) does not involve bit error

rate evaluations and is faster to compute and (ii) is compatible

to TD in behavior. In particular, the SINR for carrier m would

be ρm = E(|am(n)|2)
E(|αmrm(n)−am(n)|2) , where αm > 0 effects an

unit power normalization to the desired signal at the receiver

(depends on the set amplification level). When the Input

Backoff (IBO) increases, the non-linear interference reduces

but the signal strength after amplification also reduces thereby

increasing the relative noise level (αm > 1). Reducing IBO

increases signal power compared to noise, but the non-linear

interference also increases. These effects are well captured in

the denominator of ρm. Hence, similar to TD, there exists an

optimum IBO (or equivalently Output Backoff, OBO) at which

ρm is maximized.

B. Set-Up

Simulations have been carried out with two and three carri-

ers (Mc = 2, 3) per HPA. Saleh model [13] is used to obtain

TABLE II
SIMULATION PARAMETERS

Symbol rates, Rs in MBaud 8 (Mc = 3), 12 (Mc = 2)

Carrier frequency spacing, △f 1.25 Rs

{DPD degree, DPD memory} {5 (Table I) , Kw = 1, ∀w in eq. (4)}

Number of training symbols 3200 (A DVBS2 short frame)

Modulation 32 APSK

Filters, {pi} Root Raised Cosine, roll-off 0.25

Simulation Oversampling 38 (Mc = 3), 25 (Mc = 2)

Es/No 20dB

the HPA characteristic with the same parameters as in [10].

As in [10], the pilots are drawn from 32 APSK constellation

(target modulation). For comparing with the proposed scheme

(depicted as Orth. MP-DPD), a MP-DPD of Section II-B2

is designed [12]. For the current scenario, Volterra DPD is

omitted due to its exponential complexity (kindly refer Section

II-B2). Further the benchmark cases of No DPD (without

any HPA non-linearity compensation at the receiver) and an

ideal linear amplifier with normalized gain (denoted as AWGN

channel) are also simulated.
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C. Results

When Mc = 2, because of symmetry, both carriers have

the same SINR and hence only one is depicted in Fig. 2. For

Mc = 3, performance of the central carrier is impacted by

strong ACI from the two external carriers. Hence the SINR of

central carrier is shown in Fig. 3, while the performance of

the external carriers are similar to Fig 2. Performance of the

designed DPD is similar to MP-DPD for an identical order

and memory depth, while providing the benefits outlined in

Section III-E. Comparing with the No DPD case, the use of

predistortion effectively compensates the non-linear effects of

the channel providing about 3 dB of gain in the region of high

power efficiency (OBO ≈ 2.5 dB). Further, this SINR gain can

also be translated into a power efficiency improvement: for a

target SINR, the OBO can be significantly reduced by applying

DPD. Comparing Fig. 2 and Fig. 3, we notice that a higher

number of carriers introduces greater ACI, thereby reducing

the absolute SINR. As a consequence of this, increasing Mc

gradually moves the optimum OBO, corresponding to the

maximum SINR, towards the linear region of the amplifier. As

expected, the DPD performance approaches the linear ampli-

fication case for high OBO (small difference being due to the

modeling/ estimation errors). The No DPD case asymptotically

(in OBO) reaches the performance of the AWGN case, mainly

due to the slow decay of the HPA phase with OBO [13].

V. CONCLUSION

The paper presents a novel framework for generating and

applying orthogonal memory polynomials as a predistortion

technique when multiple carriers are amplified by a single

HPA. This technique provides for a mitigation of ACI and

ISI thereby improving received SINR and power efficiency.

Exploiting orthogonality reduces the complexity while result-

ing in a modular (scalable) implementation. These properties

provide for a favorable comparison of the proposed technique

with prior-art strongly motivating its use in evolving systems.
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