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Abstract—In future cellular networks, self-organizing relaying
terminals (RTs) are expected to play a crucial role in assisting
the communication between base stations and wireless termi-
nals (WTs), which include, not only active user terminals, but also
machine-type communication devices. In the absence of channel
quality indicators, the effective utilization of RTs requires a
mechanism by which these RTs can assign available resource
blocks (RBs) to a potentially large number of WTs with minimal
conflicts. This requires optimizing RB assignments over a large
set of lengthy sequences, which is computationally prohibitive for
networks with large numbers of RTs. To alleviate the difficulty
in designing such sequences, we develop a greedy algorithm,
whereby pairs of RB assignment sequences are selected in an
efficient sequential manner. The performance of the sequences
generated by this algorithm is comparable to that of the se-
quences generated by exhaustive search, but with a significantly
less computational cost.

I. INTRODUCTION

The prospect of utilizing self-organizing relaying termi-

nals (RTs) in cellular networks forebodes a significant increase

in the number of wireless terminals (WTs) that can be sup-

ported by the network [1]. These WTs may include, not only

user terminals, but also machine-type communication devices

that are actively engaged in communication with the base

station (BS). In particular, using idle user terminals as RTs,

will enable replacing weak direct links between the WTs and

the BS with cascades of multiple strong ones. This approach is

referred to as terminal relaying [1]. A fundamental impediment

in applying this approach in practice is that it requires effi-

cient mechanisms for the RTs to allocate the available (time-

frequency) resource blocks (RBs) to their assisted WTs.

When instantaneous channel quality indicators (CQIs) are

available at the BS, such allocations can be optimally de-

termined. However, in practice, acquiring this information

incurs a significant overhead and can seriously infringe on the

resources available for communication. This is especially true

when the RTs are mobile and their number is large. Hence, to

extract the potential gains of terminal relaying, it is desirable

for the RBs to be allocated blindly, i.e., without CQIs, and

autonomously, i.e., without centralized coordination.

Autonomous RB allocation schemes have been developed

for networks in which the CQIs on each RB are assumed
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available, e.g., [2], [3]. However, the mobility of both WTs

and RTs in terminal relaying networks renders this assump-

tion rather difficult to realize in practice. In contrast, in the

absence of CQIs, blind allocation schemes that use random

RB assignments are available, e.g., [4]. These schemes offer a

significant reduction in the overhead necessary to acquire the

CQIs, but the lack of coherence in their structure results in,

otherwise avoidable, RB allocation conflicts. This drawback

is alleviated by the scheme proposed in [5] wherein the RB

assignment sequences are endowed with a multiplicative cyclic

group (MCG) structure. In [5], this structure was used to

obtain cyclically-generated RB assignment sequences and an

exhaustive search was performed to select the sequences that

minimize the number of RB allocation conflicts between RTs.

Despite its advantages, when the number of RTs increases, the

cost of exhaustive search over cyclically-generated sequences

becomes impractical.

In this paper, we consider a distributed relay-assisted cellu-

lar system in which the CQIs are neither available at the RTs

nor at the BS. Each RT locally assigns RBs to its incoming

WTs according to a prescribed RB assignment sequence;

i.e., without centralized coordination by the BS. To facilitate

the sequences selection, we develop a greedy algorithm for

efficient cyclic generation of RB assignment sequences for

networks with large numbers of RTs. In particular, the as-

signment sequences generated by the proposed algorithm are

obtained from distinct group generators and cyclic shifts of the

MCG structure. This reduces the quest for designing sequences

to the quest for finding group generators and cyclic shifts

that result in minimal assignment conflicts. The proposed

algorithm sequentially selects the group generator pairs and

their associated cyclic shifts. In particular, in each iteration,

a pair of group generators is chosen such that the number of

assignment conflicts between the sequences that they generate

and the ones generated by the previously selected group

generators is minimized. The selected group generators are

then ranked in a look-up table in an ascending order of their

number of assignment conflicts. Numerical results suggest that

the performance of the sequences generated by this algorithm

is comparable to that of the sequences generated by exhaus-

tive search, but with a significantly less computational cost.

Furthermore, the set of sequences generated by the greedy

algorithm does not depend on the number of RTs. In particular,

for a system with M RTs, only the first M group generators

and their associated cyclic shifts in the look-up table are
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utilized for obtaining the assignment sequences. This implies

that it suffices for the greedy algorithm to be run once off-

line, independently of the number of RTs to be used in the

system. This is in contrast with the sequences designed with

exhaustive search [5], which is re-run each time the number

of RTs in the network changes. To summarize, the proposed

greedy algorithm possesses the following features:

• The greedy algorithm yields RB assignment sequences

with performance comparable to that of the sequences

generated by exhaustive search.

• The computational complexity of the greedy algorithm

is polynomial in the number of RBs, and does not

depend on the number of RTs, whereas the computational

complexity of exhaustive search is exponential in the

number of RTs.

• The RB assignment sequences do not need to be updated

when the number of RTs in the network changes.

II. AUTONOMOUS RB ASSIGNMENTS USING CYCLIC

SEQUENCES

We consider an autonomous RB assignment scheme for the

downlink of cellular networks with self-organizing RTs. An RT

is selected by an active WT according to the observed signal

strength of the RT-WT link. The RT does not have access to

the CQIs and, once selected, it allocates one or multiple RBs

to the WT, depending on the data rate requirement thereof.

To maintain autonomy, RB assignments can be performed

randomly [4] or according to prescribed assignment se-

quences [5] with entries corresponding to available RBs. In

either approach, no coordination with the BS or other RTs is

required. This autonomy might result in instances at which one

RB is assigned to multiple WTs simultaneously. Occurrence of

such an instance, referred to as a ‘hit’, is likely to result in high

interference levels and significantly deteriorates the quality of

the received signal of the WTs. Unlike the random approach,

which does not offer performance guarantees, using prescribed

sequences provides an opportunity for improving performance.

This can be done by properly selecting the RB assignment

sequences to minimize hit occurrences in the absence of CQIs.

Unfortunately, optimizing RB assignments over all possible

sequences constitutes a formidable task that, for a network

with N RBs, requires exhaustive search over N ! sequences.

A more practical approach is the one in which the exhaustive

search is restricted to cyclically-generated sequences [5], that

is, sequences generated from a single element in the sequence.

A subset of such sequences are the pseudonoise (PN)

sequences that are commonly used in Frequency Hopping (FH)

systems [6]. However, the selection of PN sequences that are

‘good’ for FH systems is based on the number of collisions

in a communication scenario that differs significantly from

the RB assignment one. In particular, in FH systems, a WT

occupies a particular frequency slot during one dwell interval

and relinquishes it after that, whereas in assigning RBs, a WT

is assumed to have a full buffer and to retain its assigned RBs

during the entire transmission interval.

We now review preliminaries pertaining to the generation

of cyclic RB assignment sequences. We begin by recalling the

following definitions.

Definition 1: A group G is a set on which a group op-

eration (denoted by juxtaposition) is defined such that: G is

associative; for all (x, y) ∈ G × G, xy ∈ G; and the inverse

for each element is in G. The order of G is the number of its

elements [7]. �

Cyclic RB assignment sequences are generated from a

particular class of groups known as cyclic groups, which are

defined next.

Definition 2: A group G is cyclic if all its elements can

be generated by repeated application of the group operation

on one element in G. Such an element is called a group

generator [7]. �

For a cyclic group G of order N , the number of group

generators is given by the Euler Totient function, φ(N).
Definition 3: Given a positive integer N , the Euler Totient

function, φ(N), is defined as the cardinality of the set of

integers smaller than N that are coprime with N [8]. �

Immediate from Definition 2 is that repeatedly applying the

group operation on one of the generators of a group G with

order N yields a cyclic sequence with N entries that spans

all the elements of G. Hence, to study a cyclically-generated

sequence for a network with N RBs, it suffices to consider

the order-N cyclic group that generates it. In particular, given

a distinct group generator, each RT can generate a cyclic

sequence that spans all the RBs available to the network, and

the quest for optimal cyclic sequences is distilled to the quest

for optimal generators and group operation. In [5], cyclically-

generated sequences were obtained using the MCG structure.

These sequences were enriched by considering cyclically

shifted versions thereof. In particular, applying a cyclic shift,

s, to a sequence, cyclically rotates its entries by s slots,

where s ∈ {0, . . . , N − 1}. In [5], the group generators and

cyclic shifts were chosen by exhaustive search to ensure a

minimal number of hit occurrences. Despite its advantages in

minimizing hit occurrences, performing an exhaustive search

over all sequences that are cyclically-generated by the MCG

structure incurs a computational complexity that prohibits

its utilization in systems with practical numbers of RTs. To

overcome this difficulty, we will develop an efficient greedy

algorithm in the following section.

III. A GREEDY-BASED APPROACH

To facilitate the assignment of RBs in practical terminal

relaying scenarios, in this section, we will propose an efficient

greedy algorithm in which cyclically-generated sequences are

selected sequentially. The performance of this algorithm is

comparable to that of exhaustive search, but its computational

complexity is significantly less. This property renders the

greedy algorithm attractive for practical application in systems

in which the number of RTs is too large for exhaustive search

to be used.

The implementation of the greedy algorithm relies on a

technique for pairing group generators and cyclic shifts that
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yield cyclically-generated sequences, which proceed in re-

versed orders. In each iteration of the greedy algorithm, one

pair of group generators and the associated cyclic shifts are

chosen. This implies that the algorithm exhausts all possible

group generator pairs in
φ(N)

2 iterations.

After pairing the group generators, the algorithm, in its first

iteration, arbitrarily selects a pair, along with a cyclic shift

s = 0, to be the initial basis of the algorithm. In each of the

remaining
φ(N)

2 −1 iterations, the algorithm augments its basis

by an additional pair and its associated cyclic shifts. After the

last iteration, the selected group generator pairs, along with

their cyclic shifts, are tabulated in a look-up table according

to the order with which they were selected. For a system with

M RTs, the M sequences that are cyclically-generated by the

first M/2 group generator pairs and cyclic shifts in the table

are utilized for assigning RBs. In the following sections, we

will provide details on the pairing technique as well as the

generation and selection of the RB assignment sequences.

A. Pairing of Group Generators

Our pairing methodology is based on finding the optimal

generators for the two-relay case. In that case, the optimal

cyclically-generated sequences are any two sequences that

proceed in reversed orders. In particular, when these two

sequences are utilized for autonomous RB assignment, no hits

will occur as long as the number of WTs is less than the

available RBs. Since each of these sequences is generated by

a group generator and a cyclic shift, it is required to find two

group generators and their associated cyclic shifts that would

generate reversed sequences. For any group generator g and

cyclic shift s, there exists a unique inverse (g−1, s−1) that

generates the same sequence but in the reversed order, where

g−1 is the modular arithmetic inverse of g satisfying

gg−1 ≡ e (mod N + 1), (1)

where e is the group identity element and N is the order of the

group. It can be readily shown that the sequences generated by

g and g−1 proceed in reversed orders. Hence, the cyclic shift

assigned to g−1, denoted by s−1, must be in the direction

opposite to the one assigned to g. This cyclic shift can be

expressed as s−1 = N − s − 1. For example, if we consider

the MCG structure proposed in [5], the cyclically-generated

sequences can be obtained by

{

g
(k+si)
i (mod N + 1)

}N

k=1
= {1, . . . , N}, (2)

where gi is the ith generator of the MCG of order N , and si
is the associated cyclic shift.

B. Sequential Selection of Assignment Sequences

Let S be the set containing the already selected algorithm

basis and U be the set containing the group generator pairs that

have yet to be selected. At first, S is empty and U contains

the
φ(N)

2 group generator pairs. In the first iteration, the

greedy algorithm arbitrarily selects a pair of group generators

(g, g−1) from U and a cyclic shift s and moves (g, g−1, s, s−1)
to S. Without loss of generality, s can be set equal to 0

and s−1 to N − 1. In each of the subsequent
φ(N)

2 − 1
iterations, the algorithm examines each of the remaining group

generator pairs, i.e., the ones not already in S, for all possible

cyclic shifts s ∈ {0, . . . , N − 1}. In particular, the algorithm

evaluates the number of pairwise hits between the sequences

generated by each of the remaining group generator pairs and

the individual group generator pairs in S over all possible

cyclic shifts. We note that for the algorithm to be able to adapt

to both, uniform and non-uniform WT distributions, the metric

for choosing the group generator pairs and cyclic shifts must

not depend on the instantaneous loads of RTs. Hence, when

evaluating the number of pairwise hits for a group generator

pair, the algorithm considers all possible distributions of the

system load over the RTs.

Since the two sequences generated by (g, g−1, s, s−1) pro-

ceed in reversed orders, it can be shown that both sequences

incur the same number of pairwise hits with those generated by

each of the group generator pairs and cyclic shifts in S. Hence,

it suffices to evaluate the number of pairwise hits between the

sequences obtained by only one of the group generators of the

pair being examined and the ones obtained by the individual

pairs in S. This resembles a 3 RT setup, wherein 2 RTs are

assigned a pair from S, and the third RT is assigned a group

generator from the examined pair.

To evaluate the number of pairwise hits, we associate an

N×N load matrix, Xi, with the i-th RT, which is assumed to

have a group generator gi and a cyclic shift si. In particular,

the row and column indices of Xi represent the RB and the

load level of RT i, respectively. In particular, the (ℓ1, ℓ2)-th
entry of Xi represents the binary state of RB ℓ1 when the load

level of RT i, is ℓ2. This entry will be set equal to 1 if RB ℓ1
is assigned by RT i, when it is loaded with ℓ2 WTs. Similarly,

this entry will be set equal to 0 if RB ℓ1 is not assigned by

RT i, when it is loaded with ℓ2 WTs. Using this notation, the

(ℓ1, ℓ2)-th entry of Xi can be written as

[

Xi

]

ℓ1,ℓ2
=







1 if ℓ1 ∈ S(ℓ2), and

0 otherwise,

where S(ℓ2) =
{

g
(k+si)
i (mod N + 1)

}ℓ2

k=1
. To elaborate,

suppose that the group generator and cyclic shift pairs (gi, si)
and (gj , sj) yield the assignment sequences (1, 3, 2, 4) and

(3, 2, 4, 1) for the i-th and j-th RTs, respectively. The corre-

sponding load matrices, Xi and Xj , are

Xi =







1 1 1 1

0 0 1 1

0 1 1 1

0 0 0 1






, and Xj =







0 0 0 1

0 1 1 1

1 1 1 1

0 0 1 1






. (3)

The inner product of the ℓ1-th column of Xi and the ℓ2-th

column of Xj yields the number of hits when RTs i and j are

loaded by ℓ1 and ℓ2 WTs, respectively. This product is given

by the (ℓ1, ℓ2)-th entry of the pairwise hit matrix Hi,j , where

Hi,j = XT
i Xj . (4)

We will now show how the {Hi,j} matrices can be used to

evaluate the total number of pairwise hits over all possible

2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

306



load combinations. To do this, we consider a fully loaded

system; i.e., a system loaded with N WTs. Let the group

generator being examined and its associated cyclic shift be

denoted by (gi, si), and let the corresponding load matrix be

denoted by Xi. Similarly, let the group generator pair in S and

its associated cyclic shifts be denoted by (gj , g
−1
j , sj , s

−1
j )

and let the corresponding load matrices be denoted by Xj

and X̄j . In this notation, we have used X̄j to denote the

load matrix corresponding to (g−1
j , s−1

j ). Utilizing these load

matrices, the total number of pairwise hits over all possible

load combinations between the sequences of (gi, si) and

(gj , g
−1
j , sj , s

−1
j ) ∈ S can be expressed as

Vi,j =
∑

(k1,k2,k3)∈Y

Hi,j(k1, k2) + H̄i,j(k1, k3), (5)

where km is the load of RT m, Y ,

{(k1, k2, k3)|
∑3

m=1 km = N, km ∈ N}, Hi,j is defined

in (4) and H̄i,j , XT
i X̄j . Using (5), the total number of

pairwise hits between the sequence generated by (gi, si) and

the ones generated by each of the group generator pairs and

the cyclic shifts in S can be expressed as

Ii =
∑

(gj ,g
−1

j
,sj ,s

−1

j
)∈S

Vi,j . (6)

After evaluating {Ii}, the algorithm basis, S, is augmented

by the group generator pair and the associated cyclic shifts

that yield the minimum total number of pairwise hits Ii.
The algorithm continues to iterate until S contains all the
φ(N)

2 group generator pairs and |U| = 0. The selected group

generator pairs and their cyclic shifts are then tabulated in a

look-up table according to the order with which they were

included in S. We note that that order depends solely on the

number of pairwise hits, but not on the number of RTs in the

system. This implies that it suffices for the greedy algorithm to

be run one time only to obtain a look-up table of cyclically-

generated sequences for systems with less than φ(N) RTs.

Thus, in contrast with the exhaustive search scheme developed

in [5], when a WT switches to the relaying mode, the currently

active RTs do not need to update their assignment sequences.

C. Computational Complexity of The Greedy Algorithm

We note that only addition operations contribute to the

computational cost of evaluating Vi,j in (5) and Ii in (6).

The number of additions required to evaluate each of the

pairwise hit matrices Hi,j in (5) is bounded by N3, and since

each iteration of the greedy algorithm considers a setup with

3 RTs, it follows that the cardinality of Y is equal to the

number of ways the 100% load (i.e. K = N WTs) can be

partitioned into 3 ordered parts, where K is the total load

of the 3 RTs. This number is given by
(

N−1
2

)

[9]. Hence,

the number of addition operations required for computing the

pairwise number of hits between the selected group generator

i and each of the group generator pairs in S over all possible

cyclic shifts s ∈ {0, . . . , N − 1} can be bounded by

2N4+2N

(

N − 1

2

)

= 2N4+N3−3N2+2N = O(N4). (7)

Since the number of group generator pairs is given by
φ(N)
2 ,

in each of the
φ(N)

2 − 1 iterations, the number of group

generator pairs in each of the two sets, U and S, can be

bounded by
φ(N)

2 − 1. Consequently, the number of addition

operations required for obtaining the cyclic sequences by the

greedy algorithm can be bounded by

(2N4 +N3 − 3N2 + 2N)
(φ(N)

2
− 1

)3

. (8)

From (8), it can be seen that the computational complexity

of the proposed greedy algorithm is polynomial in N . In

particular, since φ(N) < N , the computational complexity of

the greedy algorithm is bounded by O(N7). This is in contrast

with the complexity of the exhaustive search proposed in [5],

which was shown to be bounded by

1

2
M(M − 1)NM

(

N2(N − 1) +

(

N − 1

M − 1

))

. (9)

Comparing (8) and (9), it can be seen that the computational

complexity of exhaustive search is exponential in the number

of RTs, M , whereas the complexity of the greedy algorithm

is independent of M .

IV. SIMULATION RESULTS

In this section, we compare the performance of the

uniformly-distributed random assignment sequences in [4],

with that of the cyclic sequences generated by the greedy

algorithm, and the exhaustive search in [5] at different relative

loads K
N

; i.e., the ratio of the currently assigned RBs to

the total number of RBs in the system. For the scheme

in [5] and the one proposed herein, the cyclic sequences are

generated by using the MCG structure. To compare the greedy

algorithm performance with that of exhaustive search, in the

forthcoming simulations we will restrict our attention to the

case of M = 3 RTs; exhaustive search is computationally

prohibitive for M > 3. To invoke the MCG structure, the

number of RBs will be chosen to be N = P − 1, where P is

a prime number [5].

In the following examples, the performance is measured by

the average number of hits over all possible load combina-

tions; i.e., the average over all ordered triples (k1, k2, k3) ∈
{(k1, k2, k3)|

∑3
i=1 ki = K, ki ≥ 0} where k1, k2, k3 are the

load levels of RTs 1, 2 and 3, respectively and K is the total

load of the network.

Example 1: In this example, we compare the performance

of the sequences generated by the greedy algorithm and those

generated by the exhaustive search in [5] when N = 16, and

N = 40 RBs. We will consider the greedy algorithm with the

metric in Section III-B. The performance of the algorithm is

depicted in Figure 1.

From Figure 1, it can be seen that the cyclically-generated

sequences obtained by both, the exhaustive search and the

greedy algorithm, outperform the random assignment se-

quences. For example, for a system with N = 40 RBs at

a relative load, K
N

= 90%, the average number of hits of the

random assignment scheme in [4] and the cyclically-generated

sequences obtained by exhaustive search, and the greedy
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Fig. 1. Comparison between random assignments in [4] and MCG structured
assignment with the exhaustive search [5], and the proposed greedy algorithm
for N = 16 and N = 40 RBs.

algorithm proposed herein are 9.1, 4.4, and 7.6, respectively.

Furthermore, it can be seen that the performance of the

sequences obtained by the greedy algorithm is comparable

to that of those obtained by exhaustive search. For example,

in the case of N = 16 RBs, and K
N

= 100%, the aver-

age number of hits observed by the greedy algorithm and

the exhaustive search are 2.9 and 1.7, respectively. Despite

its potential suboptimality, the greedy algorithm possesses a

significantly lower computational complexity when compared

with exhaustive search. This renders it suitable for systems

with practical numbers of RTs for which exhaustive search is

computationally prohibitive. �

Example 2: In this example, we consider a setup similar

to the one in Example 1, but with N = 16 and N = 126.

Furthermore, each RT is assumed to know the assignment

sequences of the neighbouring RTs and to be able to identify

the RT with which it collided once a hit is detected. This

is possible, for instance, if RTs use different modulation

schemes. Utilizing this information, the RTs identify the RBs

already utilized by their neighbouring RTs. Subsequently,

when a hit occurs each RT updates its assignment sequence to

avoid the RBs already assigned by other RTs. This avoidance

technique was proposed in [5] and was referred to therein as

the hit identification and avoidance (HIA) algorithm. We note

that the HIA algorithm cannot be applied to the randomly

generated assignment sequences because those sequences do

not possess a specific structure. The performance of the MCG

structured sequences generated by exhaustive search, and the

proposed greedy algorithm with HIA, along with the random

assignments of [4] are depicted in Figure 2.

From this figure, it can be seen that cyclically-generated

sequences exhibit a significant performance improvement in

the average number of hits when the HIA algorithm is utilized.

For example, for the case of N = 16 RBs, the average

number of hits yielded by the greedy algorithm with HIA

when K
N

= 100% is 1.6 in contrast with 2.9 when HIA was

not utilized. Simulation results suggest that this performance

advantage increases with the number of resource blocks, N . In

addition, this figure shows that the HIA algorithm reduces the

performance gap between sequences generated by the greedy

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

 

 

A
v
er

ag
e

n
u

m
b

er
o

f
h

it
s

Relative load (%)

Random N=126

Greedy with HIA N=126

Exhaustive with HIA N=126

Random N=16

Greedy with HIA N=16

Exhaustive with HIA N=16

Fig. 2. Comparison between random assignments in [4] and MCG structured
assignment utilizing HIA with the exhaustive search [5], and the proposed
greedy algorithm for N = 16 and N = 126 RBs.

algorithm, and the exhaustive search. �

V. CONCLUSION

In this paper, we proposed a greedy algorithm that enables

terminal relays to autonomously and efficiently assign RBs to

incoming WTs. The proposed algorithm yields a performance

comparable to the optimal one yielded by exhaustive search,

but with a significant reduction in the computational cost.

This renders the proposed algorithm attractive in systems with

practical numbers of RTs and WTs. Furthermore, the set of

sequences cyclically-generated by the greedy algorithm can

accommodate any number of RTs, provided that this number

is less than the number of cyclic sequence generators. A key

feature of this algorithm is that it automatically accommodates

the temporal variations in the number of available RTs in

practical terminal relaying scenarios.
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