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Abstract—This paper studies the energy efficiency (EE) of
a point-to-point rank-1 Ricean fading multiple-input-multiple-
output (MIMO) channel. In particular, a tight lower bound and
an asymptotic approximation for the EE of the considered MIMO
system are presented, under the assumption that the channel is
unknown at the transmitter and perfectly known at the receiver.
Moreover, the effects of different system parameters, namely,
transmit power, spectral efficiency (SE), and number of transmit
and receive antennas, on the EE are analytically investigated. An
important observation is that, in the high signal-to-noise ratio
regime and with the other system parameters fixed, the optimal
transmit power that maximizes the EE increases as the Ricean-K
factor increases. On the contrary, the optimal SE and the optimal
number of transmit antennas decrease as K increases.

I. INTRODUCTION

MIMO techniques can greatly improve the SE of wireless
communications systems. However, due to the extra signal
processing and circuit power consumption per transceiver RF
chain, the use of multiple antennas also leads to an increased
energy consumption. In future green communication systems,
the EE becomes an important performance metric. Therefore,
the trade-off between EE and SE has become a hot topic in
MIMO systems.

Most studies on the EE of MIMO systems adopted the
assumption of Rayleigh fading conditions [1]–[3]. However,
in many practical scenarios, there exists a deterministic or
strong line-of-sight (LoS) component. Some relevant examples
are: 1) short-range millimeter wave MIMO channels [4],
2) microwave backhauling between macro base stations and
outdoor small-cell base stations [5], 3) the channel between a
user and its connected small-cell base stations. In such cases,
Ricean fading conditions should be considered, which induces
several research challenges.

Motivated by the above discussion, in this paper, we study a
worst case scenario, where the Ricean fading MIMO channel
has a rank-1 mean. This scenario is relevant when the inter-
element distances at both ends are small and the impinging
LoS waveforms have identical phases [6]. A tight lower
bound for and an asymptotic approximation on the EE of the
considered MIMO system are presented, assuming that the
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channel is unknown at the transmitter and perfectly known at
the receiver. With the help of the closed-form EE expressions,
the effects of different system parameters, i.e., transmit power,
SE, and number of transmit and receive antennas, on the EE
are analytically investigated. Interestingly, we observe that,
in the high signal-to-noise ratio (SNR) regime and with the
other system parameters fixed, the optimal transmit power that
maximizes the EE increases with the Ricean-K factor or with
the fixed transceiver power consumption. On the other hand,
the optimal SE and the optimal number of transmit antennas
decrease as the Ricean-K factor increases, i.e., when the LoS
component becomes more and more dominant.

II. SYSTEM MODEL

We consider a point-to-point MIMO system with nt transmit
antennas and nr receive antennas. Here, we assume nt ≤ nr,
while all our results can be easily generalized to the case of
nt ≥ nr. Let s ∈ Cnt×1 denote the transmitted signal vector
with E

{
s†s
}
≤ P , where (·) † stands for conjugate transpose.

The received signal vector at the receiver, y ∈ Cnr×1, is

y = Hs + n (1)

where n ∈ Cnr×1 denotes the circularly symmetric complex
Gaussian noise with n ∼ CN

(
0, σ2Inr

)
. The MIMO channel,

H ∈ Cnr×nt , is assumed to be Ricean flat-fading with rank-1
mean, such that

H =

√
K

K + 1
H̄ +

√
1

K + 1
H̃ (2)

where E {H} =
√

K
K+1H̄ and K is the Ricean K-factor.

Here, E {·} stands for expectation. The rank-1 matrix H̄
corresponds to the coherent line-of-sight component, and it
is normalized such that

∥∥H̄∥∥2F = ntnr, where ‖·‖F de-
notes the Frobenius norm. The term H̃ represents the non-
coherent scattered contributions. In this paper, we focus on
the case without spatial correlation between receive antennas
and transmit antennas. Thus, H̃ can be modeled as a random
fading matrix, whose entries are circularly symmetric complex
Gaussian random variables with unit variance. Therefore,
H has a matrix-variate complex Gaussian distribution with
H ∼ CN

(
M, Inr

⊗ ε2Int

)
, where ε , 1/

√
K + 1 and

M , ε
√
KH̄. Here, ⊗ is defined as the Kronecker product

between matrices.



Under the assumption of no channel state information (CSI)
at the transmitter and perfect CSI at the receiver, the SE, which
is defined as the ergodic capacity per unit bandwidth, is [7]

SE = EH

{
log2 det

(
Int +

P

σ2nt
H†H

)}
(3)

where the expectation is taken with respect to H and det (·)
denotes the matrix determinant. The EE is defined as the ratio
between the SE and total power consumption, that is,

EE =
SE

Ptot

. (4)

In this paper, we adopt the linear approximated power con-
sumption model proposed in [8], where

Ptot = αP + ntPct + nrPcr. (5)
The static terms, Pct and Pcr, denote the fixed power con-
sumption for each transmit and receiver chain, respectively.
The scaling factor, α, models the impact of the output power
P on the efficiency of the power amplifiers used at the
transmitter. The values of Pct, Pcr and α for different base
station (BS) types can be found in [8, Table 2].

III. SPECTRAL RESULTS

The exact expressions for SE and EE are difficult to obtain.
To make the EE analysis tractable, we consider the following
two approximations of the SE.

Lemma 1 [9, Theorem 9]: The SE of the uncorrelated Ricean
fading MIMO channel with rank-1 mean matrix M and nt ≤
nr, is tightly lower bounded for arbitrary SNR = P

σ2 by SE ≥
SE1, where

SE1 ,
nt∑
i=1

log2 (1 + µiP ) (6)

with positive values of µi given as

µi =


exp(gnr (4))
σ2nt(K+1) , i = 1
exp(

∑nr−i
p=1

1
p−γ)

σ2nt(K+1) , i = 2, . . . , nt

where γ = 0.5772... is Euler’s constant and 4 , Kntnr. The
function gnr (4) is defined as

gnr (4) , ln (4)− Ei (−4) +

nr−1∑
i=1

(
− 1

4

)i
×
(
e−4 (i− 1)!− (nr − 1)!

i (nr − 1− i)!

)
(7)

where Ei (−x) = −
´∞
x

e−t

t dt, x > 0, is the exponential
integral function.

Note that for the special case of K →∞, (6) reduces to

SEK→∞1 = log2

(
1 + nr

P

σ2

)
(8)

which is the exact capacity of deterministic MIMO systems,
with multiplexing gain equal to 1 [7]. In the high SNR regime,
we have the following approximation for the SE.

Lemma 2 [9, Eq. (24)]: The SE of the uncorrelated Ricean
fading MIMO channel in the high SNR regime, with rank-1
mean matrix M and nt ≤ nr, can be approximated as SE ≈
SE2, where

SE2 , nt log2

(
P

σ2nt

)
+ c (9)

where c , log2
nr!

(nr−nt)!
+ log2

1+ntK
(K+1)nt .

IV. ENERGY EFFICIENCY MAXIMIZATION

In this section, we utilize the closed-form expressions in
Section III to analyze the impact of different system parame-
ters on the EE of rank-1 Ricean fading MIMO channels.

A. The Impact of Transmit Power on EE
1) Arbitrary SNR: We start with finding the optimal trans-

mit power P by using the lower bound EE expression, i.e.,

EE1 ,
SE1

Ptot

=

∑nt

i=1 log2 (1 + µiP )

αP + ntPct + nrPcr

(10)

which is tight for arbitrary SNR. From (10), we see that the
sublevel sets Sν = {−EE1 ≤ ν} = {

∑nt

i=1 log2 (1 + µiP )
+ν (αP + ntPct + nrPcr) ≤ 0} are convex for ν ∈ R. Thus,
EE1 is a quasi-concave function of P . The first derivative of
EE1 with respect to P is

∂EE1
∂P

=
f1 (P )

(αP + ntPct + nrPcr)
2
ln 2

(11)

where
f1 (P ) , (αP + ntPct + nrPcr)

nt∑
i=1

µi
1 + µiP

− α
nt∑
i=1

ln (1 + µiP ) (12)

which is a decreasing function of P . Note that f1(0) =
(ntPct + nrPcr)

∑nt

i=1 µi > 0. Thus, there exists a unique
P ∗ such that f1 (P ∗) = 0, i.e., ∂EE1

∂P |P=P∗ = 0. Recall that
EE1 in (10) is a quasi-concave function of P . Thus, the unique
P ∗ is the global optimal power which maximizes EE1. Unfor-
tunately, the optimal value of P ∗ = arg (f1 (P ) = 0) cannot
be expressed in closed-form. However, with the expression in
(12) and noting that f1 (P ) is a decreasing function of P , we
can easily obtain the optimal power value numerically, e.g.,
via a bisection search shown in Algorithm 1.

Algorithm 1 Bisection method for finding the optimal transmit
power that maximizes EE1

given Pl ≤ P ∗ and Pu ≥ P ∗, with f1(Pl) ≥ 0 and f1(Pu) ≤ 0,
given tolerance ε > 0.
repeat

1: set P = Pl+Pu

2
, and calculate f1(P ) by using (12).

2: if f1(P ) > 0 then
3: Pl := P
4: else
5: Pu := P

until |f1(P )| < ε.

An initial lower bound can be easily found as Pl = 0.
To find an initial upper bound Pu such that g(Pu) ≤ 0, we
define µmax , max (µi) and µmin , min (µi). Then, we have
f1 (P ) ≤ ntf̃1 (P ), where

f̃1 (P ) , (αP + ntPct + nrPcr)
µmax

1 + µminP

− α ln (1 + µminP ) . (13)
Therefore, an upper bound Pu can be found by setting
f̃1 (Pu) = 0, from which we get

Pu =
exp

(
x+ µmax

µmin

)
− 1

µmin
(14)



where

x ,W

µmax (αP + ntPct + nrPcr)

α exp
(
µmax

µmin

)
 (15)

and W is the Lambert W function satisfying W (x)eW (x) = x.
With the closed-form expression of Pu in (14), Algorithm 1
is guaranteed to converge to the optimal P ∗.

2) High SNR Approximation: In order to gain more physi-
cal insights, we now elaborate on the high SNR regime. Plug-
ging (9) into (4), the EE can be approximated as EE ≈ EE2,
where

EE2 ,
SE2

Ptot

=
nt log2

(
P

ntσ2

)
+ c

αP + ntPct + nrPcr

. (16)

Proposition 1: For the uncorrelated Ricean fading MIMO
channel with rank-1 mean matrix M and nr ≤ nt, in the high
SNR regime, the optimal transmit power that maximizes EE2
is

P ∗ = ntσ
2

(
exp

(
W

(
ntPct + nrPcr

ntσ2αed

)
+ d

))
(17)

where d , 1− c
nt

ln 2, and c is defined in Lemma 2.
Proof: From (16), we see that EE2 is a quasi-concave

function of P . By calculating the first order derivative of EE2
with respect to P , and setting it to zero, we get

f2(P ) =
ntPct + nrPcr

αP
−
(
ln

(
P

ntσ2

)
− d
)

= 0. (18)

Let z = ln
(

P
ntσ2

)
− d, then (18) can be rewritten as zez =

ntPct+nrPcr

ntσ2αed
, from which, we get z = W

(
ntPct+nrPcr

ntσ2αed

)
.

Therefore, the optimal transmit power can be obtained by
substituting the value of z into P ∗ = ntσ

2 exp (z + d). The
optimal solution (17) can also be found by using a different
methodology presented in [10].

Note that W (x) is an increasing function of x for x > 0.
Thus, from Proposition 1, we observe that in the high SNR
regime, the optimal transmit power increases with increasing
the fixed power consumption Pct and/or Pcr. Moreover, with
the aid of [1, Lemma 3], we can show that the optimal transmit
power is approximately equal to ntσ

2ed for small ntPct +
nrPcr. For large ntPct + nrPcr, the optimal transmit power
increases linearly with ntPct+nrPcr. This is intuitive, because
when ntPct + nrPcr is small, the effect of the fixed power
consumption on the EE is negligible. On the contrary, when
the fixed power consumption is large and dominates the total
power consumption, then more transmit power can be used to
increase the SE, thereby, increasing the EE.

Corollary 1: The optimal transmit power, P ∗ in (17),
increases as the Ricean K-factor, K, increases.

Proof: Note that c, which is defined in Lemma 2, de-
creases with increasing K. Thus, d , 1 − c

nt
ln 2 increases

as K increases. Then, from (18), we see that f2(P ) is an
increasing function of K. Note that f2(P ) is a decreasing
function of P . Therefore, the optimal transmit power, P ∗,
which satisfies f2(P ∗) = 0, increases as K increases.

Corollary 1 implies that, in the high SNR regime, in order
to maximize the EE, the transmit power should increase in
order to compensate for the SE loss due to the dominating
LoS component.

B. The Impact of SE on EE

For arbitrary SNR, the optimal SE that maximizes EE1 can
be obtained by substituting P ∗ obtained from Algorithm 1
into (6). For the high SNR regime, we present the following
proposition.

Proposition 2: For the uncorrelated Ricean fading MIMO
channel with rank-1 mean matrix M and nr ≤ nt, in the high
SNR regime, the optimal value of SE2 that maximizes EE2 is

SE∗2 =
nt
ln 2

(
W

(
(ntPct + nrPcr) e

−d

ntασ2

)
+ 1

)
. (19)

Proposition 2 implies that increasing the SE does not always
increase the EE. Recall that in the high SNR regime, the
optimal transmit power increases as ntPct + nrPcr increases.
As expected, the optimal SE also increases with increasing
the fixed power consumption. For small ntPct + nrPcr, the
optimal SE is approximately equal to nt

ln 2 , which increases
linearly with nt. However, when the fixed power consumption
is large, the optimal SE increases only logarithmically with
ntPct +nrPcr. Recall that W (x) is an increasing function of
x for x > 0, and d is an increasing function of K. From (19),
we have the following corollary.

Corollary 2: The optimal SE, SE∗2 in (19), decreases as the
Ricean K-factor, K, increases.

Corollary 2 claims that, in the high SNR regime, the SE
decreases as the LoS component becomes more and more
dominant, which is expected due to the reduced multiplexing
gain [9].

C. The Impact of Number of Antennas on EE

Since the optimal nt and nr that maximize EE1 for arbitrary
SNR are difficult, if not impossible, to obtain, we now focus
on the high SNR regime to gain insights. The values of nt
and nr are assumed to be continuous with 0 < nt ≤ nr.

1) The Impact of nt on EE: We start with investigating
the impact of the number of transmission antennas, nt, on the
EE. The number of receive antennas, nr, is assumed to be
fixed. Utilizing Stirling’s approximation, lnn! ≈ n lnn − n,
(9) becomes

SE2 ≈
1

ln 2

(
nt

(
ln

P

σ2nt (1 +K)
− 1

)
+ ln (1 + ntK)

)
+

1

ln 2

(
nr lnnr − (nr − nt) ln (nr − nt)

)
. (20)

By doing so, it can be shown that EE2 in (16) is a quasi-
concave function of nt, with

∂EE2
∂nt

≈ (αP + nrPcr)

(αP + ntPct + nrPcr)
2
ln 2

J1 (nt) (21)

where

J1 (nt) , (1 + nrβ) ln (nr − nt)− lnnt − β ln (1 + ntK)

+
(1 + ntβ)K

1 + ntK
+ ln

P

σ2 (1 +K)
− 1− βnr lnnr

(22)

with β , Pct

αP+nrPcr
. Note that J1 (nt) is a decreasing function

of nt. Recall that 0 < nt ≤ nr and note that J1 (nt → 0) > 0



and J1 (nt → nr) < 0. Thus, there exists a unique optimal n̂t,
where

n̂t = arg
0<nt≤nr

(J1 (nt) = 0) . (23)

The optimal value of n̂t cannot be expressed in closed-form.
However, similar to Algorithm 1, we can easily obtain n̂t
numerically via a bisection search. If the value of n̂t is non-
integer, the optimal n∗t is attained at one of the two closest pos-
itive integers. Note that J1 (nt) is also a decreasing function
of β and K. Therefore, n̂t decreases as β or/and K increases.
Intuitively, this implies that, in the high SNR regime, the
optimal number of transmit antennas decreases when the fixed
power consumption at the transmitter increases. Moreover, it
indicates that less transmit antennas should be used when the
LoS component becomes more and more dominant. This is
expected since when the Ricean K-factor is large, the SE gain
achieved by adding more transmit antennas is negligible. Note
that the total power consumption increases with increasing nt.
Thus, as K increases, less transmit antennas should be used in
order to achieve a better trade-off between the SE and power
consumption.

2) The Impact of nr on EE: Now, we try to find the optimal
number of receive antennas, nr, by keeping nt fixed. Utilizing
(20), it can been shown that EE2 in (16) is also a quasi-concave
function of nr, with

∂EE2
∂nr

≈ αP + ntPct

(αP + ntPct + nrPcr)
2
ln 2

J2 (nr) (24)

where
J2 (nr) , lnnr − a1 ln (nr − nt)− a2 (25)

with a1 , 1 + ntζ and a2 ,
ζ
(
nt

(
ln P

ntσ2 − 1
)
+ ln

(
1+ntK
(1+K)nt

))
> 0 in the high

SNR regime. Here, ζ , Pcr

αP+ntPct
. It is easy to show that

J2 (nr) is a decreasing function of nr. Recall that nr ≥ nt
and noting that J2 (nr → +∞) < 0 and J2 (nr → nt) > 0.
Thus, there exists a unique optimal n̂r, where

n̂r = arg
nr≥nt

(J2 (nr) = 0) . (26)

The optimal value of n̂r cannot be expressed in closed-
form. However, similar to Algorithm 1, we can easily obtain
n̂r numerically via a bisection search. Note that J2 (nr) ≤
ln nr

nr−nt
− a2. Thus, by setting ln nr

nr−nt
− a2 = 0, an upper

bound of n̂r can be found as n̂r ≤ nt

1−ea2
. Finally, the optimal

n∗r is attained at one of the two closest integers.
From (25), we see that J2 (nr) decreases as ζ increases.

Therefore, in order to satisfy J2 (n̂r) = 0, n̂r should decrease
as ζ increases. This implies that the optimal number of
receive antennas decreases with increasing the fixed power
consumption at the receiver. Note that a2 is proportional to
ζ. Thus, when the fixed power consumption at the receiver
side dominates the total power consumption, the upper bound,
nt

1−ea2
will approach to nt. In this case, we have n∗r = nt.

3) Special Case of nt = nr: For the special case of nt =
nr = n, we present the following corollary.

Proposition 3: When nt = nr = n, the optimal n∗ that
maximizes EE2 is given by n∗ = argmax

{bn̂c,dn̂e}
EE2, where

n̂ =
exp

(
W
((

αPK
Pct+Pcr

− 1
)

1
eb

)
+ b
)
− 1

K
(27)

with b , 1 + αP
Pct+Pcr

(
ln P

σ2(1+K) − 1
)

.
Proof: Plugging nt = nr = n into (9),

and utilizing Stirling’s approximation, we get SE2 ≈
1

ln 2

(
n ln ρ

1+K − n+ ln (1 + nK)
)

, which is a concave func-
tion of n. Therefore, EE2 in (16) is a quasi-concave function
of n, with ∂EE2

∂n ≈
J3(n)

(αP+n(Pct+Pcr))
2 ln 2

, where

J3 (n) , αP

(
ln

P

σ2 (1 +K)
− 1 +

K

1 + nK

)
− (Pct + Pcr)

(
ln (1 + nK)− nK

1 + nK

)
. (28)

It can be shown that J3 (n) is a decreasing function of n, with
J3 (n = +∞) < 0 and J3 (n = 1) > 0. Thus, there exists a
unique optimal n̂ such that J3 (n̂) = 0, and the optimal n∗ is
attained at one of the two closest integers from n̂.

Similarly, utilizing (28), we can show that the optimal
number of antennas, n̂, decreases as the Ricean K-factor
and/or the fixed power consumption Pct + Pcr increase.

V. NUMERICAL RESULTS

Numerical results are presented to verify our analytical re-
sults and to illustrate the impact of different system parameters
(P , SE, nt and nr) on the EE of rank-1 Ricean fading MIMO
systems. The noise power is σ2 = 10mW.

Figure 1 shows the EE as a function of the transmit power,
P , for different Ricean-K factors. The numbers of transmit
and receive antennas are nt = 2 and nr = 4, respectively. The
power model parameters are Pct = 56W, Pcr = 130W and
α = 2.6, which correspond to a backhaul channel between a
micro BS to a macro BS [8, Table 2]. The lower bound EE1 and
the high SNR approximated EE2 are compared with Monte-
Carlo simulations. We see that both analytical EE expressions
agree perfectly with the numerical results. As expected, the
EE decreases as the Ricean-K factor increases. Utilizing
Proposition 1, for K = 0, 10, 100, the optimal power values
are 32.45, 35.49 and 41.14W, respectively, which agree with
the simulated optimal values as shown in Fig. 1. Moreover,
in agreement with Corollary 1, we observe that the optimal
transmit power increases as the Ricean-K factor increases.
This indicates that, in order to maximize the EE, the transmit
power should increase so as to compensate for the SE loss
due to the increased LoS component.

Figure 2 demonstrates the EE versus the SE considering the
same system model parameters used in Fig. 1. We see that even
though the optimal transmit power increases as K increases,
the optimal value of SE decreases when increasing K. This
observation is in agreement with Corollary 2. Moreover, we
see that when the SE is less than 12 bits/s/Hz, the EE increases
linearly with the SE. This is because, for small values of
SE, the corresponding transmit power P is small. Thus, by
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increasing P , the increase of the total power consumption Ptot

is negligible. Therefore, the EE, which is defined as the SE-
to-Ptot ratio, increases linearly as the SE increases.

Finally, Fig. 3 investigates the impact of the number of
transmit antennas on the EE of rank-1 Ricean fading MIMO
channels. The number of receive antennas nr is set to 10.
The EE is plotted as a function of nt for different values of
K and Pcr respectively. We consider a micro BS transmitter
(Pct = 56W and α = 2.6), and investigate three different
backhaul MIMO channels with Pcr = 6.8, 56 and 130W,
which correspond to three different types of receivers, i.e.,
pico BS, micro BS and macro BS, respectively [8, Table 2].
As expected, for a fixed value of Pcr, the optimal nt decreases
as K increases, since with increasing the Ricean K-factor,
the contribution to the SE by adding more transmit antennas
becomes negligible, while the total power consumption will
increase linearly. On the other hand, for a fixed value of K,
the optimal nt increases as Pcr increases. This observation
is also intuitive, because with increasing Pcr, the total power
consumption becomes dominated by the power consumption at
the receiver. Therefore, more transmit antennas can be added
to increase the SE, thereby, increasing the EE.
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Fig. 3. Energy efficiency vs. the number of transmit antennas.

VI. CONCLUSIONS

In this paper, the EE of rank-1 Ricean fading MIMO chan-
nels was analyzed. More specifically, the effects of different
system parameters, i.e., transmit power, SE, and number of
transmit and receive antennas, on the EE were investigated.
When keeping the other parameters fixed, closed-from expres-
sions have been derived for the optimal transmit power and
the optimal SE, respectively, with the objective of maximizing
the EE in the high SNR regime. We analytically show that
the optimal transmit power and the optimal SE increase as
the fixed power consumption per transceiver chain increases.
Moreover, both our theoretical analysis and numerical results
indicated that, as the Ricean-K factor increases, the optimal
transmit power will increase; on the contrary, the optimal SE
and the optimal number of transmit antennas will decrease
with increasing K.
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