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Abstract—Traditionally, the dictionary matrices used in sparse
wireless channel estimation have been based on the discrete
Fourier transform, following the assumption that the channel
frequency response (CFR) can be approximated as a linear
combination of a small number of multipath components, each
one being contributed by a specific propagation path. In practical
communication systems, however, the channel response experi-
enced by the receiver includes additional effects to those induced
by the propagation channel. This composite channel embodies,
in particular, the impact of the transmit (shaping) and receive
(demodulation) filters. Hence, the assumption of the CFR being
sparse in the canonical Fourier dictionary may no longer hold.
In this work, we derive a signal model and subsequently a novel
dictionary matrix for sparse estimation that account for the
impact of transceiver filters. Numerical results obtained in an
OFDM transmission scenario demonstrate the superior accuracy
of a sparse estimator that uses our proposed dictionary rather
than the classical Fourier dictionary, and its robustness against
a mismatch in the assumed transmit filter characteristics.

I. INTRODUCTION

Many channel models proposed for wireless communication
systems characterize the impulse response of the radio channel
as the sum of a few dominant multipath components, each
associated with a delay and a complex gain [1]. As a result,
the channel frequency response (CFR), defined as the Fourier
transform of the channel impulse response (CIR), admits a
sparse representation in a specific Fourier dictionary. Methods
from compressed sensing (CS) and sparse channel represen-
tations have been proposed to devise estimators of the radio
channel responses that exploit this property [2]–[5].

However, the receiver of a wireless communication sys-
tem observes a composite channel response that includes
the impact of the propagation channel together with other
effects, such as those induced by antenna or transceiver
filter1 responses. The combination of these effects results in
a composite CFR that exhibits sparsity in a different (a priori
unknown) dictionary. This naturally raises two questions: (i)
can a CS-based estimator using classical Fourier dictionaries
still yield precise sparse estimates of the composite channel?,
and (ii) if this is not the case, which dictionary should the
estimator use in order to produce accurate sparse estimates of
the composite channel response?

The authors of [6] showed that the performance of CS
algorithms is highly sensitive to mismatches in the used

1Hencefort, we use the term “transceiver filter” to designate either the
transmit (shaping) or the receive (demodulation) filters.

dictionary matrix. Such a situation is encountered when CS-
based channel estimators are applied to a signal model which
incorrectly assumes perfect low-pass transceiver filters. To the
authors’ knowledge, only a few contributions have explored
the effects of transceiver filters on sparse estimators before. In
[3], the authors apply CS techniques to estimate the channel
in a multicarrier system using perfect low-pass filters in
highly mobile setups; they observe that the discrete delay-
Doppler spreading function is approximately sparse. In this
contribution we are, however, interested in the limitations
that the practical implementation of such transceiver filters
impose on the accuracy that sparse (or CS-based) estimators
can attain. In [7], an OFDM system with transceiver filters is
also analyzed. The author claims that, under the conditions of
a sufficiently large bandwidth (e.g. 256 MHz), the resulting
composite channel response appears approximately sparse. It
is, however, unclear whether this conclusion holds for systems
employing a smaller bandwidth as, e.g., an LTE system [1].

In this article we derive a model for the received OFDM
signal with a dictionary explicitly accounting for the distortion
introduced by transceiver filters. We then apply a CS-based
channel estimator to this signal model and to the classical
model which neglects this distortion [2], [4], [5]. Numerical
investigations are conducted considering an LTE system as
use-case. They reveal that the performance of the sparse
estimator, measured in terms of mean squared error (MSE)
of the CFR estimates, is significantly improved when it is
applied in combination with our proposed dictionary, com-
pared to when it is applied in combination with the classical
Fourier dictionary. These investigations also demonstrate that
the sparse estimator used in combination with the former
dictionary is robust towards mismatches between the true and
assumed characteristics of the filters, and that it performs well
even in scenarios where the channel response exhibits a large
number of multipath components.

The remainder of this paper is organized as follows. In
Section II we derive an OFDM received signal model which
includes the effects of the transceiver filters. Based on this,
we propose in Section III a novel design of the dictionary
used by sparse channel estimators. In Section IV we test the
performance of the aforementioned estimators. In Section V
we sum up the observations and conclude the paper.

Notation: Boldface uppercase and lowercase letters desig-
nate matrices and vectors, respectively. The diagonal matrix



A = diag(a) has the entries of the vector a as diagonal ele-
ments. We denote by [A]i,j the (i, j)th element of the matrix
A. We define the N × N discrete Fourier transform (DFT)
matrix with F ∈ CN×N , [F]m,n = 1/

√
Ne−j2πmn/N ,m, n ∈

[0 : N −1]; I is the identity matrix. A function f which maps
the set E to the set F is denoted as f : E → F and its support
is supp(f) = {x ∈ E| f(x) 6= 0}; the notation |F| denotes
the cardinality of F . We represent the convolution of two
functions f and g as f ∗g; δ(·) is the Dirac delta function. The
notation [P1 : P2] denotes the set {p ∈ N|P1 ≤ p ≤ P2}. The
superscripts (·)T and (·)H denote transposition and Hermitian
transposition respectively. The notation ‖ a ‖0 denotes the
number of non-zero entries of a.

II. SIGNAL MODEL

We consider a single-input single-output (SISO) OFDM
system model. By constrast to the traditional approach [5],
we account for the response of the transceiver filters in the
derivation of the model. The message consists of a vector
u = [u0, ..., uNB−1]T of information bits which are encoded
with a code rate R = NB/NC and interleaved to yield the vec-
tor c = [c0, ..., cNC−1]T. The code vector is modulated onto a
vector of complex symbols that are multiplexed with the pilot
symbols producing the symbol vector x = [x0, ..., xN−1]T.
The symbol xi is a pilot symbol if i ∈ P or a data symbol
if i ∈ D, where P and D represent the subsets of pilot and
data indices respectively, so that P ∪ D = {0, ..., N − 1},
P ∩ D = ∅, |P| = NP and |D| = ND. We refer to P as the
pilot pattern. The symbol vector x is passed through an inverse
DFT block, yielding s = [s0, ..., sN−1]T = FHx. Next, s is
appended a µ-sample long cyclic prefix (CP) and the entries
of the resulting vector are modulated using a transmit shaping
filter with impulse response ψtx(t) to produce the continuous-
time OFDM signal

s(t) =

N−1∑
n=−µ

snψtx(t− nTs), t ∈ [−µTs, NTs) (1)

where Ts is the sampling period. We assume that supp(ψtx) =
[0, T ],with T = aTs, a > 0. The signal s(t) is sent across
a wireless channel with CIR g(τ) modeled as the sum of L
(specular) multipath components, with the complex gains β =
[β0, ..., βL−1]T and delays τ = [τ0, ..., τL−1]T:

g(τ) =

L−1∑
l=0

βlδ(τ − τl). (2)

We assume that g(τ) remains invariant over the duration of
one OFDM symbol. At the reception, the signal appears as
the convolution of the transmitted signal (1) and the CIR (2)
corrupted by additive white Gaussian noise n(t) with spectral
height σ2, i.e.

z(t) = (s ∗ g)(t) + n(t). (3)

The received signal is next passed through a receive de-
modulation filter with response ψrx(t),2 supp(ψrx) = [0, T ],
producing the output

r(t) = (z ∗ ψrx)(t) =

N−1∑
n=−µ

sn(ψtx ∗ g ∗ ψrx)(t− nTs) + ν(t)

(4)
where ν(t) = (ψrx ∗ n)(t). The output signal r(t) is sam-
pled and the CP is discarded, yielding the vector r =
[r0, ..., rN−1]T with the entries

rk = r(kTs) =

N−1∑
n=−µ

snq((k − n)Ts) + ν(kTs), (5)

k ∈ [0 : N − 1]. In the above expression, we defined the
composite channel response q(t) = (g ∗ ψtx ∗ ψrx)(t) =
(g ∗ φ)(t), supp(q) ⊆ [0, τL−1 + 2T ], with φ(t) = (ψtx ∗
ψrx)(t), supp(φ) = [0, 2T ]. The noise samples in (5) form a
circularly-symmetric complex Gaussian process with variance
λ−1, λ ≥ 0 that is uncorrelated when the autocorrelation of
ψrx(t) satisfies the Nyquist criterion.3

We observe that decreasing the system bandwidth, i.e.
increasing the sampling period Ts, results in widening the
convolved response of the transceiver filters φ(t). As a result,
for large bandwidths (small Ts) the composite response ex-
hibits an approximately specular behavior as the response φ(t)
decays fast, which justifies disregarding the filters’ effects [7].
Conversely, when employing a smaller bandwidth (larger Ts)
as e.g. in 20 MHz LTE systems, each multipath component in
(2) is convolved with the slow-decaying response φ(t). Under
such conditions, q(t) is not well approximated by a specular
response anymore.

In order to avoid inter-symbol interference, it must be
ensured that rk = 0 for k > N + µ, which implies that
q((k − n)Ts) = 0 for k − n ≥ µ + 1. When this condition
is satisfied, the signal y = [y0, ..., yN−1]T observed after the
DFT processing at the receiver reads

y = Fr = XMβ + ξ (6)

where X = diag(x0, ..., xN−1), M =
√
NFΦ, β is defined

before (2), ξ = Fν,ν = [ν(0Ts), ..., ν((N − 1)Ts)]
T ∈ CN ,

and Φ ∈ RN×L, [Φ]n,l = φ(nTs − τl), n ∈ [0 : N − 1], l ∈
[0 : L− 1].

In order to estimate the CFR at all subcarriers, i.e. h = Mβ,
we use the NP observations corresponding to the pilot sub-
carriers given by the pattern P . The received signal observed
at each pilot subcarrier y(P) is divided by the corresponding
known transmitted symbol. We note that the superindex (·)(P)

applied to a matrix A denotes a matrix A(P) that contains
the rows of A corresponding to the pattern P . The vector of
observations used for estimating the channel vector reads

t = [X(P)]−1y(P) = M(P)β + [X(P)]−1ξ(P). (7)

2Without loss of generality, we assume ψrx(t) and ψtx(t) have energy
one.

3The receive filter’s autocorrelation Arx(t) = ψrx(t) ∗ ψrx(−t) satisfies
the condition Arx(kTs) = 0,∀k 6= 0.



Thus, the observation t contains the samples of the CFR at the
pilot subcarrier frequencies corrupted by noise. By contrast,
the traditional observation model [2], [5] disregards the effects
of transceiver filters. In this case,

t = T(P)β + [X(P)]−1ξ(P) (8)

where T ∈ CN×L has the entries [T]n,l = e−j2π
n

NTs
τl , n ∈

[0 : N −1], l ∈ [0, L−1] and τl ∈ τ . We will next discuss the
effects of using the model (7) instead of (8) in the context of
sparse channel estimation.

III. COMPRESSED SENSING INFERENCE FOR CHANNEL
ESTIMATION

If the matrix M –and, hence, M(P )– was known, estimating
h would be equivalent to estimating the entries of the vector
of complex channel gains β. Unfortunately, neither the dimen-
sions of β and τ (i.e. the number of multipath components
in (2)) nor the entries of τ , which the matrix M depends on,
are known. In order to overcome this limitation we employ
methods from CS to estimate the CIR and consequently the
CFR h. To that end, a discretized version of the CIR in (2) is
used:

ḡ(τ) =

K−1∑
k=0

αkδ(τ − τ̄k) (9)

where τ̄k = k∆τ , k ∈ [0 : K − 1] and we define α =
[α0, ..., αK−1]T and τ̄ = [τ̄0, ..., τ̄K−1]T.

A. Canonical compressed channel sensing model

Making use of (9), the canonical linear model used in com-
pressed channel sensing [5], [8] approximates the observation
model by:

t ≈ H(P)α + w (10)

where w ∈ CNP is circularly-symmetric Gaussian distributed
with zero-mean and covariance matrix λ−1I, and the matrix
H ∈ CN×K has entries

[H]n,k = e−j2π
n

NTs
τ̄k , (11)

n ∈ [0 : N − 1], k ∈ [0 : K − 1]. By choosing a sufficiently
small sampling interval ∆τ and sufficiently large K � L,
many entries of α are expected to be either zero or close to
zero, i.e. α is expected to be approximately sparse.

Various CS methods [2], [5] have been proposed to compute
sparse estimates of α in (10). Once an estimate α̂ has been
obtained, the estimated CFR is computed as ĥ = Hα̂.

B. Novel compressed channel sensing model

We note that the model (10) is based on two drastic approxi-
mations of the true observation model (7): (i) the approximated
observation model (8) that disregards the transceiver filters’ ef-
fects, and (ii) the discretized CIR (9). While the approximation
(ii) is necessary, we amend the approximation (i) and recast
the CS model to

t ≈ H
(P)
φ α + w (12)

with Hφ ∈ CN×K defined as

[Hφ]n,k =
√
N

N−1∑
m=0

[F]n,mφ(mTs − τ̄k), (13)

n ∈ [0 : N −1], k ∈ [0 : K−1]. We then apply CS techniques
to the model (13) and obtain sparse estimates α̃; similarly, we
compute the estimated CFR h̃φ = Hφα̃.

We note that the CFR h is L-sparse4 in the dictionary
M defined in (6). However, since M is unkown apriori,
we employ the two approximate dictionaries Hφ and H and
consequently assume that h is approximately sparse in Hφ and
H. In CS, the usage of approximate dictionaries is typically
referred to as dictionary mismatch [6]. In the case of the
dictionary Hφ, the mismatch is caused by the discretization of
the delay domain carried out in (9); for the dictionary H, an
additional source of mismatch is present due to the neglection
of the transceiver filter responses. Hence, we conjecture that a
sparse estimator employing (12) instead of (10) will provide
a more accurate estimate of h. This conjecture is based on
the fact that, when using the dictionary from (13), α̃ would
correspond to an estimate of the CIR g in (2), while utilizing
(11) would yield an estimate α̂ of the composite channel q
defined after (5). For small-to-medium bandwidths, the latter
approach will result in estimates of α with more non-zero
entries than those obtained with the former approach, due to
the effect of the filters response φ on the composite response
q. Thus, a less accurate reconstruction of the CFR is expected.

C. Sparse channel estimation using sparse Bayesian learning

We use a Bayesian inference method commonly referred to
as sparse Bayesian learning (SBL) to obtain sparse estimates
of α in the CS models in (10) and (12). SBL makes use of
models of the prior pdf p(α) that strongly penalize non-sparse
estimates in maximum-a-posteriori based estimators [9], [10].
In this work, we have selected the prior model proposed in
[2], where the prior pdf of α is formulated as

p(α) = p(α; ε, η) =

∫ ∞
0

p(α|γ)p(γ; ε, η)dγ (14)

with p(α|γ) =
∏K−1
k=0 p(αk|γk), p(γ; ε, η) =∏K−1

k=0 p(γk; ε, η), where p(αk|γk) is a Gaussian pdf
with zero-mean and variance γk, and p(γk; ε, η) is a Gamma
pdf with shape and rate parameters ε and η, respectively.
Using the above prior model, the estimation algorithm
presented in [2] is applied to the observation models (10) and
(12).

IV. PERFORMANCE EVALUATION

A. Setup

In this section we study the performance of the SBL channel
estimator using our proposed dictionary matrix design in a
SISO LTE OFDM setup [1], with the settings specified in

4A signal a is L-sparse in a dictionary A if a vector b exists with ‖ b ‖0=
L s.t. a = Ab.



TABLE I
PARAMETER SETTINGS

Sampling time Ts 32.55 ns
Bandwidth B 20 MHz

CP length 144 Ts
Modulation 64 QAM

Turbo-encoder rate 948/1024

Decoder BCJR [12]
Number of subcarriers N 1200

Number of pilots/time slot NP 400

Table I. The pilots are arranged according to the pattern
specified in [11]. Both transmit and receive filters are truncated
square-root raised cosine filters with roll-offs rTX and rRX

respectively, and duration T = 3Ts.
We employ two different versions of the SBL estimator

proposed in [2]. One version of the estimator, which we coin
SE, uses the classical dictionary matrix design in (11). The
second version, referred to as SE(F) henceforth, uses our pro-
posed dictionary matrix design in (13), which accounts for the
responses of the transceiver filters. For both estimators, we use
the parameter setting (ε = 0.5, η = 1,K = 500,∆τ = 10ns),
see (9) and (14). For benchmarking purposes, we consider
two additional estimators: (i) a genie-aided estimator (GAE)
[13] that assumes perfect knowledge of multipath components
delays, i.e. uses the dictionary M from (6), and (ii) a robust
design of the classical Wiener filter estimator, which we refer
to as robust Wiener filter (RWF). The latter estimator is
designed assuming that the channel has a maximum excess
delay of 5 µs and a robust covariance matrix following [14].
Note that this assumption is also implicitly made in the design
of SE and SE(F) via the aforementioned parameter setting.

We assess the accuracy of the investigated estimators by
evaluating the performance, in terms of MSE of the CFR esti-
mates and coded bit-error rate (BER), of a receiver employing
them. The receiver is evaluated in two different propagation
scenarios, each characterized by a specific channel model. In
both scenarios, block fading is assumed. Scenario A employs
a sparse 3GPP-like channel, modeled as specified in [1]: the
CIR consists of five multipath components, with associated
delays drawn independently from a uniform distribution with
a 10 ns range, centered around the delays specified in Table
II.5 Scenario B employs the model introduced in [15], and
later studied in [16]. The CIRs generated from the model
exhibit a number of clustered multipath components which
varies over different realizations, with cluster and within-
cluster delays following Poisson arrival processes with rates
Λ and λ, respectively. The conditional second moments of
the channel gains are modeled by the power-delay constants
(Γ, γ). We set [1/Λ, 1/λ] [µs] = [0.3, 5] and [Γ, γ] [ns] =
[600, 200], leading to channel realizations that contain, in
average, fifteen multipath components. Scenario A enables us
to determine whether the filters’ effects impair the receiver

5We ensure in this way that the true delays are not integer multiples of the
delay resolution we have selected for the sparse estimator - see (9).

TABLE II
SCENARIO A. CHANNEL POWER DELAY PROFILE

Delays [µs] 0 0.5 1.6 2.3 3.3
Power [dB] -1 0 -3 -5 -7

performance when they are not accounted for. Scenario B
allows the total number of multipath components to vary over
different realizations in order to account for the variabiliy
of scatterers in the environment, introducing therefore an
additional degree of freedom compared with the channel in
Scenario A. The harsher channel conditions of Scenario B
allow us to draw further conclusions on the performance of
the studied estimators.

B. Numerical Results

In Fig. 1 we depict the performance of the sparse estimators
in terms of MSE of the CFR in Scenarios A and B respectively
when the transmit and receive filters are perfectly matched
(rTX = rRX = 0.5). In both scenarios, we observe that the
mismatched dictionary matrix used in SE degrades the estima-
tor’s performance as the SNR increases. Since it accounts for
the filter’s responses in the dictionary matrix, SE(F) performs
closely to GAE for all SNR values; the slight performance
degradation that SE(F) suffers in Scenario B at high SNR is
caused by the presence of numerous multipath components.
However, in both scenarios SE(F) outperforms SE and RWF.

In practical situations, the characteristics of the transmitter’s
radio frequency front end may be unknown by the receiver. As
a result, the receiver often possesses incomplete information
for computing the dictionary matrix. This provides an incentive
to study how the mismatch between the transmit and receive
filters affects the accuracy of the estimator. To conduct this
investigation, we fix the receive filter roll-off to rRX = 0.5,
and vary the transmit filter roll-off rTX. The GAE and SE(F)
estimators assume rTX = rRX, regardless of the actual value
of rTX. The resulting MSE is depicted in Fig. 2 for the two
scenarios at 30 dB SNR. As expected, SE(F) achieves its
best performance when the roll-off factor of the transmit and
receive filters coincide (rTX = rRX = 0.5). However, even
in the case of a roll-off mismatch, SE(F) always outperforms
SE. Hence, SE(F) is robust against mismatches of the assumed
filter roll-off parameters.

Fig. 3 depicts the BER performance of a receiver employing
the investigated channel estimators. We have selected as an
ideal reference a receiver which has knowledge of the true
CFR coefficients. We observe that, in Scenario A, SE(F)
performs almost as well as the ideal reference, with a gain of
up to 1 dB with respect to SE. The harsher channel conditions
in Scenario B lead to a less significant benefit of using SE(F).
Nonetheless, a receiver employing SE(F) always performs
better than a receiver employing SE.

V. CONCLUSION

In this paper we have analyzed the effect that transceiver
filters have on the accuracy of selected state-of-art sparse
channel estimation techniques. Traditional CS techniques for
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channel estimation employ Fourier dictionaries, which fail to
embed the transceiver filters’ responses. As a result, the CS-
based channel estimators operate with mismatched dictionaries
which degrade their estimation accuracy. To overcome this
limitation, we have proposed a novel design of the dictionary
matrix which accounts for the filters’ responses, allowing thus
for sparser representations of the channel response.

To evaluate the validity of the proposed solution, we applied
an SBL estimator that includes either this new dictionary or
the traditional Fourier dictionary to an OFDM communication
system. Numerical results illustrated that the SBL estimator

employing our dictionary design always performs better than
when it uses the classical dictionary. Additionally, we observed
that our proposed dictionary matrix is especially advantageous
in scenarios in which the channel exhibits a high degree of
sparsity. Furthermore, even when the receiver possesses im-
perfect information about the filters’ responses, the proposed
dictionary yields a robust behavior of the sparse estimator.

Finally, we point out that, even though this study has been
restricted to a particular choice of estimator, the proposed
dictionary can be applied to any sparse channel estimator
derived within the CS framework. Hence, we conclude that
the dictionary matrix design proposed in this work will be a
valuable tool to enable robust and accurate CS-based channel
estimation in future generations of wireless receivers.
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